1
|
Liu M, Qin X, Luo M, Shen Y, Wang J, Sun J, Czajkowsky DM, Shao Z. Hexameric-Based Hierarchy in the Sizes of a Cytolysin Pore-Forming Complex. Biomolecules 2025; 15:424. [PMID: 40149960 PMCID: PMC11940705 DOI: 10.3390/biom15030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming toxins (PFTs) that are potent virulence factors for many pathogenic bacteria. One of the most enigmatic properties of these PFTs is how structural changes are coordinated between different subunits within a single complex. Moreover, there are conflicting data in the literature, with gel electrophoresis results apparently showing that pores are only complete rings, whereas microscopy images clearly also show incomplete-ring pores. Here, we developed a novel multi-stack gel electrophoretic assay to finely separate PFO pore complexes and found that this assay indeed resolves both complete- and incomplete-ring pores. However, unexpectedly, we found that the stoichiometries of these complexes are predominantly integral multiples of six subunits. High-resolution atomic force microscopy images of PFO pore complexes also reveal a predominant hexameric-based stoichiometry. We also observed this hexameric-based stoichiometry at the prepore stage and identified a mutant that is kinetically trapped at a hexameric state. Thus, overall, these results reveal a previously unknown hexameric-based structural hierarchy in the PFO complexes. We suggest that the structural coordination within the hexamers is different than between the hexamers and is thus a critical feature of the structural coordination of the complex as a whole.
Collapse
Affiliation(s)
- Meijun Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Xintao Qin
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Menglin Luo
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | | | - Jielin Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Daniel M. Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (M.L.); (X.Q.); (M.L.); (Y.S.); (Z.S.)
| |
Collapse
|
2
|
Sanduja P, Schmieder SS, Baddal B, Tian S, Velarde JJ, Lencer WI, Dong M, Wessels MR. SLO co-opts host cell glycosphingolipids to access cholesterol-rich lipid rafts for enhanced pore formation and cytotoxicity. mBio 2025; 16:e0377724. [PMID: 39835825 PMCID: PMC11898750 DOI: 10.1128/mbio.03777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Streptolysin O (SLO) is a virulence determinant of group A Streptococcus (S. pyogenes), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells. Here, we find that unbiased CRISPR screens for host susceptibility factors for SLO cytotoxicity identified genes encoding enzymes involved in the earliest steps of glycosphingolipid (GSL) biosynthesis. Targeted knockouts of these genes conferred relative resistance to SLO cytotoxicity in two independent human cell lines. Inactivation of ugcg, which codes for UDP-glucose ceramide glucosyltransferase, the enzyme catalyzing the first glycosylation step in GSL biosynthesis, reduced the clustering of SLO on the cell surface. This result suggests that binding to GSLs serves to cluster SLO molecules at lipid rafts where both GSLs and cholesterol are abundant. SLO clustering and susceptibility to SLO cytotoxicity were restored by reconstituting the GSL content of ugcg knockout cells with ganglioside GM1, but susceptibility to SLO cytotoxicity was not restored by a GM1 variant that lacks an oligosaccharide head group required for SLO binding, nor by a variant with a "kinked" acyl chain that prevents efficient packing of the ganglioside ceramide moiety with cholesterol. Thus, SLO appears to co-opt cell surface glycosphingolipids to gain access to lipid rafts for increased efficiency of pore formation and cytotoxicity. IMPORTANCE Group A Streptococcus is a global public health concern as it causes streptococcal sore throat and less common but potentially life-threatening invasive infections. Invasive infections have been associated with bacterial strains that produce large amounts of a secreted toxin, streptolysin O (SLO), which belongs to a family of pore-forming toxins produced by a variety of bacterial species. This study reveals that SLO binds to a class of molecules known as glycosphingolipids on the surface of human cells and that this interaction promotes efficient binding of SLO to cholesterol in the cell membrane and enhances pore formation. Understanding how SLO damages human cells provides new insight into streptococcal infection and may inform new approaches to treatment and prevention.
