1
|
Ergashev U, Yu M, Luo L, Tang J, Han Y. The Key Targets of NO-Mediated Post-Translation Modification (PTM) Highlighting the Dynamic Metabolism of ROS and RNS in Peroxisomes. Int J Mol Sci 2024; 25:8873. [PMID: 39201563 PMCID: PMC11355049 DOI: 10.3390/ijms25168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.
Collapse
Affiliation(s)
- Ulugbek Ergashev
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Mei Yu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Long Luo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| | - Jie Tang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-Food Quality Safety, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yi Han
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (U.E.); (M.Y.); (L.L.)
| |
Collapse
|
2
|
Seitz A, Busch M, Kroemer J, Schneider A, Simon S, Jungmann A, Katus HA, Most P, Ritterhoff J. S100A1's single cysteine is an indispensable redox switch for the protection against diastolic calcium waves in cardiomyocytes. Am J Physiol Heart Circ Physiol 2024; 327:H000. [PMID: 38819384 PMCID: PMC11381028 DOI: 10.1152/ajpheart.00634.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
The EF-hand calcium (Ca2+) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e., S-nitrosylation or S-glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity toward Ca2+. Considering the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wild-type (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca2+ transient amplitudes under basal conditions and β-adrenergic receptor (βAR) stimulation. However, in contrast, ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca2+ waves and ryanodine receptor 2 (RyR2) hypernitrosylation during βAR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca2+-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CMs. We, therefore, propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity.NEW & NOTEWORTHY S100A1 is an emerging candidate for future gene-therapy treatment of human chronic heart failure. We aimed to study the significance of the conserved single-cysteine 85 (C85) residue in cardiomyocytes. We show that S100A1 is endogenously glutathionylated in the heart and demonstrate that this is dispensable to increase systolic Ca2+ transients, but indispensable for mediating S100A1's protection against sarcoplasmic reticulum (SR) Ca2+ waves, which was dependent on the ryanodine receptor 2 (RyR2) nitrosylation status.
Collapse
Affiliation(s)
- Andreas Seitz
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Martin Busch
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Jasmin Kroemer
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Schneider
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Simon
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Jungmann
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Most
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Informatics for Life consortium, Klaus Tschira Foundation, Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg, Germany
- Informatics for Life consortium, Klaus Tschira Foundation, Heidelberg, Germany
| |
Collapse
|
3
|
Doulias PT, Yang H, Andreyev AY, Dolatabadi N, Scott H, K Raspur C, Patel PR, Nakamura T, Tannenbaum SR, Ischiropoulos H, Lipton SA. S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons. Cell Chem Biol 2023; 30:965-975.e6. [PMID: 37478858 PMCID: PMC10530441 DOI: 10.1016/j.chembiol.2023.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.
Collapse
Affiliation(s)
- Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry and University Research Center of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Hongmei Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Changchun University of Chinese Medicine, Changchun 130021, China
| | - Alexander Y Andreyev
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Scott
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charlene K Raspur
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Parth R Patel
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Li X, Gluth A, Zhang T, Qian WJ. Thiol redox proteomics: Characterization of thiol-based post-translational modifications. Proteomics 2023; 23:e2200194. [PMID: 37248656 PMCID: PMC10764013 DOI: 10.1002/pmic.202200194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.
Collapse
Affiliation(s)
- Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
5
|
Li J, Pan L, Pan W, Li N, Tang B. Recent progress of oxidative stress associated biomarker detection. Chem Commun (Camb) 2023. [PMID: 37194341 DOI: 10.1039/d3cc00878a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Oxidative stress denotes the imbalance between the generation of reactive oxygen species (ROS) and antioxidant defenses in living organisms, participating in various pathophysiological processes and mediating the occurrence of diseases. Typically, the excessive production of ROS under oxidative stress elicits oxidative modification of biomacromolecules, including lipids, proteins and nucleic acids, leading to cell dysfunction and damage. Therefore, the analysis and detection of oxidative stress-associated biomarkers are of considerable importance to accurately reflect and evaluate the oxidative stress status. This review comprehensively elucidates the recent advances and applications of imaging probes for tracking and detecting oxidative stress-related biomarkers such as lipid peroxidation, and protein and DNA oxidation. The existing challenges and future development directions in this field are also discussed.
Collapse
Affiliation(s)
- Jingjing Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Limeng Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
6
|
Stomberski CT, Venetos NM, Zhou HL, Qian Z, Collison BR, Field SJ, Premont RT, Stamler JS. A multienzyme S-nitrosylation cascade regulates cholesterol homeostasis. Cell Rep 2022; 41:111538. [PMID: 36288700 PMCID: PMC9667709 DOI: 10.1016/j.celrep.2022.111538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.
Collapse
Affiliation(s)
- Colin T Stomberski
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas M Venetos
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hua-Lin Zhou
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Zhaoxia Qian
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Bryce R Collison
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Seth J Field
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Richard T Premont
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA
| | - Jonathan S Stamler
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44016, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44016, USA.
| |
Collapse
|
7
|
Chakraborty S, Sircar E, Bhattacharyya C, Choudhuri A, Mishra A, Dutta S, Bhatta S, Sachin K, Sengupta R. S-Denitrosylation: A Crosstalk between Glutathione and Redoxin Systems. Antioxidants (Basel) 2022; 11:1921. [PMID: 36290644 PMCID: PMC9598160 DOI: 10.3390/antiox11101921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Esha Sircar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Camelia Bhattacharyya
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sreejita Dutta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Sneha Bhatta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| | - Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata 700135, West Bengal, India
| |
Collapse
|
8
|
Nishino K, Yoshikawa H, Motani K, Kosako H. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics. J Proteome Res 2022; 21:2094-2103. [PMID: 35979633 DOI: 10.1021/acs.jproteome.2c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical or enzymatic biotinylation of proteins is widely used in various studies, and proximity-dependent biotinylation coupled to mass spectrometry is a powerful approach for analyzing protein-protein interactions in living cells. We recently developed a simple method to enrich biotinylated peptides using Tamavidin 2-REV, an engineered avidin-like protein with reversible biotin-binding capability. However, the level of biotinylated proteins in cells is low; therefore, large amounts of cellular proteins were required to detect biotinylated peptides. In addition, the enriched biotinylated peptide solution contained many contaminant ions. Here, we optimized the workflow for efficient enrichment of biotinylated peptides and removal of contaminant ions. The efficient recovery of biotinylated peptides with fewer contaminant ions was achieved by heat inactivation of trypsin, prewashing Tamavidin 2-REV beads, clean-up of biotin solution, mock elution, and using optimal temperature and salt concentration for elution. The optimized workflow enabled identification of nearly 4-fold more biotinylated peptides with higher purity from RAW264.7 macrophages expressing TurboID-fused STING (stimulator of interferon genes). In addition, sequential digestion with Glu-C and trypsin revealed biotinylation sites that were not identified by trypsin digestion alone. Furthermore, the combination of this workflow with TMT labeling enabled large-scale quantification of cell surface proteome changes upon epidermal growth factor (EGF) stimulation. This workflow will be useful for BioID and cell surface proteomics and for various other applications based on protein biotinylation.
