1
|
Joshi JC, Joshi B, Zhang C, Banerjee S, Vellingiri V, Raghunathrao VAB, Anwar M, Rokade TP, Zhang L, Amin R, Song Y, Mehta D. RGS2 is an innate immune checkpoint for suppressing Gαq-mediated IFNγ generation and lung injury. iScience 2025; 28:111878. [PMID: 40041768 PMCID: PMC11876898 DOI: 10.1016/j.isci.2025.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/01/2024] [Accepted: 01/20/2025] [Indexed: 03/12/2025] Open
Abstract
Interferon gamma (IFNγ), a type II interferon, augments tissue inflammation following infections, leading to lethal acute lung injury (ALI), yet the mechanisms controlling IFNγ generation in the lungs remain elusive. Here, we identified regulator of G protein signaling 2 (RGS2) as a gatekeeper of the lung's IFNγ levels during infections. Deletion of RGS2 sustained an increase in IFNγ levels in macrophages, leading to unresolvable inflammatory lung injury. This response was not seen in RGS2 null chimeric mice receiving wild-type (WT) bone marrow or the RGS2 gene in alveolar macrophages (AMs) or IFNγ-blocking antibody. RGS2 functioned by suppressing Gαq-mediated IFNγ generation and AM inflammatory signaling. Thus, the inhibition of Gαq blocked IFNγ generation in AMs and rewired AM transcriptomes from an inflammatory to a reparative phenotype in RGS2 null mice, pointing to the RGS2-Gαq axis as a potential target for suppressing inflammatory injury.
Collapse
Affiliation(s)
- Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Erie, PA, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Cuiping Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Somenath Banerjee
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vigneshwaran Vellingiri
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Vijay Avin Balaji Raghunathrao
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Tejas Pravin Rokade
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Vascular Medicine Institute, Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ruhul Amin
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
3
|
Eymery MC, Nguyen KA, Basu S, Hausmann J, Tran-Nguyen VK, Seidel HP, Gutierrez L, Boumendjel A, McCarthy AA. Discovery of potent chromone-based autotaxin inhibitors inspired by cannabinoids. Eur J Med Chem 2024; 263:115944. [PMID: 37976710 DOI: 10.1016/j.ejmech.2023.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Autotaxin (ATX) is an enzyme primarily known for the production of lysophosphatidic acid. Being involved in the development of major human diseases, such as cancer and neurodegenerative diseases, the enzyme has been featured in multiple studies as a pharmacological target. We previously found that the cannabinoid tetrahydrocannabinol (THC) could bind and act as an excellent inhibitor of ATX. This study aims to use the cannabinoid scaffold as a starting point to find cannabinoid-unrelated ATX inhibitors, following a funnel down approach in which large chemical libraries sharing chemical similarities with THC were screened to identify lead scaffold types for optimization. This approach allowed us to identify compounds bearing chromone and indole scaffolds as promising ATX inhibitors. Further optimization led to MEY-003, which is characterized by the direct linkage of an N-pentyl indole to the 5,7-dihydroxychromone moiety. This molecule has potent inhibitory activity towards ATX-β and ATX-ɣ as evidenced by enzymatic studies and its mode of action was rationalized by structural biology studies using macromolecular X-ray crystallography.
Collapse
Affiliation(s)
- Mathias Christophe Eymery
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France; Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Kim-Anh Nguyen
- Univ. Grenoble Alpes, INSERM U1039, LRB, 38000, Grenoble, France
| | - Shibom Basu
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jens Hausmann
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Viet-Khoa Tran-Nguyen
- Unité de Biologie Fonctionnelle et Adaptative (BFA), Université Paris Cité, 75013, Paris, France
| | - Hans Peter Seidel
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Lola Gutierrez
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| | | | - Andrew Aloysius McCarthy
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, 38000, Grenoble, France
| |
Collapse
|
4
|
Joshi JC, Joshi B, Zhang C, Banerjee S, Vellingiri V, Raghunathrao VAB, Zhang L, Amin R, Song Y, Mehta D. RGS2 is an innate immune checkpoint for TLR4 and Gαq-mediated IFNγ generation and lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559016. [PMID: 37790514 PMCID: PMC10542520 DOI: 10.1101/2023.09.22.559016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
IFNγ, a type II interferon secreted by immune cells, augments tissue responses to injury following pathogenic infections leading to lethal acute lung injury (ALI). Alveolar macrophages (AM) abundantly express Toll-like receptor-4 and represent the primary cell type of the innate immune system in the lungs. A fundamental question remains whether AM generation of IFNg leads to uncontrolled innate response and perpetuated lung injury. LPS induced a sustained increase in IFNg levels and unresolvable inflammatory lung injury in the mice lacking RGS2 but not in RGS2 null chimeric mice receiving WT bone marrow or receiving the RGS2 gene in AM. Thus, indicating RGS2 serves as a gatekeeper of IFNg levels in AM and thereby lung's innate immune response. RGS2 functioned by forming a complex with TLR4 shielding Gaq from inducing IFNg generation and AM inflammatory signaling. Thus, inhibition of Gaq blocked IFNg generation and subverted AM transcriptome from being inflammatory to reparative type in RGS2 null mice, resolving lung injury. Highlights RGS2 levels are inversely correlated with IFNγ in ARDS patient's AM.RGS2 in alveolar macrophages regulate the inflammatory lung injury.During pathogenic insult RGS2 functioned by forming a complex with TLR4 shielding Gαq from inducing IFNγ generation and AM inflammatory signaling. eToc Blurb Authors demonstrate an essential role of RGS2 in macrophages in airspace to promoting anti-inflammatory function of alveolar macrophages in lung injury. The authors provided new insight into the dynamic control of innate immune response by Gαq and RGS2 axis to prevent ALI.
Collapse
|
5
|
Jiang S, Yang H, Li M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int J Mol Sci 2023; 24:12524. [PMID: 37569902 PMCID: PMC10419859 DOI: 10.3390/ijms241512524] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid that regulates physiological and pathological processes in numerous cell biological functions, including cell migration, apoptosis, and proliferation. Macrophages are found in most human tissues and have multiple physiological and pathological functions. There is growing evidence that LPA signaling plays a significant role in the physiological function of macrophages and accelerates the development of diseases caused by macrophage dysfunction and inflammation, such as inflammation-related diseases, cancer, atherosclerosis, and fibrosis. In this review, we summarize the roles of LPA in macrophages, analyze numerous macrophage- and inflammation-associated diseases triggered by LPA, and discuss LPA-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Shufan Jiang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huili Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China;
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
6
|
Torres RM, Turner JA, D’Antonio M, Pelanda R, Kremer KN. Regulation of CD8 T-cell signaling, metabolism, and cytotoxic activity by extracellular lysophosphatidic acid. Immunol Rev 2023; 317:203-222. [PMID: 37096808 PMCID: PMC10523933 DOI: 10.1111/imr.13208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.
