1
|
Shao A, Kissil JL, Fan CM. The L27 domain of MPP7 enhances TAZ-YY1 cooperation to renew muscle stem cells. EMBO Rep 2024; 25:5667-5686. [PMID: 39496834 PMCID: PMC11624273 DOI: 10.1038/s44319-024-00305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renew, to support a lifetime of regenerative capacity. Here we study the renewal of skeletal muscle stem cell (MuSC) during regeneration. The transcriptional co-factors TAZ/YAP (via the TEAD transcription factors) regulate cell cycle and growth while the transcription factor YY1 regulates metabolic programs for MuSC activation. We show that MPP7 and AMOT join TAZ and YY1 to regulate a selected number of common genes that harbor TEAD and YY1 binding sites. Among these common genes, Carm1 can direct MuSC renewal. We demonstrate that the L27 domain of MPP7 enhances the interaction as well as the transcriptional activity of TAZ and YY1, while AMOT acts as an intermediate to bridge them together. Furthermore, MPP7, TAZ and YY1 co-occupy the promoters of Carm1 and other common downstream genes. Our results define a renewal program comprised of two progenitor transcriptional programs, in which selected key genes are regulated by protein-protein interactions, dependent on promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Joseph L Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
Duan H, Shi R, Kang J, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Nathalie Holz N, Fröhner J, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Population clustering of structural brain aging and its association with brain development. eLife 2024; 13:RP94970. [PMID: 39422662 PMCID: PMC11488854 DOI: 10.7554/elife.94970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the 'last in, first out' mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.
Collapse
Affiliation(s)
- Haojing Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Runye Shi
- School of Data Science, Fudan UniversityShanghaiChina
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Arun LW Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | | | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, School of Social Sciences, University of MannheimMannheimGermany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-SaclayGif-sur-YvetteFrance
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of VermontBurlingtonUnited States
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of NottinghamNottinghamUnited Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and BerlinBerlinGermany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière HospitalParisFrance
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Developmental Trajectories and Psychiatry", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre BorelliGif-sur-YvetteFrance
- Psychiatry Department, EPS Barthélémy DurandEtampesFrance
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel UniversityKielGermany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical CentreGöttingenGermany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Nathalie Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| | - Juliane Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität DresdenDresdenGermany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College DublinDublinIreland
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité UniversitätsmedizinBerlinGermany
| | - Xiaolei Lin
- School of Data Science, Fudan UniversityShanghaiChina
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan UniversityShanghaiChina
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan UniversityShanghaiChina
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of EducationShanghaiChina
- School of Data Science, Fudan UniversityShanghaiChina
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan UniversityShanghaiChina
- MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
- Zhangjiang Fudan International Innovation CenterShanghaiChina
- Department of Computer Science, University of WarwickWarwickUnited Kingdom
| |
Collapse
|
3
|
Xu X, Cheng W, Zhao S, Liu Y, Li L, Song X, Zhang Y, Ding C. Pan-cancer analysis of the role of MPP7 in human tumors. Heliyon 2024; 10:e36148. [PMID: 39224268 PMCID: PMC11367567 DOI: 10.1016/j.heliyon.2024.e36148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
MAGUK p55 subfamily member 7, a part of the membrane palmitoylated protein subfamily, is an essential adapter that promotes epithelial cell polarity and has increasing significance in multiple cancers, including esophageal cancer, clear cell renal cell carcinoma, breast cancer, and pancreatic ductal adenocarcinoma. This paper aims to determine the effect of the MAGUK p55 subfamily member 7 in various tumor types using The Cancer Genome Atlas and Genotype-Tissue Expression database. A variety of software and web platforms, such as cBioPortal, GEPIA2, TIMER2, UALCAN, R, STRING, and DAVID, were used to obtain and analyze data. Notably, low expression of MAGUK p55 subfamily member 7 was observed in most cancers. In addition, low expression of MAGUK p55 subfamily member 7 predicted poor prognoses in cancer patients. Mutation was the most frequent genetic alteration type in MAGUK p55 subfamily member 7, with the phosphorylation sites identified as S412 and S490 in various cancers. Furthermore, expression of MAGUK p55 subfamily member 7 was associated with cancer-related fibroblasts and CD8+ T cells. Gene enrichment analysis indicated that MAGUK p55 subfamily member 7 influences cancer through the Rap1 signaling pathway. This paper elucidates the biological significance of MAGUK p55 subfamily member 7 in human pan-cancer prognosis and immune response.
Collapse
Affiliation(s)
- Xiaotong Xu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Weyland Cheng
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Shuai Zhao
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yuchun Liu
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Lifeng Li
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Xiaorui Song
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Yaodong Zhang
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| | - Cong Ding
- Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Waihuan East Road, Zhengzhou, Henan, 450018, PR China
| |
Collapse
|
4
|
Duan H, Shi R, Kang J, Banaschewski T, Bokde ALW, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland PA, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Papadopoulos Orfanos D, Poustka L, Hohmann S, Holz N, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Lin X, Feng J. Population clustering of structural brain aging and its association with brain development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.09.24301030. [PMID: 38260410 PMCID: PMC10802651 DOI: 10.1101/2024.01.09.24301030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the "last in, first out" mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.
Collapse
Affiliation(s)
- Haojing Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Runye Shi
- School of Data Science, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Arun L. W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes; France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Developmental Trajectories and Psychiatry”, Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes; France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Neurosciences, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Centre for Population Neuroscience and Stratified Medicine (PONS Centre), ISTBI, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Xiaolei Lin
- School of Data Science, Fudan University, Shanghai, China
- Huashan Institute of Medicine, Huashan Hospital affiliated to Fudan University, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
- School of Data Science, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
5
|
Zambo B, Gogl G, Morlet B, Eberling P, Negroni L, Moine H, Travé G. Comparative analysis of PDZ-binding motifs in the diacylglycerol kinase family. FEBS J 2024; 291:690-704. [PMID: 37942667 DOI: 10.1111/febs.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Diacylglycerol kinases (DGKs) control local and temporal amounts of diacylglycerol (DAG) and phosphatidic acid (PA) by converting DAG to PA through phosphorylation in cells. Certain DGK enzymes possess C-terminal sequences that encode potential PDZ-binding motifs (PBMs), which could be involved in their recruitment into supramolecular signaling complexes. In this study, we used two different interactomic approaches, quantitative native holdup (nHU) and qualitative affinity purification (AP), both coupled to mass spectrometry (MS) to investigate the PDZ partners associated with the potential PBMs of DGKs. Complementing these results with site-specific affinity interactomic data measured on isolated PDZ domain fragments and PBM motifs, as well as evolutionary conservation analysis of the PBMs of DGKs, we explored functional differences within different DGK groups. All our results indicate that putative PBM sequences of type II enzymes, namely DGKδ, DGKη, and DGKκ, are likely to be nonfunctional. In contrast, type IV enzymes, namely DGKζ and DGKι, possess highly promiscuous PBMs that interact with a set of PDZ proteins with very similar affinity interactomes. The combination of various interactomic assays and evolutionary analyses provides a useful strategy for identifying functional domains and motifs within diverse enzyme families.
Collapse
Affiliation(s)
- Boglarka Zambo
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gergo Gogl
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Gilles Travé
- Équipe Labellisée Ligue contre le cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| |
Collapse
|
6
|
Shao A, Kissil JL, Fan CM. The L27 Domain of MPP7 enhances TAZ-YY1 Cooperation to Renew Muscle Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565166. [PMID: 37961392 PMCID: PMC10635061 DOI: 10.1101/2023.11.01.565166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renewal, for the regenerative process to last a lifetime. How stem cells renew is of critical biological and medical significance. Here we use the skeletal muscle stem cell (MuSC) to study this process. Using a combination of genetic, molecular, and biochemical approaches, we show that MPP7, AMOT, and TAZ/YAP form a complex that activates a common set of target genes. Among these targets, Carm1 can direct MuSC renewal. In the absence of MPP7, TAZ can support regenerative progenitors and activate Carm1 expression, but not to a level needed for self-renewal. Facilitated by the actin polymerization-responsive AMOT, TAZ recruits the L27 domain of MPP7 to up-regulate Carm1 to the level necessary to drive MuSC renewal. The promoter of Carm1, and those of other common downstream genes, also contain binding site(s) for YY1. We further demonstrate that the L27 domain of MPP7 enhances the interaction between TAZ and YY1 to activate Carm1. Our results define a renewal transcriptional program embedded within the progenitor program, by selectively up-regulating key gene(s) within the latter, through the combination of protein interactions and in a manner dependent on the promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
| | - Joseph L. Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218
| |
Collapse
|
7
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
8
|
Li R, Zhang W, Shi B, Ma L, Jiang F, Wang X, Li J. A common variant SNP rs1937810 in the MPP7 gene contributes to the susceptibility of breast cancer in the Chinese Han population. Mol Genet Genomic Med 2023; 11:e2198. [PMID: 37194388 PMCID: PMC10496085 DOI: 10.1002/mgg3.2198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is common cancer caused by environmental factors and genetic ones. Previous evidence has linked gene MAGUK P55 Scaffold Protein 7 (MPP7) to BC, despite that there has been no research evaluating the relationship between MPP7 genetic polymorphisms and BC susceptibility. We aimed to investigate the potential association of the MPP7 gene with the susceptibility to BC in Han Chinese individuals. METHODS In total, 1390 patients with BC and 2480 controls were enrolled. For genotyping, 20 tag SNPs were chosen. The serum levels of protein MPP7 were measured in all subjects using an enzyme-linked immunosorbent assay. Genetic association analysis was performed in both genotypic and allelic modes, and the relationship between BC patients' clinical features and genotypes of relevant SNPs was examined. The functional implications of significant markers were also evaluated. RESULTS After adjusting for Bonferroni correction, SNP rs1937810 was found to be significantly associated with the risk of BC (p = 1.19 × 10-4 ). The odds ratio of CC genotypes in BC patients was 49% higher than in controls (1.49 [1.23-1.81]). Serum MPP7 protein levels were significantly higher in BC patients than in controls (p < 0.001). The protein level of the CC genotype was the highest, and that of the CT and TT genotypes decreased in turn (both p < 0.001). CONCLUSIONS Our results linked SNP rs1937810 to the susceptibility of BC and the clinical features of BC patients. This SNP is also proved to be significantly related to the serum level of protein MPP7 in both BC patients and controls.