Collapse
Affiliation(s)
- Kohei Nishino
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.,Kuramoto Division, Technical Support Department, Tokushima University, Tokushima 770-8503, Japan
| | - Harunori Yoshikawa
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kou Motani
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Xiang Y, You Z, Huang X, Dai J, Zhang J, Nie S, Xu L, Jiang J, Xu J. Oxidative stress-induced premature senescence and aggravated denervated skeletal muscular atrophy by regulating progerin-p53 interaction. Skelet Muscle 2022; 12:19. [PMID: 35906707 PMCID: PMC9335985 DOI: 10.1186/s13395-022-00302-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Progerin elevates atrophic gene expression and helps modify the nuclear membrane to cause severe muscle pathology, which is similar to muscle weakness in the elderly, to alter the development and function of the skeletal muscles. Stress-induced premature senescence (SIPS), a state of cell growth arrest owing to such stimuli as oxidation, can be caused by progerin. However, evidence for whether SIPS-induced progerin accumulation is connected to denervation-induced muscle atrophy is not sufficient. Methods Flow cytometry and a reactive oxygen species (ROS) as well as inducible nitric oxide synthase (iNOS) inhibitors were used to assess the effect of oxidation on protein (p53), progerin, and nuclear progerin–p53 interaction in the denervated muscles of models of mice suffering from sciatic injury. Loss-of-function approach with the targeted deletion of p53 was used to assess connection among SIPS, denervated muscle atrophy, and fibrogenesis. Results The augmentation of ROS and iNOS-derived NO in the denervated muscles of models of mice suffering from sciatic injury upregulates p53 and progerin. The abnormal accumulation of progerin in the nuclear membrane as well as the activation of nuclear progerin–p53 interaction triggered premature senescence in the denervated muscle cells of mice. The p53-dependent SIPS in denervated muscles contributes to their atrophy and fibrogenesis. Conclusion Oxidative stress-triggered premature senescence via nuclear progerin–p53 interaction that promotes denervated skeletal muscular atrophy and fibrogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00302-y.
Collapse
Affiliation(s)
- Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Zongqi You
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China.,Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Junpeng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuqi Nie
- Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China. .,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China.
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China. .,NHC Key Laboratory of Hand Reconstruction, (Fudan University), Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, People's Republic of China. .,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Kulandavelu S, Dulce RA, Murray CI, Bellio MA, Fritsch J, Kanashiro‐Takeuchi R, Arora H, Paulino E, Soetkamp D, Balkan W, Van Eyk JE, Hare JM. S-Nitrosoglutathione Reductase Deficiency Causes Aberrant Placental S-Nitrosylation and Preeclampsia. J Am Heart Assoc 2022; 11:e024008. [PMID: 35191317 PMCID: PMC9075059 DOI: 10.1161/jaha.121.024008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023]
Abstract
Background Preeclampsia, a leading cause of maternal and fetal mortality and morbidity, is characterized by an increase in S-nitrosylated proteins and reactive oxygen species, suggesting a pathophysiologic role for dysregulation in nitrosylation and nitrosative stress. Methods and Results Here, we show that mice lacking S-nitrosoglutathione reductase (GSNOR-⁄-), a denitrosylase regulating protein S-nitrosylation, exhibit a preeclampsia phenotype, including hypertension, proteinuria, renal pathology, cardiac concentric hypertrophy, decreased placental vascularization, and fetal growth retardation. Reactive oxygen species, NO, and peroxynitrite levels are elevated. Importantly, mass spectrometry reveals elevated placental S-nitrosylated amino acid residues in GSNOR-⁄- mice. Ascorbate reverses the phenotype except for fetal weight, reduces the difference in the S-nitrosoproteome, and identifies a unique set of S-nitrosylated proteins in GSNOR-⁄- mice. Importantly, human preeclamptic placentas exhibit decreased GSNOR activity and increased nitrosative stress. Conclusions Therefore, deficiency of GSNOR creates dysregulation of placental S-nitrosylation and preeclampsia in mice, which can be rescued by ascorbate. Coupled with similar findings in human placentas, these findings offer valuable insights and therapeutic implications for preeclampsia.
Collapse
Affiliation(s)
- Shathiyah Kulandavelu
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of PediatricsUniversity of Miami Miller School of MedicineMiamiFL
| | - Raul A. Dulce
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | | | - Michael A. Bellio
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Julia Fritsch
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Rosemeire Kanashiro‐Takeuchi
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of Molecular and Cellular PharmacologyUniversity of Miami Miller School of MedicineMiamiFL
| | - Himanshu Arora
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Department of UrologyUniversity of Miami Miller School of MedicineMiamiFL
| | - Ellena Paulino
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
| | - Daniel Soetkamp
- Medicine and Heart InstituteCedars Sinai Medical CenterLos AngelesCA
| | - Wayne Balkan
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Division of CardiologyDepartment of MedicineUniversity of Miami Miller School of MedicineMiamiFL
| | - Jenny E. Van Eyk
- Medicine and Heart InstituteCedars Sinai Medical CenterLos AngelesCA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell InstituteUniversity of Miami Miller School of MedicineMiamiFL
- Division of CardiologyDepartment of MedicineUniversity of Miami Miller School of MedicineMiamiFL
| |
Collapse
|
11
|
Buvelot H, Roth M, Jaquet V, Lozkhin A, Renzoni A, Bonetti EJ, Gaia N, Laumay F, Mollin M, Stasia MJ, Schrenzel J, François P, Krause KH. Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Front Immunol 2021; 12:673985. [PMID: 34557184 PMCID: PMC8454235 DOI: 10.3389/fimmu.2021.673985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the cellular defense against S. aureus, as evidenced by the importance of this pathogen in patients lacking the ROS-generating phagocyte NADPH oxidase NOX2. ROS concentrations required to kill S. aureus in vitro are much higher than those found in the phagosome. We therefore hypothesized that sublethal ROS concentrations may play a role in S. aureus gene dysregulation and investigated the in vitro transcriptomic response of S. aureus to sublethal concentrations of hydrogen peroxide (H2O2). A striking observation of these experiments was a coordinated and massive downregulation of genes involved in pyrimidine metabolism. Using transposon insertion mutants, we demonstrated that deletion of carA, a gene involved in pyrimidine synthesis, led to a significant growth defect and to an increased sensitivity of S. aureus to added H2O2. The phenotype of the carA mutant could be reversed through supplementation with the pyrimidine precursor uracil, or with a multicopy vector encoding carA. As opposed to the impact of ROS on extracellular survival, carA deletion did not affect the intracellular survival in neutrophils. Our results raise the possibility that ROS-dependent downregulation of pyrimidine metabolism might be a survival strategy of S. aureus, allowing colonization through intracellular survival, while decreasing the risk of killing the host through dampened extracellular growth.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Myriam Roth
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrey Lozkhin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Eve-Julie Bonetti
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaia
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Floriane Laumay
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Michéle Mollin
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France
| | - Marie-José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France.,Université Grenoble Alpes, Comissariat à l'energie atomique (CEA), Centre National de la Recherche Scientifique (CNRS) and Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jacques Schrenzel
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Genomic Research Laboratory, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
12
|
Seth P, Premont RT, Stamler JS. An optimized protocol for isolation of S-nitrosylated proteins from C. elegans. STAR Protoc 2021; 2:100547. [PMID: 34095861 PMCID: PMC8164088 DOI: 10.1016/j.xpro.2021.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-translational modification by S-nitrosylation regulates numerous cellular functions and impacts most proteins across phylogeny. We describe a protocol for isolating S-nitrosylated proteins (SNO-proteins) from C. elegans, suitable for assessing SNO levels of individual proteins and of the global proteome. This protocol features efficient nematode lysis and SNO capture, while protection of SNO proteins from degradation is the major challenge. This protocol can be adapted to mammalian tissues. For complete information on the generation and use of this protocol, please refer to Seth et al. (2019).
Collapse
Affiliation(s)
- Puneet Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung ELH. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021; 34:1108-1127. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.