Collapse
Affiliation(s)
- Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Jacqueline A. Turner
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Marc D’Antonio
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Roberta Pelanda
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| | - Kimberly N. Kremer
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora Colorado, 80045
| |
Collapse
|
7
|
Eymery MC, McCarthy AA, Hausmann J. Linking medicinal cannabis to autotaxin-lysophosphatidic acid signaling. Life Sci Alliance 2023; 6:e202201595. [PMID: 36623871 PMCID: PMC9834664 DOI: 10.26508/lsa.202201595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 01/11/2023] Open
Abstract
Autotaxin is primarily known for the formation of lysophosphatidic acid (LPA) from lysophosphatidylcholine. LPA is an important signaling phospholipid that can bind to six G protein-coupled receptors (LPA1-6). The ATX-LPA signaling axis is a critical component in many physiological and pathophysiological conditions. Here, we describe a potent inhibition of Δ9-trans-tetrahydrocannabinol (THC), the main psychoactive compound of medicinal cannabis and related cannabinoids, on the catalysis of two isoforms of ATX with nanomolar apparent EC50 values. Furthermore, we decipher the binding interface of ATX to THC, and its derivative 9(R)-Δ6a,10a-THC (6a10aTHC), by X-ray crystallography. Cellular experiments confirm this inhibitory effect, revealing a significant reduction of internalized LPA1 in the presence of THC with simultaneous ATX and lysophosphatidylcholine stimulation. Our results establish a functional interaction of THC with autotaxin-LPA signaling and highlight novel aspects of medicinal cannabis therapy.
Collapse
Affiliation(s)
- Mathias C Eymery
- European Molecular Biology Laboratory, Grenoble, Grenoble, France
| | | | - Jens Hausmann
- European Molecular Biology Laboratory, Grenoble, Grenoble, France
- European Molecular Biology Laboratory, Chemical Biology Core Facility, Heidelberg, Germany
| |
Collapse
|
8
|
Kaur G, Verma SK, Singh D, Singh NK. Role of G-Proteins and GPCRs in Cardiovascular Pathologies. Bioengineering (Basel) 2023; 10:bioengineering10010076. [PMID: 36671648 PMCID: PMC9854459 DOI: 10.3390/bioengineering10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell signaling is a fundamental process that enables cells to survive under various ecological and environmental contexts and imparts tolerance towards stressful conditions. The basic machinery for cell signaling includes a receptor molecule that senses and receives the signal. The primary form of the signal might be a hormone, light, an antigen, an odorant, a neurotransmitter, etc. Similarly, heterotrimeric G-proteins principally provide communication from the plasma membrane G-protein-coupled receptors (GPCRs) to the inner compartments of the cells to control various biochemical activities. G-protein-coupled signaling regulates different physiological functions in the targeted cell types. This review article discusses G-proteins' signaling and regulation functions and their physiological relevance. In addition, we also elaborate on the role of G-proteins in several cardiovascular diseases, such as myocardial ischemia, hypertension, atherosclerosis, restenosis, stroke, and peripheral artery disease.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shailendra Kumar Verma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Deepak Singh
- Lloyd Institute of Engineering and Technology, Greater Noida 201306, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
- Correspondence:
| |
Collapse
|
9
|
Garozzo R, Zuccarini M, Giuliani P, Di Liberto V, Mudò G, Caciagli F, Ciccarelli R, Ciruela F, Di Iorio P, Condorelli DF. Guanine inhibits the growth of human glioma and melanoma cell lines by interacting with GPR23. Front Pharmacol 2022; 13:970891. [PMID: 36199684 PMCID: PMC9527276 DOI: 10.3389/fphar.2022.970891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Guanine-based purines (GBPs) exert numerous biological effects at the central nervous system through putative membrane receptors, the existence of which is still elusive. To shed light on this question, we screened orphan and poorly characterized G protein-coupled receptors (GPRs), selecting those that showed a high purinoreceptor similarity and were expressed in glioma cells, where GBPs exerted a powerful antiproliferative effect. Of the GPRs chosen, only the silencing of GPR23, also known as lysophosphatidic acid (LPA) 4 receptor, counteracted GBP-induced growth inhibition in U87 cells. Guanine (GUA) was the most potent compound behind the GPR23-mediated effect, acting as the endpoint effector of GBP antiproliferative effects. Accordingly, cells stably expressing GPR23 showed increased sensitivity to GUA. Furthermore, while GPR23 expression was low in a hypoxanthine-guanine phosphoribosyl-transferase (HGPRT)-mutated melanoma cell line showing poor sensitivity to GBPs, and in HGPRT-silenced glioma cells, GPR23-induced expression in both cell types rescued GUA-mediated cell growth inhibition. Finally, binding experiments using [3H]-GUA and U87 cell membranes revealed the existence of a selective GUA binding (KD = 29.44 ± 4.07 nM; Bmax 1.007 ± 0.035 pmol/mg prot) likely to GPR23. Overall, these data suggest GPR23 involvement in modulating responses to GUA in tumor cell lines, although further research needs to verify whether this receptor mediates other GUA effects.
Collapse
Affiliation(s)
- Roberta Garozzo
- Department of Biomedical and Biotechnological, Section of Medical Biochemistry, University of Catania, Catania, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, Section of Pharmacology and Toxicology, School of Medicine, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, Section of Pharmacology and Toxicology, School of Medicine, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, Section of Pharmacology and Toxicology, School of Medicine, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Chieti, Italy
- *Correspondence: Patrizia Di Iorio,
| | - Daniele F. Condorelli
- Department of Biomedical and Biotechnological, Section of Medical Biochemistry, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Putative MicroRNA-mRNA Networks Upon Mdfi Overexpression in C2C12 Cell Differentiation and Muscle Fiber Type Transformation. Front Mol Biosci 2021; 8:675993. [PMID: 34738011 PMCID: PMC8560695 DOI: 10.3389/fmolb.2021.675993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Lysophosphatidic Acid Signaling in Cancer Cells: What Makes LPA So Special? Cells 2021; 10:cells10082059. [PMID: 34440828 PMCID: PMC8394178 DOI: 10.3390/cells10082059] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) refers to a family of simple phospholipids that act as ligands for G protein-coupled receptors. While LPA exerts effects throughout the body in normal physiological circumstances, its pathological role in cancer is of great interest from a therapeutic viewpoint. The numerous LPA receptors (LPARs) are coupled to a variety of G proteins, and more than one LPAR is typically expressed on any given cell. While the individual receptors signal through conventional GPCR pathways, LPA is particularly efficacious in stimulating cancer cell proliferation and migration. This review addresses the mechanistic aspects underlying these pro-tumorigenic effects. We provide examples of LPA signaling responses in various types of cancers, with an emphasis on those where roles have been identified for specific LPARs. While providing an overview of LPAR signaling, these examples also reveal gaps in our knowledge regarding the mechanisms of LPA action at the receptor level. The current understanding of the LPAR structure and the roles of LPAR interactions with other receptors are discussed. Overall, LPARs provide insight into the potential molecular mechanisms that underlie the ability of individual GPCRs (or combinations of GPCRs) to elicit a unique spectrum of responses from their agonist ligands. Further knowledge of these mechanisms will inform drug discovery, since GPCRs are promising therapeutic targets for cancer.