Collapse
Affiliation(s)
- Rong Li
- Department of RadiotherapyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wenpei Zhang
- Key Laboratory of National Health Commission for Forensic SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Bohui Shi
- Department of Breast SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Li Ma
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Fanliu Jiang
- Key Laboratory of National Health Commission for Forensic SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaochen Wang
- Key Laboratory of National Health Commission for Forensic SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Jieqiong Li
- Department of NursingThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
9
|
Barbeito P, Martin-Morales R, Palencia-Campos A, Cerrolaza J, Rivas-Santos C, Gallego-Colastra L, Caparros-Martin JA, Martin-Bravo C, Martin-Hurtado A, Sánchez-Bellver L, Marfany G, Ruiz-Perez VL, Garcia-Gonzalo FR. EVC-EVC2 complex stability and ciliary targeting are regulated by modification with ubiquitin and SUMO. Front Cell Dev Biol 2023; 11:1190258. [PMID: 37576597 PMCID: PMC10413113 DOI: 10.3389/fcell.2023.1190258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Ellis van Creveld syndrome and Weyers acrofacial dysostosis are two rare genetic diseases affecting skeletal development. They are both ciliopathies, as they are due to malfunction of primary cilia, microtubule-based plasma membrane protrusions that function as cellular antennae and are required for Hedgehog signaling, a key pathway during skeletal morphogenesis. These ciliopathies are caused by mutations affecting the EVC-EVC2 complex, a transmembrane protein heterodimer that regulates Hedgehog signaling from inside primary cilia. Despite the importance of this complex, the mechanisms underlying its stability, targeting and function are poorly understood. To address this, we characterized the endogenous EVC protein interactome in control and Evc-null cells. This proteomic screen confirmed EVC's main known interactors (EVC2, IQCE, EFCAB7), while revealing new ones, including USP7, a deubiquitinating enzyme involved in Hedgehog signaling. We therefore looked at EVC-EVC2 complex ubiquitination. Such ubiquitination exists but is independent of USP7 (and of USP48, also involved in Hh signaling). We did find, however, that monoubiquitination of EVC-EVC2 cytosolic tails greatly reduces their protein levels. On the other hand, modification of EVC-EVC2 cytosolic tails with the small ubiquitin-related modifier SUMO3 has a different effect, enhancing complex accumulation at the EvC zone, immediately distal to the ciliary transition zone, possibly via increased binding to the EFCAB7-IQCE complex. Lastly, we find that EvC zone targeting of EVC-EVC2 depends on two separate EFCAB7-binding motifs within EVC2's Weyers-deleted peptide. Only one of these motifs had been characterized previously, so we have mapped the second herein. Altogether, our data shed light on EVC-EVC2 complex regulatory mechanisms, with implications for ciliopathies.
Collapse
Affiliation(s)
- Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Raquel Martin-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| | - Adrian Palencia-Campos
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan Cerrolaza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Celia Rivas-Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Leticia Gallego-Colastra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Jose Antonio Caparros-Martin
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carolina Martin-Bravo
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Ana Martin-Hurtado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
| | - Laura Sánchez-Bellver
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Marfany
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Biomedicina—Institut de Recerca Sant Joan de Déu (IBUB-IRSJD), Universitat de Barcelona, Barcelona, Spain
- DBGen Ocular Genomics, Barcelona, Spain
| | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc R. Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-UAM, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigación del Hospital Universitario de La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
10
|
Gogl G, Zambo B, Kostmann C, Cousido-Siah A, Morlet B, Durbesson F, Negroni L, Eberling P, Jané P, Nominé Y, Zeke A, Østergaard S, Monsellier É, Vincentelli R, Travé G. Quantitative fragmentomics allow affinity mapping of interactomes. Nat Commun 2022; 13:5472. [PMID: 36115835 PMCID: PMC9482650 DOI: 10.1038/s41467-022-33018-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human protein networks have been widely explored but most binding affinities remain unknown, hindering quantitative interactome-function studies. Yet interactomes rely on minimal interacting fragments displaying quantifiable affinities. Here, we measure the affinities of 65,000 interactions involving PDZ domains and their target PDZ-binding motifs (PBM) within a human interactome region particularly relevant for viral infection and cancer. We calculate interactomic distances, identify hot spots for viral interference, generate binding profiles and specificity logos, and explain selected cases by crystallographic studies. Mass spectrometry experiments on cell extracts and literature surveys show that quantitative fragmentomics effectively complements protein interactomics by providing affinities and completeness of coverage, putting a full human interactome affinity survey within reach. Finally, we show that interactome hijacking by the viral PBM of human papillomavirus E6 oncoprotein substantially impacts the host cell proteome beyond immediate E6 binders, illustrating the complex system-wide relationship between interactome and function. Protein networks have been widely explored but most binding affinities remain unknown, limiting the quantitative interpretation of interactomes. Here the authors measure affinities of 65,000 interactions involving human PDZ domains and target sequence motifs relevant for viral infection and cancer.
Collapse
|
11
|
Li Z, Tang Y, Cai J, Wu S, Song F. MPP7 as a Novel Biomarker of Esophageal Cancer: MPP7 Knockdown Inhibits Esophageal Cancer Cell Migration and Invasion. Life (Basel) 2022; 12:life12091381. [PMID: 36143417 PMCID: PMC9501138 DOI: 10.3390/life12091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
MAGUK p55 scaffold protein 7 (MPP7) is a member of the stardust family of membrane-associated guanosine kinase protein P55 and plays a role in the establishment of epithelial cell polarity. However, its potential implication in human esophageal cancer is unclear. In this study, we investigated the expression profile of MPP7 and its functional impact on esophagus cancer. Expression analyses of immunohistochemical microarrays with survival and prognostic information of 103 patients with esophageal cancer demonstrated that MPP7 was overexpressed in 52 patients, who showed poor survival rates. The transcriptional expression of MPP7 in esophageal cancer in TCGA database increased successively from normal epithelial, to esophageal adenocarcinoma, to esophageal squamous cell carcinoma. Transcriptome sequencing after MPP7 knockdown in esophageal carcinoma cells showed that wound-healing-associated proteins were down-regulated, and the TGF-β pathway was one of the important signaling pathways. A loss-of-function study showed that the knockdown of MPP7 inhibited cell migration and invasion. These results could be verified in a model of tumor cells injected into the tail vein and subcutaneous tumor of nude mice. Herein, our results indicated that MPP7 could have an oncogenic role in human esophagus cancer, thus demonstrating its potential as a novel biomarker for the diagnosis and/or treatment of esophagus cancer.
Collapse
Affiliation(s)
- Zhaodong Li
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1#Yixue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Yongyao Tang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1#Yixue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Jing Cai
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1#Yixue Yuan Road, Yuzhong District, Chongqing 400016, China
| | - Shunlong Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1#Yixue Yuan Road, Yuzhong District, Chongqing 400016, China
- Correspondence: ; Tel.: +86-23-68485958
| |
Collapse
|
12
|
Yamada T, Saitoh Y, Kametani K, Kamijo A, Sakamoto T, Terada N. Involvement of membrane palmitoylated protein 2 (MPP2) in the synaptic molecular complex at the mouse cerebellar glomerulus. Histochem Cell Biol 2022; 158:497-511. [PMID: 35854144 DOI: 10.1007/s00418-022-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized. Immunostaining for MPP2 was observed at cerebellar glomeruli (CG) in the granular layer after postnatal day 14. Using the high-resolution Airyscan mode of a confocal laser-scanning microscope, MPP2 was detected as a dot pattern and colocalized with CADM1 and Lin7, recognized as small ring/line patterns, as well as with calcium/calmodulin-dependent serine protein kinase (CASK), NMDA glutamate receptor 1 (GluN1), and M-cadherin, recognized as dot patterns, indicating the localization of MPP2 in the excitatory postsynaptic region and adherens junctions of granule cells. An immunoprecipitation analysis revealed that MPP2 formed a molecular complex with CADM1, CASK, M-cadherin, and Lin7. Furthermore, the Lin7 staining pattern showed small rings surrounding mossy fibers in wild-type CG, while it changed to the dot/spot pattern inside small rings detected with CADM1 staining in MPP2-deficient CG. These results indicate that MPP2 influences the distribution of Lin7 to synaptic cell membranes at postsynaptic regions in granule cells at CG, at which electric signals enter the cerebellum.