Collapse
Affiliation(s)
- Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
- Membrane Biophysics Emeritus Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
14
|
eNOS-dependent S-nitrosylation of the NF-κB subunit p65 has neuroprotective effects. Cell Death Dis 2021; 12:4. [PMID: 33414434 PMCID: PMC7790835 DOI: 10.1038/s41419-020-03338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.
Collapse
|
15
|
Post-Translational S-Nitrosylation of Proteins in Regulating Cardiac Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9111051. [PMID: 33126514 PMCID: PMC7693965 DOI: 10.3390/antiox9111051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Like other post-translational modifications (PTMs) of proteins, S-nitrosylation has been considered a key regulatory mechanism of multiple cellular functions in many physiological and disease conditions. Emerging evidence has demonstrated that S-nitrosylation plays a crucial role in regulating redox homeostasis in the stressed heart, leading to discoveries in the mechanisms underlying the pathogenesis of heart diseases and cardiac protection. In this review, we summarize recent studies in understanding the molecular and biological basis of S-nitrosylation, including the formation, spatiotemporal specificity, homeostatic regulation, and association with cellular redox status. We also outline the currently available methods that have been applied to detect S-nitrosylation. Additionally, we synopsize the up-to-date studies of S-nitrosylation in various cardiac diseases in humans and animal models, and we discuss its therapeutic potential in cardiac protection. These pieces of information would bring new insights into understanding the role of S-nitrosylation in cardiac pathogenesis and provide novel avenues for developing novel therapeutic strategies for heart diseases.
Collapse
|
16
|
Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chem Commun (Camb) 2020; 56:13506-13519. [PMID: 33084662 DOI: 10.1039/d0cc05447j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) diversify the molecular structures of proteins and play essential roles in regulating their functions. Abnormal PTM status has been linked to a variety of developmental disorders and human diseases, highlighting the importance of studying PTMs in understanding physiological processes and discovering novel nodes and links with therapeutic intervention potential. Classical biochemical methods are suitable for studying PTMs on individual proteins; however, global profiling of PTMs in proteomes remains a challenging task. In this feature article, we start with a brief review of the traditional affinity-based strategies and shift the emphasis to summarizing recent progress in the development and application of chemical and computational proteomic strategies to delineate the global landscapes of functional PTMs. Finally, we discuss current challenges in PTM detection and provide future perspectives on how the field can be further advanced.
Collapse
Affiliation(s)
- Fan Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | |
Collapse
|
17
|
Zhang Y, Deng Y, Yang X, Xue H, Lang Y. The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review. Neurochem Res 2020; 45:2815-2827. [PMID: 32984933 DOI: 10.1007/s11064-020-03136-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 01/12/2023]
Abstract
S-nitrosylation (SNO) is a covalent post-translational oxidative modification. The reaction is the nitroso group (-NO) to a reactive cysteine thiol within a protein to form the SNO. In recent years, a variety of proteins in human body have been found to undergo thiol nitrosylation under specific conditions. Protein SNO, which is closely related to cardiovascular disease, Parkinson's syndrome, Alzheimer's disease and tumors, plays an important role in regulatory mechanism of protein function in both physiological and pathological pathways, such as in cellular homeostasis and metabolism. This review discusses possible molecular mechanisms protein SNO modification, such as the role of NO in vivo and the formation mechanism of SNO, with particular emphasis on mechanisms utilized by SNO to cause certain diseases of human. Importantly, the effect of SNO on diseases is multifaceted and multi-channel, and its critical value in vivo is not well defined. Intracellular redox environment is also a key factor affecting its level. Therefore, we should pay more attention to the equilibrium relationship between SNO and denitrosylation pathway in the future researches. These findings provide theoretical support for the improvement or treatment of diseases from the point of view of SNO.
Collapse
Affiliation(s)
- Yadi Zhang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yuzhen Deng
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Xiaoxi Yang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongmei Xue
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yumiao Lang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, No. 180 Wusidong Road, Baoding, 071002, People's Republic of China. .,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
18
|
Clements JL, Pohl F, Muthupandi P, Rogers SC, Mao J, Doctor A, Birman VB, Held JM. A clickable probe for versatile characterization of S-nitrosothiols. Redox Biol 2020; 37:101707. [PMID: 32916549 PMCID: PMC7490559 DOI: 10.1016/j.redox.2020.101707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
S-nitrosation of cysteine thiols (SNOs), commonly referred to as S-nitrosylation, is a cysteine oxoform that plays an important role in cellular signaling and impacts protein function and stability. Direct labeling of SNOs in cells with the flexibility to perform a wide range of cellular and biochemical assays remains a bottleneck as all SNO-targeted probes to date employ a single analytical modality such as biotin or a specific fluorophore. We therefore developed a clickable, alkyne-containing SNO probe 'PBZyn' based on the o-phosphino-benzoyl group warhead that enables multi-modal analysis via click conjugation. We demonstrate the utility of PBZyn to assay SNOs using in situ cellular imaging, protein blotting and affinity purification, as well as mass spectrometry. The flexible PBZyn probe will greatly facilitate investigation into the regulation of SNOs.
Collapse
Affiliation(s)
- Jenna L Clements
- Department of Medicine, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Franziska Pohl
- Department of Medicine, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Pandi Muthupandi
- Department of Chemistry, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Stephen C Rogers
- Department of Pediatrics and Center for Blood Oxygen Transport and Hemostasis, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Jack Mao
- Department of Medicine, Washington University Medical School, St. Louis, MO, 63110, USA
| | - Allan Doctor
- Department of Pediatrics and Center for Blood Oxygen Transport and Hemostasis, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Vladimir B Birman
- Department of Chemistry, Washington University in Saint Louis, St. Louis, MO, 63110, USA
| | - Jason M Held
- Department of Medicine, Washington University Medical School, St. Louis, MO, 63110, USA; Siteman Cancer Center, Washington University Medical School, St. Louis, MO, 63110, USA; Department of Anesthesiology, Washington University Medical School, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
20
|
Soltani O, Bozorgmehr MR, Momen-Heravi M. Does the single-walled carbon nanotube affect the rate constant of binding of biotin to streptavidin? Molecular dynamics simulation perspective. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.1177/1468678319825710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction of biotin and streptavidin in the presence and absence of a carbon nanotube was studied by molecular dynamics simulation. With respect to the Arrhenius dependence of the rate constants with temperature, those of streptavidin–biotin complex formation ([Formula: see text]) and streptavidin–biotin complex dissociation ([Formula: see text]) were calculated from molecular dynamics simulation trajectories. Nanotube has reduced the amount of and k1and k1. However, the biotin position in streptavidin does not change much. The results obtained from MMPBSA calculations show that the contribution of the van der Waals forces to both systems (in the absence and presence of the nanotube) was greater than that of electrostatic forces. The presence of the nanotube also led to the reduction of van der Waals and electrostatic forces in the interaction of biotin with streptavidin. However, this reduction was greater for electrostatic forces. In the absence of a nanotube, there are four hydrogen bonds between streptavidin and biotin, which are related to the residues Ser27, Tyr43, Ser45 and Ser88. In the presence of the nanotube, the hydrogen bonding of biotin with Ser45 is removed.
