1
|
Murtada R, Szafranski CJ, Tevletidis M, Finn S, Gilles W, Tahsin T, Gao J. Sensitive Fluorescence Quantitation and Efficient Free Radical Characterization of N-Glycans via LC-FLR-HRMS/MS with a Novel Fluorescent Free Radical Tag. Anal Chem 2025; 97:7118-7127. [PMID: 40129309 PMCID: PMC11983377 DOI: 10.1021/acs.analchem.4c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Glycans are some of the most difficult biomolecules to analyze owing to their branching tendencies as well as their regiochemical and stereochemical diversity. Yet, the correlation between various pathological states and glycan quantity or structural alterations has demonstrated the importance and urgency for the development of a more robust glycan analytical technique. Furthermore, the manufacturing and regulation of biopharmaceuticals demands a feasible and improved analytical approach toward the characterization and quantitation of glycosylations. Unfortunately, multiple commercially available glycan tags lack, in combination, liquid chromatography detection sensitivity, chemical stability and, most importantly, optimal glycan characterization capabilities. Therefore, a novel fluorescent tag coupled with a free radical approach for glycan characterization was designed and developed to help address this gap in glycan analysis. The analytical capabilities of this novel tag were assessed via hydrophilic liquid chromatography-fluorescence quantitation and ESI/MS free radical-mediated characterization by using linear glycan standards, branched isobaric glycans lacto-N-difucohexaose I and lacto-N-difucohexaose II, and N-glycans released from ribonuclease B.
Collapse
Affiliation(s)
- Rayan Murtada
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - CJ Szafranski
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Maria Tevletidis
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Shane Finn
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Wilthon Gilles
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Tabia Tahsin
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jinshan Gao
- Department
of Chemistry and Biochemistry, Montclair
State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
- Sokol
Institute of Pharmaceutical Life Sciences, Montclair, New Jersey 07043, United States
| |
Collapse
|
2
|
Azimzadeh PN, Birchenough GM, Gualbuerto NC, Pinkner JS, Tamadonfar KO, Beatty W, Hannan TJ, Dodson KW, Ibarra EC, Kim S, Schreiber HL, Janetka JW, Kau AL, Earl AM, Miller MJ, Hansson GC, Hultgren SJ. Mechanisms of uropathogenic E. coli mucosal association in the gastrointestinal tract. SCIENCE ADVANCES 2025; 11:eadp7066. [PMID: 39888987 PMCID: PMC11784811 DOI: 10.1126/sciadv.adp7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Urinary tract infections (UTIs) are highly recurrent and frequently caused by Uropathogenic Escherichia coli (UPEC) strains that can be found in patient intestines. Seeding of the urinary tract from this intestinal reservoir likely contributes to UTI recurrence (rUTI) rates. Thus, understanding the factors that promote UPEC intestinal colonization is of critical importance to designing therapeutics to reduce rUTI incidence. Although E. coli is found in high abundance in large intestine mucus, little is known about how it is able to maintain residence in this continuously secreted hydrogel. We discovered that the FimH adhesin of type 1 pili (T1P) bound throughout the secreted mucus layers of the colon and to epithelial cells in mouse and human samples. Disruption of T1P led to reduced association with colon mucus. Notably, this mutant up-regulated flagellar production and infiltrated the protective inner mucus layer of the colon. This could explain how UPEC resists being washed off by the continuously secreted mucus layers of the colon.
Collapse
Affiliation(s)
- Philippe N. Azimzadeh
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - George M. Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nathaniel C. Gualbuerto
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Hannan
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Enid C. Ibarra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Henry L. Schreiber
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - James W. Janetka
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew L. Kau
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Shu T, Zhang Y, Sun T, Zhu Y. Polypeptide N-Acetylgalactosaminyl transferase 14 is a novel mediator in pancreatic β-cell function and growth. Mol Cell Endocrinol 2024; 591:112269. [PMID: 38763428 DOI: 10.1016/j.mce.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Polypeptide N-Acetylgalactosaminyl transferase 14 (GALNT14) plays important roles in cancer progression and chemotherapy response. Here, we show that GALNT14 is highly expressed in pancreatic β cells and regulates β cell function and growth. We found that the expression level of Ganlt14 was significantly decreased in the primary islets from three rodent type-2 diabetic models. Single-Cell sequencing defined that Galnt14 was mainly expressed in β cells of mouse islets. Galnt14 knockout (G14KO) INS-1 cell line, constructed by using CRISPR/Cas9 technology were growth normal, but showed blunt shape, and increased basal insulin secretion. Combined proteomics and glycoproteomics demonstrated that G14KO altered cell-to-cell junctions, communication, and adhesion. Insulin receptor (IR) and IGF1-1R were indirectly confirmed for GALNT14 substrates, contributed to diminished IGF1-induced p-AKT levels and cell growth in G14KO cells. Overall, this study uncovers that GALNT14 is a novel modulator in regulating β cells biology, providing a missing link of β cells O-glycosylation to diabetes development.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - Yan Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
4
|
Hirata E, Sakata KT, Dearden GI, Noor F, Menon I, Chiduza GN, Menon AK. Molecular characterization of Rft1, an ER membrane protein associated with congenital disorder of glycosylation RFT1-CDG. J Biol Chem 2024; 300:107584. [PMID: 39025454 PMCID: PMC11365447 DOI: 10.1016/j.jbc.2024.107584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multistep pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 congenital disorders of glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multispanning membrane protein located in the ER, with its N and C termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.
Collapse
Affiliation(s)
- Eri Hirata
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Ken-Taro Sakata
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Grace I Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Faria Noor
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - George N Chiduza
- Structure and Function of Biological Membranes - Chemistry Department, Université Libre de Bruxelles - Campus Plaine, Brussels, Belgium
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
5
|
Hirata E, Sakata KT, Dearden GI, Noor F, Menon I, Chiduza GN, Menon AK. Molecular characterization of Rft1, an ER membrane protein associated with congenital disorder of glycosylation RFT1-CDG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587922. [PMID: 38617304 PMCID: PMC11014557 DOI: 10.1101/2024.04.03.587922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The oligosaccharide needed for protein N-glycosylation is assembled on a lipid carrier via a multi-step pathway. Synthesis is initiated on the cytoplasmic face of the endoplasmic reticulum (ER) and completed on the luminal side after transbilayer translocation of a heptasaccharide lipid intermediate. More than 30 Congenital Disorders of Glycosylation (CDGs) are associated with this pathway, including RFT1-CDG which results from defects in the membrane protein Rft1. Rft1 is essential for the viability of yeast and mammalian cells and was proposed as the transporter needed to flip the heptasaccharide lipid intermediate across the ER membrane. However, other studies indicated that Rft1 is not required for heptasaccharide lipid flipping in microsomes or unilamellar vesicles reconstituted with ER membrane proteins, nor is it required for the viability of at least one eukaryote. It is therefore not known what essential role Rft1 plays in N-glycosylation. Here, we present a molecular characterization of human Rft1, using yeast cells as a reporter system. We show that it is a multi-spanning membrane protein located in the ER, with its N and C-termini facing the cytoplasm. It is not N-glycosylated. The majority of RFT1-CDG mutations map to highly conserved regions of the protein. We identify key residues that are important for Rft1's ability to support N-glycosylation and cell viability. Our results provide a necessary platform for future work on this enigmatic protein.