Collapse
Affiliation(s)
- Pooja Sanduja
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie S. Schmieder
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Buket Baddal
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jorge J. Velarde
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Digestive Diseases Center, Boston, Massachusetts, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Tabata A, Matsumoto A, Fujimoto A, Ohkura K, Ikeda T, Oda H, Yokohata S, Kobayashi M, Tomoyasu T, Takao A, Ohkuni H, Nagamune H. Dual functions of discoidinolysin, a cholesterol-dependent cytolysin with N-terminal discoidin domain produced from Streptococcus mitis strain Nm-76. J Oral Microbiol 2022; 14:2105013. [PMID: 35937899 PMCID: PMC9351568 DOI: 10.1080/20002297.2022.2105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Some strains of Streptococcus mitis exhibit β-hemolysis due to the β-hemolytic activity of cholesterol-dependent cytolysin (CDC). Recently, a gene encoding an atypical lectinolysin-related CDC was found in S. mitis strain Nm-76. However, the product of this gene remains uncharacterized. We aimed to characterize this atypical CDC and its molecular functions and contribution to the pathogenicity of S. mitis strain Nm-76. Methods Phylogenetic analysis of the CDC gene was conducted based on the web-deposited information. The molecular characteristics of CDC were investigated using a gene-deletion mutant strain and recombinant proteins expressed in Escherichia coli. Results The gene encoding CDC found in Nm-76 and its homolog are distributed among many S. mitis strains. This CDC is phylogenetically different from other previously characterized CDCs, such as S. mitis-derived human platelet aggregation factor (Sm-hPAF)/lectinolysin and mitilysin. Because this CDC possesses an additional N-terminal domain, including a discoidin motif, it was termed discoidinolysin (DLY). In addition to the preferential lysis of human cells, DLY displayed N-terminal domain-dependent facilitation of human erythrocyte aggregation and intercellular associations between human cells. Conclusion DLY functions as a hemolysin/cytolysin and erythrocyte aggregation/intercellular association molecule. This dual-function DLY could be an additional virulence factor in S. mitis.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Airi Matsumoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Fujimoto
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Division of Clinical Pharmacy and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Takuya Ikeda
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Hiroki Oda
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Shuto Yokohata
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Miho Kobayashi
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Toshifumi Tomoyasu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Ayuko Takao
- Department of Oral Microbiology, School of Dental Medicine, Tsurumi University, Kanagawa, Japan
| | - Hisashi Ohkuni
- Research Institute, Health Science Research Institute East Japan Co., Ltd., Saitama, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
- Department of Bioengineering, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Johnstone BA, Joseph R, Christie MP, Morton CJ, McGuiness C, Walsh JC, Böcking T, Tweten RK, Parker MW. Cholesterol-dependent cytolysins: The outstanding questions. IUBMB Life 2022; 74:1169-1179. [PMID: 35836358 PMCID: PMC9712165 DOI: 10.1002/iub.2661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Riya Joseph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Michelle P Christie
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Conall McGuiness
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| |
Collapse
|
5
|
Shah NR, Voisin TB, Parsons ES, Boyd CM, Hoogenboom BW, Bubeck D. Structural basis for tuning activity and membrane specificity of bacterial cytolysins. Nat Commun 2020; 11:5818. [PMID: 33199689 PMCID: PMC7669874 DOI: 10.1038/s41467-020-19482-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are pore-forming proteins that serve as major virulence factors for pathogenic bacteria. They target eukaryotic cells using different mechanisms, but all require the presence of cholesterol to pierce lipid bilayers. How CDCs use cholesterol to selectively lyse cells is essential for understanding virulence strategies of several pathogenic bacteria, and for repurposing CDCs to kill new cellular targets. Here we address that question by trapping an early state of pore formation for the CDC intermedilysin, bound to the human immune receptor CD59 in a nanodisc model membrane. Our cryo electron microscopy map reveals structural transitions required for oligomerization, which include the lateral movement of a key amphipathic helix. We demonstrate that the charge of this helix is crucial for tuning lytic activity of CDCs. Furthermore, we discover modifications that overcome the requirement of cholesterol for membrane rupture, which may facilitate engineering the target-cell specificity of pore-forming proteins.
Collapse
Affiliation(s)
- Nita R Shah
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Tomas B Voisin
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Edward S Parsons
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Courtney M Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Issa E, Salloum T, Tokajian S. From Normal Flora to Brain Abscesses: A Review of Streptococcus intermedius. Front Microbiol 2020; 11:826. [PMID: 32457718 PMCID: PMC7221147 DOI: 10.3389/fmicb.2020.00826] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus intermedius is a β-hemolytic Gram-positive member of the Streptococcus anginosus group (SAG). Despite being a part of the normal microbiota, it is one of the most common pathogens associated with brain and liver abscesses and thoracic empyema, increasing as a result the morbidity and mortality rates in affected patients. Though there are numerous published case reports on S. intermedius infections, it is still understudied compared to other SAG members. Our knowledge of the genomic factors contributing to its dissemination to the brain and abscess development is also limited to few characterized genes. In this review, we summarize our current knowledge on S. intermedius identification methods, virulence factors, and insight provided by the whole-genome and correlate patients’ metadata, symptoms, and disease outcome with S. intermedius infections in 101 recent case reports obtained from PubMed. This combined information highlights the gaps in our understanding of S. intermedius pathogenesis, suggesting future research directions to unveil the factors contributing to abscess development.
Collapse
Affiliation(s)
- Elio Issa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
7
|
Shewell LK, Day CJ, Jen FEC, Haselhorst T, Atack JM, Reijneveld JF, Everest-Dass A, James DBA, Boguslawski KM, Brouwer S, Gillen CM, Luo Z, Kobe B, Nizet V, von Itzstein M, Walker MJ, Paton AW, Paton JC, Torres VJ, Jennings MP. All major cholesterol-dependent cytolysins use glycans as cellular receptors. SCIENCE ADVANCES 2020; 6:eaaz4926. [PMID: 32494740 PMCID: PMC7244308 DOI: 10.1126/sciadv.aaz4926] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/17/2020] [Indexed: 05/03/2023]
Abstract