Collapse
Affiliation(s)
- Orkide Soltani
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | |
Collapse
|
21
|
Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Nat Commun 2019; 10:2195. [PMID: 31097712 PMCID: PMC6522481 DOI: 10.1038/s41467-019-10182-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Cysteine modifications emerge as important players in cellular signaling and homeostasis. Here, we present a chemical proteomics strategy for quantitative analysis of reversibly modified Cysteines using bioorthogonal cleavable-linker and switch technique (Cys-BOOST). Compared to iodoTMT for total Cysteine analysis, Cys-BOOST shows a threefold higher sensitivity and considerably higher specificity and precision. Analyzing S-nitrosylation (SNO) in S-nitrosoglutathione (GSNO)-treated and non-treated HeLa extracts Cys-BOOST identifies 8,304 SNO sites on 3,632 proteins covering a wide dynamic range of the proteome. Consensus motifs of SNO sites with differential GSNO reactivity confirm the relevance of both acid-base catalysis and local hydrophobicity for NO targeting to particular Cysteines. Applying Cys-BOOST to SH-SY5Y cells, we identify 2,151 SNO sites under basal conditions and reveal significantly changed SNO levels as response to early nitrosative stress, involving neuro(axono)genesis, glutamatergic synaptic transmission, protein folding/translation, and DNA replication. Our work suggests SNO as a global regulator of protein function akin to phosphorylation and ubiquitination. Reversible cysteine modifications play important roles in cellular redox signaling. Here, the authors develop a chemical proteomics strategy that enables the quantitative analysis of endogenous cysteine nitrosylation sites and their dynamic regulation under nitrosative stress conditions.
Collapse
Affiliation(s)
- Ruzanna Mnatsakanyan
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stavroula Markoutsa
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kim Walbrunn
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Department of Neuropediatrics, Centre for Neuromuscular Disorders in Children, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Steven H L Verhelst
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany. .,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, Quebec, H4A 3T2, Canada. .,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, H3T 1E2, Canada.
| |
Collapse
|
22
|
Seth P, Hsieh PN, Jamal S, Wang L, Gygi SP, Jain MK, Coller J, Stamler JS. Regulation of MicroRNA Machinery and Development by Interspecies S-Nitrosylation. Cell 2019; 176:1014-1025.e12. [PMID: 30794773 PMCID: PMC6559381 DOI: 10.1016/j.cell.2019.01.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/20/2018] [Accepted: 01/23/2019] [Indexed: 02/04/2023]
Abstract
Bioactive molecules can pass between microbiota and host to influence host cellular functions. However, general principles of interspecies communication have not been discovered. We show here in C. elegans that nitric oxide derived from resident bacteria promotes widespread S-nitrosylation of the host proteome. We further show that microbiota-dependent S-nitrosylation of C. elegans Argonaute protein (ALG-1)-at a site conserved and S-nitrosylated in mammalian Argonaute 2 (AGO2)-alters its function in controlling gene expression via microRNAs. By selectively eliminating nitric oxide generation by the microbiota or S-nitrosylation in ALG-1, we reveal unforeseen effects on host development. Thus, the microbiota can shape the post-translational landscape of the host proteome to regulate microRNA activity, gene expression, and host development. Our findings suggest a general mechanism by which the microbiota may control host cellular functions, as well as a new role for gasotransmitters.
Collapse
Affiliation(s)
- Puneet Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Paishiun N Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Suhib Jamal
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, 2103 Cornell Road, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jeff Coller
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Abstract
Endoplasmic reticulum protein 5 (ERp5) is a member of the thiol isomerase family of enzymes, whose prototype member is protein disulphide isomerase (PDI). Thiol isomerases catalyze reduction/oxidation (redox) reactions which lead to the cleavage, formation, or isomerization of disulphide bonds in protein substrates. Thiol isomerase reactions on protein disulphides are important for the correct folding of proteins in the endoplasmic reticulum and for the regulation of various protein functions in the extracellular space. Apart from the disulphide reactions, thiol isomerases assist protein folding by chaperone activity.The disulphide redox activity of ERp5 can be measured with functional assays involving artificial or natural substrates containing disulphide bonds. Herein we describe step-by-step assays of ERp5 reductase, isomerization, and de-nitrosylation activity. Disulphide reductase assays include insulin or di-eosin-GSSG as substrates whereas the isomerization assay includes RNase as substrate. The reduction of natural substrates, i.e., integrin αIIbβ3, can be detected using maleimide labels of free thiols and Western blotting. The biotin switch assay is used to measure the de-nitrosylation of S-nitrosylated substrates. These assays can measure the activity of purified ERp5 protein but can also be applied for the measurement of thiol isomerase activity in cellular samples.
Collapse
Affiliation(s)
- Alexander Dupuy
- Haematology Research Group, Heart Research Institute, Newtown, NSW, Australia
- Cardiovascular Division, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Freda Passam
- Haematology Research Group, Heart Research Institute, Newtown, NSW, Australia.
- Cardiovascular Division, Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
25
|
Smith JG, Aldous SG, Andreassi C, Cuda G, Gaspari M, Riccio A. Proteomic analysis of S-nitrosylated nuclear proteins in rat cortical neurons. Sci Signal 2018; 11:11/537/eaar3396. [PMID: 29970601 DOI: 10.1126/scisignal.aar3396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons modulate gene expression in response to extrinsic signals to enable brain development, cognition, and learning and to process stimuli that regulate systemic physiological functions. This signal-to-gene communication is facilitated by posttranslational modifications such as S-nitrosylation, the covalent attachment of a nitric oxide (NO) moiety to cysteine thiols. In the cerebral cortex, S-nitrosylation of histone deacetylase 2 (HDAC2) is required for gene transcription during neuronal development, but few other nuclear targets of S-nitrosylation have been identified to date. We used S-nitrosothiol resin-assisted capture on NO donor-treated nuclear extracts from rat cortical neurons and identified 614 S-nitrosylated nuclear proteins. Of these, 131 proteins have not previously been shown to be S-nitrosylated in any system, and 555 are previously unidentified targets of S-nitrosylation in neurons. The sites of S-nitrosylation were identified for 59% of the targets, and motifs containing single lysines were found at 33% of these sites. In addition, lysine motifs were necessary for promoting the S-nitrosylation of HDAC2 and methyl-CpG binding protein 3 (MBD3). Moreover, S-nitrosylation of the histone-binding protein RBBP7 was necessary for dendritogenesis of cortical neurons in culture. Together, our findings characterize S-nitrosylated nuclear proteins in neurons and identify S-nitrosylation motifs that may be shared with other targets of NO signaling.
Collapse
Affiliation(s)
- Jacob G Smith
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Sarah G Aldous
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Catia Andreassi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Gaspari
- Department of Experimental and Clinical Medicine, University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonella Riccio
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK.
| |
Collapse
|
26
|
S-nitrosylation of NOS pathway mediators in the penis contributes to cavernous nerve injury-induced erectile dysfunction. Int J Impot Res 2018; 30:108-116. [PMID: 29736011 PMCID: PMC6173628 DOI: 10.1038/s41443-018-0021-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 11/21/2017] [Accepted: 12/24/2017] [Indexed: 11/25/2022]
Abstract
cGMP-independent nitric oxide (NO) signaling occurs via S-nitrosylation. We evaluated whether aberrant S-nitrosylation operates in the penis under conditions of cavernous nerve injury and targets proteins involved in regulating erectile function. Adult male Sprague-Dawley rats underwent bilateral cavernous nerve crush injury (BCNI) or sham surgery. Rats were given a denitrosylation agent N-acetylcysteine (NAC, 300 mg/kg/day) or vehicle in drinking water starting 2 days before BCNI and continuing for 2 weeks following surgery. After assessment of erectile function (intracavernous pressure), penes were collected for measurements of S-nitrosylation by Saville-Griess and TMT-switch assays and PKG-I function by immunoblotting of phospho (P)-VASP-Ser-239. Erectile function was decreased (P<0.05) after BCNI, and it was preserved (P<0.05) by NAC treatment. Total S-nitrosothiols and total S-nitrosylated proteins were increased (P<0.05) after BCNI, and these were partially prevented by NAC treatment. S-nitrosylation of sGC was increased (P<0.05) after BCNI, and it was prevented (P<0.05) by NAC treatment. S-nitrosylation of eNOS was increased (P<0.05) after BCNI, and showed a trend towards decrease by NAC treatment. Protein expression of P-VASP-Ser-239 was decreased (P<0.05) after BCNI, and showed a trend towards increase by NAC treatment. In conclusion, erectile dysfunction following BCNI is mediated in part by S-nitrosylation of eNOS and its downstream signaling mediator GC, while denitrosylation protects erectile function by preserving the NO/cGMP signaling pathway.