Collapse
Affiliation(s)
- Eri Hirata
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ken-taro Sakata
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Grace I. Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Faria Noor
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - George N. Chiduza
- Structure and Function of Biological Membranes - Chemistry Department, Université Libre de Bruxelles - Campus Plaine, 1050 Brussels, Belgium
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
6
|
Chaudhary BP, Struppe J, Moktan H, Zoetewey D, Zhou DH, Mohanty S. Reconstitution and resonance assignments of yeast OST subunit Ost4 and its critical mutant Ost4V23D in liposomes by solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2024; 78:109-117. [PMID: 38421550 DOI: 10.1007/s10858-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
N-linked glycosylation is an essential and highly conserved co- and post-translational protein modification in all domains of life. In humans, genetic defects in N-linked glycosylation pathways result in metabolic diseases collectively called Congenital Disorders of Glycosylation. In this modification reaction, a mannose rich oligosaccharide is transferred from a lipid-linked donor substrate to a specific asparagine side-chain within the -N-X-T/S- sequence (where X ≠ Proline) of the nascent protein. Oligosaccharyltransferase (OST), a multi-subunit membrane embedded enzyme catalyzes this glycosylation reaction in eukaryotes. In yeast, Ost4 is the smallest of nine subunits and bridges the interaction of the catalytic subunit, Stt3, with Ost3 (or its homolog, Ost6). Mutations of any C-terminal hydrophobic residues in Ost4 to a charged residue destabilizes the enzyme and negatively impacts its function. Specifically, the V23D mutation results in a temperature-sensitive phenotype in yeast. Here, we report the reconstitution of both purified recombinant Ost4 and Ost4V23D each in a POPC/POPE lipid bilayer and their resonance assignments using heteronuclear 2D and 3D solid-state NMR with magic-angle spinning. The chemical shifts of Ost4 changed significantly upon the V23D mutation, suggesting a dramatic change in its chemical environment.
Collapse
Affiliation(s)
- Bharat P Chaudhary
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | - Hem Moktan
- Department of Physics, Oklahoma State University, Stillwater, OK, 74078, USA
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Zoetewey
- Department of Chemistry, Physics and Astronomy, Georgia College and State University, Milledgeville, GA, 31061, USA
| | - Donghua H Zhou
- Department of Physics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Smita Mohanty
- Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
7
|
Yom A, Chiang A, Lewis NE. Boltzmann Model Predicts Glycan Structures from Lectin Binding. Anal Chem 2024; 96:8332-8341. [PMID: 38720429 PMCID: PMC11162346 DOI: 10.1021/acs.analchem.3c04992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Glycans are complex oligosaccharides that are involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese hamster ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.
Collapse
Affiliation(s)
- Aria Yom
- Department of Physics, University of California, San Diego, California 92093, United States
| | - Austin Chiang
- Department of Pediatrics, University of California, San Diego, California 92093, United States
- Immunology Center of Georgia, Augusta University, Augusta, Georgia 30912, United States
- Department of Medicine, Augusta University, Augusta, Georgia 30912, United States
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, California 92093, United States
- Department of Bioengineering, University of California, San Diego, California 92093, United States
| |
Collapse
|
8
|
Yom A, Chiang A, Lewis NE. A Boltzmann model predicts glycan structures from lectin binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.03.543532. [PMID: 37333412 PMCID: PMC10274649 DOI: 10.1101/2023.06.03.543532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Glycans are complex oligosaccharides involved in many diseases and biological processes. Unfortunately, current methods for determining glycan composition and structure (glycan sequencing) are laborious and require a high level of expertise. Here, we assess the feasibility of sequencing glycans based on their lectin binding fingerprints. By training a Boltzmann model on lectin binding data, we predict the approximate structures of 88 ± 7% of N-glycans and 87 ± 13% of O-glycans in our test set. We show that our model generalizes well to the pharmaceutically relevant case of Chinese Hamster Ovary (CHO) cell glycans. We also analyze the motif specificity of a wide array of lectins and identify the most and least predictive lectins and glycan features. These results could help streamline glycoprotein research and be of use to anyone using lectins for glycobiology.
Collapse
Affiliation(s)
- Aria Yom
- Department of Physics, University of California, San Diego. CA 92093, USA
| | - Austin Chiang
- Department of Pediatrics, University of California, San Diego. CA 92093, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego. CA 92093, USA
- Department of Pediatrics, University of California, San Diego. CA 92093, USA
| |
Collapse
|
9
|
Murtada R, Finn S, Gao J. Development of mass spectrometric glycan characterization tags using acid-base chemistry and/or free radical chemistry. MASS SPECTROMETRY REVIEWS 2024; 43:269-288. [PMID: 36161326 DOI: 10.1002/mas.21810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Despite recent advances in glycomics, glycan characterization still remains an analytical challenge. Accordingly, numerous glycan-tagging reagents with different chemistries were developed, including those involving acid-base chemistry and/or free radical chemistry. Acid-base chemistry excels at dissociating glycans into their constituent components in a systematic and predictable manner to generate cleavages at glycosidic bonds. Glycans are also highly susceptible to depolymerization by free radical processes, which is supported by results observed from electron-activated dissociation techniques. Therefore, the free radical activated glycan sequencing (FRAGS) reagent was developed so as to possess the characteristics of both acid-base and free radical chemistry, thus generating information-rich glycosidic bond and cross-ring cleavages. Alternatively, the free radical processes can be induced via photodissociation of the specific carbon-iodine bond which gives birth to similar fragmentation patterns as the FRAGS reagent. Furthermore, the methylated-FRAGS (Me-FRAGS) reagent was developed to eliminate glycan rearrangements by way of a fixed charged as opposed to a labile proton, which would otherwise yield additional, yet unpredictable, fragmentations including internal residue losses or multiple external residue losses. Lastly, to further enhance glycan enrichment and characterization, solid-support FRAGS was developed.
Collapse
Affiliation(s)
- Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| | - Shane Finn
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey, USA
| |
Collapse
|
10
|
Zidi W, Hadj-Taieb S, Kraoua I, Hachicha M, Seboui H, Monastiri K, Becher SB, Turki I, Sanhaji H, Tebib N, Kaabachi N, Feki M, Allal-Elasmi M. Single-center experience of congenital disorders of glycosylation syndrome screening in Tunisia: A retrospective study over a 15-year period (2007-2021). Arch Pediatr 2024; 31:124-128. [PMID: 38262859 DOI: 10.1016/j.arcped.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/20/2023] [Accepted: 10/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND We report the results gathered over 15 years of screening for congenital disorders of glycosylation syndrome (CDGS) in Tunisia according to clinical and biochemical characteristics. METHODS Our laboratory received 1055 analysis requests from various departments and hospitals, for children with a clinical suspicion of CDGS. The screening was carried out through separation of transferrin isoforms by capillary zone electrophoresis. RESULTS During the 15-year period, 23 patients were diagnosed with CDGS (19 patients with CDG-Ia, three patients with CDG-IIx, and one patient with CDG-X). These patients included 13 boys and 10 girls aged between 3 months and 13 years, comprising 2.18 % of the total 1055 patients screened. The incidence for CDGS was estimated to be 1:23,720 live births (4.21 per 100,000) in Tunisia. The main clinical symptoms related to clinical disease state in newborn and younger patients were psychomotor retardation (91 %), cerebellar atrophy (91 %), ataxia (61 %), strabismus (48 %), dysmorphic symptoms (52 %), retinitis pigmentosa, cataract (35 %), hypotonia (30 %), and other symptoms. CONCLUSION In Tunisia, CDGS still remains underdiagnosed or misdiagnosed. The resemblance to other diseases, especially neurological disorders, and physicians' unawareness of the existence of these diseases are the main reasons for the underdiagnosis. In routine diagnostics, the screening for CDGS by biochemical tests is mandatory to complete the clinical diagnosis.