Cholesterol-dependent cytolysins (CDCs) form pores in cholesterol-rich membranes, but cholesterol alone is insufficient to explain their cell and host tropism. Here, we show that all eight major CDCs have high-affinity lectin activity that identifies glycans as candidate cellular receptors. Streptolysin O, vaginolysin, and perfringolysin O bind multiple glycans, while pneumolysin, lectinolysin, and listeriolysin O recognize a single glycan class. Addition of exogenous carbohydrate receptors for each CDC inhibits toxin activity. We present a structure for suilysin domain 4 in complex with two distinct glycan receptors, P1 antigen and αGal/Galili. We report a wide range of binding affinities for cholesterol and for the cholesterol analog pregnenolone sulfate and show that CDCs bind glycans and cholesterol independently. Intermedilysin binds to the sialyl-TF O-glycan on its erythrocyte receptor, CD59. Removing sialyl-TF from CD59 reduces intermedilysin binding. Glycan-lectin interactions underpin the cellular tropism of CDCs and provide molecular targets to block their cytotoxic activity.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Christopher J. Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - John M. Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | | | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | - Stephan Brouwer
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
8
|
Pleckaityte M. Cholesterol-Dependent Cytolysins Produced by Vaginal Bacteria: Certainties and Controversies. Front Cell Infect Microbiol 2020; 9:452. [PMID: 31998661 PMCID: PMC6966277 DOI: 10.3389/fcimb.2019.00452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial vaginosis (BV) is a vaginal anaerobic dysbiosis that affects women of reproductive age worldwide. BV is microbiologically characterized by the depletion of vaginal lactobacilli and the overgrowth of anaerobic bacterial species. Accumulated evidence suggests that Gardnerella spp. have a pivotal role among BV-associated bacteria in the initiation and development of BV. However, Gardnerella spp. often colonize healthy women. Lactobacillus iners is considered as a prevalent constituent of healthy vaginal microbiota, and is abundant in BV. Gardnerella spp. and L. iners secrete the toxins vaginolysin (VLY) and inerolysin (INY), which have structural and activity features attributed to cholesterol-dependent cytolysins (CDCs). CDCs are produced by many pathogenic bacteria as virulence factors that participate in various stages of disease progression by forming lytic and non-lytic pores in cell membranes or via pore-independent pathways. VLY is expressed in the majority of Gardnerella spp. isolates; less is known about the prevalence of the gene that encodes INY. INY is a classical CDC; membrane cholesterol acts a receptor for INY. VLY uses human CD59 as its receptor, although cholesterol remains indispensable for VLY pore-forming activity. INY-induced damage of artificial membranes is directly dependent on cholesterol concentration in the bilayer, whereas VLY-induced damage occurs with high levels of membrane cholesterol (>40 mol%). VLY primarily forms membrane-embedded complete rings in the synthetic bilayer, whereas INY forms arciform structures with smaller pore sizes. VLY activity is high at elevated pH, which is characteristic of BV, whereas INY activity is high at more acidic pH, which is specific for a healthy vagina. Increased VLY levels in vaginal mucosa in vivo were associated with clinical indicators of BV. However, experimental evidence is lacking for the specific roles of VLY and INY in BV. The interplay between vaginal bacterial species affects the expression of the gene encoding VLY, thereby modulating the virulence of Gardnerella spp. This review discusses the current evidence for VLY and INY cytolysins, including their structures and activities, factors affecting their expression, and their potential impacts on the progression of anaerobic dysbiosis.
Collapse
Affiliation(s)
- Milda Pleckaityte
- Laboratory of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
9
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
10
|
Haapasalo K, Wollman AJM, de Haas CJC, van Kessel KPM, van Strijp JAG, Leake MC. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB J 2019; 33:3807-3824. [PMID: 30509126 PMCID: PMC6404581 DOI: 10.1096/fj.201801910r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor "recycling" that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Förster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.-Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Adam J. M. Wollman
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark C. Leake
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
11
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
12
|
Christie MP, Johnstone BA, Tweten RK, Parker MW, Morton CJ. Cholesterol-dependent cytolysins: from water-soluble state to membrane pore. Biophys Rev 2018; 10:1337-1348. [PMID: 30117093 DOI: 10.1007/s12551-018-0448-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) are a family of bacterial toxins that are important virulence factors for a number of pathogenic Gram-positive bacterial species. CDCs are secreted as soluble, stable monomeric proteins that bind specifically to cholesterol-rich cell membranes, where they assemble into well-defined ring-shaped complexes of around 40 monomers. The complex then undergoes a concerted structural change, driving a large pore through the membrane, potentially lysing the target cell. Understanding the details of this process as the protein transitions from a discrete monomer to a complex, membrane-spanning protein machine is an ongoing challenge. While many of the details have been revealed, there are still questions that remain unanswered. In this review, we present an overview of some of the key features of the structure and function of the CDCs, including the structure of the secreted monomers, the process of interaction with target membranes, and the transition from bound monomers to complete pores. Future directions in CDC research and the potential of CDCs as research tools will also be discussed.
Collapse
Affiliation(s)
- Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, Fitzroy, VIC, 3065, Australia.
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Boyd CM, Parsons ES, Smith RAG, Seddon JM, Ces O, Bubeck D. Disentangling the roles of cholesterol and CD59 in intermedilysin pore formation. Sci Rep 2016; 6:38446. [PMID: 27910935 PMCID: PMC5133593 DOI: 10.1038/srep38446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
The plasma membrane provides an essential barrier, shielding a cell from the pressures of its external environment. Pore-forming proteins, deployed by both hosts and pathogens alike, breach this barrier to lyse target cells. Intermedilysin is a cholesterol-dependent cytolysin that requires the human immune receptor CD59, in addition to cholesterol, to form giant β-barrel pores in host membranes. Here we integrate biochemical assays with electron microscopy and atomic force microscopy to distinguish the roles of these two receptors in mediating structural transitions of pore formation. CD59 is required for the specific coordination of intermedilysin (ILY) monomers and for triggering collapse of an oligomeric prepore. Movement of Domain 2 with respect to Domain 3 of ILY is essential for forming a late prepore intermediate that releases CD59, while the role of cholesterol may be limited to insertion of the transmembrane segments. Together these data define a structural timeline for ILY pore formation and suggest a mechanism that is relevant to understanding other pore-forming toxins that also require CD59.