Collapse
Affiliation(s)
- Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Kiyokazu Kametani
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Division of Basic and Clinical Medicine, Nagano College of Nursing, Komagane, Nagano, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
13
|
Morthorst SK, Nielsen C, Farinelli P, Anvarian Z, Rasmussen CBR, Serra-Marques A, Grigoriev I, Altelaar M, Fürstenberg N, Ludwig A, Akhmanova A, Christensen ST, Pedersen LB. Angiomotin isoform 2 promotes binding of PALS1 to KIF13B at primary cilia and regulates ciliary length and signaling. J Cell Sci 2022; 135:275635. [PMID: 35673984 DOI: 10.1242/jcs.259471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The kinesin-3 motor KIF13B functions in endocytosis, vesicle transport and regulation of ciliary length and signaling. Direct binding of the membrane-associated guanylate kinase (MAGUK) DLG1 to the MAGUK-binding stalk domain of KIF13B relieves motor autoinhibition and promotes microtubule plus-end-directed cargo transport. Here, we characterize angiomotin (AMOT) isoform 2 (p80, referred to as Ap80) as a novel KIF13B interactor that promotes binding of another MAGUK, the polarity protein and Crumbs complex component PALS1, to KIF13B. Live-cell imaging analysis indicated that Ap80 is concentrated at and recruits PALS1 to the base of the primary cilium, but is not a cargo of KIF13B itself. Consistent with a ciliary function for Ap80, its depletion led to elongated primary cilia and reduced agonist-induced ciliary accumulation of SMO, a key component of the Hedgehog signaling pathway, whereas Ap80 overexpression caused ciliary shortening. Our results suggest that Ap80 activates KIF13B cargo binding at the base of the primary cilium to regulate ciliary length, composition and signaling.
Collapse
Affiliation(s)
- Stine Kjær Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Nielsen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Pietro Farinelli
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | | | - Andrea Serra-Marques
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ilya Grigoriev
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nicoline Fürstenberg
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Alexander Ludwig
- School of Biological Sciences and NTU Institute of Structural Biology, Nanyang Technological University, Singapore City 637551, Singapore
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Søren Tvorup Christensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
14
|
Fidler G, Szilágyi-Rácz AA, Dávid P, Tolnai E, Rejtő L, Szász R, Póliska S, Biró S, Paholcsek M. Circulating microRNA sequencing revealed miRNome patterns in hematology and oncology patients aiding the prognosis of invasive aspergillosis. Sci Rep 2022; 12:7144. [PMID: 35504997 PMCID: PMC9065123 DOI: 10.1038/s41598-022-11239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis (IA) may occur as a serious complication of hematological malignancy. Delays in antifungal therapy can lead to an invasive disease resulting in high mortality. Currently, there are no well-established blood circulating microRNA biomarkers or laboratory tests which can be used to diagnose IA. Therefore, we aimed to define dysregulated miRNAs in hematology and oncology (HO) patients to identify biomarkers predisposing disease. We performed an in-depth analysis of high-throughput small transcriptome sequencing data obtained from the whole blood samples of our study cohort of 50 participants including 26 high-risk HO patients and 24 controls. By integrating in silico bioinformatic analyses of small noncoding RNA data, 57 miRNAs exhibiting significant expression differences (P < 0.05) were identified between IA-infected patients and non-IA HO patients. Among these, we found 36 differentially expressed miRNAs (DEMs) irrespective of HO malignancy. Of the top ranked DEMs, we found 14 significantly deregulated miRNAs, whose expression levels were successfully quantified by qRT-PCR. MiRNA target prediction revealed the involvement of IA related miRNAs in the biological pathways of tumorigenesis, the cell cycle, the immune response, cell differentiation and apoptosis.
Collapse
Affiliation(s)
- Gábor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Anna Anita Szilágyi-Rácz
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Péter Dávid
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - Róbert Szász
- Division of Hematology, Institute of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
15
|
Kliza KW, Liu Q, Roosenboom LWM, Jansen PWTC, Filippov DV, Vermeulen M. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol Cell 2021; 81:4552-4567.e8. [PMID: 34551281 DOI: 10.1016/j.molcel.2021.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Qiang Liu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands
| | - Laura W M Roosenboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
16
|
Keane S, Martinsson T, Kogner P, Ejeskär K. The loss of DLG2 isoform 7/8, but not isoform 2, is critical in advanced staged neuroblastoma. Cancer Cell Int 2021; 21:170. [PMID: 33726762 PMCID: PMC7962242 DOI: 10.1186/s12935-021-01851-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood neural crest tumor showing large clinical and genetic heterogeneity, one form displaying 11q-deletion is very aggressive. It has been shown that 11q-deletion results in decreased expression of DLG2, a gene residing in the deleted region. DLG2 has a number of different isoforms with the main difference is the presence or absence of a L27 domain. The L27 domain containing DLG proteins can form complexes with CASK/MPP and LIN7 protein family members, which will control cell polarity and signaling. METHODS We evaluated the DLG gene family and the LIN7 gene family for their expression in differently INSS staged neuroblastoma from publically available data and primary tumors, we included two distinct DLG1 and DLG2 N-terminal transcript isoforms encoding L27 domains for their expression. Functionality of DLG2 isoforms and of LIN7A were evaluated in the 11q-deleted neuroblastoma cell line SKNAS. RESULTS In neuroblastoma only two DLG2 isoforms were expressed: isoform 2 and isoform 7/8. Using the array data we could determine that higher expression of DLG members that contain L27 domains correlated to better survival and prognosis. Whilst DLG1 showed a decrease in both isoforms with increased INSS stage, only the full length L27 containing DLG2 transcripts DLG2-isoform 7/8 showed a decrease in expression in high stage neuroblastoma. We could show that the protein encoded by DLG2-isoform 7 could bind to LIN7A, and increased DLG2-isoform 7 gene expression increased the expression of LIN7A, this reduced neuroblastoma cell proliferation and viability, with increased BAX/BCL2 ratio indicating increased apoptosis. CONCLUSION We have provided evidence that gene expression of the L27 domain containing DLG2-isoform 7/8 but not L27 domain lacking DLG2-isoform 2 is disrupted in neuroblastoma, in particular in the aggressive subsets of tumors. The presence of the complete L27 domain allows for the binding to LIN7A, which will control cell polarity and signaling, thus affecting cancer cell viability.
Collapse
Affiliation(s)
- Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden.
| |
Collapse
|
17
|
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020; 25:molecules25214954. [PMID: 33114686 PMCID: PMC7662862 DOI: 10.3390/molecules25214954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane palmitoylated proteins (MPPs) are a subfamily of a larger group of multidomain proteins, namely, membrane-associated guanylate kinases (MAGUKs). The ubiquitous expression and multidomain structure of MPPs provide the ability to form diverse protein complexes at the cell membranes, which are involved in a wide range of cellular processes, including establishing the proper cell structure, polarity and cell adhesion. The formation of MPP-dependent complexes in various cell types seems to be based on similar principles, but involves members of different protein groups, such as 4.1-ezrin-radixin-moesin (FERM) domain-containing proteins, polarity proteins or other MAGUKs, showing their multifaceted nature. In this review, we discuss the function of the MPP family in the formation of multiple protein complexes. Notably, we depict their significant role for cell physiology, as the loss of interactions between proteins involved in the complex has a variety of negative consequences. Moreover, based on recent studies concerning the mechanism of membrane raft formation, we shed new light on a possible role played by MPPs in lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Paulina Olszewska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.); (P.O.); (A.B.)
- Correspondence: ; Tel.: +48-71375-6356
| |
Collapse
|
18
|
Amacher JF, Brooks L, Hampton TH, Madden DR. Specificity in PDZ-peptide interaction networks: Computational analysis and review. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 4:100022. [PMID: 32289118 PMCID: PMC7138185 DOI: 10.1016/j.yjsbx.2020.100022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
Globular PDZ domains typically serve as protein-protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
Collapse
Affiliation(s)
- Jeanine F Amacher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Chemistry, Western Washington University, Bellingham, WA 98225, USA
| | - Lionel Brooks
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
19
|
Kang X, Tian B, Zhang L, Ge Z, Zhao Y, Zhang Y. Relationship of common variants in MPP7, TIMP2 and CASP8 genes with the risk of chronic achilles tendinopathy. Sci Rep 2019; 9:17627. [PMID: 31772230 PMCID: PMC6879592 DOI: 10.1038/s41598-019-54097-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
Previous etiologic studies have indicated that both environmental and genetic factors play important roles in the occurrence and development of chronic Achilles tendinopathy (AT). A recent study documented the results of the largest genome-wide association study for chronic AT to date, indicating that MPP7, TIMP2 and CASP8 may be involved in the occurrence and development of chronic AT. In this study, we aimed to investigate whether MPP7, TIMP2 and CASP8 were associated with susceptibility to chronic AP in a Han Chinese population. A total of 3,680 study subjects comprised 1,288 chronic AT cases, and 2,392 healthy controls were recruited. Forty-four tag SNPs (7 from CASP8, 20 from MPP7, and 17 from TIMP2) were genotyped in the study. Genetic association analyses were performed at both single marker and haplotype levels. Functional consequences of significant SNPs were examined in the RegulomeDB and GTEx databases. Two SNPs, SNP rs1937810 (OR [95%CI] = 1.20 [1.09-1.32], χ2 = 13.50, P = 0.0002) in MPP7 and rs4789932 (OR [95%CI] = 1.24 [1.12-1.37], χ2 = 17.98, P = 2.23 × 10-5) in TIMP2, were significantly associated with chronic AT. Significant eQTL signals for SNP rs4789932 on TIMP2 were identified in human heart and artery tissues. Our results provide further supportive evidence for the association of the TIMP2 and MPP7 genes with chronic AT, which supports important roles for TIMP2 and MPP7 in the etiology of chronic AT, adding to the current understanding of the susceptibility of chronic AT.