Collapse
Affiliation(s)
- Wiem Zidi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia
| | - Sameh Hadj-Taieb
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia
| | - Ichraf Kraoua
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; National Institute of Neurology Mongi-Ben Hamida, Service of Child Neurology, UR12SP24, Tunis, Tunisia
| | | | - Hassen Seboui
- Farhat Hached Hospital, Service of Neonatology, Sousse, Tunisia
| | - Kamel Monastiri
- Fattouma Bourguiba Hospital, Service of Neonatology, Monastir, Tunisia
| | - Saayda Ben Becher
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Children's Hospital Bechir Hamza, Service of Pediatric, de Tunis, Tunisia
| | - Ilhem Turki
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; National Institute of Neurology Mongi-Ben Hamida, Service of Child Neurology, UR12SP24, Tunis, Tunisia
| | - Haifa Sanhaji
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia
| | - Neji Tebib
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Service of Pediatrics, LR12SP02 Tunis, Tunisia
| | - Naziha Kaabachi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia
| | - Moncef Feki
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia
| | - Monia Allal-Elasmi
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Rabta Hospital, Laboratory of Biochemistry, LR99ES11 Tunis, Tunisia.
| |
Collapse
|
11
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Manole A, Wong T, Rhee A, Novak S, Chin SM, Tsimring K, Paucar A, Williams A, Newmeyer TF, Schafer ST, Rosh I, Kaushik S, Hoffman R, Chen S, Wang G, Snyder M, Cuervo AM, Andrade L, Manor U, Lee K, Jones JR, Stern S, Marchetto MC, Gage FH. NGLY1 mutations cause protein aggregation in human neurons. Cell Rep 2023; 42:113466. [PMID: 38039131 PMCID: PMC10826878 DOI: 10.1016/j.celrep.2023.113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/04/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.
Collapse
Affiliation(s)
- Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas Wong
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amanda Rhee
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sammy Novak
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shao-Ming Chin
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katya Tsimring
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andres Paucar
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - April Williams
- The Razavi Newman Integrative Genomics and Bioinformatics Core Facility, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Traci Fang Newmeyer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Idan Rosh
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rene Hoffman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leo Andrade
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin Lee
- Grace Science Foundation, Menlo Park, CA 94025, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Maria C Marchetto
- Department of Anthropology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Senjor E, Pirro M, Švajger U, Prunk M, Sabotič J, Jewett A, Hensbergen PJ, Perišić Nanut M, Kos J. Different glycosylation profiles of cystatin F alter the cytotoxic potential of natural killer cells. Cell Mol Life Sci 2023; 81:8. [PMID: 38092995 PMCID: PMC10719177 DOI: 10.1007/s00018-023-05041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Cystatin F, a cysteine peptidase inhibitor, is a potent modulator of NK cytotoxicity. By inhibiting granule-mediated cytotoxicity pathway, cystatin F induces formation of non-functional NK cell stage, called split-anergy. We show that N-glycosylation determines the localization and cellular function of cystatin F. Cystatin F mostly exhibited high-mannose glycosylation in U-937 cells, both high-mannose and complex glycosylation in NK-92 and primary NKs, and predominantly complex glycosylation in super-charged NKs. Manipulating N-glycosylation with kifunensine increased high-mannose glycosylation of cystatin F and lysosome localisation, which decreased cathepsin C activity and reduced NK cytotoxicity. Mannose-6-phosphate could significantly reduce the internalization of extracellular cystatin F. By comparing NK cells with different cytotoxic potentials, we found that high-mannose cystatin F was strongly associated with lysosomes and cathepsin C in NK-92 cell line. In contrast, in highly cytotoxic super-charged NKs, cystatin F with complex glycosylation was associated with the secretory pathway and less prone to inhibit cathepsin C. Modulating glycosylation to alter cystatin F localisation could increase the cytotoxicity of NK cells, thereby enhancing their therapeutic potential for treating cancer patients.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Urban Švajger
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California Los Angeles, Los Angeles, USA
- The Jonsson Comprehensive Cancer Center, Los Angeles, USA
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Fabijanczuk K, Yu ZJ, Bakestani RM, Murtada R, Denton N, Gaspar K, Otegui T, Acosta J, Kenttämaa HI, Eshuis H, Gao J. Mechanistic Study into Free Radical-Activated Glycan Dissociations through Isotope-Labeled Cellobioses. Anal Chem 2023; 95:2932-2941. [PMID: 36715667 PMCID: PMC10129047 DOI: 10.1021/acs.analchem.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inspired by the electron-activated dissociation technique, the most potent tool for glycan characterization, we recently developed free radical reagents for glycan structural elucidation. However, the underlying mechanisms of free radical-induced glycan dissociation remain unclear and, therefore, hinder the rational optimization of the free radical reagents and the interpretation of tandem mass spectra, especially the accurate assignment of the relatively low-abundant but information-rich ions. In this work, we selectively incorporate the 13C and/or 18O isotopes into cellobiose to study the mechanisms for free radical-induced dissociation of glycans. The eight isotope-labeled cellobioses include 1-13C, 3-13C, 1'-13C, 2'-13C, 3'-13C, 4'-13C, 5'-13C, and 1'-13C-4-18O-cellobioses. Upon one-step collisional activation, cross-ring (X ions), glycosidic bond (Y-, Z-, and B-related ions), and combinational (Y1 + 0,4X0 ion) cleavages are generated. These fragment ions can be unambiguously assigned and confirmed by the mass difference of isotope labeling. Importantly, the relatively low-abundant but information-rich ions, such as 1,5X0 + H, 1,4X0 + H, 2,4X0 + H-OH, Y1 + 0,4X0, 2,5X1-H, 3,5X0-H, 0,3X0-H, 1,4X0-H, and B2-3H, are confidently assigned. The mechanisms for the formations of these ions are investigated and supported by quantum chemical calculations. These ions are generally initiated by hydrogen abstraction followed by sequential β-elimination and/or radical migration. Here, the mechanistic study for free radical-induced glycan dissociation allows us to interpret all of the free radical-induced fragment ions accurately and, therefore, enables the differentiation of stereochemical isomers. Moreover, it provides fundamental knowledge for the subsequent development of bioinformatics tools to interpret the complex free radical-induced glycan spectra.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Zaikuan Josh Yu
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Rose M Bakestani
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Rayan Murtada
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Nicholas Denton
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Tara Otegui
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jose Acosta
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Hilkka I Kenttämaa
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Henk Eshuis
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, New Jersey 07043, United States
| |
Collapse
|
15
|
Nagy S, Lau T, Alavi S, Karimiani EG, Vallian J, Ng BG, Noroozi Asl S, Akhondian J, Bahreini A, Yaghini O, Uapinyoying P, Bonnemann C, Freeze HH, Dissanayake VHW, Sirisena ND, Schmidts M, Houlden H, Moreno‐De‐Luca A, Maroofian R. A recurrent homozygous missense DPM3 variant leads to muscle and brain disease. Clin Genet 2022; 102:530-536. [PMID: 35932216 PMCID: PMC9633384 DOI: 10.1111/cge.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Biallelic pathogenic variants in the genes encoding the dolichol-phosphate mannose synthase subunits (DPM) which produce mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation, are rare causes of congenital disorders of glycosylation. Pathogenic variants in DPM1 and DPM2 are associated with muscle-eye-brain (MEB) disease, whereas DPM3 variants have mostly been reported in patients with isolated muscle disease-dystroglycanopathy. Thus far, only one affected individual with compound heterozygous DPM3 variants presenting with myopathy, mild intellectual disability, seizures, and nonspecific white matter abnormalities (WMA) around the lateral ventricles has been described. Here we present five affected individuals from four unrelated families with global developmental delay/intellectual disability ranging from mild to severe, microcephaly, seizures, WMA, muscle weakness and variable cardiomyopathy. Exome sequencing of the probands revealed an ultra-rare homozygous pathogenic missense DPM3 variant NM_018973.4:c.221A>G, p.(Tyr74Cys) which segregated with the phenotype in all families. Haplotype analysis indicated that the variant arose independently in three families. Functional analysis did not reveal any alteration in the N-glycosylation pathway caused by the variant; however, this does not exclude its pathogenicity in the function of the DPM complex and related cellular pathways. This report provides supporting evidence that, besides DPM1 and DPM2, defects in DPM3 can also lead to a muscle and brain phenotype.