Collapse
Affiliation(s)
- Courtney M. Boyd
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| | - Edward S. Parsons
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Richard A. G. Smith
- MRC Centre for Transplantation, King’s College London, 5th Floor Tower Wing, Guys’ Hospital, London SE1 9RT, UK
| | - John M. Seddon
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
14
|
Morgan BP, Walters D, Serna M, Bubeck D. Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 2016; 274:141-151. [PMID: 27782334 DOI: 10.1111/imr.12461] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes. Several recent publications have described structural insights that have changed perceptions of the nature of this membrane attack complex. This review will describe these recent advances in understanding of the structure of the membrane attack complex and its by-product the fluid-phase terminal complement complex and relate these new structural insights to functional consequences and cell responses to complement membrane attack.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - David Walters
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marina Serna
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
15
|
Lawrence SL, Gorman MA, Feil SC, Mulhern TD, Kuiper MJ, Ratner AJ, Tweten RK, Morton CJ, Parker MW. Structural Basis for Receptor Recognition by the Human CD59-Responsive Cholesterol-Dependent Cytolysins. Structure 2016; 24:1488-98. [PMID: 27499440 PMCID: PMC5320943 DOI: 10.1016/j.str.2016.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/23/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs) are a family of pore-forming toxins that punch holes in the outer membrane of eukaryotic cells. Cholesterol serves as the receptor, but a subclass of CDCs first binds to human CD59. Here we describe the crystal structures of vaginolysin and intermedilysin complexed to CD59. These studies, together with small-angle X-ray scattering, reveal that CD59 binds to each at different, though overlapping, sites, consistent with molecular dynamics simulations and binding studies. The CDC consensus undecapeptide motif, which for the CD59-responsive CDCs has a proline instead of a tryptophan in the motif, adopts a strikingly different conformation between the structures; our data suggest that the proline acts as a selectivity switch to ensure CD59-dependent CDCs bind their protein receptor first in preference to cholesterol. The structural data suggest a detailed model of how these water-soluble toxins assemble as prepores on the cell surface.
Collapse
Affiliation(s)
- Sara L Lawrence
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Susanne C Feil
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Terrence D Mulhern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Kuiper
- Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Adam J Ratner
- Departments of Pediatrics and Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Rodney K Tweten
- Department of Microbiology and Immunology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Craig J Morton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
16
|
Lukoyanova N, Hoogenboom BW, Saibil HR. The membrane attack complex, perforin and cholesterol-dependent cytolysin superfamily of pore-forming proteins. J Cell Sci 2016; 129:2125-33. [DOI: 10.1242/jcs.182741] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
The membrane attack complex and perforin proteins (MACPFs) and bacterial cholesterol-dependent cytolysins (CDCs) are two branches of a large and diverse superfamily of pore-forming proteins that function in immunity and pathogenesis. During pore formation, soluble monomers assemble into large transmembrane pores through conformational transitions that involve extrusion and refolding of two α-helical regions into transmembrane β-hairpins. These transitions entail a dramatic refolding of the protein structure, and the resulting assemblies create large holes in cellular membranes, but they do not use any external source of energy. Structures of the membrane-bound assemblies are required to mechanistically understand and modulate these processes. In this Commentary, we discuss recent advances in the understanding of assembly mechanisms and molecular details of the conformational changes that occur during MACPF and CDC pore formation.
Collapse
Affiliation(s)
- Natalya Lukoyanova
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Helen R. Saibil
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
17
|
Reboul CF, Whisstock JC, Dunstone MA. Giant MACPF/CDC pore forming toxins: A class of their own. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:475-86. [PMID: 26607011 DOI: 10.1016/j.bbamem.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Pore Forming Toxins (PFTs) represent a key mechanism for permitting the passage of proteins and small molecules across the lipid membrane. These proteins are typically produced as soluble monomers that self-assemble into ring-like oligomeric structures on the membrane surface. Following such assembly PFTs undergo a remarkable conformational change to insert into the lipid membrane. While many different protein families have independently evolved such ability, members of the Membrane Attack Complex PerForin/Cholesterol Dependent Cytolysin (MACPF/CDC) superfamily form distinctive giant β-barrel pores comprised of up to 50 monomers and up to 300Å in diameter. In this review we focus on recent advances in understanding the structure of these giant MACPF/CDC pores as well as the underlying molecular mechanisms leading to their formation. Commonalities and evolved variations of the pore forming mechanism across the superfamily are discussed. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Australia; Department of Microbiology, Monash University, Melbourne, Australia
| |
Collapse
|
18
|
Mozola CC, Caparon MG. Dual modes of membrane binding direct pore formation by Streptolysin O. Mol Microbiol 2015; 97:1036-50. [PMID: 26059530 DOI: 10.1111/mmi.13085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
Effector translocation is central to the virulence of many bacterial pathogens, including Streptococcus pyogenes, which utilizes the cholesterol-dependent cytolysin Streptolysin O (SLO) to translocate the NAD(+) glycohydrolase SPN into host cells during infection. SLO's translocation activity does not require host cell membrane cholesterol or pore formation by SLO, yet SLO does form pores during infection via a cholesterol-dependent mechanism. Although cholesterol was considered the primary receptor for SLO, SLO's membrane-binding domain also encodes a putative carbohydrate-binding site, implicating a potential glycan receptor in binding and pore formation. Analysis of carbohydrate-binding site SLO mutants and carbohydrate-defective cell lines revealed that glycan recognition is involved in SLO's pore formation pathway and is an essential step when SLO is secreted by non-adherent bacteria, as occurs during lysis of erythrocytes. However, SLO also recognizes host cell membranes via a second mechanism when secreted from adherent bacteria, which requires co-secretion of SPN but not glycan binding by SLO. This SPN-mediated membrane binding of SLO correlates with SPN translocation, and requires SPN's non-enzymatic domain, which is predicted to adopt the structure of a carbohydrate-binding module. SPN-dependent membrane binding also promotes pore formation by SLO, demonstrating that pore formation can occur by distinct pathways during infection.