Collapse
Affiliation(s)
- Xin Kang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Tian
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liang Zhang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhaogang Ge
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Kamijo A, Saitoh Y, Sakamoto T, Kubota H, Yamauchi J, Terada N. Scaffold protein Lin7 family in membrane skeletal protein complex in mouse seminiferous tubules. Histochem Cell Biol 2019; 152:333-343. [PMID: 31410570 DOI: 10.1007/s00418-019-01807-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2019] [Indexed: 01/22/2023]
Abstract
The membrane skeletal complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6), is localized in spermatogonia and early spermatocytes of mouse seminiferous tubules. In this study, we investigated the Lin7 family of scaffolding proteins, which interact with MPP6. By immunohistochemistry, Lin7a and Lin7c were localized in germ cells, and Lin7c had especially strong staining in spermatogonia and early spermatocytes, characterized by staging of seminiferous tubules. By immunoelectron microscopy, Lin7 localization appeared under cell membranes in germ cells. The Lin7 staining pattern in seminiferous tubules was partially similar to that of 4.1G, cell adhesion molecule 1 (CADM1), and melanoma cell adhesion molecule (MCAM). Lin7-positive cells included type A spermatogonia, as revealed by double staining for Lin28a. Lin7 staining became weaker in MPP6-deficient mice by immunohistochemistry and western blotting, indicating that MPP6 transports and maintains Lin7 in germ cells. The histology of seminiferous tubules was unchanged in MPP6-deficient mice compared to that of wild-type mice. In cultured spermatogonial stem cells maintained with glial cell line-derived neurotropic factor (GDNF), Lin7 was clearly expressed and immunolocalized along cell membranes, especially at cell-cell junctions. Thus, Lin7 protein is expressed in germ cells, and Lin7, particularly Lin7c, is a useful marker for early spermatogenesis.
Collapse
Affiliation(s)
- Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.,Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Takeharu Sakamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji City, Tokyo, Japan
| | - Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| |
Collapse
|
21
|
New M, Van Acker T, Sakamaki JI, Jiang M, Saunders RE, Long J, Wang VMY, Behrens A, Cerveira J, Sudhakar P, Korcsmaros T, Jefferies HBJ, Ryan KM, Howell M, Tooze SA. MDH1 and MPP7 Regulate Autophagy in Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:1884-1898. [PMID: 30765601 PMCID: PMC6522344 DOI: 10.1158/0008-5472.can-18-2553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/03/2019] [Accepted: 02/11/2019] [Indexed: 01/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is driven by metabolic changes in pancreatic cells caused by oncogenic mutations and dysregulation of p53. PDAC cell lines and PDAC-derived xenografts grow as a result of altered metabolic pathways, changes in stroma, and autophagy. Selective targeting and inhibition of one of these may open avenues for the development of new therapeutic strategies. In this study, we performed a genome-wide siRNA screen in a PDAC cell line using endogenous autophagy as a readout and identified several regulators of autophagy that were required for autophagy-dependent PDAC cell survival. Validation of two promising candidates, MPP7 (MAGUK p55 subfamily member 7, a scaffolding protein involved in cell-cell contacts) and MDH1 (cytosolic Malate dehydrogenase 1), revealed their role in early stages of autophagy during autophagosome formation. MPP7 was involved in the activation of YAP1 (a transcriptional coactivator in the Hippo pathway), which in turn promoted autophagy, whereas MDH1 was required for maintenance of the levels of the essential autophagy initiator serine-threonine kinase ULK1, and increased in the activity upon induction of autophagy. Our results provide a possible explanation for how autophagy is regulated by MPP7 and MDH1, which adds to our understanding of autophagy regulation in PDAC. SIGNIFICANCE: This study identifies and characterizes MPP7 and MDH1 as novel regulators of autophagy, which is thought to be responsible for pancreatic cancer cell survival.
Collapse
Affiliation(s)
- Maria New
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tim Van Acker
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jun-Ichi Sakamaki
- Tumour Cell Death Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ming Jiang
- High Throughput Screening, The Francis Crick Institute, London, United Kingdom
| | - Rebecca E Saunders
- High Throughput Screening, The Francis Crick Institute, London, United Kingdom
| | - Jaclyn Long
- Tumour Cell Death Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Victoria M-Y Wang
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joana Cerveira
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Padhmanand Sudhakar
- Korcsmaros Group, Earlham Institute, Norwich, United Kingdom
- Korcsmaros Group, Quadram Institute, Norwich, United Kingdom
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Belgium
| | - Tamas Korcsmaros
- Korcsmaros Group, Earlham Institute, Norwich, United Kingdom
- Korcsmaros Group, Quadram Institute, Norwich, United Kingdom
| | - Harold B J Jefferies
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kevin M Ryan
- Tumour Cell Death Laboratory, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Michael Howell
- High Throughput Screening, The Francis Crick Institute, London, United Kingdom
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
22
|
Terada N, Saitoh Y, Kamijo A, Yamauchi J, Ohno N, Sakamoto T. Structures and Molecular Composition of Schmidt-Lanterman Incisures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:181-198. [PMID: 31760645 DOI: 10.1007/978-981-32-9636-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.1G-membrane protein palmitoylated 6 (MPP6)-cell adhesion molecule 4 (CADM4). 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. Motor activity and myelin ultrastructures were abnormal in 4.1G-deficient mice, indicating the 4.1G function as a signal for proper formation of myelin in PNS. Thus, SLI probably has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cell myelin formation.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan.
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Takeharu Sakamoto
- Division of Cellular and Molecular Biology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
23
|
The membrane palmitoylated protein, MPP6, is involved in myelin formation in the mouse peripheral nervous system. Histochem Cell Biol 2018; 151:385-394. [PMID: 30357511 DOI: 10.1007/s00418-018-1745-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 01/01/2023]
Abstract
A membrane skeletal molecular complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6)-Lin7-cell adhesion molecule 4 (CADM4), is incorporated in Schwann cells, especially in Schmidt-Lanterman incisures (SLIs), in the mouse peripheral nervous system (PNS). MPP6, Lin7, and CADM4 are transported to SLIs by 4.1G. In this study, we created MPP6-deficient mice and evaluated myelin structure and MPP6 protein complexes. In SLIs in MPP6-deficient nerves, Lin7 was rarely detected by immunohistochemistry and western blotting, but the localization and amount of CADM4 and 4.1G were not altered. Motor activity was not significantly impaired in a tail-suspension test, but the sciatic nerves of MPP6-deficient mice had thicker myelin in internodes by electron microscopy compared to that of wild-type mice. These results indicate that the MPP6-Lin7 complex regulates myelin formation.
Collapse
|
24
|
Wang JC, Lv H, Wu KL, Zhang YS, Luo HN, Chen ZJ. Discs large homologue 1 (Dlg1) coordinates mouse oocyte polarisation during maturation. Reprod Fertil Dev 2018; 29:1699-1707. [PMID: 27651179 DOI: 10.1071/rd15486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
Mouse oocyte meiotic division requires the establishment of asymmetries in the oocyte before division, indicating the presence of polarity-establishing molecules. During mouse oocyte maturation proper orientation and positioning of the meiotic spindle at the oocyte cortex, as well as polarity in the oocyte cytoplasm and its oolemma, are necessary for the formation of functional haploid oocytes. Discs large homologue 1 (Dlg1) protein is a conserved protein that regulates cell polarity. In the present study, we found that Dlg1 was expressed at different stages of oocyte development. The localisation of Dlg1 during mouse oocyte maturation and its relationship with the cytoskeleton were analysed. Our data show that at the germinal vesicle stage, Dlg1 was present in the cytoplasm, prominently surrounding the germinal vesicle membrane. During maturation, Dlg1 became highly polarised by associating with the spindle and formed characteristic crescent-shaped accumulations under the cortex. Addition of nocodazole or cytochalasin B into the culture medium at different stages changed the localisation of Dlg1, indicating that the organisation of Dlg1 is a complex multi-step process and is dependent on microtubules and microfilaments. More importantly, we found that silencing of Dlg1 compromised the G2-M transition.