Collapse
Affiliation(s)
- Sara Nagy
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK,Department of NeurologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Tracy Lau
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Shahryar Alavi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | | | - Jalal Vallian
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Bobby G. Ng
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Samaneh Noroozi Asl
- Pediatrics Endocrinology DepartmentMashhad University of Medical SciencesMashhadIran
| | - Javad Akhondian
- Pediatric Neurology DepartmentGhaem hospital, Mashhad University of Medical SciencesMashhadIran
| | - Amir Bahreini
- Karyogen Medical Genetics LaboratoryAlzahra UniversityIsfahanIran
| | - Omid Yaghini
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non‐Communicable Disease, Isfahan University of Medical SciencesIsfahanIran
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Hudson H. Freeze
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Vajira H. W. Dissanayake
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of MedicineUniversity of ColomboColomboSri Lanka
| | - Nirmala D. Sirisena
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of MedicineUniversity of ColomboColomboSri Lanka
| | - Miriam Schmidts
- Department of Pediatrics and Adolescent MedicineUniversity Hospital Freiburg, Freiburg University Faculty of MedicineGermany
| | - Henry Houlden
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Andres Moreno‐De‐Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of RadiologyDiagnostic Medicine InstituteDanvillePennsylvaniaUSA
| | - Reza Maroofian
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
16
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
17
|
Xie Y, Butler M. Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19. Glycobiology 2022; 32:871-885. [PMID: 35925863 PMCID: PMC9487901 DOI: 10.1093/glycob/cwac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/08/2023] Open
Abstract
Disease development and progression are often associated with aberrant glycosylation, indicating that changes in biological fluid glycome may potentially serve as disease signatures. The corona virus disease-2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a significant threat to global human health. However, the effect of SARS-CoV-2 infection on the overall serum N-glycomic profile has been largely unexplored. Here, we extended our 96-well-plate-based high-throughput, high-sensitivity N-glycan profiling platform further with the aim of elucidating potential COVID-19-associated serum N-glycomic alterations. Use of this platform revealed both similarities and differences between the serum N-glycomic fingerprints of COVID-19 positive and control cohorts. Although there were no specific glycan peaks exclusively present or absent in COVID-19 positive cohort, this cohort showed significantly higher levels of glycans and variability. On the contrary, the overall N-glycomic profiles for healthy controls were well-contained within a narrow range. From the serum glycomic analysis, we were able to deduce changes in different glycan subclasses sharing certain structural features. Of significance was the hyperbranched and hypersialylated glycans and their derived glycan subclass traits. T-distributed stochastic neighbour embedding (tSNE) and hierarchical heatmap clustering analysis were performed to identify 13 serum glycomic variables that potentially distinguished the COVID-19 positive from healthy controls. Such serum N-glycomic changes described herein may indicate or correlate to the changes in serum glycoproteins upon COVID-19 infection. Furthermore, mapping the serum N-glycome following SARS-CoV-2 infection may help us better understand the disease and enable "Long-COVID" surveillance to capture the full spectrum of persistent symptoms.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
18
|
Li Y, Xu J, Li X, Ma S, Wei Y, Ou J. One-step fabrication of nitrogen-rich linear porous organic polymer-based micron-sized sphere for selective enrichment of glycopeptides. Anal Chim Acta 2022; 1215:339988. [DOI: 10.1016/j.aca.2022.339988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022]
|
19
|
Baudot AD, Wang VMY, Leach JD, O’Prey J, Long JS, Paulus-Hock V, Lilla S, Thomson DM, Greenhorn J, Ghaffar F, Nixon C, Helfrich MH, Strathdee D, Pratt J, Marchesi F, Zanivan S, Ryan KM. Glycan degradation promotes macroautophagy. Proc Natl Acad Sci U S A 2022; 119:e2111506119. [PMID: 35737835 PMCID: PMC9245654 DOI: 10.1073/pnas.2111506119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.
Collapse
Affiliation(s)
- Alice D. Baudot
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Victoria M.-Y. Wang
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Josh D. Leach
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jim O’Prey
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Jaclyn S. Long
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Viola Paulus-Hock
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Sergio Lilla
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - David M. Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - John Greenhorn
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Farah Ghaffar
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Miep H. Helfrich
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Douglas Strathdee
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Judith Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sara Zanivan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Kevin M. Ryan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
20
|
Maia N, Potelle S, Yildirim H, Duvet S, Akula SK, Schulz C, Wiame E, Gheldof A, O'Kane K, Lai A, Sermon K, Proisy M, Loget P, Attié-Bitach T, Quelin C, Fortuna AM, Soares AR, de Brouwer APM, Van Schaftingen E, Nassogne MC, Walsh CA, Stouffs K, Jorge P, Jansen AC, Foulquier F. Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. Am J Hum Genet 2022; 109:345-360. [PMID: 35045343 PMCID: PMC8874227 DOI: 10.1016/j.ajhg.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sven Potelle
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Hamide Yildirim
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sandrine Duvet
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Celine Schulz
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katherine O'Kane
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Sermon
- Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maïa Proisy
- CHU Brest, Radiology Department, Brest University, 29609 Brest Cedex, France
| | - Philippe Loget
- Department of Pathology, Rennes University Hospital, 35000 Rennes, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Chloé Quelin
- Clinical Genetics Department, Rennes University Hospital, 35000 Rennes, France
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; Institute Of NeuroScience, Clinical Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Katrien Stouffs
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, 1090 Brussels, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| |
Collapse
|
21
|
Xie Y, Butler M. Construction of InstantPC derivatized glycan GU database: A foundation work for high-throughput and high-sensitivity glycomic analysis. Glycobiology 2021; 32:289-303. [PMID: 34972858 DOI: 10.1093/glycob/cwab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/12/2022] Open
Abstract
Glycosylation is well-recognized as a critical quality attribute of biotherapeutics being routinely monitored to ensure desired product quality, safety, and efficacy. Additionally, as one of the most prominent and complex post-translational modifications, glycosylation plays a key role in disease manifestation. Changes in glycosylation may serve as a specific and sensitive biomarker for disease diagnostics and prognostics. However, the conventional 2-aminobenzamide based N-glycosylation analysis procedure is time-consuming and insensitive, with poor reproducibility. We have evaluated an innovative streamlined 96-well-plate-based platform utilizing InstantPC label for high-throughput, high-sensitivity glycan profiling, which is user-friendly, robust, and ready for automation. However, the limited availability of InstantPC labelled glycan standards has significantly hampered the applicability and transferability of this platform for expedited glycan structural profiling. To address this challenge, we have constructed a detailed InstantPC labelled glycan glucose unit database through analysis of human serum and a variety of other glycoproteins from various sources. Following preliminary hydrophilic interaction liquid chromatography with fluorescence detection separation and analysis, glycoproteins with complex glycan profiles were subjected to further fractionation by weak anion exchange hydrophilic interaction liquid chromatography and exoglycosidase sequential digestion for cross-validation of the glycan assignment. Hydrophilic interaction ultra-performance liquid chromatography coupled with electrospray ionization mass spectrometry was subsequently utilised for glycan fragmentation and accurate glycan mass confirmation. The constructed InstantPC glycan GU database is accurate and robust. It is believed that this database will enhance the application of the developed platform for high-throughput, high-sensitivity glycan profiling, and eventually advance glycan-based biopharmaceutical production and disease biomarker discovery.