Collapse
|
27
|
Zhang C, Biggs TD, Devarie-Baez NO, Shuang S, Dong C, Xian M. S-Nitrosothiols: chemistry and reactions. Chem Commun (Camb) 2018; 53:11266-11277. [PMID: 28944382 DOI: 10.1039/c7cc06574d] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The formation of S-nitrosothiols (SNO) in protein cysteine residues is an important post-translational modification elicited by nitric oxide (NO). This process is involved in virtually every class of cell signaling and has attracted considerable attention in redox biology. On the other hand, their unique structural characters make SNO potentially useful synthons. In this review, we summarized the fundamental chemical/physical properties of SNO. We also highlighted the reported chemical reactions of SNO, including the reactions with phosphine reagents, sulfinic acids, various nucleophiles, SNO-mediated radical additions, and the reactions of acyl SNO species.
Collapse
Affiliation(s)
- Caihong Zhang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science Shanxi University, Taiyuan, Shanxi 030006, China.
| | | | | | | | | | | |
Collapse
|
28
|
Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS. A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation. Mol Cell 2018; 69:451-464.e6. [PMID: 29358078 DOI: 10.1016/j.molcel.2017.12.025] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.
Collapse
Affiliation(s)
- Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ya-Juan Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
29
|
Abstract
The addition of nitric oxide to cysteine moieties of proteins results in the formation of S-nitrosothiols (SNO) that have emerged as important posttranslational signaling cues in a wide variety of eukaryotic processes. While formation of protein-SNO is largely nonenzymatic, the conserved family of Thioredoxin (TRX) enzymes are capable of selectively reducing protein-SNO. Consequently, TRX enzymes are thought to provide reversibility and specificity to protein-SNO signaling networks. Here, we describe an in vitro methodology based on enzymatic oxidoreductase and biotin-switch techniques, allowing for the detection of protein-SNO targets of TRX enzymes. We show that this methodology identifies both global and specific protein-SNO targets of TRX in plant cell extracts.
Collapse
Affiliation(s)
- Sophie Kneeshaw
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
30
|
Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev 2018; 47:231-268. [DOI: 10.1039/c7cs00607a] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methods to characterise oxidative modifications of cysteine help clarify their role in protein function in both healthy and diseased cells.
Collapse
Affiliation(s)
- Lisa J. Alcock
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Michael V. Perkins
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Justin M. Chalker
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| |
Collapse
|
31
|
Aimé S, Hichami S, Wendehenne D, Lamotte O. Analysis of Recombinant Protein S-Nitrosylation Using the Biotin-Switch Technique. Methods Mol Biol 2018; 1747:131-141. [PMID: 29600456 DOI: 10.1007/978-1-4939-7695-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nitric oxide is regarded as a key signaling messenger in several organisms. Its physiological relevance is partly due to its capacity to induce posttranslational modifications of proteins through its direct or indirect reaction with specific amino acid residues. Among them, S-nitrosylation has been shown to be involved in a broad range of cellular signaling pathways both in animals and plants. The identification of S-nitrosylated proteins has been made possible by the development of the Biotin-Switch Technique (BST) in the early 2000s. Here, we describe the BST protocol we routinely use to check in vitro S-nitrosylation of recombinant proteins induced by NO donors.
Collapse
Affiliation(s)
- Sébastien Aimé
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - Siham Hichami
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - David Wendehenne
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France
| | - Olivier Lamotte
- UMR 1347 Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne-Franche Comté, Dijon Cedex, France.
- Pôle Mécanismes et Gestions des Interactions Plantes Microorganismes, CNRS, Dijon Cedex, France.
| |
Collapse
|
32
|
Transient receptor potential channel 6 regulates abnormal cardiac S-nitrosylation in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 2017; 114:E10763-E10771. [PMID: 29187535 DOI: 10.1073/pnas.1712623114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disorder with dystrophin loss that results in skeletal and cardiac muscle weakening and early death. Loss of the dystrophin-sarcoglycan complex delocalizes nitric oxide synthase (NOS) to alter its signaling, and augments mechanosensitive intracellular Ca2+ influx. The latter has been coupled to hyperactivation of the nonselective cation channel, transient receptor potential canonical channel 6 (Trpc6), in isolated myocytes. As Ca2+ also activates NOS, we hypothesized that Trpc6 would help to mediate nitric oxide (NO) dysregulation and that this would be manifest in increased myocardial S-nitrosylation, a posttranslational modification increasingly implicated in neurodegenerative, inflammatory, and muscle disease. Using a recently developed dual-labeling proteomic strategy, we identified 1,276 S-nitrosylated cysteine residues [S-nitrosothiol (SNO)] on 491 proteins in resting hearts from a mouse model of DMD (dmdmdx:utrn+/-). These largely consisted of mitochondrial proteins, metabolic regulators, and sarcomeric proteins, with 80% of them also modified in wild type (WT). S-nitrosylation levels, however, were increased in DMD. Genetic deletion of Trpc6 in this model (dmdmdx:utrn+/-:trpc6-/-) reversed ∼70% of these changes. Trpc6 deletion also ameliorated left ventricular dilation, improved cardiac function, and tended to reduce fibrosis. Furthermore, under catecholamine stimulation, which also increases NO synthesis and intracellular Ca2+ along with cardiac workload, the hypernitrosylated state remained as it did at baseline. However, the impact of Trpc6 deletion on the SNO proteome became less marked. These findings reveal a role for Trpc6-mediated hypernitrosylation in dmdmdx:utrn+/- mice and support accumulating evidence that implicates nitrosative stress in cardiac and muscle disease.
Collapse
|
33
|
Kakizawa S. [Effects of reactive oxygen species on synaptic plasticity in CNS in relation to aging]. Nihon Yakurigaku Zasshi 2017; 150:234-239. [PMID: 29118286 DOI: 10.1254/fpj.150.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Lv X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric Oxide and MPK1/2 Mediates Cold Acclimation-induced Chilling Tolerance in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:1963-1975. [PMID: 29036450 DOI: 10.1093/pcp/pcx134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The participation of nitric oxide (NO) in the responses of plants towards biotic and abiotic stresses is well established. However, the mechanism involved particularly in cold acclimation-induced chilling tolerance remains elusive. Here we show the cold acclimation induced-chilling tolerance was associated with inductions of nitrate reductase (NR)-dependent NO production, S-nitrosylated glutathione reductase (GSNOR) activity and mitogen-activated protein kinases MPK1/2 activation in tomato plants. Silencing of NR resulted in decreased GSNOR activity and MPK1/2 activation, which subsequently compromised cold acclimation-induced chilling tolerance. By contrast, silencing of GSNOR caused decreased NR activity, increased NO accumulation and MPK1/2 activation, and enhanced cold acclimation-induced chilling tolerance. Furthermore, co-silencing of MPK1 and MPK2 attenuated the NR-dependent NO production and cold acclimation-induced tolerance to chilling. Results from present study suggest the importance of MPK1/2 for the induction of NR-dependent NO generation, while the accumulation of nitrosylated glutathione from NO-derived reactive nitrogen species could potentially S-nitrosylate NR. These findings provide new insight into the crosstalk of NO and MPK1/2 in cold acclimation-induced chilling tolerance in tomato plants.