Collapse
Affiliation(s)
- Jun-Chao Wang
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Hong Lv
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| | - Ke-Liang Wu
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| | - Yun-Shan Zhang
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Hai-Ning Luo
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Zi-Jiang Chen
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| |
Collapse
|
25
|
Li L, Fan CM. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence. Cell Rep 2018; 21:1253-1266. [PMID: 29091764 DOI: 10.1016/j.celrep.2017.10.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/27/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle regeneration requires resident muscle stem cells, termed satellite cells (SCs). SCs are largely quiescent during homeostasis yet become activated upon injury to supply myonuclei and self-renewed SCs. Molecular mechanisms underlying the competence of SCs to proliferate and self-renew in response to injury remain unclear. Here, we show that CREB activity establishes proliferative potential during SC quiescence. SCs with inhibited CREB activity remain quiescent and positioned in their niche, but upon injury, they cannot enter or maintain a proliferative state for expansion and self-renewal. We demonstrate mechanistically that Mpp7 is a CREB target and its functional mediator. MPP7 loss affects the level and sub-cellular localization of AMOT and YAP1 in quiescent SCs. Furthermore, MPP7 and AMOT are required for YAP1 nuclear accumulation, and the three are individually required for a proliferative state in myoblasts. We propose that the CREB-MPP7-AMOT-YAP1 axis establishes the competence of quiescent SCs to expand and self-renew, thereby preserving stem cell function.
Collapse
Affiliation(s)
- Lydia Li
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Chen-Ming Fan
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
26
|
Webb Strickland S, Brimer N, Lyons C, Vande Pol SB. Human Papillomavirus E6 interaction with cellular PDZ domain proteins modulates YAP nuclear localization. Virology 2018; 516:127-138. [PMID: 29346075 DOI: 10.1016/j.virol.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
Abstract
HPV E6 oncoproteins associate with cellular PDZ proteins. In addition to previously identified cellular PDZ proteins, we found association of the HPV16 E6 PBM with the Dystrophin Glycoprotein Complex, LRCC1, and SLC9A3R2. HPV18 E6 had additional associations when lysates from adenomatous cell lines were used including LRPPRC, RLGAPB, EIF3A, SMC2 and 3, AMOT, AMOTL1, and ARHGEF1; some of these cellular PDZ proteins are implicated in the regulation of the YAP1 transcriptional co-activator. In keratinocytes, nuclear translocation of YAP1 was promoted by the complete HPV-16 genome, or by expression of the individual E6 or E7 oncoproteins; the activity of E6 required an intact PBM at the carboxy-terminus. This work demonstrates that E6 association with cellular PDZ proteins promotes the nuclear localization of YAP1. The ability of E6 to promote the nuclear transport of YAP1 thus identifies an E6 activity that could contribute to the transformation of cells by E6.
Collapse
Affiliation(s)
- Sydney Webb Strickland
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Nicole Brimer
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Charles Lyons
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States
| | - Scott B Vande Pol
- Department of Pathology, University of Virginia, Charlottesville, VA 22901, United States.
| |
Collapse
|
27
|
Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem Cell Biol 2017; 148:597-606. [PMID: 28755316 DOI: 10.1007/s00418-017-1600-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G-/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G-/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G-/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G-/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.
Collapse
|
28
|
Li Z, Chen J, Xu Y, Yi Q, Ji W, Wang P, Shen J, Song Z, Wang M, Yang P, Wang Q, Feng G, Liu B, Sun W, Xu Q, Li B, He L, He G, Li W, Wen Z, Liu K, Huang F, Zhou J, Ji J, Li X, Shi Y. Genome-wide Analysis of the Role of Copy Number Variation in Schizophrenia Risk in Chinese. Biol Psychiatry 2016; 80:331-337. [PMID: 26795442 DOI: 10.1016/j.biopsych.2015.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Compelling evidence suggested the role of copy number variations (CNVs) in schizophrenia susceptibility. Most of the evidence was from studies in populations with European ancestry. We tried to validate the associated CNV loci in a Han Chinese population and identify novel loci conferring risk of schizophrenia. METHODS We performed a genome-wide CNV analysis on 6588 patients with schizophrenia and 11,904 control subjects of Han Chinese ancestry. RESULTS Our data confirmed increased genome-wide CNV (>500 kb and <1%) burden in schizophrenia, and the increasing trend was more significant when only >1 Mb CNVs were considered. We also replicated several associated loci that were previously identified in European populations, including duplications at 16p11.2, 15q11.2-13.1, 7q11.23, and VIPR2 and deletions at 22q11.2, 1q21.1-q21.2, and NRXN1. In addition, we discovered three additional new potential loci (odds ratio >6, p < .05): duplications at 1p36.32, 10p12.1, and 13q13.3, involving many neurodevelopmental and synaptic related genes. CONCLUSIONS Our findings provide further support for the role of CNVs in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Zhiqiang Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai
| | - Jianhua Chen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qizhong Yi
- Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi
| | - Weidong Ji
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Changning Mental Health Center, Shanghai
| | | | - Jiawei Shen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Zhijian Song
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Meng Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | | | - Qingzhong Wang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Guoyin Feng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Benxiu Liu
- Longquan Mountain Hospital of Guangxi Province, Liuzhou
| | - Wensheng Sun
- Longquan Mountain Hospital of Guangxi Province, Liuzhou
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Baojie Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Lin He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Institutes of Biomedical Sciences, Fudan University, Shanghai
| | - Guang He
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Wenjin Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Zujia Wen
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Ke Liu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Fang Huang
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Juan Zhou
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Jue Ji
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Xingwang Li
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai
| | - Yongyong Shi
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University;Shanghai; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai; Department of Psychiatry, the First Teaching Hospital of Xinjiang Medical University, Urumqi; Changning Mental Health Center, Shanghai; The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
29
|
Vishal M, Sharma A, Kaurani L, Alfano G, Mookherjee S, Narta K, Agrawal J, Bhattacharya I, Roychoudhury S, Ray J, Waseem NH, Bhattacharya SS, Basu A, Sen A, Ray K, Mukhopadhyay A. Genetic association and stress mediated down-regulation in trabecular meshwork implicates MPP7 as a novel candidate gene in primary open angle glaucoma. BMC Med Genomics 2016; 9:15. [PMID: 27001270 PMCID: PMC4802647 DOI: 10.1186/s12920-016-0177-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/11/2016] [Indexed: 12/04/2022] Open
Abstract
Background Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the trabecular meshwork (TM) in the anterior part of the eye. Primary open angle glaucoma (POAG), the most common subtype, is a genetically complex disease. Multiple genes and many loci have been reported to be involved in POAG but taken together they explain less than 10 % of the patients from a genetic perspective warranting more studies in different world populations. The purpose of this study was to perform genome-wide search for common variants associated with POAG in an east-Indian population. Methods The study recruited 746 POAG cases and 697 controls distributed into discovery and validation cohorts. In the discovery phase, genome-wide genotype data was generated on Illumina Infinium 660 W-Quad platform and the significant SNPs were genotyped using Illumina GGGT assay in the second phase. Logistic regression was used to test association in the discovery phase to adjust for population sub-structure and chi-square test was used for association analysis in validation phase. Publicly available expression dataset for trabecular meshwork was used to check for expression of the candidate gene under cyclic mechanical stress. Western blot and immunofluorescence experiments were performed in human TM cells and murine eye, respectively to check for expression of the candidate gene. Results Meta-analysis of discovery and validation phase data revealed the association of rs7916852 in MPP7 gene (p = 5.7x10−7) with POAG. We have shown abundant expression of MPP7 in the HTM cells. Expression analysis shows that upon cyclic mechanical stress MPP7 was significantly down-regulated in HTM (Fold change: 2.6; p = 0.018). MPP7 protein expression was also found to be enriched in the ciliary processes of the murine eye. Conclusion Using a genome-wide approach we have identified MPP7 as a novel candidate gene for POAG with evidence of its expression in relevant ocular tissues and dysregulation under mechanical stress possibly mimicking the disease scenario. Electronic supplementary material The online version of this article (doi:10.1186/s12920-016-0177-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mansi Vishal
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.,Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India
| | - Anchal Sharma
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Lalit Kaurani
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India
| | | | - Suddhasil Mookherjee
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Kiran Narta
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Jyoti Agrawal
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India
| | | | - Susanta Roychoudhury
- Cancer Biology and Inflammatory disorder division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, 700019, India
| | | | | | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | | | - Kunal Ray
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India.