Collapse
Affiliation(s)
- Yongjing Xie
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Michael Butler
- National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
22
|
Gong Y, Qin S, Dai L, Tian Z. The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduct Target Ther 2021; 6:396. [PMID: 34782609 PMCID: PMC8591162 DOI: 10.1038/s41392-021-00809-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China
| | - Suideng Qin
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, 610041, Chengdu, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
23
|
Piccolo G, Amadori E, Vari MS, Marchese F, Riva A, Ghirotto V, Iacomino M, Salpietro V, Zara F, Striano P. Complex Neurological Phenotype Associated with a De Novo DHDDS Mutation in a Boy with Intellectual Disability, Refractory Epilepsy, and Movement Disorder. J Pediatr Genet 2021; 10:236-238. [PMID: 34504728 DOI: 10.1055/s-0040-1713159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 11/08/2022]
Abstract
Mutations in the DHDDS gene (MIM: 617836), encoding a subunit of dehydrodolichyl diphosphate synthase complex, have been recently implicated in very rare neurodevelopmental diseases. In total, five individuals carrying two de novo mutations in DHDDS have been reported so far, but genotype-phenotype correlations remain elusive. We reported a boy with a de novo mutation in DHDDS (NM_205861.3: c.G632A; p.Arg211Gln) featuring a complex neurological phenotype, including mild intellectual disability, impaired speech, complex hyperkinetic movements, and refractory epilepsy. We defined the electroclinical and movement disorder phenotype associated with the monoallelic form of the DHDDS -related neurodevelopmental disease and possible underlying dominant-negative mechanisms.
Collapse
Affiliation(s)
- Gianluca Piccolo
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesca Marchese
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Valentina Ghirotto
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
24
|
Treacy EP, Vencken S, Bosch AM, Gautschi M, Rubio‐Gozalbo E, Dawson C, Nerney D, Colhoun HO, Shakerdi L, Pastores GM, O'Flaherty R, Saldova R. Abnormal N-glycan fucosylation, galactosylation, and sialylation of IgG in adults with classical galactosemia, influence of dietary galactose intake. JIMD Rep 2021; 61:76-88. [PMID: 34485021 PMCID: PMC8411110 DOI: 10.1002/jmd2.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Classical galactosemia (CG) (OMIM #230400) is a rare disorder of carbohydrate metabolism, due to deficiency of galactose-1-phosphate uridyltransferase (EC 2.7.7.12). The pathophysiology of the long-term complications, mainly cognitive, neurological, and female infertility remains poorly understood. OBJECTIVES This study investigated (a) the association between specific IgG N-glycosylation biomarkers (glycan peaks and grouped traits) and CG patients (n = 95) identified from the GalNet Network, using hydrophilic interaction ultraperformance liquid chromatography and (b) a further analysis of a GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) with correlation with glycan features with patient Full Scale Intelligence Quotient (FSIQ), and (c) with galactose intake. RESULTS A very significant decrease in galactosylation and sialylation and an increase in core fucosylation was noted in CG patients vs controls (P < .005). Bisected glycans were decreased in the severe GALT c.563A-G/p.Gln188Arg homozygous cohort (n = 49) (P < .05). Logistic regression models incorporating IgG glycan traits distinguished CG patients from controls. Incremental dietary galactose intake correlated positively with FSIQ for the p.Gln188Arg homozygous CG cohort (P < .005) for a dietary galactose intake of 500 to 1000 mg/d. Significant improvements in profiles with increased galactose intake were noted for monosialylated, monogalactosylated, and monoantennary glycans. CONCLUSION These results suggest that N-glycosylation abnormalities persist in CG patients on dietary galactose restriction which may be modifiable to a degree by dietary galactose intake.
Collapse
Affiliation(s)
- Eileen P. Treacy
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
- Department of PaediatricsTrinity College DublinDublinIreland
- UCD School of MedicineUniversity College DublinDublinIreland
| | | | - Annet M. Bosch
- Department of Pediatrics, Division of Metabolic DisordersEmma Children's Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Matthias Gautschi
- Department of Paediatrics and Institute of Clinical ChemistryInselspital, University Hospital BernBernSwitzerland
| | - Estela Rubio‐Gozalbo
- Department of Pediatrics/Laboratory of Clinical GeneticsMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Dawson
- Department of EndocrinologyUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Darragh Nerney
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Hugh Owen Colhoun
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
| | - Loai Shakerdi
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Gregory M. Pastores
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University HospitalDublinIreland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- Department of ChemistryMaynooth UniversityKildareIreland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and TrainingDublinIreland
- UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin (UCD)DublinIreland
| |
Collapse
|
25
|
Peptide Sequence Mapping around Bisecting GlcNAc-Bearing N-Glycans in Mouse Brain. Int J Mol Sci 2021; 22:ijms22168579. [PMID: 34445285 PMCID: PMC8395275 DOI: 10.3390/ijms22168579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
N-glycosylation is essential for many biological processes in mammals. A variety of N-glycan structures exist, of which, the formation of bisecting N-acetylglucosamine (GlcNAc) is catalyzed by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene). We previously identified various bisecting GlcNAc-modified proteins involved in Alzheimer's disease and cancer. However, the mechanisms by which GnT-III acts on the target proteins are unknown. Here, we performed comparative glycoproteomic analyses using brain membranes of wild type (WT) and Mgat3-deficient mice. Target glycoproteins of GnT-III were enriched with E4-phytohemagglutinin (PHA) lectin, which recognizes bisecting GlcNAc, and analyzed by liquid chromatograph-mass spectrometry. We identified 32 N-glycosylation sites (Asn-Xaa-Ser/Thr, Xaa ≠ Pro) that were modified with bisecting GlcNAc. Sequence alignment of identified N-glycosylation sites that displayed bisecting GlcNAc suggested that GnT-III does not recognize a specific primary amino acid sequence. The molecular modeling of GluA1 as one of the good cell surface substrates for GnT-III in the brain, indicated that GnT-III acts on N-glycosylation sites located in a highly flexible and mobile loop of GluA1. These results suggest that the action of GnT-III is partially affected by the tertiary structure of target proteins, which can accommodate bisecting GlcNAc that generates a bulky flipped-back conformation of the modified glycans.