Collapse
Affiliation(s)
- Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
35
|
A fluorogenic probe for imaging protein S-nitrosylation in live cells. Biosens Bioelectron 2017; 94:162-168. [DOI: 10.1016/j.bios.2017.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 01/14/2023]
|
36
|
Musicki B, Lagoda G, Goetz T, La Favor JD, Burnett AL. Transnitrosylation: A Factor in Nitric Oxide-Mediated Penile Erection. J Sex Med 2017; 13:808-814. [PMID: 27114194 DOI: 10.1016/j.jsxm.2016.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/29/2016] [Accepted: 03/04/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nitric oxide (NO) signaling can be mediated not only through classic 3',5'-cyclic guanosine monophosphate but also through S-nitrosylation. However, the impact of S-nitrosylation on erectile function and in NO regulation and oxidative stress in the penis remains poorly understood. AIMS To characterize the role of S-nitrosoglutathione reductase (GSNOR), a major regulator of S-nitrosylation homeostasis, on erection physiology and on endothelial NO synthase (eNOS) function and oxidative-nitrosative stress in the penis. METHODS Adult GSNOR-deficient and wild-type (WT) mice were used. Erectile function was assessed in response to electrical stimulation of the cavernous nerve. Total NO in penile homogenates was measured by Griess reaction. Protein S-nitrosylation, eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS uncoupling, and markers of oxidative stress (4-hydroxy-2-nonenal, malondialdehyde, and nitrotyrosine) in the penis were measured by western blot. MAIN OUTCOME MEASURES Erectile function, eNOS function, and oxidative stress in the penis of GSNOR-deficient mice. RESULTS Erectile function was intact in GSNOR-deficient mice. Total S-nitrosylated proteins were increased (P < .05) in the GSNOR(-/-) compared with WT mouse penis. Although eNOS phosphorylation on Ser-1177 did not differ between the GSNOR(-/-) and WT mouse penises at baseline, electrical stimulation of the cavernous nerve increased (P < .05) phosphorylated eNOS in the WT mouse penis but failed to increase phosphorylated eNOS in the GSNOR(-/-) mouse penis. Total NO production was decreased (P < .05), whereas eNOS uncoupling, 4-hydroxy-2-nonenal, malondialdehyde, and nitrotyrosine were increased (P < .05) in the GSNOR-deficient mouse penis compared with the WT mouse penis. CONCLUSION Transnitrosylation mechanisms play an important role in regulating NO bioactivity in the penis. Deficiency of GSNOR leads to eNOS dysfunction and increased oxidative damage, suggesting that homeostatic eNOS function in the penis is governed by transnitrosylation.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gwen Lagoda
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tabitha Goetz
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Justin D La Favor
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
37
|
Liao XH, Xiang Y, Li H, Zheng DL, Xu Y, Xi Yu C, Li JP, Zhang XY, Xing WB, Cao DS, Bao LY, Zhang TC. VEGF-A Stimulates STAT3 Activity via Nitrosylation of Myocardin to Regulate the Expression of Vascular Smooth Muscle Cell Differentiation Markers. Sci Rep 2017; 7:2660. [PMID: 28572685 PMCID: PMC5453982 DOI: 10.1038/s41598-017-02907-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/21/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and vascular smooth muscle cell (VSMC) proliferation, yet very little is known about the actual signaling events that mediate VEGF-A induced VSMC phenotypic switch. In this report, we describe the identification of an intricate VEGF-A-induced signaling cascade that involves VEGFR2, STAT3, and Myocardin. We demonstrate that VEGF-A promotes VSMC proliferation via VEGFR2/STAT3-mediated upregulating the proliferation of markers like Cyclin D1 and PCNA. Specifically, VEGF-A leads to nitrosylation of Myocardin, weakens its effect on promoting the expression of contractile markers and is unable to inhibit the activation of STAT3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for VEGF-A-induced VSMC phenotypic switch. In addition, Myocardin, GSNOR and GSNO can create a negative feedback loop to regulate the VSMC phenotypic switch. Thus, the discovery of this interactive network of signaling pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Xing Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - De Liang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yao Xu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Cheng Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Jia Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Xiao Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Wei Bin Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Dong Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Le Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China
| | - Tong Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, 430000, P. R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
| |
Collapse
|
38
|
Zhao R, Najmi M, Aluri S, Goldman ID. Impact of posttranslational modifications of engineered cysteines on the substituted cysteine accessibility method: evidence for glutathionylation. Am J Physiol Cell Physiol 2017; 312:C517-C526. [PMID: 28122733 DOI: 10.1152/ajpcell.00350.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023]
Abstract
The substituted cysteine accessibility method (SCAM) is widely used to study the structure and function of channels, receptors and transporters. In its usual application, a cysteine residue is introduced into a protein which lacks native cysteines following which the accessibility of the residue to the aqueous compartment is assessed. Implicit, and generally assumed, is that if the cysteine-substituted residue is not available to react with sulfhydryl reagents it is not exposed to the extracellular compartment or within the aqueous translocation pathway. We demonstrate here, in a Hela-derived cell line, that some cysteine-substituted residues of the proton-coupled folate transporter (PCFT, SLC46A1) that are inaccessible to 2-((biotinoyl)amino)ethyl methanethiosulfonate are glutathionylated by biotinylated glutathione ethyl ester in the absence of an oxidizing agent. Intramolecular disulfide formation involving cysteine-substituted residues was also identified in some instances. These posttranslational modifications limit the accessibility of the cysteine residues to sulfhydryl-reactive reagents and can have a profound impact on the interpretation of SCAM but may not alter function. When a posttranslationally modified residue is used as a reference extracellular control, the high level of exposure required for detection on Western blot results in erroneous detection of otherwise inaccessible intracellular cysteine-substituted residues. The data indicate that in the application of SCAM, when a cysteine-substituted residue does not appear to be accessible to sulfhydryl-reactive reagents, the possibility of a posttranslational modification should be excluded. The data explain the discrepancies in the assessment, and confirm the localization, of the first intracellular loop of PCFT.
Collapse
Affiliation(s)
- Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; and.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; and
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; and
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York; and .,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
39
|
Shen X, Burguillos MA, Osman AM, Frijhoff J, Carrillo-Jiménez A, Kanatani S, Augsten M, Saidi D, Rodhe J, Kavanagh E, Rongvaux A, Rraklli V, Nyman U, Holmberg J, Östman A, Flavell RA, Barragan A, Venero JL, Blomgren K, Joseph B. Glioma-induced inhibition of caspase-3 in microglia promotes a tumor-supportive phenotype. Nat Immunol 2016; 17:1282-1290. [PMID: 27618552 DOI: 10.1038/ni.3545] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
Glioma cells recruit and exploit microglia (the resident immune cells of the brain) for their proliferation and invasion ability. The underlying molecular mechanism used by glioma cells to transform microglia into a tumor-supporting phenotype has remained elusive. We found that glioma-induced microglia conversion was coupled to a reduction in the basal activity of microglial caspase-3 and increased S-nitrosylation of mitochondria-associated caspase-3 through inhibition of thioredoxin-2 activity, and that inhibition of caspase-3 regulated microglial tumor-supporting function. Furthermore, we identified the activity of nitric oxide synthase 2 (NOS2, also known as iNOS) originating from the glioma cells as a driving stimulus in the control of microglial caspase-3 activity. Repression of glioma NOS2 expression in vivo led to a reduction in both microglia recruitment and tumor expansion, whereas depletion of microglial caspase-3 gene promoted tumor growth. Our results provide evidence that inhibition of the denitrosylation of S-nitrosylated procaspase-3 mediated by the redox protein Trx2 is a part of the microglial pro-tumoral activation pathway initiated by glioma cancer cells.