| | - Arijit Mukhopadhyay
- Genomics & Molecular Medicine, CSIR-Institute of Genomics & Integrative Biology, Mathura Road (near Sukhdev Vihar), New Delhi, 110025, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India. .,UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
30
|
Kim G, Luján R, Schwenk J, Kelley MH, Aguado C, Watanabe M, Fakler B, Maylie J, Adelman JP. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. eLife 2016; 5. [PMID: 26880549 PMCID: PMC4764564 DOI: 10.7554/elife.12637] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/28/2016] [Indexed: 01/06/2023] Open
Abstract
Mouse CA1 pyramidal neurons express apamin-sensitive SK2-containing channels in the post-synaptic membrane, positioned close to NMDA-type (N-methyl-D-aspartate) glutamate receptors. Activated by synaptically evoked NMDAR-dependent Ca2+ influx, the synaptic SK2-containing channels modulate excitatory post-synaptic responses and the induction of synaptic plasticity. In addition, their activity- and protein kinase A-dependent trafficking contributes to expression of long-term potentiation (LTP). We have identified a novel synaptic scaffold, MPP2 (membrane palmitoylated protein 2; p55), a member of the membrane-associated guanylate kinase (MAGUK) family that interacts with SK2-containing channels. MPP2 and SK2 co-immunopurified from mouse brain, and co-immunoprecipitated when they were co-expressed in HEK293 cells. MPP2 is highly expressed in the post-synaptic density of dendritic spines on CA1 pyramidal neurons. Knocking down MPP2 expression selectively abolished the SK2-containing channel contribution to synaptic responses and decreased LTP. Thus, MPP2 is a novel synaptic scaffold that is required for proper synaptic localization and function of SK2-containing channels. DOI:http://dx.doi.org/10.7554/eLife.12637.001 The neurons in the brain communicate with each other by releasing chemical messengers across structures called synapses. This signaling always occurs in the same direction: at a given synapse, one neuron sends signals that bind to receptor proteins on the surface of the receiving neuron. Repeatedly signaling across a synapse strengthens it, making it easier to communicate across, and sometimes such stimulation can cause a persistent strengthening of the synapse: this is known as long-term potentiation. Changes in synaptic strength are important for learning and memory. In the synapses formed between a type of brain cell called CA1 neurons, a protein called SK2 forms part of an ion channel in the membrane of the receiving neuron and is important for synaptic strengthening and long-term potentiation. To work correctly, the SK2 channels must be precisely positioned at the synapse, but the mechanisms responsible for this positioning were not clear. Now, by experimenting with purified proteins taken from the CA1 neurons of mice, Kim et al. show that SK2 physically interacts with a scaffold protein called MPP2. Further experiments revealed that MPP2 is responsible for positioning SK2 at the synapses, and this allows SK2-containing channels to contribute to long-term potentiation and synaptic strengthening. During synaptic strengthening, it is possible that SK2 disengages from MPP2, which influences learning. The next step is to understand the processes that dictate this behavior. DOI:http://dx.doi.org/10.7554/eLife.12637.002
Collapse
Affiliation(s)
- Gukhan Kim
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Rafael Luján
- Instituto de Investigación en Discapacidades Neurológicas, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jochen Schwenk
- Institute of Physiology, University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Melissa H Kelley
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Carolina Aguado
- Instituto de Investigación en Discapacidades Neurológicas, Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Bernd Fakler
- Institute of Physiology, University of Freiburg, Freiburg, Germany.,Center for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - James Maylie
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, United States
| | - John P Adelman
- Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
31
|
Abstract
Background Genome-wide mapping reveals chromatin landscapes unique to cell states. Histone marks of regulatory genes involved in cell specification and organ development provide a powerful tool to map regulatory sequences. H3K4me3 marks promoter regions; H3K27me3 marks repressed regions, and Pol II presence indicates active transcription. The presence of both H3K4me3 and H3K27me3 characterize poised sequences, a common characteristic of genes involved in pattern formation during organogenesis. Results We used genome-wide profiling for H3K27me3, H3K4me3, and Pol II to map chromatin states in mouse embryonic day 12 forelimbs in wild type (control) and Pitx2-null mutant mice. We compared these data with previous gene expression studies from forelimb Lbx1+ migratory myoblasts and correlated Pitx2-dependent expression profiles and chromatin states. During forelimb development, several lineages including myoblast, osteoblast, neurons, angioblasts etc., require synchronized growth to form a functional limb. We identified 125 genes in the developing forelimb that are Pitx2-dependent. Genes involved in muscle specification and cytoskeleton architecture were positively regulated, while genes involved in axonal path finding were poised. Conclusion Our results have established histone modification profiles as a useful tool for identifying gene regulatory states in muscle development, and identified the role of Pitx2 in extending the time of myoblast progression, promoting formation of sarcomeric structures, and suppressing attachment of neuronal axons.
Collapse
Affiliation(s)
- Arun J Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Michael K Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Theresa M Filtz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
32
|
Maksimchuk KR, Alser KA, Mou R, Valdivia RH, McCafferty DG. The Chlamydia trachomatis Protease CPAF Contains a Cryptic PDZ-Like Domain with Similarity to Human Cell Polarity and Tight Junction PDZ-Containing Proteins. PLoS One 2016; 11:e0147233. [PMID: 26829550 PMCID: PMC4734761 DOI: 10.1371/journal.pone.0147233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
The need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded. While inspecting the previously solved CPAF crystal structure, we discovered that CPAF contains a cryptic N-terminal PSD95 Dlg ZO-1 (PDZ) domain spanning residues 106–212 (CPAF106-212). This PDZ domain is unique in that it bears minimal sequence similarity to canonical PDZ-forming sequences and displays little sequence and structural similarity to known chlamydial PDZ domains. We show that the CPAF106-212 sequence is homologous to PDZ domains of human tight junction proteins.
Collapse
Affiliation(s)
- Kenneth R. Maksimchuk
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Katherine A. Alser
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Rui Mou
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Raphael H. Valdivia
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Dewey G. McCafferty
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Terada N, Saitoh Y, Kamijo A, Ohno S, Ohno N. Involvement of membrane skeletal molecules in the Schmidt-Lanterman incisure in Schwann cells. Med Mol Morphol 2015; 49:5-10. [PMID: 26541343 DOI: 10.1007/s00795-015-0125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 12/21/2022]
Abstract
Membrane skeletal networks form a two-dimensional lattice structure beneath erythrocyte membranes. 4.1R-MPP (membrane palmitoylated protein) 1-glycophorin C is one of the basic molecular complexes of the membrane skeleton. An analogous molecular complex, 4.1G-MPP6-cell adhesion molecule 4 (CADM4), is incorporated into the Schmidt-Lanterman incisure (SLI), a truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system. In this review, the dynamic structure of peripheral nerve fibers under stretching conditions is demonstrated using in vivo cryotechnique. The structures of nerve fibers had a beaded appearance, and the heights of SLI circular-truncated cones increased at the narrow sites of nerve fibers under the stretched condition. The height of SLI-truncated cones was lower in 4.1G-deficient nerve fibers than in wild-type nerve fibers. 4.1G was essential for the molecular targeting of MPP6 and CADM4 in SLI. The signal transduction protein, Src, was also involved in the 4.1G-MPP6-CADM4 molecular complex. The phosphorylation of Src was altered by the deletion of 4.1G. Thus, we herein demonstrate a membrane skeletal molecular complex in SLI that has potential roles in the regulation of adhesion and signal transduction as well as in structural stability in Schwann cells.
Collapse
Affiliation(s)
- Nobuo Terada
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan.
| | - Yurika Saitoh
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Akio Kamijo
- Division of Health Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto City, Nagano, 390-8621, Japan
| | - Shinichi Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| | - Nobuhiko Ohno
- Department of Anatomy and Molecular Histology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo City, Yamanashi, Japan
| |
Collapse
|
34
|
Tirupula KC, Zhang D, Osbourne A, Chatterjee A, Desnoyer R, Willard B, Karnik SS. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach. PLoS One 2015; 10:e0140872. [PMID: 26484771 PMCID: PMC4618059 DOI: 10.1371/journal.pone.0140872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A ‘cardiac-specific finger print’ of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a ‘MAS-signalosome’ model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of ‘signalosome’ components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.
Collapse
Affiliation(s)
- Kalyan C. Tirupula
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Dongmei Zhang
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Appledene Osbourne
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
| | - Arunachal Chatterjee
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Russ Desnoyer
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
| | - Belinda Willard
- Proteomics Laboratory, Lerner Research Institute, Cleveland Clinic, Ohio, United States of America
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Cleveland Clinic, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland Clinic, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Yaakob NS, Chinkwo KA, Chetty N, Coupar IM, Irving HR. Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon. J Neurogastroenterol Motil 2015; 21:361-9. [PMID: 26130632 PMCID: PMC4496915 DOI: 10.5056/jnm14157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/31/2015] [Accepted: 04/05/2015] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT3 and 5-HT4 receptors are clinically relevant. The aim was to examine the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine. Methods Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction. Results The 5-HT3 receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT3 receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT4 and 5-HT7 receptors were expressed throughout the colon although the 5-HT4 receptor d, g, and i variants were expressed less often. Conclusions The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT3 receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance.