Collapse
|
26
|
Lebedeva IV, Wagner MV, Sahdeo S, Lu YF, Anyanwu-Ofili A, Harms MB, Wadia JS, Rajagopal G, Boland MJ, Goldstein DB. Precision genetic cellular models identify therapies protective against ER stress. Cell Death Dis 2021; 12:770. [PMID: 34354042 PMCID: PMC8342410 DOI: 10.1038/s41419-021-04045-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle V Wagner
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Sunil Sahdeo
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Matthew B Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jehangir S Wadia
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | | | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Lukacs M, Blizzard LE, Stottmann RW. CNS glycosylphosphatidylinositol deficiency results in delayed white matter development, ataxia and premature death in a novel mouse model. Hum Mol Genet 2021; 29:1205-1217. [PMID: 32179897 DOI: 10.1093/hmg/ddaa046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/31/2020] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a post-translational modification added to approximately 150 different proteins to facilitate proper membrane anchoring and trafficking to lipid rafts. Biosynthesis and remodeling of the GPI anchor requires the activity of over 20 distinct genes. Defects in the biosynthesis of GPI anchors in humans lead to inherited glycosylphosphatidylinositol deficiency (IGD). IGD patients display a wide range of phenotypes though the central nervous system (CNS) appears to be the most commonly affected tissue. A full understanding of the etiology of these phenotypes has been hampered by the lack of animal models due to embryonic lethality of GPI biosynthesis gene null mutants. Here we model IGD by genetically ablating GPI production in the CNS with a conditional mouse allele of phosphatidylinositol glycan anchor biosynthesis, class A (Piga) and Nestin-Cre. We find that the mutants do not have structural brain defects but do not survive past weaning. The mutants show progressive decline with severe ataxia consistent with defects in cerebellar development. We show that the mutants have reduced myelination and defective Purkinje cell development. Surprisingly, we found that Piga was expressed in a fairly restricted pattern in the early postnatal brain consistent with the defects we observed in our model. Thus, we have generated a novel mouse model of the neurological defects of IGD which demonstrates a critical role for GPI biosynthesis in cerebellar and white matter development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
28
|
Zidoune H, Martinerie L, Tan DS, Askari M, Rezgoune D, Ladjouze A, Boukri A, Benelmadani Y, Sifi K, Abadi N, Satta D, Rastari M, Seresht-Ahmadi M, Bignon-Topalovic J, Mazen I, Leger J, Simon D, Brauner R, Totonchi M, Jauch R, Bashamboo A, McElreavey K. Expanding DSD Phenotypes Associated with Variants in the DEAH-Box RNA Helicase DHX37. Sex Dev 2021; 15:244-252. [PMID: 34293745 DOI: 10.1159/000515924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
Missense variants in the RNA-helicase DHX37 are associated with either 46,XY gonadal dysgenesis or 46,XY testicular regression syndrome (TRS). DHX37 is required for ribosome biogenesis, and this subgroup of XY DSD is a new human ribosomopathy. In a cohort of 140 individuals with 46,XY DSD, we identified 7 children with either 46,XY complete gonadal dysgenesis or 46,XY TRS carrying rare or novel DHX37 variants. A novel p.R390H variant within the RecA1 domain was identified in a girl with complete gonadal dysgenesis. A paternally inherited p.R487H variant, previously associated with a recessive congenital developmental syndrome, was carried by a boy with a syndromic form of 46,XY DSD. His phenotype may be explained in part by a novel homozygous loss-of-function variant in the NGLY1 gene, which causes a congenital disorder of deglycosylation. Remarkably, a homozygous p.T477H variant was identified in a boy with TRS. His fertile father had unilateral testicular regression with typical male genital development. This expands the DSD phenotypes associated with DHX37. Structural analysis of all variants predicted deleterious effects on helicase function. Similar to all other known ribosomopathies, the mechanism of pathogenesis is unknown.
Collapse
Affiliation(s)
- Housna Zidoune
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France.,Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Laetitia Martinerie
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Daisylyn S Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Djalila Rezgoune
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | - Yasmina Benelmadani
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Karima Sifi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Noureddine Abadi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Department of Animal Biology, Laboratory of Molecular and Cellular Biology, University Frères Mentouri Constantine 1, Constantine, Algeria.,Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Mandana Rastari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Inas Mazen
- Genetics Department, National Research Center, Cairo, Egypt
| | - Juliane Leger
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Dominique Simon
- Assistance Publique-Hôpitaux de Paris Université de Paris, Robert Debré University Hospital, Endocrinology-Diabetology Department, Reference Center for Growth and Development Endocrine Diseases, Paris, France
| | - Raja Brauner
- Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anu Bashamboo
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Kenneth McElreavey
- Human Developmental Genetics Unit, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea. PLoS Biol 2021; 19:e3001277. [PMID: 34138841 PMCID: PMC8241124 DOI: 10.1371/journal.pbio.3001277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/29/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N-glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N-glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx. volcanii N-glycoproteome revealed here provide new insights into the roles of N-glycosylation in archaeal cell biology. A comprehensive glycoproteomic analysis of Haloferax volcanii reveals the extent and complexity of glycosylation in archaea and provides new insights into the roles of this post-translational modification in various cellular processes, including cell shape determination.
Collapse
|
30
|
Ohkawa Y, Harada Y, Taniguchi N. Keratan sulfate-based glycomimetics using Langerin as a target for COPD: lessons from studies on Fut8 and core fucose. Biochem Soc Trans 2021; 49:441-453. [PMID: 33616615 PMCID: PMC7924997 DOI: 10.1042/bst20200780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
Glycosylation represents one of the most abundant posttranslational modification of proteins. Glycosylation products are diverse and are regulated by the cooperative action of various glycosyltransferases, glycosidases, substrates thereof: nucleoside sugars and their transporters, and chaperons. In this article, we focus on a glycosyltransferase, α1,6-fucosyltransferase (Fut8) and its product, the core fucose structure on N-glycans, and summarize the potential protective functions of this structure against emphysema and chronic obstructive pulmonary disease (COPD). Studies of FUT8 and its enzymatic product, core fucose, are becoming an emerging area of interest in various fields of research including inflammation, cancer and therapeutics. This article discusses what we can learn from studies of Fut8 and core fucose by using knockout mice or in vitro studies that were conducted by our group as well as other groups. We also include a discussion of the potential protective functions of the keratan sulfate (KS) disaccharide, namely L4, against emphysema and COPD as a glycomimetic. Glycomimetics using glycan analogs is one of the more promising therapeutics that compensate for the usual therapeutic strategy that involves targeting the genome and the proteome. These typical glycans using KS derivatives as glycomimetics, will likely become a clue to the development of novel and effective therapeutic strategies.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- Antigens, Surface/physiology
- Biomimetic Materials/chemistry
- Biomimetic Materials/therapeutic use
- Fucose/metabolism
- Fucosyltransferases/physiology
- Glycosylation
- Humans
- Keratan Sulfate/chemistry
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/physiology
- Mannose-Binding Lectins/antagonists & inhibitors
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/metabolism
- Mannose-Binding Lectins/physiology
- Mice
- Mice, Knockout
- Molecular Targeted Therapy/methods
- Polysaccharides/chemistry
- Polysaccharides/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan
| |
Collapse
|
31
|
Pont L, Kuzyk V, Benavente F, Sanz-Nebot V, Mayboroda OA, Wuhrer M, Lageveen-Kammeijer GSM. Site-Specific N-Linked Glycosylation Analysis of Human Carcinoembryonic Antigen by Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry. J Proteome Res 2021; 20:1666-1675. [PMID: 33560857 PMCID: PMC8023805 DOI: 10.1021/acs.jproteome.0c00875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
With 28 potential N-glycosylation sites, human
carcinoembryonic antigen (CEA) bears an extreme amount of N-linked glycosylation, and approximately 60% of its molecular
mass can be attributed to its carbohydrates. CEA is often overexpressed
and released by many solid tumors, including colorectal carcinomas.
CEA displays an impressive heterogeneity and variability in sugar
content; however, site-specific distribution of carbohydrate structures
has not been reported so far. The present study investigated CEA samples
purified from human colon carcinoma and human liver metastases and
enabled the characterization of 21 out of 28 potential N-glycosylation sites with respect to their occupancy. The coverage
was achieved by a multienzymatic digestion approach with specific
enzymes, such as trypsin, endoproteinase Glu-C, and the nonspecific enzyme, Pronase, followed by analysis using
sheathless CE-MS/MS. In total, 893 different N-glycopeptides
and 128 unique N-glycan compositions were identified.
Overall, a great heterogeneity was found both within (micro) and in
between (macro) individual N-glycosylation sites.
Moreover, notable differences were found on certain N-glycosylation sites between primary adenocarcinoma and metastatic
tumor in regard to branching, bisection, sialylation, and fucosylation.