Collapse
Affiliation(s)
- Cara C Mozola
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110-1093, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110-1093, USA
| |
Collapse
|
19
|
Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion. J Biol Chem 2015; 290:17733-17744. [PMID: 26032415 DOI: 10.1074/jbc.m115.656769] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
The majority of cholesterol-dependent cytolysins (CDCs) utilize cholesterol as a membrane receptor, whereas a small number are restricted to the GPI-anchored protein CD59 for initial membrane recognition. Two cholesterol-binding CDCs, perfringolysin O (PFO) and streptolysin O (SLO), were found to exhibit strikingly different binding properties to cholesterol-rich natural and synthetic membranes. The structural basis for this difference was mapped to one of the loops (L3) in the membrane binding interface that help anchor the toxin monomers to the membrane after receptor (cholesterol) binding by the membrane insertion of its amino acid side chains. A single point mutation in this loop conferred the binding properties of SLO to PFO and vice versa. Our studies strongly suggest that changing the side chain structure of this loop alters its equilibrium between membrane-inserted and uninserted states, thereby affecting the overall binding affinity and total bound toxin. Previous studies have shown that the lipid environment of cholesterol has a dramatic effect on binding and activity. Combining this data with the results of our current studies on L3 suggests that the structure of this loop has evolved in the different CDCs to preferentially direct binding to cholesterol in different lipid environments. Finally, the efficiency of β-barrel pore formation was inversely correlated with the increased binding and affinity of the PFO L3 mutant, suggesting that selection of a compatible lipid environment impacts the efficiency of membrane insertion of the β-barrel pore.
Collapse
Affiliation(s)
- Allison J Farrand
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Eileen M Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Takehiro K Sato
- Departments of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Kristin R Wade
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Arthur E Johnson
- Departments of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843; Departments of Chemistry and Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
20
|
Perfringolysin O: The Underrated Clostridium perfringens Toxin? Toxins (Basel) 2015; 7:1702-21. [PMID: 26008232 PMCID: PMC4448169 DOI: 10.3390/toxins7051702] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022] Open
Abstract
The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.
Collapse
|
21
|
The cytolytic activity of vaginolysin strictly depends on cholesterol and is potentiated by human CD59. Toxins (Basel) 2015; 7:110-28. [PMID: 25590277 PMCID: PMC4303817 DOI: 10.3390/toxins7010110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022] Open
Abstract
Gardnerella vaginalis produces cytolysin vaginolysin (VLY), which has been suggested to be a contributor to bacterial vaginosis pathogenesis. VLY along with intermedilysin (ILY) from Streptococcus intermedius have been attributed to a group of cholesterol-dependent cytolysins (CDCs) whose pore-forming activity depends on human CD59 (hCD59). Here, we show that different types of cells lacking hCD59 are susceptible to VLY-mediated lysis, albeit to different extents. We analyze the effects of both hCD59 and cholesterol on VLY cytolytic activity. We show that VLY binds to cholesterol-rich membranes of non-human cells, while VLY with an impaired cholesterol recognition site retains binding to the hCD59-containing cells. We further demonstrate that cholesterol binding by VLY is sufficient to trigger the formation of oligomeric complexes on cholesterol rich-liposomes lacking hCD59. Thus, VLY may induce cell lysis following two alternative pathways. One requires only cholesterol and does not depend on hCD59. The second pathway involves hCD59 contribution similarly to ILY. Apparently, under physiological conditions VLY acts in the most effective way by accepting the assistance of hCD59.
Collapse
|
22
|
Tweten RK, Hotze EM, Wade KR. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria. Annu Rev Microbiol 2015; 69:323-40. [PMID: 26488276 PMCID: PMC7875328 DOI: 10.1146/annurev-micro-091014-104233] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism by which the cholesterol-dependent cytolysins (CDCs) assemble their giant β-barrel pore in cholesterol-rich membranes has been the subject of intense study in the past two decades. A combination of structural, biophysical, and biochemical analyses has revealed deep insights into the series of complex and highly choreographed secondary and tertiary structural transitions that the CDCs undergo to assemble their β-barrel pore in eukaryotic membranes. Our knowledge of the molecular details of these dramatic structural changes in CDCs has transformed our understanding of how giant pore complexes are assembled and has been critical to our understanding of the mechanisms of other important classes of pore-forming toxins and proteins across the kingdoms of life. Finally, there are tantalizing hints that the CDC pore-forming mechanism is more sophisticated than previously imagined and that some CDCs are employed in pore-independent processes.