Collapse
|
12
|
Meduri B, Pujar GV, Durai Ananda Kumar T, Akshatha HS, Sethu AK, Singh M, Kanagarla A, Mathew B. Lysophosphatidic acid (LPA) receptor modulators: Structural features and recent development. Eur J Med Chem 2021; 222:113574. [PMID: 34126459 DOI: 10.1016/j.ejmech.2021.113574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Lysophosphatidic acid (LPA) activates six LPA receptors (LPAR1-6) and regulates various cellular activities such as cell proliferation, cytoprotection, and wound healing. Many studies elucidated the pathological outcomes of LPA are due to the alteration in signaling pathways, which include migration and invasion of cancer cells, fibrosis, atherosclerosis, and inflammation. Current pathophysiological research on LPA and its receptors provides a means that LPA receptors are new therapeutic targets for disorders associated with LPA. Various chemical modulators are developed and are under investigation to treat a wide range of pathological complications. This review summarizes the physiological and pathological roles of LPA signaling, development of various LPA modulators, their structural features, patents, and their clinical outcomes.
Collapse
Affiliation(s)
- Bhagyalalitha Meduri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India.
| | - T Durai Ananda Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - H S Akshatha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015 India
| | - Abhinav Kanagarla
- Department of Pharmaceutical Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
13
|
O'Regan A, O'Brien CJ, Eivers SB. The lysophosphatidic acid axis in fibrosis: Implications for glaucoma. Wound Repair Regen 2021; 29:613-626. [PMID: 34009724 DOI: 10.1111/wrr.12929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
Glaucoma is a common progressive optic neuropathy that results in visual field defects and can lead to irreversible blindness. The pathophysiology of glaucoma involves dysregulated extracellular matrix remodelling in both the trabecular meshwork in the anterior chamber and in the lamina cribrosa of the optic nerve head. Fibrosis in these regions leads to raised intraocular pressure and retinal ganglion cell degeneration, respectively. Lysophosphatidic acid (LPA) is a bioactive lipid mediator which acts via six G-protein coupled receptors on the cell surface to activate intracellular pathways that promote cell proliferation, transcription and survival. LPA signalling has been implicated in both normal wound healing and pathological fibrosis. LPA enhances fibroblast proliferation, migration and contraction, and induces expression of pro-fibrotic mediators such as connective tissue growth factor. The LPA axis plays a major role in diseases such as idiopathic pulmonary fibrosis, where it has been identified as an important pharmacological target. In glaucoma, LPA is present in high levels in the aqueous humour, and its signalling has been found to increase resistance to aqueous humour outflow through altered trabecular meshwork cellular contraction and extracellular matrix deposition. LPA signalling may, therefore, also represent an attractive target for treatment of glaucoma. In this review we wish to describe the role of LPA and its related proteins in tissue fibrosis and glaucoma.
Collapse
Affiliation(s)
- Amy O'Regan
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Colm J O'Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland.,Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sarah B Eivers
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
14
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
15
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
17
|
Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I, Joshi B, Hollenberg MD, Reddy SP, Mehta D. PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca 2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Rep 2020; 27:793-805.e4. [PMID: 30995477 DOI: 10.1016/j.celrep.2019.03.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/18/2018] [Accepted: 03/13/2019] [Indexed: 12/19/2022] Open
Abstract
Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca2+ entry through the TRPV4 channel. Deletion of PAR2 and thus the accompanying cAMP generation augments Ca2+ entry via TRPV4, causing sustained activation of the transcription factor NFAT to produce long-lasting TLR4-mediated inflammatory lung injury. Rescuing thrombin-sensitive PAR2 expression or blocking TRPV4 activity in PAR2-null AMs restores their capacity to resolve inflammation and reverse lung injury. Thus, activation of the thrombin-induced PAR2-cAMP cascade in AMs suppresses TLR4 inflammatory signaling to reinstate tissue integrity.
Collapse
Affiliation(s)
- Sheikh Rayees
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Jagdish Chandra Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Mohammad Tauseef
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL 60628, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Sukriti Baweja
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Ian Rochford
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Bhagwati Joshi
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Morley D Hollenberg
- Department of Physiology and Pharmacology and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, College of Medicine, Chicago, IL, USA
| | - Dolly Mehta
- Department of Pharmacology and Centre for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Wu XN, Ma YY, Hao ZC, Wang H. [Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:324-329. [PMID: 32573143 DOI: 10.7518/hxkq.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that is present in all eukaryotic tissues and blood plasma. As an extracellular signaling molecule, LPA mediates many cellular functions by binding to six known G protein-coupled receptors and activating their downstream signaling pathways. These functions indicate that LPA may play important roles in many biological processes that include organismal development, wound healing, and carcinogenesis. Recently, many studies have found that LPA has various biological effects in different kinds of bone cells. These findings suggest that LPA is a potent regulator of bone development and remodeling and holds promising application potential in bone tissue engineering. Here, we review the recent progress on the biological regulatory function of LPA in bone tissue cells.
Collapse
Affiliation(s)
- Xiang-Nan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuan-Yuan Ma
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhi-Chao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Lin KH, Chiang JC, Ho YH, Yao CL, Lee H. Lysophosphatidic Acid and Hematopoiesis: From Microenvironmental Effects to Intracellular Signaling. Int J Mol Sci 2020; 21:ijms21062015. [PMID: 32188052 PMCID: PMC7139687 DOI: 10.3390/ijms21062015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Vertebrate hematopoiesis is a complex physiological process that is tightly regulated by intracellular signaling and extracellular microenvironment. In recent decades, breakthroughs in lineage-tracing technologies and lipidomics have revealed the existence of numerous lipid molecules in hematopoietic microenvironment. Lysophosphatidic acid (LPA), a bioactive phospholipid molecule, is one of the identified lipids that participates in hematopoiesis. LPA exhibits various physiological functions through activation of G-protein-coupled receptors. The functions of these LPARs have been widely studied in stem cells, while the roles of LPARs in hematopoietic stem cells have rarely been examined. Nonetheless, mounting evidence supports the importance of the LPA-LPAR axis in hematopoiesis. In this article, we have reviewed regulation of hematopoiesis in general and focused on the microenvironmental and intracellular effects of the LPA in hematopoiesis. Discoveries in these areas may be beneficial to our understanding of blood-related disorders, especially in the context of prevention and therapy for anemia.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
| | - Jui-Chung Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ya-Hsuan Ho
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (K.-H.L.); (J.-C.C.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Angiogenesis Research Center, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +8862-3366-2499; Fax: +8862-2363-6837
| |
Collapse
|
20
|
Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer 2020; 11:3519-3535. [PMID: 32284748 PMCID: PMC7150451 DOI: 10.7150/jca.41841] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/25/2020] [Indexed: 12/21/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-acyl-2-hemolytic-sn-glycerol-3-phosphate) extracted from membrane phospholipid is a kind of simple bioactive glycophospholipid, which has many biological functions such as stimulating cell multiplication, cytoskeleton recombination, cell survival, drug-fast, synthesis of DNA and ion transport. Current studies have shown that six G-coupled protein receptors (LPAR1-6) can be activated by LPA. They stimulate a variety of signal transduction pathways through heterotrimeric G-proteins (such as Gα12/13, Gαq/11, Gαi/o and GαS). LPA and its receptors play vital roles in cancers, nervous system diseases, cardiovascular diseases, liver diseases, metabolic diseases, etc. In this article, we discussed the structure of LPA receptors and elucidated their functions in various diseases, in order to better understand them and point out new therapeutic schemes for them.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Shao
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Mir SS, Bhat HF, Bhat ZF. Dynamic actin remodeling in response to lysophosphatidic acid. J Biomol Struct Dyn 2020; 38:5253-5265. [PMID: 31920158 DOI: 10.1080/07391102.2019.1696230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional regulator of actin cytoskeleton that exerts a dramatic impact on the actin cytoskeleton to build a platform for diverse cellular processes including growth cone guidance, neurite retraction and cell motility. It has been implicated in the formation and dissociation of complexes between actin and actin binding proteins, supporting its role in actin remodeling. Several studies point towards its ability to facilitate formation of special cellular structures including focal adhesions and actin stress fibres by phosphoregulation of several actin associated proteins and their multiple regulatory kinases and phosphatases. In addition, multiple levels of crosstalk among the signaling cascades activated by LPA, affect actin cytoskeleton-mediated cell migration and chemotaxis which in turn play a crucial role in cancer metastasis. In the current review, we have attempted to highlight the role of LPA as an actin modulator which functions by controlling activities of specific cellular proteins that underlie mechanisms employed in cytoskeletal and pathophysiological events within the cell. Further studies on the actin affecting/remodeling activity of LPA in different cell types will no doubt throw up many surprises essential to gain a full understanding of its contribution in physiological processes as well as in diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saima S Mir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu And Kashmir, India.,Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Hina F Bhat
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, Jammu And Kashmir, India
| | - Zuhaib F Bhat
- Department of Wine, Food & Molecular Biosciences, Lincoln University, Lincoln, New Zealand.,Division of Livestock Products and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), R.S. Pora, Jammu And Kashmir, India
| |
Collapse
|
22
|
Peyruchaud O, Saier L, Leblanc R. Autotaxin Implication in Cancer Metastasis and Autoimunne Disorders: Functional Implication of Binding Autotaxin to the Cell Surface. Cancers (Basel) 2019; 12:cancers12010105. [PMID: 31906151 PMCID: PMC7016970 DOI: 10.3390/cancers12010105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
Autotaxin (ATX) is an exoenzyme which, due to its unique lysophospholipase D activity, is responsible for the synthesis of lysophosphatidic acid (LPA). ATX activity is responsible for the concentration of LPA in the blood. ATX expression is increased in various types of cancers, including breast cancer, where it promotes metastasis. The expression of ATX is also remarkably increased under inflammatory conditions, particularly in the osteoarticular compartment, where it controls bone erosion. Biological actions of ATX are mediated by LPA. However, the phosphate head group of LPA is highly sensitive to degradation by the action of lipid phosphate phosphatases, resulting in LPA inactivation. This suggests that for efficient action, LPA requires protection, which is potentially achieved through docking to a carrier protein. Interestingly, recent reports suggest that ATX might act as a docking molecule for LPA and also support the concept that binding of ATX to the cell surface through its interaction with adhesive molecules (integrins, heparan sulfate proteoglycans) could facilitate a rapid route of delivering active LPA to its cell surface receptors. This new mechanism offers a new vision of how ATX/LPA works in cancer metastasis and inflammatory bone diseases, paving the way for new therapeutic developments.
Collapse
Affiliation(s)
- Olivier Peyruchaud
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
- Correspondence: ; Tel.: +3-34-78-77-86-72
| | - Lou Saier
- INSERM, Unit 1033, Université Claude Bernard Lyon 1, 69372 Lyon, France;
| | - Raphaël Leblanc
- Centre de Recherche en Cancérologie de Marseille, Institut Poli-Calmettes, INSERM, Unit 1068, University Aix/Marseille, 13009 Marseille, France;
| |
Collapse
|
23
|
Xie Y, Wang X, Wu X, Tian L, Zhou J, Li X, Wang B. Lysophosphatidic acid receptor 4 regulates osteogenic and adipogenic differentiation of progenitor cells via inactivation of RhoA/ROCK1/β-catenin signaling. Stem Cells 2019; 38:451-463. [PMID: 31778241 DOI: 10.1002/stem.3128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaochen Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaowen Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Lijie Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Jie Zhou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| | - Xiaoxia Li
- College of Basic Medical Sciences; Tianjin Medical University; Tianjin People's Republic of China
| | - Baoli Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases; Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University; Tianjin People's Republic of China
| |
Collapse
|
24
|
Deregulated Lysophosphatidic Acid Metabolism and Signaling in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111626. [PMID: 31652837 PMCID: PMC6893780 DOI: 10.3390/cancers11111626] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the leading causes of death worldwide due to late diagnosis and scarcity of treatment options. The major risk factor for liver cancer is cirrhosis with the underlying causes of cirrhosis being viral infection (hepatitis B or C), metabolic deregulation (Non-alcoholic fatty liver disease (NAFLD) in the presence of obesity and diabetes), alcohol or cholestatic disorders. Lysophosphatidic acid (LPA) is a bioactive phospholipid with numerous effects, most of them compatible with the hallmarks of cancer (proliferation, migration, invasion, survival, evasion of apoptosis, deregulated metabolism, neoangiogenesis, etc.). Autotaxin (ATX) is the enzyme responsible for the bulk of extracellular LPA production, and together with LPA signaling is involved in chronic inflammatory diseases, fibrosis and cancer. This review discusses the most important findings and the mechanisms related to ATX/LPA/LPAR involvement on metabolic, viral and cholestatic liver disorders and their progression to liver cancer in the context of human patients and mouse models. It focuses on the role of ATX/LPA in NAFLD development and its progression to liver cancer as NAFLD has an increasing incidence which is associated with the increasing incidence of liver cancer. Bearing in mind that adipose tissue accounts for the largest amount of LPA production, many studies have implicated LPA in adipose tissue metabolism and inflammation, liver steatosis, insulin resistance, glucose intolerance and lipogenesis. At the same time, LPA and ATX play crucial roles in fibrotic diseases. Given that hepatocellular carcinoma (HCC) is usually developed on the background of liver fibrosis, therapies that both delay the progression of fibrosis and prevent its development to malignancy would be very promising. Therefore, ATX/LPA signaling appears as an attractive therapeutic target as evidenced by the fact that it is involved in both liver fibrosis progression and liver cancer development.