Those features, if further investigated in a targeted manner, may
pave the way toward improved diagnostics and monitoring of colorectal
cancer progression and recurrence. Raw mass spectrometric data and
Skyline processed data files that support the findings of this study
are available in the MassIVE repository with the identifier MSV000086774
[DOI: 10.25345/C5Z50X].
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Valeriia Kuzyk
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.,Division of Bioanalytical Chemistry, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08007 Barcelona, Spain
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
32
|
Chaudhary BP, Zoetewey DL, McCullagh MJ, Mohanty S. NMR and MD Simulations Reveal the Impact of the V23D Mutation on the Function of Yeast Oligosaccharyltransferase Subunit Ost4. Glycobiology 2021; 31:838-850. [PMID: 33442744 DOI: 10.1093/glycob/cwab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 11/14/2022] Open
Abstract
Asparagine-linked glycosylation, also known as N-linked glycosylation, is an essential and highly conserved co- and post-translational protein modification in eukaryotes and some prokaryotes. In the central step of this reaction, a carbohydrate moiety is transferred from a lipid-linked donor to the side-chain of a consensus asparagine in a nascent protein as it is synthesized at the ribosome. Complete loss of oligosaccharyltransferase (OST) function is lethal in eukaryotes. This reaction is carried out by a membrane-associated multi-subunit enzyme, OST, localized in the endoplasmic reticulum (ER). The smallest subunit, Ost4, contains a single membrane-spanning helix that is critical for maintaining stability and activity of OST. Mutation of any residue from Met18 to Ile24 of Ost4 destabilizes the enzyme complex, affecting its activity. Here, we report solution NMR structures and molecular dynamics simulations of Ost4 and Ost4V23D in micelles. Our studies revealed that while the point mutation did not impact the structure of the protein, it affected its position and solvent exposure in the membrane mimetic environment. Furthermore, our molecular dynamics simulations of the membrane-bound OST complex containing either WT or V23D mutant demonstrated disruption of most hydrophobic helix-helix interactions between Ost4V23D and transmembrane (TM)12 and TM13 of Stt3. This disengagement of Ost4V23D from the OST complex led to solvent exposure of the D23 residue in the hydrophobic pocket created by these interactions. Our study not only solves the structures of yeast Ost4 subunit and its mutant but also provides a basis for the destabilization of the OST complex and reduced OST activity.
Collapse
Affiliation(s)
- Bharat P Chaudhary
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| | - David L Zoetewey
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| | - Martin J McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| | - Smita Mohanty
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA, 74078
| |
Collapse
|
33
|
Zhang Y, Zhang L, Iliuk A, Tao WA. Profiling Glycoproteins on Functionalized Reverse Phase Protein Array. Methods Mol Biol 2021; 2237:207-215. [PMID: 33237420 PMCID: PMC12036830 DOI: 10.1007/978-1-0716-1064-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Reverse phase protein array (RPPA), a high-throughput, parallel immunoassay in a dot-blot format, is a powerful tool to quantitatively profile protein expression in multiple samples simultaneously using small amounts of material. Despite its success, analysis of post-translationally modified (PTM) proteins has been limited in RPPA assays, primarily due to relatively low availability of antibodies specific to proteins of PTMs, e.g., glycosylation. Moreover, the high matrix complexity, with tens of thousands of proteins in cell lysates or tissue extracts and the low abundance of proteins with PTMs, makes it extremely challenging to detect these proteins with PTMs. Therefore, there is an urgent need to fill this gap, which would greatly contribute to the analysis of a specific PTM by RPPA. In this chapter, we introduce a novel RPPA platform, termed polymer-based reverse phase glycoprotein array (polyGPA), to measure the variation of glycosylation patterns on a three-dimensionally functionalized RPPA. Without the need of specific antibody towards glycosylation, polyGPA represents a highly sensitive strategy to analyze protein glycosylation in multiple complex biological samples in parallel.
Collapse
Affiliation(s)
- Ying Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liyuan Zhang
- Key Laboratory of Proteomics, Dalian Medical University, Dalian, China
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN, USA
| | - W Andy Tao
- Tymora Analytical Operations, West Lafayette, IN, USA.
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
34
|
Xiao SQ, Li MH, Meng YL, Li C, Huang HL, Liu CX, Lyu Y, Na Q. Case Report: Compound Heterozygous Phosphatidylinositol-Glycan Biosynthesis Class N ( PIGN) Mutations in a Chinese Fetus With Hypotonia-Seizures Syndrome 1. Front Genet 2020; 11:594078. [PMID: 33193741 PMCID: PMC7652820 DOI: 10.3389/fgene.2020.594078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Multiple congenital anomalies-hypotonia-seizures syndrome 1 (MCAHS1) caused by phosphatidylinositol-glycan biosynthesis class N (PIGN) mutations is an autosomal recessive disease involving many systems of the body, such as the urogenital, cardiovascular, gastrointestinal, and central nervous systems. Here, compound heterozygous variants NM_012327.6:c.2427-2A > G and c.963G > A in PIGN were identified in a Chinese proband with MCAHS1. The features of the MCAHS1 family proband were evaluated to understand the mechanism of the PIGN mutation leading to the occurrence of MCAHS1. Ultrasound was conducted to examine the fetus, and his clinical manifestations were evaluated. Genetic testing was performed by whole-exome sequencing and the results were verified by Sanger sequencing of the proband and his parents. Reverse transcription-polymerase chain reaction was performed, and the products were subjected to Sanger sequencing. Quantitative PCR (Q-PCR) was conducted to compare gene expression between the patient and wild-type subjects. The compound heterozygous mutation NM_012327.6:c.2427-2A > G and c.963G > A was identified by whole-exome sequencing and was confirmed by Sanger sequencing. The NM_012327.6:c.2427-2A > G mutation led to skipping of exon 26, which resulted in a low expression level of the gene, as measured by Q-PCR. These findings provided a basis for genetic counseling and reproduction guidance in this family. Phenotype-genotype correlations may be defined by an expanded array of mutations.
Collapse
Affiliation(s)
- Shi-Qi Xiao
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mei-Hui Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Lin Meng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chuang Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hai-Long Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Xia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuan Lyu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Harten IA, Kaber G, Agarwal KJ, Kang I, Ibarrientos SR, Workman G, Chan CK, Nivison MP, Nagy N, Braun KR, Kinsella MG, Merrilees MJ, Wight TN. The synthesis and secretion of versican isoform V3 by mammalian cells: A role for N-linked glycosylation. Matrix Biol 2020; 89:27-42. [PMID: 32001344 PMCID: PMC7282976 DOI: 10.1016/j.matbio.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
Abstract
Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.
Collapse
Affiliation(s)
- Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kiran J. Agarwal
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K. Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mary P. Nivison
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen R. Braun
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
36
|
Hu X, Tang F, Liu P, Zhong T, Yuan F, He Q, von Itzstein M, Li H, Weng L, Yu X. Structural and Functional Insight Into the Glycosylation Impact Upon the HGF/c-Met Signaling Pathway. Front Cell Dev Biol 2020; 8:490. [PMID: 32626713 PMCID: PMC7314907 DOI: 10.3389/fcell.2020.00490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Upon interactions with its specific ligand hepatocyte growth factor (HGF), the c-Met signal is relayed to series of downstream pathways, exerting essential biological roles. Dysregulation of the HGF-c-Met signaling pathway has been implicated in the onset, progression and metastasis of various cancers, making the HGF-c-Met axis a promising therapeutic target. Both c-Met and HGF undergo glycosylation, which appears to be biologically relevant to their function and structural integrity. Different types of glycoconjugates in the local cellular environment can also regulate HGF/c-Met signaling by distinct mechanisms. However, detailed knowledge pertaining to the glycosylation machinery of the HGF-c-Met axis as well as its potential applications in oncology research is yet to be established. This mini review highlights the significance of the HGF-c-Met signaling pathway in physiological and pathological context, and discusses the molecular mechanisms by which affect the glycosylation of the HGF-c-Met axis. Owing to the crucial role played by glycosylation in the regulation of HGF/c-Met activity, better understanding of this less exploited field may contribute to the development of novel therapeutics targeting glycoepitopes.