Collapse
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Eileen M Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Kristin R Wade
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| |
Collapse
|
23
|
Tabata A, Ohkura K, Ohkubo Y, Tomoyasu T, Ohkuni H, Whiley RA, Nagamune H. The diversity of receptor recognition in cholesterol-dependent cytolysins. Microbiol Immunol 2014; 58:155-71. [PMID: 24401114 DOI: 10.1111/1348-0421.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/25/2013] [Accepted: 01/05/2014] [Indexed: 11/30/2022]
Abstract
Cholesterol-dependent cytolysins (CDCs) are bacterial pore-forming toxins secreted mainly by pathogenic Gram-positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell-specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi-receptor recognition characteristics were identified within this toxin family. Streptococcus mitis-derived human platelet aggregation factor (Sm-hPAF) secreted by S. mitis strain Nm-65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species-dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm-hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore-formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm-hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm-hPAF and VLY with affinity to both cholesterol and huCD59.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Biological Science and Technology, Institute of Technology and Science, University of Tokushima Graduate School, 2-1 Minamijosanjima-cho, Tokushima, Tokushima, 770-8506
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The complement terminal pathway clears pathogens by generating cytotoxic membrane attack complex (MAC) pores on target cells. For more than 40 years, biochemical and cellular assays have been used to characterize the lytic nature of the MAC and to define its protein composition. Although models for pore formation have been inferred from structures of bacterial cytolysins, it was only recently that we were able to visualize how complement components come together during MAC assembly. This review highlights structural analyses of terminal pathway complexes to explore molecular mechanisms underlying MAC formation.
Collapse
Affiliation(s)
- Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
25
|
Abstract
The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.
Collapse
|
26
|
Budvytyte R, Pleckaityte M, Zvirbliene A, Vanderah DJ, Valincius G. Reconstitution of cholesterol-dependent vaginolysin into tethered phospholipid bilayers: implications for bioanalysis. PLoS One 2013; 8:e82536. [PMID: 24349307 PMCID: PMC3862629 DOI: 10.1371/journal.pone.0082536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Functional reconstitution of the cholesterol-dependent cytolysin vaginolysin (VLY) from Gardnerella vaginalis into artificial tethered bilayer membranes (tBLMs) has been accomplished. The reconstitution of VLY was followed in real-time by electrochemical impedance spectroscopy (EIS). Changes of the EIS parameters of the tBLMs upon exposure to VLY solutions were consistent with the formation of water-filled pores in the membranes. It was found that reconstitution of VLY is a strictly cholesterol-dependent, irreversible process. At a constant cholesterol concentration reconstitution of VLY occurred in a concentration-dependent manner, thus allowing the monitoring of VLY concentration and activity in vitro and opening possibilities for tBLM utilization in bioanalysis. EIS methodology allowed us to detect VLY down to 0.5 nM (28 ng/mL) concentration. Inactivation of VLY by certain amino acid substitutions led to noticeably lesser tBLM damage. Pre-incubation of VLY with the neutralizing monoclonal antibody 9B4 inactivated the VLY membrane damage in a concentration-dependent manner, while the non-neutralizing antibody 21A5 exhibited no effect. These findings demonstrate the biological relevance of the interaction between VLY and the tBLM. The membrane-damaging interaction between VLY and tBLM was observed in the absence of the human CD59 receptor, known to strongly facilitate the hemolytic activity of VLY. Taken together, our study demonstrates the applicability of tBLMs as a bioanalytical platform for the detection of the activity of VLY and possibly other cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
- Rima Budvytyte
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
- Bio Complexity Department, The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
| | - Milda Pleckaityte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - David J. Vanderah
- Biomolecular Structure and Function Group, National Institute of Standards and Technology at Institute of Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Gintaras Valincius
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
- * E-mail:
| |
Collapse
|
27
|
Vaginolysin drives epithelial ultrastructural responses to Gardnerella vaginalis. Infect Immun 2013; 81:4544-50. [PMID: 24082080 DOI: 10.1128/iai.00627-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gardnerella vaginalis, the bacterial species most frequently isolated from women with bacterial vaginosis (BV), produces a cholesterol-dependent cytolysin (CDC), vaginolysin (VLY). At sublytic concentrations, CDCs may initiate complex signaling cascades crucial to target cell survival. Using live-cell imaging, we observed the rapid formation of large membrane blebs in human vaginal and cervical epithelial cells (VK2 and HeLa cells) exposed to recombinant VLY toxin and to cell-free supernatants from growing liquid cultures of G. vaginalis. Binding of VLY to its human-specific receptor (hCD59) is required for bleb formation, as antibody inhibition of either toxin or hCD59 abrogates this response, and transfection of nonhuman cells (CHO-K1) with hCD59 renders them susceptible to toxin-induced membrane blebbing. Disruption of the pore formation process (by exposure to pore-deficient toxoids or pretreatment of cells with methyl-β-cyclodextrin) or osmotic protection of target cells inhibits VLY-induced membrane blebbing. These results indicate that the formation of functional pores drives the observed ultrastructural rearrangements. Rapid bleb formation may represent a conserved response of epithelial cells to sublytic quantities of pore-forming toxins, and VLY-induced epithelial cell membrane blebbing in the vaginal mucosa may play a role in the pathogenesis of BV.