Collapse
|
25
|
Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases. Mol Neurobiol 2019; 57:372-392. [PMID: 31364025 DOI: 10.1007/s12035-019-01719-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/23/2022]
Abstract
Autotaxin (ATX) is a soluble extracellular enzyme that is abundant in mammalian plasma and cerebrospinal fluid (CSF). It has two known enzymatic activities, acting as both a phosphodiesterase and a phospholipase. The majority of its biological effects have been associated with its ability to liberate lysophosphatidic acid (LPA) from its substrate, lysophosphatidylcholine (LPC). LPA has diverse pleiotropic effects in the central nervous system (CNS) and other tissues via the activation of a family of six cognate G protein-coupled receptors. These LPA receptors (LPARs) are expressed in some combination in all known cell types in the CNS where they mediate such fundamental cellular processes as proliferation, differentiation, migration, chronic inflammation, and cytoskeletal organization. As a result, dysregulation of LPA content may contribute to many CNS and PNS disorders such as chronic inflammatory or neuropathic pain, glioblastoma multiforme (GBM), hemorrhagic hydrocephalus, schizophrenia, multiple sclerosis, Alzheimer's disease, metabolic syndrome-induced brain damage, traumatic brain injury, hepatic encephalopathy-induced cerebral edema, macular edema, major depressive disorder, stress-induced psychiatric disorder, alcohol-induced brain damage, HIV-induced brain injury, pruritus, and peripheral nerve injury. ATX activity is now known to be the primary biological source of this bioactive signaling lipid, and as such, represents a potentially high-value drug target. There is currently one ATX inhibitor entering phase III clinical trials, with several additional preclinical compounds under investigation. This review discusses the physiological and pathological significance of the ATX-LPA-LPA receptor signaling axis and summarizes the evidence for targeting this pathway for the treatment of CNS diseases.
Collapse
|
26
|
Lee JH, Kim D, Oh YS, Jun HS. Lysophosphatidic Acid Signaling in Diabetic Nephropathy. Int J Mol Sci 2019; 20:ijms20112850. [PMID: 31212704 PMCID: PMC6600156 DOI: 10.3390/ijms20112850] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid present in most tissues and body fluids. LPA acts through specific LPA receptors (LPAR1 to LPAR6) coupled with G protein. LPA binds to receptors and activates multiple cellular signaling pathways, subsequently exerting various biological functions, such as cell proliferation, migration, and apoptosis. LPA also induces cell damage through complex overlapping pathways, including the generation of reactive oxygen species, inflammatory cytokines, and fibrosis. Several reports indicate that the LPA–LPAR axis plays an important role in various diseases, including kidney disease, lung fibrosis, and cancer. Diabetic nephropathy (DN) is one of the most common diabetic complications and the main risk factor for chronic kidney diseases, which mostly progress to end-stage renal disease. There is also growing evidence indicating that the LPA–LPAR axis also plays an important role in inducing pathological alterations of cell structure and function in the kidneys. In this review, we will discuss key mediators or signaling pathways activated by LPA and summarize recent research findings associated with DN.
Collapse
Affiliation(s)
- Jong Han Lee
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam 13135, Korea.
| | - Hee-Sook Jun
- College of Pharmacy, Gachon University, Incheon 21936, Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea.
- Gachon University Gil Medical Center, Gachon Medical and Convergence Institute, Incheon 21565, Korea.
| |
Collapse
|
27
|
Franier BDL, Thompson M. Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for biosensor technology. Biosens Bioelectron 2019; 135:71-81. [DOI: 10.1016/j.bios.2019.03.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/04/2019] [Accepted: 03/19/2019] [Indexed: 01/15/2023]
|
28
|
Suckau O, Gross I, Schrötter S, Yang F, Luo J, Wree A, Chun J, Baska D, Baumgart J, Kano K, Aoki J, Bräuer AU. LPA 1 , LPA 2 , LPA 4 , and LPA 6 receptor expression during mouse brain development. Dev Dyn 2019; 248:375-395. [PMID: 30847983 PMCID: PMC6593976 DOI: 10.1002/dvdy.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022] Open
Abstract
Background LPA is a small bioactive phospholipid that acts as an extracellular signaling molecule and is involved in cellular processes, including cell proliferation, migration, and differentiation. LPA acts by binding and activating at least six known G protein–coupled receptors: LPA1–6. In recent years, LPA has been suggested to play an important role both in normal neuronal development and under pathological conditions in the nervous system. Results We show the expression pattern of LPA receptors during mouse brain development by using qRT‐PCR, in situ hybridization, and immunocytochemistry. Only LPA1, LPA2,LPA4, and LPA6 mRNA transcripts were detected throughout development stages from embryonic day 16 until postnatal day 30 of hippocampus, neocortex, cerebellum, and bulbus olfactorius in our experiments, while expression of LPA3 and LPA5 genes was below detection level. In addition to our qRT‐PCR results, we also analyzed the cellular protein expression of endogenous LPA receptors, with focus on LPA1 and LPA2 within postnatal brain slices and primary neuron differentiation with and without cytoskeleton stabilization and destabilization. Conclusions The expression of LPA receptors changes depends on the developmental stage in mouse brain and in cultured hippocampal primary neurons. Interestingly, we found that commercially available antibodies for LPA receptors are largely unspecific. LPA1, ‐2, ‐4, and ‐6 genes are dynamically expressed during postnatal brain development. LPA1, ‐2, ‐4, and ‐6 genes are differently expressed in the hippocampus, neocortex, cerebellum, and bulbus olfactorius. LPA1 and ‐2 gene expression alters during neuronal differentiation. LPA1, ‐2, ‐3, ‐4, and ‐6 genes are expressed in glia cells, but differed in gene expression levels.
Collapse
Affiliation(s)
- Olga Suckau
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Isabel Gross
- Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Sandra Schrötter
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fan Yang
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Jiankai Luo
- Albrecht Kossel Institute for Neuroregeneration, Rostock University Medical Center, Rostock, Germany
| | - Andreas Wree
- Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California
| | - David Baska
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Science, University of Tokyo, Tokyo, Japan
| | - Anja U Bräuer
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Anatomy, Universitätsmedizin Rostock, Rostock, Germany.,Research Group Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
29
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
30
|
2-carba cyclic phosphatidic acid suppresses inflammation via regulation of microglial polarisation in the stab-wounded mouse cerebral cortex. Sci Rep 2018; 8:9715. [PMID: 29946114 PMCID: PMC6018705 DOI: 10.1038/s41598-018-27990-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury (TBI) is caused by physical damage to the brain and it induces blood-brain barrier (BBB) breakdown and inflammation. To diminish the sequelae of TBI, it is important to decrease haemorrhage and alleviate inflammation. In this study, we aimed to determine the effects of 2-carba-cyclic phosphatidic acid (2ccPA) on the repair mechanisms after a stab wound injury as a murine TBI model. The administration of 2ccPA suppressed serum immunoglobulin extravasation after the injury. To elucidate the effects of 2ccPA on inflammation resulting from TBI, we analysed the mRNA expression of inflammatory cytokines. We found that 2ccPA prevents a TBI-induced increase in the mRNA expression of Il-1β, Il-6, Tnf-α and Tgf-β1. In addition, 2ccPA reduces the elevation of Iba1 levels. These data suggest that 2ccPA attenuates the inflammation after a stab wound injury via the modulation of pro-inflammatory cytokines release from microglial cells. Therefore, we focused on the function of 2ccPA in microglial polarisation towards M1 or M2 phenotypes. The administration of 2ccPA decreased the number of M1 and increased the number of M2 type microglial cells, indicating that 2ccPA modulates the microglial polarisation and shifts them towards M2 phenotype. These data suggest that 2ccPA treatment suppresses the extent of BBB breakdown and inflammation after TBI.