Collapse
Affiliation(s)
- Xianli Shen
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Miguel A Burguillos
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed M Osman
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen Frijhoff
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alejandro Carrillo-Jiménez
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Sachie Kanatani
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Martin Augsten
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Dalel Saidi
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Rodhe
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Edel Kavanagh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Anthony Rongvaux
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vilma Rraklli
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Nyman
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
| | - Johan Holmberg
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Antonio Barragan
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Bertrand Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Ste Marie EJ, Ruggles EL, Hondal RJ. Removal of the 5-nitro-2-pyridine-sulfenyl protecting group from selenocysteine and cysteine by ascorbolysis. J Pept Sci 2016; 22:571-6. [PMID: 27480992 DOI: 10.1002/psc.2908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
We previously reported on a method for the facile removal of 4-methoxybenzyl and acetamidomethyl protecting groups from cysteine (Cys) and selenocysteine (Sec) using 2,2'-dithiobis-5-nitropyridine dissolved in trifluoroacetic acid, with or without thioanisole. The use of this reaction mixture removes the protecting group and replaces it with a 2-thio(5-nitropyridyl) (5-Npys) group. This results in either a mixed selenosulfide bond or disulfide bond (depending on the use of Sec or Cys), which can subsequently be reduced by thiolysis. A major disadvantage of thiolysis is that excess thiol must be used to drive the reaction to completion and then removed before using the Cys-containing or Sec-containing peptide in further applications. Here, we report a further advancement of this method as we have found that ascorbate at pH 4.5 and 25 °C will reduce the selenosulfide to the selenol. Ascorbolysis of the mixed disulfide between Cys and 5-Npys is much less efficient but can be accomplished at higher concentrations of ascorbate at pH 7 and 37 °C with extended reaction times. We envision that our improved method will allow for in situ reactions with alkylating agents and electrophiles without the need for further purification, as well as a number of other applications. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Emma J Ste Marie
- Department of Chemistry, Cook Physical Sciences Bldg, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Erik L Ruggles
- Department of Chemistry, Cook Physical Sciences Bldg, University of Vermont, 82 University Place, Burlington, VT, 05405, USA
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Ave., Given Laboratory, Room B413, Burlington, VT, 05405, USA
| |
Collapse
|
41
|
Protein disulfide isomerase mediates glutathione depletion-induced cytotoxicity. Biochem Biophys Res Commun 2016; 477:495-502. [DOI: 10.1016/j.bbrc.2016.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 12/31/2022]
|
42
|
Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative Stress, Hypernitrosylation, and Autoimmune Responses to Nitrosylated Proteins: New Pathways in Neuroprogressive Disorders Including Depression and Chronic Fatigue Syndrome. Mol Neurobiol 2016; 54:4271-4291. [PMID: 27339878 DOI: 10.1007/s12035-016-9975-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 12/30/2022]
Abstract
Nitric oxide plays an indispensable role in modulating cellular signaling and redox pathways. This role is mainly effected by the readily reversible nitrosylation of selective protein cysteine thiols. The reversibility and sophistication of this signaling system is enabled and regulated by a number of enzymes which form part of the thioredoxin, glutathione, and pyridoxine antioxidant systems. Increases in nitric oxide levels initially lead to a defensive increase in the number of nitrosylated proteins in an effort to preserve their function. However, in an environment of chronic oxidative and nitrosative stress (O&NS), nitrosylation of crucial cysteine groups within key enzymes of the thioredoxin, glutathione, and pyridoxine systems leads to their inactivation thereby disabling denitrosylation and transnitrosylation and subsequently a state described as "hypernitrosylation." This state leads to the development of pathology in multiple domains such as the inhibition of enzymes of the electron transport chain, decreased mitochondrial function, and altered conformation of proteins and amino acids leading to loss of immune tolerance and development of autoimmunity. Hypernitrosylation also leads to altered function or inactivation of proteins involved in the regulation of apoptosis, autophagy, proteomic degradation, transcription factor activity, immune-inflammatory pathways, energy production, and neural function and survival. Hypernitrosylation, as a consequence of chronically elevated O&NS and activated immune-inflammatory pathways, can explain many characteristic abnormalities observed in neuroprogressive disease including major depression and chronic fatigue syndrome/myalgic encephalomyelitis. In those disorders, increased bacterial translocation may drive hypernitrosylation and autoimmune responses against nitrosylated proteins.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
- Orygen Youth Health Research Centre and the Centre of Youth Mental Health, Poplar Road 35, Parkville, 3052, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Kenneth Myer Building, Royal Parade 30, Parkville, 3052, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Level 1 North, Main Block, Parkville, 3052, Australia
| | - Hans Klein
- Department of Psychiatry, University of Groningen, UMCG, Groningen, The Netherlands
| | - Ken Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Piotr Galecki
- Department of Adult Psychiatry, Medical University of Lodz, Łódź, Poland
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Faculty of Medicine, State University of Londrina, Londrina, Brazil.
- Department of Psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria.
- Revitalis, Waalre, The Netherlands.
- IMPACT Strategic Research Center, Barwon Health, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
43
|
Bajor M, Zaręba-Kozioł M, Zhukova L, Goryca K, Poznański J, Wysłouch-Cieszyńska A. An Interplay of S-Nitrosylation and Metal Ion Binding for Astrocytic S100B Protein. PLoS One 2016; 11:e0154822. [PMID: 27159591 PMCID: PMC4861259 DOI: 10.1371/journal.pone.0154822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
Mammalian S100B protein plays multiple important roles in cellular brain processes. The protein is a clinically used marker for several pathologies including brain injury, neurodegeneration and cancer. High levels of S100B released by astrocytes in Down syndrome patients are responsible for reduced neurogenesis of neural progenitor cells and induction of cell death in neurons. Despite increasing understanding of S100B biology, there are still many questions concerning the detailed molecular mechanisms that determine specific activities of S100B. Elevated overexpression of S100B protein is often synchronized with increased nitric oxide-related activity. In this work we show S100B is a target of exogenous S-nitrosylation in rat brain protein lysate and identify endogenous S-nitrosylation of S100B in a cellular model of astrocytes. Biochemical studies are presented indicating S-nitrosylation tunes the conformation of S100B and modulates its Ca2+ and Zn2+ binding properties. Our in vitro results suggest that the possibility of endogenous S-nitrosylation should be taken into account in the further studies of in vivo S100B protein activity, especially under conditions of increased NO-related activity.