Collapse
|
28
|
Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 2013; 3:1369-77. [PMID: 23665225 PMCID: PMC3675674 DOI: 10.1016/j.celrep.2013.04.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/03/2022] Open
Abstract
Pore-forming proteins containing the structurally conserved membrane attack complex/perforin fold play an important role in immunity and host-pathogen interactions. Intermedilysin (ILY) is an archetypal member of a cholesterol-dependent cytolysin subclass that hijacks the complement receptor CD59 to make cytotoxic pores in human cells. ILY directly competes for the membrane attack complex binding site on CD59, rendering cells susceptible to complement lysis. To understand how these bacterial pores form in lipid bilayers and the role CD59 plays in complement regulation, we determined the crystal structure of human CD59 bound to ILY. Here, we show the ILY-CD59 complex at 3.5 Å resolution and identify two interfaces mediating this host-pathogen interaction. An ILY-derived peptide based on the binding site inhibits pore formation in a CD59-containing liposome model system. These data provide insight into how CD59 coordinates ILY monomers, nucleating an early prepore state, and suggest a potential mechanism of inhibition for the complement terminal pathway. Crystal structure of the ILY-CD59 complex defines two interfaces Our two binding interfaces are supported by previous mutagenesis studies An ILY-derived peptide competes for binding in a liposome model system Our model provides a structural basis for CD59 nucleation of an ILY early prepore
Collapse
|
29
|
The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 2012; 8:e1002787. [PMID: 22792065 PMCID: PMC3390400 DOI: 10.1371/journal.ppat.1002787] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/19/2012] [Indexed: 12/03/2022] Open
Abstract
The cholesterol-dependent cytolysins (CDCs) constitute a family of pore-forming toxins that contribute to the pathogenesis of a large number of Gram-positive bacterial pathogens.The most highly conserved region in the primary structure of the CDCs is the signature undecapeptide sequence (ECTGLAWEWWR). The CDC pore forming mechanism is highly sensitive to changes in its structure, yet its contribution to the molecular mechanism of the CDCs has remained enigmatic. Using a combination of fluorescence spectroscopic methods we provide evidence that shows the undecapeptide motif of the archetype CDC, perfringolysin O (PFO), is a key structural element in the allosteric coupling of the cholesterol-mediated membrane binding in domain 4 (D4) to distal structural changes in domain 3 (D3) that are required for the formation of the oligomeric pore complex. Loss of the undecapeptide function prevents all measurable D3 structural transitions, the intermolecular interaction of membrane bound monomers and the assembly of the oligomeric pore complex. We further show that this pathway does not exist in intermedilysin (ILY), a CDC that exhibits a divergent undecapeptide and that has evolved to use human CD59 rather than cholesterol as its receptor. These studies show for the first time that the undecapeptide of the cholesterol-binding CDCs forms a critical element of the allosteric pathway that controls the assembly of the pore complex. The CDCs are a large family of pathogenesis-associated pore-forming toxins that are expressed by many Gram-positive pathogens. The conserved undecapeptide motif of the CDCs has been regarded as the signature peptide sequence for these toxins, yet its function has remained obscure. The studies herein show that the undecapeptide forms a critical structural element in the allosteric pathway that couples membrane binding to cholesterol to the initiation of distal structural changes, which are required for the assembly of the pore forming complex. These studies provide the first insight into the function of this highly conserved sequence and show that through evolution this pathway is missing in the CD59-binding CDCs.
Collapse
|
30
|
Dunstone MA, Tweten RK. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 2012; 22:342-9. [PMID: 22658510 DOI: 10.1016/j.sbi.2012.04.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
The bacterial cholesterol dependent cytolysins (CDCs) and membrane attack complex/perforin-like proteins (MACPF) represent two major branches of a large, exceptionally diverged superfamily. Most characterized CDC/MACPF proteins form large pores that function in immunity, venoms, and pathogenesis. Extensive structural, biochemical and biophysical studies have started to address some of the questions surrounding how the soluble, monomeric form of these remarkable molecules recognize diverse targets and assemble into oligomeric membrane embedded pores. This review explores mechanistic similarities and differences in how CDCs and MACPF proteins form pores.
Collapse
Affiliation(s)
- Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
31
|
Hotze EM, Tweten RK. Membrane assembly of the cholesterol-dependent cytolysin pore complex. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1028-38. [PMID: 21835159 PMCID: PMC3243806 DOI: 10.1016/j.bbamem.2011.07.036] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/24/2011] [Indexed: 12/16/2022]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced, secreted and contribute to the pathogenesis of many species of Gram-positive bacteria. The assembly of the CDC pore-forming complex has been under intense study for the past 20 years. These studies have revealed a molecular mechanism of pore formation that exhibits many novel features. The CDCs form large β-barrel pore complexes that are assembled from 35 to 40 soluble CDC monomers. Pore formation is dependent on the presence of membrane cholesterol, which functions as the receptor for most CDCs. Cholesterol binding initiates significant secondary and tertiary structural changes in the monomers, which lead to the assembly of a large membrane embedded β-barrel pore complex. This review will focus on the molecular mechanism of assembly of the CDC membrane pore complex and how these studies have led to insights into the mechanism of pore formation for other pore-forming proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Eileen M. Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
32
|
Wickham SE, Hotze EM, Farrand AJ, Polekhina G, Nero TL, Tomlinson S, Parker MW, Tweten RK. Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9. J Biol Chem 2011; 286:20952-62. [PMID: 21507937 DOI: 10.1074/jbc.m111.237446] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD59 is a glycosylphosphatidylinositol-anchored protein that inhibits the assembly of the terminal complement membrane attack complex (MAC) pore, whereas Streptococcus intermedius intermedilysin (ILY), a pore forming cholesterol-dependent cytolysin (CDC), specifically binds to human CD59 (hCD59) to initiate the formation of its pore. The identification of the residues of ILY and hCD59 that form their binding interface revealed a remarkably deep correspondence between the hCD59 binding site for ILY and that for the MAC proteins C8α and C9. ILY disengages from hCD59 during the prepore to pore transition, suggesting that loss of this interaction is necessary to accommodate specific structural changes associated with this transition. Consistent with this scenario, mutants of hCD59 or ILY that increased the affinity of this interaction decreased the cytolytic activity by slowing the transition of the prepore to pore but not the assembly of the prepore oligomer. A signature motif was also identified in the hCD59 binding CDCs that revealed a new hCD59-binding member of the CDC family. Although the binding site on hCD59 for ILY, C8α, and C9 exhibits significant homology, no similarity exists in their binding sites for hCD59. Hence, ILY and the MAC proteins interact with common amino acids of hCD59 but lack detectable conservation in their binding sites for hCD59.