Collapse
Affiliation(s)
- Nor S Yaakob
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville Victoria, Australia.,Drug and Herbal Research Center, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia (Current address)
| | - Kenneth A Chinkwo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville Victoria, Australia.,School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia (Current address)
| | - Navinisha Chetty
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville Victoria, Australia
| | - Ian M Coupar
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville Victoria, Australia
| | - Helen R Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville campus), Parkville Victoria, Australia
| |
Collapse
|
36
|
Duijvesteijn N, Veltmaat JM, Knol EF, Harlizius B. High-resolution association mapping of number of teats in pigs reveals regions controlling vertebral development. BMC Genomics 2014; 15:542. [PMID: 24981054 PMCID: PMC4092218 DOI: 10.1186/1471-2164-15-542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selection pressure on the number of teats has been applied to be able to provide enough teats for the increase in litter size in pigs. Although many QTL were reported, they cover large chromosomal regions and the functional mutations and their underlying biological mechanisms have not yet been identified. To gain a better insight in the genetic architecture of the trait number of teats, we performed a genome-wide association study by genotyping 936 Large White pigs using the Illumina PorcineSNP60 Beadchip. The analysis is based on deregressed breeding values to account for the dense family structure and a Bayesian approach for estimation of the SNP effects. RESULTS The genome-wide association study resulted in 212 significant SNPs. In total, 39 QTL regions were defined including 170 SNPs on 13 Sus scrofa chromosomes (SSC) of which 5 regions on SSC7, 9, 10, 12 and 14 were highly significant. All significantly associated regions together explain 9.5% of the genetic variance where a QTL on SSC7 explains the most genetic variance (2.5%). For the five highly significant QTL regions, a search for candidate genes was performed. The most convincing candidate genes were VRTN and Prox2 on SSC7, MPP7, ARMC4, and MKX on SSC10, and vertebrae δ-EF1 on SSC12. All three QTL contain candidate genes which are known to be associated with vertebral development. In the new QTL regions on SSC9 and SSC14, no obvious candidate genes were identified. CONCLUSIONS Five major QTL were found at high resolution on SSC7, 9, 10, 12, and 14 of which the QTL on SSC9 and SSC14 are the first ones to be reported on these chromosomes. The significant SNPs found in this study could be used in selection to increase number of teats in pigs, so that the increasing number of live-born piglets can be nursed by the sow. This study points to common genetic mechanisms regulating number of vertebrae and number of teats.
Collapse
Affiliation(s)
- Naomi Duijvesteijn
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| | - Jacqueline M Veltmaat
- />Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61, Biopolis Drive, Singapore, Singapore 138673
| | - Egbert F Knol
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| | - Barbara Harlizius
- />TOPIGS Research Center IPG, PO Box 43, 6640AA Beuningen, The Netherlands
| |
Collapse
|
37
|
Vulto-van Silfhout AT, Hehir-Kwa JY, van Bon BWM, Schuurs-Hoeijmakers JHM, Meader S, Hellebrekers CJM, Thoonen IJM, de Brouwer APM, Brunner HG, Webber C, Pfundt R, de Leeuw N, de Vries BBA. Clinical significance of de novo and inherited copy-number variation. Hum Mutat 2013; 34:1679-87. [PMID: 24038936 DOI: 10.1002/humu.22442] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/30/2013] [Indexed: 12/22/2022]
Abstract
Copy-number variations (CNVs) are a common cause of intellectual disability and/or multiple congenital anomalies (ID/MCA). However, the clinical interpretation of CNVs remains challenging, especially for inherited CNVs. Well-phenotyped patients (5,531) with ID/MCA were screened for rare CNVs using a 250K single-nucleotide polymorphism array platform in order to improve the understanding of the contribution of CNVs to a patients phenotype. We detected 1,663 rare CNVs in 1,388 patients (25.1%; range 0-5 per patient) of which 437 occurred de novo and 638 were inherited. The detected CNVs were analyzed for various characteristics, gene content, and genotype-phenotype correlations. Patients with severe phenotypes, including organ malformations, had more de novo CNVs (P < 0.001), whereas patient groups with milder phenotypes, such as facial dysmorphisms, were enriched for both de novo and inherited CNVs (P < 0.001), indicating that not only de novo but also inherited CNVs can be associated with a clinically relevant phenotype. Moreover, patients with multiple CNVs presented with a more severe phenotype than patients with a single CNV (P < 0.001), pointing to a combinatorial effect of the additional CNVs. In addition, we identified 20 de novo single-gene CNVs that directly indicate novel genes for ID/MCA, including ZFHX4, ANKH, DLG2, MPP7, CEP89, TRIO, ASTN2, and PIK3C3.
Collapse
Affiliation(s)
- Anneke T Vulto-van Silfhout
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences and Institute for Genetic and Metabolic Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Polarity protein complex Scribble/Lgl/Dlg and epithelial cell barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:149-70. [PMID: 23397623 DOI: 10.1007/978-1-4614-4711-5_7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Scribble polarity complex or module is one of the three polarity modules that regulate cell polarity in multiple epithelia including blood-tissue barriers. This protein complex is composed of Scribble, Lethal giant larvae (Lgl) and Discs large (Dlg), which are well conserved across species from fruitflies and worms to mammals. Originally identified in Drosophila and C. elegans where the Scribble complex was found to work with the Par-based and Crumbs-based polarity modules to regulate apicobasal polarity and asymmetry in cells and tissues during embryogenesis, their mammalian homologs have all been identified in recent years. Components of the Scribble complex are known to regulate multiple cellular functions besides cell polarity, which include cell proliferation, assembly and maintenance of adherens junction (AJ) and tight junction (TJ), and they are also tumor suppressors. Herein, we provide an update on the Scribble polarity complex and how this protein complex modulates cell adhesion with some emphasis on its role in Sertoli cell blood-testis barrier (BTB) function. It should be noted that this is a rapidly developing field, in particular the role of this protein module in blood-tissue barriers, and this short chapter attempts to provide the information necessary for investigators studying reproductive biology and blood-tissue barriers to design future studies. We also include results of recent studies from flies and worms since this information will be helpful in planning experiments for future functional studies in the testis to understand how Scribble-based proteins regulate BTB dynamics and spermatogenesis.
Collapse
|
39
|
Zhang J, Yang X, Wang Z, Zhou H, Xie X, Shen Y, Long J. Structure of an L27 domain heterotrimer from cell polarity complex Patj/Pals1/Mals2 reveals mutually independent L27 domain assembly mode. J Biol Chem 2012; 287:11132-40. [PMID: 22337881 DOI: 10.1074/jbc.m111.321216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The assembly of supramolecular complexes in multidomain scaffold proteins is crucial for the control of cell polarity. The scaffold protein of protein associated with Lin-7 1 (Pals1) forms a complex with two other scaffold proteins, Pals-associated tight junction protein (Patj) and mammalian homolog-2 of Lin-7 (Mals2), through its tandem Lin-2 and Lin-7 (L27) domains to regulate apical-basal polarity. Here, we report the crystal structure of a 4-L27 domain-containing heterotrimer derived from the tripartite complex Patj/Pals1/Mals2. The heterotrimer consists of two cognate pairs of heterodimeric L27 domains with similar conformations. Structural analysis and biochemical data further show that the dimers assemble mutually independently. Additionally, such mutually independent assembly of the two heterodimers can be observed in another tripartite complex, Disks large homolog 1 (DLG1)/calcium-calmodulin-dependent serine protein kinase (CASK)/Mals2. Our results reveal a novel mechanism for tandem L27 domain-mediated, supramolecular complex assembly with a mutually independent mode.
Collapse
Affiliation(s)
- Jinxiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Essential function of protein 4.1G in targeting of membrane protein palmitoylated 6 into Schmidt-Lanterman incisures in myelinated nerves. Mol Cell Biol 2011; 32:199-205. [PMID: 22025680 DOI: 10.1128/mcb.05945-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein 4.1G is a membrane skeletal protein found in specific subcellular structures in myelinated Schwann cells and seminiferous tubules. Here, we show that in the mouse sciatic nerve, protein 4.1G colocalized at Schmidt-Lanterman incisures (SLI) and the paranodes with a member of the membrane-associated guanylate kinase (MAGUK) family, membrane protein palmitoylated 6 (MPP6). Coimmunoprecipitation experiments revealed that MPP6 was interacting with protein 4.1G. In contrast to wild-type nerves, in 4.1G knockout mice, MPP6 was found largely in the cytoplasm near Schwann cell nuclei, indicating an abnormal protein transport. Although the SLI remained in the 4.1G knockout sciatic nerves, as confirmed by E-cadherin immunostaining, their shape was altered in aged 4.1G knockout nerves compared to their shape in wild-type nerves. In the seminiferous tubules, MPP6 was localized similarly to protein 4.1G along cell membranes of the spermatogonium and early spermatocytes. However, in contrast to myelinated peripheral nerves, the specific localization of MPP6 in the seminiferous tubules was unaltered in the absence of protein 4.1G. These results indicate that 4.1G has a specific role in the targeting of MPP6 to the SLI and the assembly of these subcellular structures.
Collapse
|
41
|
The avian influenza virus NS1 ESEV PDZ binding motif associates with Dlg1 and Scribble to disrupt cellular tight junctions. J Virol 2011; 85:10639-48. [PMID: 21849460 DOI: 10.1128/jvi.05070-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The influenza A virus NS1 protein contains a conserved 4-amino-acid-residue PDZ-ligand binding motif (PBM) at the carboxyl terminus that can function as a virulence determinant by targeting cellular PDZ proteins. The NS1 proteins from avian and human viral isolates have consensus PBM sequences ESEV and RSKV, respectively. Currently circulating highly pathogenic H5N1 viruses contain the ESEV PBM which specifically associates with the PDZ proteins Scribble, Dlg1, MAGI-1, MAGI-2, and MAGI-3. In this study, we found NS1 proteins from viral isolates that contain the PBM sequence RSKV, KSEV, or EPEV are unable to associate with these PDZ proteins. Other results showed that the ESEV PBM mediates an indirect association with PDZ protein, Lin7C, via an interaction with Dlg1. Infection with a virus that expresses a NS1 protein with the ESEV PBM results in colocalization of NS1, Scribble, and Dlg1 within perinuclear puncta and mislocalization of plasma membrane-associated Lin7C to the cytoplasm. Infection of polarized MDCK cells with the ESEV virus additionally results in functional disruption of the tight junction (TJ) as measured by altered localization of TJ markers ZO-1 and Occludin, decreased transepithelial electrical resistance, and increased fluorescein isothiocyanate (FITC)-inulin diffusion across the polarized cell monolayer. A similar effect on the TJ was observed in MDCK cells depleted for either Scribble or Dlg1 by small interfering RNA (siRNA). These findings indicate that ESEV PBM-mediated binding of NS1 to Scribble and Dlg1 functions to disrupt the cellular TJ and that this effect likely contributes to the severe disease associated with highly pathogenic H5N1 influenza A viruses.