Collapse
|
31
|
Jiang C, Tong Z, Fang WL, Fu QB, Gu YJ, Lv TT, Liu DM, Xue W, Lv JW. Microrna-139-5p inhibits epithelial-mesenchymal transition and fibrosis in post-menopausal women with interstitial cystitis by targeting LPAR4 via the PI3K/Akt signaling pathway. J Cell Biochem 2018; 119:6429-6441. [PMID: 29240250 DOI: 10.1002/jcb.26610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023]
Abstract
The study explores whether miR-139-5p targeting LPAR4 affects epithelial-mesenchymal transition (EMT) and fibrosis in post-menopausal women with interstitial cystitis (IC) via the PI3K/Akt signaling pathway. Bladder tissues of IC and normal bladder tissues were collected. The pathology of bladder tissues was observed by HE, Masson and Picrosirius red staining. LPAR4 positive expression rate were determined by IHC. ELISA was performed to detect the levels of IL-6, IL-8, IL-10, and TNF-α. Rat IC models were randomized into seven different groups. miR-139-5p, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, P13K, Akt, E-cadherin, N-cadherin, Vimentin, TGF-β1, and CTGF expression were determined by RT-qPCR and Western blotting. Dual luciferase reporter gene assay verified that LPAR4 is a target gene of miR-139-5p. Fibrosis was a pathological manifestation of IC. The IC group showed higher LPAR4, PI3K, Akt, p-PI3K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression but lower miR-139-5p and E-cadherin expression than the normal group. The levels of IL-6, IL-8, IL-10, and TNF-α expression decreased while HB-EGF increased in the IC group in comparison of the normal group. Compared with the blank and NC groups, E-cadherin expression was increased in the miR-139-5p mimic and siRNA-LPAR4 groups, while LPAR4, PI3K, Akt, p-P13K, p-Akt, N-cadherin, Vimentin, TGF-β1, and CTGF expression were decreased. An opposite trend was found in the miR-139-5p inhibitor group. The miR-139-5p decreased in the miR-139-5p inhibitor + siRNA-LPAR4 and miR-139-5p inhibitor + wortmannin groups. Conclusively, miR-139-5p targeting LPAR4 inhibits EMT and fibrosis in post-menopausal IC women through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Zhen Tong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei-Lin Fang
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Qi-Bo Fu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Yin-Jun Gu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Ting-Ting Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dong-Ming Liu
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jian-Wei Lv
- Department of Urology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| |
Collapse
|
32
|
Dang Y, Waxman S, Wang C, Loewen RT, Sun M, Loewen NA. A porcine ex vivo model of pigmentary glaucoma. Sci Rep 2018; 8:5468. [PMID: 29615741 PMCID: PMC5882895 DOI: 10.1038/s41598-018-23861-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 03/16/2018] [Indexed: 11/11/2022] Open
Abstract
Pigment dispersion can lead to pigmentary glaucoma, a poorly understood condition of younger myopic eyes with fluctuating high intraocular pressure. It has been difficult to investigate its pathogenesis without a model similar to human eyes in size and behavior. Here we present a porcine ex vivo model that recreates several features of pigmentary glaucoma, including intraocular hypertension, accumulation of pigment in the trabecular meshwork, and declining phagocytosis. We found that trabecular meshwork cells regulate outflow, form actin stress fibers, and have a decreased phagocytic activity. Gene expression microarrays and a pathway analysis of TM monolayers as well as ex vivo anterior segment perfusion cultures indicated that RhoA plays a central role in regulating the cytoskeleton, motility, and phagocytosis in the trabecular meshwork, providing new insights and targets to investigate in pigmentary glaucoma.
Collapse
Affiliation(s)
- Yalong Dang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Susannah Waxman
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Chao Wang
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Ralitsa T Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Ming Sun
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America
| | - Nils A Loewen
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, United States of America.
| |
Collapse
|
33
|
Park S, Lee S, Nam S, Im D. GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br J Pharmacol 2018; 175:154-161. [PMID: 29068046 PMCID: PMC5740256 DOI: 10.1111/bph.14082] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE GPR35 has long been considered an orphan GPCR, because no endogenous ligand of GPR35 has been discovered. CXCL17 (a chemokine) has been reported to be an endogenous ligand of GPR35, and it has even been suggested that it be called CXCR8. However, at present there is no supporting evidence that CXCL17 does interact with GPR35. EXPERIMENTAL APPROACH We applied two assay systems to explore the relationship between CXCL17 and GPR35. An AP-TGF-α shedding assay in GPR35 over-expressing HEK293 cells was used as a gain-of-function assay. GPR35 knock-down by siRNA transfection was performed in endogenously GPR35-expressing THP-1 cells. KEY RESULTS In the AP-TGF-α shedding assay, lodoxamide, a well-known synthetic GPR35 agonist, was confirmed to be the most potent agonist among other reported agonists. However, neither human nor mouse CXCL17 had an effect on GPR35. Consistent with previous findings, G proteins Gαi/o and Gα12/13 were found to couple with GPR35. Furthermore, lodoxamide-induced activation of GPR35 was concentration-dependently inhibited by CID2745687 (a selective GPR35 antagonist). In endogenously GPR35-expressing THP-1 cells, lodoxamide concentration-dependently inhibited migration and this inhibitory effect was blocked by CID2745687 treatment or GPR35 siRNA transfection. However, even though CXCL17 stimulated the migration of THP-1 cells, which is consistent with a previous report, this stimulatory effect of CXCL17 was not blocked by CID2745687 or GPR35 siRNA. CONCLUSIONS AND IMPLICATIONS The present findings suggest that GPR35 functions as a migration inhibitory receptor, but CXCL17-stimulated migration of THP-1 cells is not dependent on GPR35.
Collapse
Affiliation(s)
- Soo‐Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - Seung‐Jin Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - So‐Yeon Nam
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| | - Dong‐Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of PharmacyPusan National UniversityBusanKorea
| |
Collapse
|
34
|
Autotaxin-Lysophosphatidic Acid: From Inflammation to Cancer Development. Mediators Inflamm 2017; 2017:9173090. [PMID: 29430083 PMCID: PMC5753009 DOI: 10.1155/2017/9173090] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a ubiquitous lysophospholipid and one of the main membrane-derived lipid signaling molecules. LPA acts as an autocrine/paracrine messenger through at least six G protein-coupled receptors (GPCRs), known as LPA1–6, to induce various cellular processes including wound healing, differentiation, proliferation, migration, and survival. LPA receptors and autotaxin (ATX), a secreted phosphodiesterase that produces this phospholipid, are overexpressed in many cancers and impact several features of the disease, including cancer-related inflammation, development, and progression. Many ongoing studies aim to understand ATX-LPA axis signaling in cancer and its potential as a therapeutic target. In this review, we discuss the evidence linking LPA signaling to cancer-related inflammation and its impact on cancer progression.