Collapse
Affiliation(s)
- Stephanie E Wickham
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
You T, Hu W, Ge X, Shen J, Qin X. Application of a novel inhibitor of human CD59 for the enhancement of complement-dependent cytolysis on cancer cells. Cell Mol Immunol 2011; 8:157-63. [PMID: 21258360 DOI: 10.1038/cmi.2010.35] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many monoclonal antibodies (mAbs) have been extensively used in the clinic, such as rituximab to treat lymphoma. However, resistance and non-responsiveness to mAb treatment have been challenging for this line of therapy. Complement is one of the main mediators of antibody-based cancer therapy via the complement-dependent cytolysis (CDC) effect. CD59 plays a critical role in resistance to mAbs through the CDC effect. In this paper, we attempted to investigate whether the novel CD59 inhibitor, recombinant ILYd4, was effective in enhancing the rituximab-mediated CDC effect on rituximab-sensitive RL-7 lymphoma cells and rituximab-induced resistant RR51.2 cells. Meanwhile, the CDC effects, which were mediated by rituximab and anti-CD24 mAb, on the refractory multiple myeloma (MM) cell line ARH-77 and the solid tumor osteosarcoma cell line Saos-2, were respectively investigated. We found that rILYd4 rendered the refractory cells sensitive to the mAb-mediated CDC effect and that rILYd4 exhibited a synergistic effect with the mAb that resulted in tumor cells lysis. This effect on tumor cell lysis was apparent on both hematological tumors and solid tumors. Therefore, rILYd4 may serve as an adjuvant for mAb mediated-tumor immunotherapy.
Collapse
Affiliation(s)
- Tao You
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
34
|
Sweeney KR, Morrissette NS, LaChapelle S, Blader IJ. Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton. EUKARYOTIC CELL 2010; 9:1680-9. [PMID: 20435700 PMCID: PMC2976295 DOI: 10.1128/ec.00079-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/23/2010] [Indexed: 01/23/2023]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that invades and replicates within most nucleated cells of warm-blooded animals. The basis for this wide host cell tropism is unknown but could be because parasites invade host cells using distinct pathways and/or repertoires of host factors. Using synchronized parasite invasion assays, we found that host microtubule disruption significantly reduces parasite invasion into host cells early after stimulating parasite invasion but not at later time points. Host microtubules are specifically associated with the moving junction, which is the site of contact between the host cell and the invading parasite. Host microtubules are specifically associated with the moving junction of those parasites invading early after stimulating invasion but not with those invading later. Disruption of host microtubules has no effect on parasite contact, attachment, motility, or rate of penetration. Rather, host microtubules hasten the time before parasites commence invasion. This effect on parasite invasion is distinct from the role that host microtubules play in bacterial and viral infections, where they function to traffic the pathogen or pathogen-derived material from the host cell's periphery to its interior. These data indicate that the host microtubule cytoskeleton is a structure used by Toxoplasma to rapidly infect its host cell and highlight a novel function for host microtubules in microbial pathogenesis.
Collapse
Affiliation(s)
- Kristin R. Sweeney
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Naomi S. Morrissette
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Stephanie LaChapelle
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Ira J. Blader
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
35
|
Production and characterization of monoclonal antibodies against vaginolysin: Mapping of a region critical for its cytolytic activity. Toxicon 2010; 56:19-28. [DOI: 10.1016/j.toxicon.2010.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/05/2010] [Accepted: 03/08/2010] [Indexed: 11/21/2022]
|
36
|
Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci U S A 2010; 107:4341-6. [PMID: 20145114 PMCID: PMC2840085 DOI: 10.1073/pnas.0911581107] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recognition and binding of cholesterol is an important feature of many eukaryotic, viral, and prokaryotic proteins, but the molecular details of such interactions are understood only for a few proteins. The pore-forming cholesterol-dependent cytolysins (CDCs) contribute to the pathogenic mechanisms of a large number of Gram-positive bacteria. Cholesterol dependence of the CDC mechanism is a hallmark of these toxins, yet the identity of the CDC cholesterol recognition motif has remained elusive. A detailed analysis of membrane interactive structures at the tip of perfringolysin O (PFO) domain 4 reveals that a threonine-leucine pair mediates CDC recognition of and binding to membrane cholesterol. This motif is conserved in all known CDCs and conservative changes in its sequence or order are not well tolerated. Thus, the Thr-Leu pair constitutes a common structural basis for mediating CDC-cholesterol recognition and binding, and defines a unique paradigm for membrane cholesterol recognition by surface-binding proteins.
Collapse
Affiliation(s)
- Allison J. Farrand
- Department of Microbiology and Immunology, University of Oklahoma Sciences Center, Oklahoma City, OK 73104
| | - Stephanie LaChapelle
- Department of Microbiology and Immunology, University of Oklahoma Sciences Center, Oklahoma City, OK 73104
| | - Eileen M. Hotze
- Department of Microbiology and Immunology, University of Oklahoma Sciences Center, Oklahoma City, OK 73104
| | - Arthur E. Johnson
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX 77843-1114; and
- Departments of Chemistry and Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
37
|
Heuck AP, Moe PC, Johnson BB. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. Subcell Biochem 2010; 51:551-577. [PMID: 20213558 DOI: 10.1007/978-90-481-8622-8_20] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane.
Collapse
Affiliation(s)
- Alejandro P Heuck
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|