Collapse
|
42
|
Pieczynski J, Margolis B. Protein complexes that control renal epithelial polarity. Am J Physiol Renal Physiol 2011; 300:F589-601. [PMID: 21228104 DOI: 10.1152/ajprenal.00615.2010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Establishment of epithelial apicobasal polarity is crucial for proper kidney development and function. In recent years, there have been important advances in our understanding of the factors that mediate the initiation of apicobasal polarization. Key among these are the polarity complexes that are evolutionarily conserved from simple organisms to humans. Three of these complexes are discussed in this review: the Crumbs complex, the Par complex, and the Scribble complex. The apical Crumbs complex consists of three proteins, Crumbs, PALS1, and PATJ, whereas the apical Par complex consists of Par-3, Par-6, and atypical protein kinase C. The lateral Scribble complex consists of Scribble, discs large, and lethal giant larvae. These complexes modulate kinase and small G protein activity such that the apical and basolateral complexes signal antagonistically, leading to the segregation of the apical and basolateral membranes. The polarity complexes also serve as scaffolds to direct and retain proteins at the apical membrane, the basolateral membrane, or the intervening tight junction. There is plasticity in apicobasal polarity, and this is best seen in the processes of epithelial-to-mesenchymal transition and the converse mesenchymal-to-epithelial transition. These transitions are important in kidney disease as well as kidney development, and modulation of the polarity complexes are critical for these transitions.
Collapse
Affiliation(s)
- Jay Pieczynski
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
43
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain‐mediated polymerization. FASEB J 2010. [DOI: 10.1096/fj.10.163857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Xingqiao Xie
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Liu Chen
- School of Life Science, University of Science and Technology China Anhui China
| | - Hao Zhou
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Zheng Wang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Weijing Zhao
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Ran Tian
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Rongguang Zhang
- Institute of BiophysicsChinese Academy of Science Beijing China
| | - Changlin Tian
- School of Life Science, University of Science and Technology China Anhui China
| | - Jiafu Long
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| | - Yuequan Shen
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University Tianjin China
| |
Collapse
|
44
|
Yang X, Xie X, Chen L, Zhou H, Wang Z, Zhao W, Tian R, Zhang R, Tian C, Long J, Shen Y. Structural basis for tandem L27 domain-mediated polymerization. FASEB J 2010; 24:4806-15. [PMID: 20702775 DOI: 10.1096/fj.10-163857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The establishment of epithelial cell polarity requires the assembly of multiprotein complexes and is crucial during epithelial morphogenesis. Three scaffolding proteins, Dlg1, MPP7, and Mals3, can be assembled to form a complex that functions in the establishment and maintenance of apicobasal polarity in epithelial tissues through their L27 domains. Here we report the crystal structure of a 4-L27-domain complex derived from the human tripartite complex Dlg1-MPP7-Mals3 in combination with paramagnetic relaxation enhancement measurements. The heterotrimer consists of 2 pairs of heterodimeric L27 domains. These 2 dimers are asymmetric due to the large difference between the N- and C-terminal tandem L27 domain of MPP7. Structural analysis combined with biochemical experiments further reveals that the loop αA-αB and helix αB of the C-terminal L27 domain of MPP7 play a critical role in assembling the entire tripartite complex, suggesting a synergistic tandem L27-mediated assembling event.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Key Laboratory of Protein Science, College of Life Science, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cell polarity, the generation of cellular asymmetries, is necessary for diverse processes in animal cells, such as cell migration, asymmetric cell division, epithelial barrier function, and morphogenesis. Common mechanisms generate and transduce cell polarity in different cells, but cell type-specific processes are equally important. In this review, we highlight the similarities and differences between the polarity mechanisms in eggs and epithelia. We also highlight the prospects for future studies on how cortical polarity interfaces with other cellular processes, such as morphogenesis, exocytosis, and lipid signaling, and how defects in polarity contribute to tumor formation.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, United Kingdom.
| | | |
Collapse
|
46
|
A perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions. J Neurosci 2010; 30:5811-24. [PMID: 20427642 DOI: 10.1523/jneurosci.0778-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.
Collapse
|
47
|
Stepwise maturation of apicobasal polarity of the neuroepithelium is essential for vertebrate neurulation. J Neurosci 2009; 29:11426-40. [PMID: 19759292 DOI: 10.1523/jneurosci.1880-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During vertebrate neurulation, extensive cell movements transform the flat neural plate into the neural tube. This dynamic morphogenesis requires the tissue to bear a certain amount of plasticity to accommodate shape and position changes of individual cells as well as intercellular cohesiveness to maintain tissue integrity and architecture. For most of the neural plate-neural tube transition, cells are polarized along the apicobasal axis. The establishment and maintenance of this polarity requires many polarity proteins that mediate cell-cell adhesion either directly or indirectly. Intercellular adhesion reduces tissue plasticity and enhances tissue integrity. However, it remains unclear how apicobasal polarity is regulated to meet the opposing needs for tissue plasticity and tissue integrity during neurulation. Here, we show that N-Cad/ZO-1 complex-initiated apicobasal polarity is stabilized by the late-onsetting Lin7c/Nok complex after the extensive morphogenetic cell movements in neurulation. Loss of either N-Cad or Lin7c disrupts neural tube formation. Furthermore, precocious overexpression of Lin7c induces multiaxial mirror symmetry in zebrafish neurulation. Our data suggest that stepwise maturation of apicobasal polarity plays an essential role in vertebrate neurulation.
Collapse
|
48
|
Lozovatsky L, Abayasekara N, Piawah S, Walther Z. CASK deletion in intestinal epithelia causes mislocalization of LIN7C and the DLG1/Scrib polarity complex without affecting cell polarity. Mol Biol Cell 2009; 20:4489-99. [PMID: 19726564 DOI: 10.1091/mbc.e09-04-0280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CASK is the mammalian ortholog of LIN2, a component of the LIN2/7/10 protein complex that targets epidermal growth factor receptor (EGFR) to basolateral membranes in Caenorhabditis elegans. A member of the MAGUK family of scaffolding proteins, CASK resides at basolateral membranes in polarized epithelia. Its interaction with LIN7 is evolutionarily conserved. In addition, CASK forms a complex with another MAGUK, the DLG1 tumor suppressor. Although complete knockout of CASK is lethal, the gene is X-linked, enabling us to generate heterozygous female adults that are mosaic for its expression. We also generated intestine-specific CASK knockout mice. Immunofluorescence analysis revealed that in intestine, CASK is not required for epithelial polarity or differentiation but is necessary for the basolateral localization of DLG1 and LIN7C. However, the subcellular distributions of DLG1 and LIN7C are independent of CASK in the stomach. Moreover, CASK and LIN7C show normal localization in dlg1(-/-) intestine. Despite the disappearance of basolateral LIN7C in CASK-deficient intestinal crypts, this epithelium retains normal localization of LIN7A/B, EGFR and ErbB-2. Finally, crypt-to-villus migration rates are unchanged in CASK-deficient intestinal epithelium. Thus, CASK expression and the appropriate localization of DLG1 are not essential for either epithelial polarity or intestinal homeostasis in vivo.
Collapse
Affiliation(s)
- Larissa Lozovatsky
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
49
|
Bhoj EJ, Romeo S, Baroni MG, Bartov G, Schultz RA, Zinn AR. MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes. Mol Cytogenet 2009; 2:5. [PMID: 19216786 PMCID: PMC2646739 DOI: 10.1186/1755-8166-2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 02/13/2009] [Indexed: 11/10/2022] Open
Abstract
Background Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young (MODY)-like diabetes and an apparently balanced translocation [46,XY,t(7;10)(q22;p12)] and sought to identify a novel diabetes locus by characterizing the translocation breakpoints. Results Mutations in coding exons and splice sites of known MODY genes were first ruled out by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH) studies demonstrated that the translocation did not disrupt two known diabetes-related genes on 10p12. The translocation breakpoints were further mapped to high resolution using FISH and somatic cell hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the Membrane Protein, Palmitoylated 7 (MPP7) gene, which encodes a protein required for proper cell polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7 is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints. Conclusion The balanced translocation and MODY-like diabetes in the proband could be coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7 expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes and perturbed islet cell polarity in insulin secretion warrant further study.
Collapse
Affiliation(s)
- Elizabeth J Bhoj
- McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Thomas M, Narayan N, Pim D, Tomaić V, Massimi P, Nagasaka K, Kranjec C, Gammoh N, Banks L. Human papillomaviruses, cervical cancer and cell polarity. Oncogene 2008; 27:7018-30. [DOI: 10.1038/onc.2008.351] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|