Collapse
|
35
|
Quan M, Cui JJ, Feng X, Huang Q. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol 2017; 39:1010428317694544. [PMID: 28347252 DOI: 10.1177/1010428317694544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1-6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ming Quan
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiu-Jie Cui
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
36
|
G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int J Mol Sci 2016; 17:215. [PMID: 26861299 PMCID: PMC4783947 DOI: 10.3390/ijms17020215] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted.
Collapse
|
37
|
Evadé L, Dausse E, Taouji S, Daguerre E, Chevet E, Toulmé JJ. Aptamer-mediated nanoparticle interactions: from oligonucleotide-protein complexes to SELEX screens. Methods Mol Biol 2016; 1297:153-67. [PMID: 25896002 DOI: 10.1007/978-1-4939-2562-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aptamers are oligonucleotides displaying specific binding properties for a predetermined target. They can be easily immobilized on various surfaces such as nanoparticles. Functionalized particles can then be used to various aims. We took advantage of the AlphaScreen(®) technology for monitoring aptamer-mediated interactions. A particle bearing an aptamer contains a photosensitizer whereas another type of particle contains a chemiluminescer. Irradiation causes the formation of singlet oxygen species in the photosensitizer-containing bead that in turn activates the chemiluminescer. Luminescence emission can be observed if the two types of beads are in close proximity (<200 nm). This is achieved when the cognate ligand of the aptamer is grafted onto the chemiluminescer-containing bead. Using this technology we have screened oligonucleotide libraries and monitored aptamer-protein interactions. This constitutes the basis for aptamer-based analytical assays.
Collapse
Affiliation(s)
- Laetitia Evadé
- Novaptech, European Institute of Chemistry and Biology, Pessac, France
| | | | | | | | | | | |
Collapse
|
38
|
YU ZILI, LI DIANQI, HUANG XIANGYU, XING XIN, YU RUQING, LI ZHI, LI ZUBING. Lysophosphatidic acid upregulates connective tissue growth factor expression in osteoblasts through the GPCR/PKC and PKA pathways. Int J Mol Med 2016; 37:468-74. [DOI: 10.3892/ijmm.2016.2450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/29/2015] [Indexed: 11/05/2022] Open
|
39
|
Hata E, Sasaki N, Takeda A, Tohya K, Umemoto E, Akahoshi N, Ishii S, Bando K, Abe T, Kano K, Aoki J, Hayasaka H, Miyasaka M. Lysophosphatidic acid receptors LPA4 and LPA6 differentially promote lymphocyte transmigration across high endothelial venules in lymph nodes. Int Immunol 2015; 28:283-92. [PMID: 26714589 PMCID: PMC4885216 DOI: 10.1093/intimm/dxv072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
HEV LPA receptors differentially regulate lymphocyte recirculation Naive lymphocytes continuously migrate from the blood into lymph nodes (LNs) via high endothelial venules (HEVs). To extravasate from the HEVs, lymphocytes undergo multiple adhesion steps, including tethering, rolling, firm adhesion and transmigration. We previously showed that autotaxin (ATX), an enzyme that generates lysophosphatidic acid (LPA), is highly expressed in HEVs, and that the ATX/LPA axis plays an important role in the lymphocyte transmigration across HEVs. However, the detailed mechanism underlying this axis’s involvement in lymphocyte transmigration has remained ill-defined. Here, we show that two LPA receptors, LPA4 and LPA6, are selectively expressed on HEV endothelial cells (ECs) and that LPA4 plays a major role in the lymphocyte transmigration across HEVs in mice. In the absence of LPA4 expression, lymphocytes accumulated heavily within the HEV EC layer, compared to wild-type (WT) mice. This accumulation was also observed in the absence of LPA6 expression, but it was less pronounced. Adoptive transfer experiments using WT lymphocytes revealed that the LPA4 deficiency in ECs specifically compromised the lymphocyte transmigration process, whereas the effect of LPA6 deficiency was not significant. These results indicate that the signals evoked in HEV ECs via the LPA4 and LPA6 differentially regulate lymphocyte extravasation from HEVs in the peripheral LNs.
Collapse
Affiliation(s)
- Erina Hata
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | - Kazuo Tohya
- Department of Anatomy, Kansai University of Health Sciences, Kumatori, Osaka 590-0482, Japan
| | - Eiji Umemoto
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Noriyuki Akahoshi
- Department of Immunology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Satoshi Ishii
- Department of Immunology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Kana Bando
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Kuniyuki Kano
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruko Hayasaka
- Laboratory of Immunodynamics, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan Department of Life Science, Faculty of Science & Engineering, Kinki University, Higashi-Osaka-shi, Osaka 577-8502, Japan
| | - Masayuki Miyasaka
- Interdisciplinary Program for Biomedical Sciences, Institute for Academic Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
40
|
The effect of cyclic phosphatidic acid on the proliferation and differentiation of mouse cerebellar granule precursor cells during cerebellar development. Brain Res 2015; 1614:28-37. [DOI: 10.1016/j.brainres.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/09/2015] [Indexed: 11/18/2022]
|
41
|
Fukushima N, Ishii S, Tsujiuchi T, Kagawa N, Katoh K. Comparative analyses of lysophosphatidic acid receptor-mediated signaling. Cell Mol Life Sci 2015; 72:2377-94. [PMID: 25732591 PMCID: PMC11113652 DOI: 10.1007/s00018-015-1872-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish.
Collapse
Affiliation(s)
- Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, 577-8502 Japan
| | - Shoichi Ishii
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, 577-8502 Japan
| | - Toshifumi Tsujiuchi
- Division of Cancer Biology and Bioinformatics, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Nao Kagawa
- Division of Animal Genetics, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Kazutaka Katoh
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871 Japan
- Computational Biology Research Center, The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
42
|
Lee JM, Park SJ, Im DS. Lysophosphatidylethanolamine increases intracellular Ca(2+) through LPA(1) in PC-12 neuronal cells. Biochem Biophys Res Commun 2015; 461:378-82. [PMID: 25888792 DOI: 10.1016/j.bbrc.2015.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
Abstract
G protein-coupled receptors (GPCRs) have been implicated in lysophosphatidylethanolamine (LPE)-induced increases in intracellular Ca(2+) ([Ca(2+)]i), but in different cell types, this response may be dependent or independent of lysophosphatidic acid (LPA) GPCR. The effects of LPEs from Grifola frondosa on the neuronal differentiation and apoptosis of PC-12 neuronal cells have been previously reported. In the present study, the authors sought to identify the mechanism responsible for the effects of LPEs in PC-12 neuronal cells. LPE increase [Ca(2+)]i concentration-dependently in PC-12 neuronal cells, but this LPE-induced [Ca(2+)]i increase was less than that elicited by LPA. Studies using specific inhibitors showed that LPE-induced Ca(2+) response was mediated via pertussis toxin-sensitive Gi/o proteins, edelfosine-sensitive phospholipase C, and 2-APB-sensitive IP3 receptor and by Ca(2+) influx across the cell membrane, and that this did not involve the conversion of LPE to LPA. Furthermore, LPE- and LPA-induced responses were found to show homologous and heterologous desensitization in PC-12 cells. VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca(2+)]i increases. Furthermore, AM-095 (a specific inhibitor of LPA1) inhibited LPE-induced Ca(2+) response completely in PC-12 cells. These findings indicate LPE increases [Ca(2+)]i via a LPA1/Gi/o proteins/phospholipase C/IP3/Ca(2+) rise/Ca(2+) influx pathway in PC-12 neuronal cells.