Collapse
Affiliation(s)
- Małgorzata Bajor
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Centre for Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Monika Zaręba-Kozioł
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Liliya Zhukova
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
44
|
Beuve A, Wu C, Cui C, Liu T, Jain MR, Huang C, Yan L, Kholodovych V, Li H. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. J Proteomics 2016; 138:40-7. [PMID: 26917471 DOI: 10.1016/j.jprot.2016.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Abstract
Soluble Guanylyl Cyclase (sGC) is the main receptor for nitric oxide (NO). NO activates sGC to synthesize cGMP, triggering a plethora of signals. Recently, we discovered that NO covalently modifies select sGC cysteines via a post-translational modification termed S-nitrosation or S-nitrosylation. Earlier characterization was conducted on a purified sGC treated with S-nitrosoglutathione, and identified three S-nitrosated cysteines (SNO-Cys). Here we describe a more biologically relevant mapping of sGC SNO-Cys in cells to better understand the multi-faceted interactions between SNO and sGC. Since SNO-Cys are labile during LC/MS/MS, MS analysis of nitrosation typically occurs after a biotin switch reaction, in which a SNO-Cys is converted to a biotin-Cys. Here we report the identification of ten sGC SNO-Cys in rat neonatal cardiomyocytes using an Orbitrap MS. A majority of the SNO-Cys identified is located at the solvent-exposed surface of the sGC, and half of them in the conserved catalytic domain, suggesting biological significance. These findings provide a solid basis for future studies of the regulations and functions of diverse sGC S-nitrosation events in cells.
Collapse
Affiliation(s)
- Annie Beuve
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Changgong Wu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Chuanlong Cui
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Tong Liu
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Can Huang
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, NJ 07103, United States
| | - Lin Yan
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Vladyslav Kholodovych
- High Performance and Research Computing, OIRT, Rutgers University, New Brunswick, NJ 07103, United States; Department of Pharmacology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School Cancer Center, Newark, NJ 07103, United States.
| |
Collapse
|
45
|
Majmudar JD, Konopko AM, Labby KJ, Tom CT, Crellin JE, Prakash A, Martin BR. Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications. J Am Chem Soc 2016; 138:1852-9. [PMID: 26780921 PMCID: PMC4883004 DOI: 10.1021/jacs.5b06806] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cysteine S-nitrosation and S-sulfination are naturally occurring post-translational modifications (PTMs) on proteins induced by physiological signals and redox stress. Here we demonstrate that sulfinic acids and nitrosothiols react to form a stable thiosulfonate bond, and leverage this reactivity using sulfinate-linked probes to enrich and annotate hundreds of endogenous S-nitrosated proteins. In physiological buffers, sulfinic acids do not react with iodoacetamide or disulfides, enabling selective alkylation of free thiols and site-specific analysis of S-nitrosation. In parallel, S-nitrosothiol-linked probes enable enrichment and detection of endogenous S-sulfinated proteins, confirming that a single sulfinic acid can react with a nitrosothiol to form a thiosulfonate linkage. Using this approach, we find that hydrogen peroxide addition increases S-sulfination of human DJ-1 (PARK7) at Cys106, whereas Cys46 and Cys53 are fully oxidized to sulfonic acids. Comparative gel-based analysis of different mouse tissues reveals distinct profiles for both S-nitrosation and S-sulfination. Quantitative proteomic analysis demonstrates that both S-nitrosation and S-sulfination are widespread, yet exhibit enhanced occupancy on select proteins, including thioredoxin, peroxiredoxins, and other validated redox active proteins. Overall, we present a direct, bidirectional method to profile select redox cysteine modifications based on the unique nucleophilicity of sulfinic acids.
Collapse
Affiliation(s)
- Jaimeen D. Majmudar
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Aaron M. Konopko
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Kristin J. Labby
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Christopher T.M.B. Tom
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - John E. Crellin
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Ashesh Prakash
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | - Brent R. Martin
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Balmant KM, Zhang T, Chen S. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells. Front Physiol 2016; 7:26. [PMID: 26903877 PMCID: PMC4742557 DOI: 10.3389/fphys.2016.00026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/18/2016] [Indexed: 12/28/2022] Open
Abstract
Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding.
Collapse
Affiliation(s)
- Kelly M. Balmant
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Tong Zhang
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| |
Collapse
|
47
|
Affiliation(s)
- Divya Seth
- From the Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University (D.S., J.S.S.) and Harrington Discovery Institute (J.S.S.), University Hospitals Case Medical Center, Cleveland, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University (D.S., J.S.S.) and Harrington Discovery Institute (J.S.S.), University Hospitals Case Medical Center, Cleveland, OH.
| |
Collapse
|
48
|
Beck JR, Lawrence A, Tung AS, Harris EN, Stains CI. Interrogating Endogenous Protein Phosphatase Activity with Rationally Designed Chemosensors. ACS Chem Biol 2016; 11:284-90. [PMID: 26580981 DOI: 10.1021/acschembio.5b00506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We introduce a versatile approach for repurposing protein kinase chemosensors, containing the phosphorylation-sensitive sulfonamido-oxine fluorophore termed Sox, for the specific determination of endogenous protein phosphatase activity from whole cell lysates and tissue homogenates. As a demonstration of this approach, we design and evaluate a direct chemosensor for protein tyrosine phosphatase-1B (PTP1B), an established signaling node in human disease. The optimal sensor design is capable of detecting as little as 6 pM (12 pg) full-length recombinant PTP1B and is remarkably selective for PTP1B among a panel of highly homologous tyrosine phosphatases. Coupling this robust activity probe with the specificity of antibodies allowed for the temporal analysis of endogenous PTP1B activity dynamics in lysates generated from HepG2 cells after stimulation with insulin. Lastly, we leveraged this assay format to profile PTP1B activity perturbations in a rat model of nonalcoholic fatty liver disease (NAFLD), providing direct evidence for elevated PTP1B catalytic activity in this disease state. Given the modular nature of this assay, we anticipate that this approach will have broad utility in monitoring phosphatase activity dynamics in human disease states.
Collapse
Affiliation(s)
- Jon R. Beck
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Antoneal Lawrence
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Amar S. Tung
- Department
of Chemistry, Lincoln University, Lincoln University, Pennsylvania 19352, United States
| | - Edward N. Harris
- Department
of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cliff I. Stains
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
49
|
Qu Z, Greenlief CM, Gu Z. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 2015; 15:1-14. [DOI: 10.1021/acs.jproteome.5b00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - C. Michael Greenlief
- Department
of Chemistry, University of Missouri College of Arts and Science, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Harry S. Truman Veterans’ Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
50
|
Figueiredo-Freitas C, Dulce RA, Foster MW, Liang J, Yamashita AMS, Lima-Rosa FL, Thompson JW, Moseley MA, Hare JM, Nogueira L, Sorenson MM, Pinto JR. S-Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca2+)Sensitivity in Intact Cardiomyocytes. Antioxid Redox Signal 2015; 23:1017-34. [PMID: 26421519 PMCID: PMC4649751 DOI: 10.1089/ars.2015.6275] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. RESULTS Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca(2+) sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 μM GSNO also decreased Ca(2+) sensitivity of contraction and 10 μM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (≥ 100 μM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca(2+) sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 μM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. INNOVATION AND CONCLUSIONS Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations.
Collapse
Affiliation(s)
- Cícero Figueiredo-Freitas
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil .,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Raul A Dulce
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Matthew W Foster
- 5 Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center , Durham, North Carolina.,6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Jingsheng Liang
- 3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| | - Aline M S Yamashita
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Frederico L Lima-Rosa
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - J Will Thompson
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - M Arthur Moseley
- 6 Proteomics and Metabolomics Shared Resource, Duke University Medical Center , Durham, North Carolina
| | - Joshua M Hare
- 4 Interdisciplinary Stem Cell Institute, University of Miami , Miami, Florida
| | - Leonardo Nogueira
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - Martha M Sorenson
- 2 Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro , Rio de Janeiro, Brazil
| | - José Renato Pinto
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida.,3 Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami , Miami, Florida
| |
Collapse
|