Collapse
Affiliation(s)
- Jung-Min Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA), and College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA), and College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA), and College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
43
|
Park H, Kim S, Rhee J, Kim HJ, Han JS, Nah SY, Chung C. Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses. J Neurophysiol 2015; 113:1493-500. [DOI: 10.1152/jn.00667.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidic acid (LPA) is one of the well-characterized, ubiquitous phospholipid molecules. LPA exerts its effect by activating G protein-coupled receptors known as LPA receptors (LPARs). So far, LPAR signaling has been critically implicated during early development stages, including the regulation of synapse formation and the morphology of cortical and hippocampal neurons. In adult brains, LPARs seem to participate in cognitive as well as emotional learning and memory. Recent studies using LPAR1-deficient mice reported impaired performances in a number of behavioral tasks, including the hippocampus-dependent spatial memory and fear conditioning tests. Nevertheless, the effect of LPAR activation in the synaptic transmission of central synapses after the completion of embryonic development has not been investigated. In this study, we took advantage of a novel extracellular agonist for LPARs called gintonin to activate LPARs in adult brain systems. Gintonin, a recently identified active ingredient in ginseng, has been shown to activate LPARs and mobilize Ca2+ in an artificial cell system. We found that the activation of LPARs by application of gintonin acutely enhanced both excitatory and inhibitory transmission in central synapses, albeit through tentatively distinct mechanisms. Gintonin-mediated LPAR activation primarily resulted in synaptic enhancement and an increase in neuronal excitability in a phospholipase C-dependent manner. Our findings suggest that LPARs are able to directly potentiate synaptic transmission in central synapses when stimulated exogenously. Therefore, LPARs could serve as a useful target to modulate synaptic activity under pathological conditions, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea; and
| | - Sungmin Kim
- Department of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea; and
| | - Jeehae Rhee
- Department of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea; and
| | - Hyeon-Joong Kim
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Jung-Soo Han
- Department of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea; and
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Bioscience and Biotechnology, College of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea; and
| |
Collapse
|
44
|
González-Gil I, Zian D, Vázquez-Villa H, Ortega-Gutiérrez S, López-Rodríguez ML. The status of the lysophosphatidic acid receptor type 1 (LPA1R). MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00333k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The current status of the LPA1receptor and its ligands in the drug development pipeline is reviewed.
Collapse
Affiliation(s)
- Inés González-Gil
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Debora Zian
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| |
Collapse
|
45
|
Morimoto Y, Ishii S, Ishibashi JI, Katoh K, Tsujiuchi T, Kagawa N, Fukushima N. Functional lysophosphatidic acid receptors expressed in Oryzias latipes. Gene 2014; 551:189-200. [PMID: 25173740 DOI: 10.1016/j.gene.2014.08.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
Lysophosphatidic acid (LPA) signaling is known to play biological and pathophysiological roles in many types of animals. Medaka (Oryzias latipes) is an experimental fish that can be easily maintained, propagated, and analyzed, and whose genome has been completely sequenced. However, there is limited information available regarding medaka LPA receptors. Here, using information from the medaka genome database, we examine the genomic structures, expression, and functions of six LPA receptor genes, Lpar1-Lpar6. Our analyses reveal that the genomic structures of Lpar1 and Lpar4 are different from those deduced from the database. Functional analyses using a heterologous expression system demonstrate that all medaka LPA receptors except for LPA5b respond to LPA treatment with cytoskeletal changes. These findings provide useful information on the structure and function of medaka LPA receptor genes, and identify medaka as a useful experimental model for exploration of the biological significance of LPA signaling.
Collapse
Affiliation(s)
- Yuji Morimoto
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Shoichi Ishii
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Jun-Ichi Ishibashi
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Kazutaka Katoh
- Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Computational Biology Research Center, The National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Toshifumi Tsujiuchi
- Division of Cancer Biology and Bioinformatics, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Nao Kagawa
- Division of Animal Genetics, Department of Life Science, Kinki University, Higashiosaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, Japan.
| |
Collapse
|
46
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
47
|
Inhibitory role of polyunsaturated fatty acids on lysophosphatidic acid-induced cancer cell migration and adhesion. FEBS Lett 2014; 588:2971-7. [PMID: 24911199 DOI: 10.1016/j.febslet.2014.05.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have important pharmacological effects on mammalian cells. Here, we show that carboxyl group-containing PUFAs inhibit lysophosphatidic acid (LPA)-induced focal adhesion formation, thereby inhibiting migration and adhesion. Carboxyl group-containing PUFAs inhibit LPA-induced calcium mobilization, whereas ethyl ester-group containing PUFAs have no effect. In addition, carboxyl group-containing PUFAs functionally inhibit LPA-dependent RhoA activation. Given these results, we suggest that PUFAs may inhibit LPA-induced calcium/RhoA signaling pathways leading to focal adhesion formation. Carboxyl group-containing PUFAs may have a functional role in this regulatory mechanism.
Collapse
|
48
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 556] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
49
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
50
|
Yano R, Ma L, Nagai J, Ueda H. Interleukin-1β plays key roles in LPA-induced amplification of LPA production in neuropathic pain model. Cell Mol Neurobiol 2013; 33:1033-41. [PMID: 23949386 PMCID: PMC11498034 DOI: 10.1007/s10571-013-9970-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/31/2013] [Indexed: 11/28/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that exerts a wide range of biological actions. In recent decades, LPA has been demonstrated as an important initiator of neuropathic pain based on the mechanisms of LPA-induced feed-forward LPA amplification. In this study, we examined the possible involvement of interleukin (IL)-1β in such LPA production. Intrathecal (i.t.) LPA injection rapidly increased the expression of IL-1β mRNA in the spinal dorsal horn as early as 0.5 h after injection, and the level reached peak at 2 h. Through a developed quantitative mass spectrometry for detecting LPA species, the elevated levels of 18:1, 16:0, and 18:0 LPA in the spinal dorsal horn were observed at 3 h after 18:1 LPA injection and this elevation was completely blocked by the pretreatment of IL-1β-neutralizing antibody. Moreover, enzyme assay experiments showed that LPA (i.t.) significantly activated calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in the spinal dorsal horn at 1 and 2 h, respectively, and these biochemical changes were also significantly inhibited by IL-1β-neutralizing antibody. Similarly, IL-1β-neutralizing antibody reversed LPA-induced neuropathic pain-like behavior. These findings suggest that the early release of IL-1β is involved in LPA-induced amplification of LPA production, which underlies the initial mechanisms of LPA-induced neuropathic pain.
Collapse
Affiliation(s)
- Ryo Yano
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Lin Ma
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Jun Nagai
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| |
Collapse
|