Collapse
Affiliation(s)
- Xinyue Hu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Feiyu Tang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peilin Liu
- College of Medicine, Hunan Normal University, Changsha, China
| | - Taowei Zhong
- College of Medicine, Hunan Normal University, Changsha, China
| | - Fengyan Yuan
- College of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- College of Medicine, Hunan Normal University, Changsha, China.,Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University, Changsha, China
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Hao Li
- Biliary Tract Surgery Laboratory, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Liang Weng
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology in Hunan Province, Central South University, Changsha, China
| | - Xing Yu
- College of Medicine, Hunan Normal University, Changsha, China.,Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
37
|
Lipari Pinto P, Machado C, Janeiro P, Dupont J, Quintas S, Sousa AB, Gaspar A. NGLY1 deficiency-A rare congenital disorder of deglycosylation. JIMD Rep 2020; 53:2-9. [PMID: 32395402 PMCID: PMC7203651 DOI: 10.1002/jmd2.12108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogenic variants in the NGLY1 gene are associated with a Congenital Disorder of Deglycosylation (CDDG) characterized by delays in reaching developmental milestones, complex hyperkinetic movement disorder, transient elevation of transaminases, and alacrima or hypolacrima. To date, only few cases of NGLY1 deficiency have been identified and reported in the literature. This report highlights a first child of non-consanguineous parents with no relevant family history who presented with hypotonia and poor weight gain since birth. At 2 months, the child developed paroxysmal cervical dystonia, posteriorly resolving spontaneously by age of 3. Subsequently, delays in reaching developmental milestones, ataxia, dyskinesia, visual impairment due to cone rod retinal dystrophy, low triglycerides, and persistently elevated liver transaminases were observed. Extensive etiological investigation was performed, including array-CGH and metabolic evaluation with no abnormalities to note. Trio whole exome analysis identified a homozygous pathogenic variant of the NGLY1 gene, c.1891del (p.Gln631Serfs*7), consistent with CDDG. Both parents were confirmed to be heterozygous carriers. The authors discuss in this case, the clinical presentation, the diagnostic challenges, and review other relevant NGLY1 deficiency cases previously reported in the literature. This case, along with the previous reported in the literature, indicates that pathogenic variants in NGLY1 cause a recognizable phenotype and should be considered in patients with a typical presentation. It also suggests that decreased sweating is not present universally in these patients.
Collapse
Affiliation(s)
- Patrícia Lipari Pinto
- Pediatric Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Catarina Machado
- Medical Genetics Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Patrícia Janeiro
- Metabolic Diseases Unit, Pediatric Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Juliette Dupont
- Medical Genetics Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Sofia Quintas
- Neuropediatric Unit, Pediatric Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Ana Berta Sousa
- Medical Genetics Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| | - Ana Gaspar
- Metabolic Diseases Unit, Pediatric Department, Santa Maria's Hospital ‐ Lisbon North University Hospital CenterEPE, Pediatric University Clinic, Faculty of Medicine, University of LisbonLisbonPortugal
| |
Collapse
|
38
|
Structural Insight into the Mechanism of N-Linked Glycosylation by Oligosaccharyltransferase. Biomolecules 2020; 10:biom10040624. [PMID: 32316603 PMCID: PMC7226087 DOI: 10.3390/biom10040624] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Asparagine-linked glycosylation, also known as N-linked glycosylation is an essential and highly conserved post-translational protein modification that occurs in all three domains of life. This modification is essential for specific molecular recognition, protein folding, sorting in the endoplasmic reticulum, cell-cell communication, and stability. Defects in N-linked glycosylation results in a class of inherited diseases known as congenital disorders of glycosylation (CDG). N-linked glycosylation occurs in the endoplasmic reticulum (ER) lumen by a membrane associated enzyme complex called the oligosaccharyltransferase (OST). In the central step of this reaction, an oligosaccharide group is transferred from a lipid-linked dolichol pyrophosphate donor to the acceptor substrate, the side chain of a specific asparagine residue of a newly synthesized protein. The prokaryotic OST enzyme consists of a single polypeptide chain, also known as single subunit OST or ssOST. In contrast, the eukaryotic OST is a complex of multiple non-identical subunits. In this review, we will discuss the biochemical and structural characterization of the prokaryotic, yeast, and mammalian OST enzymes. This review explains the most recent high-resolution structures of OST determined thus far and the mechanistic implication of N-linked glycosylation throughout all domains of life. It has been shown that the ssOST enzyme, AglB protein of the archaeon Archaeoglobus fulgidus, and the PglB protein of the bacterium Campylobactor lari are structurally and functionally similar to the catalytic Stt3 subunit of the eukaryotic OST enzyme complex. Yeast OST enzyme complex contains a single Stt3 subunit, whereas the human OST complex is formed with either STT3A or STT3B, two paralogues of Stt3. Both human OST complexes, OST-A (with STT3A) and OST-B (containing STT3B), are involved in the N-linked glycosylation of proteins in the ER. The cryo-EM structures of both human OST-A and OST-B complexes were reported recently. An acceptor peptide and a donor substrate (dolichylphosphate) were observed to be bound to the OST-B complex whereas only dolichylphosphate was bound to the OST-A complex suggesting disparate affinities of two OST complexes for the acceptor substrates. However, we still lack an understanding of the independent role of each eukaryotic OST subunit in N-linked glycosylation or in the stabilization of the enzyme complex. Discerning the role of each subunit through structure and function studies will potentially reveal the mechanistic details of N-linked glycosylation in higher organisms. Thus, getting an insight into the requirement of multiple non-identical subunits in the N-linked glycosylation process in eukaryotes poses an important future goal.
Collapse
|
39
|
Jeong S, Oh MJ, Kim U, Lee J, Kim JH, An HJ. Glycosylation of serum haptoglobin as a marker of gastric cancer: an overview for clinicians. Expert Rev Proteomics 2020; 17:109-117. [DOI: 10.1080/14789450.2020.1740091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Seunghyup Jeong
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Jin Oh
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Unyong Kim
- Biocomplete Inc, Seoul, Republic of Korea
| | - Jua Lee
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Joo An
- Asia-pacific Glycomics Reference Site, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Midorikawa R, Takakura D, Morise J, Wakazono Y, Kawasaki N, Oka S, Takamiya K. Monitoring the glycosylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-type glutamate receptors using specific antibodies reveals a novel regulatory mechanism of N-glycosylation occupancy by molecular chaperones in mice. J Neurochem 2020; 153:567-585. [PMID: 31958346 DOI: 10.1111/jnc.14964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023]
Abstract
In the mammalian nervous system, protein N-glycosylation plays an important role in neuronal physiology. In this study, we performed a comprehensive N-glycosylation analysis of mouse GluA1, one of the major subunits of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate type glutamate receptor, which possesses six potential N-glycosylation sites in the N-terminal domain. By mass spectrometry-based analysis, we identified the N-glycoforms and semiquantitatively determined the site-specific N-glycosylation occupancy of GluA1. In addition, only the N401-glycosylation site demonstrated incomplete N-glycosylation occupancy. Therefore, we generated a peptide antibody that specifically detects the N401-glycan-free form to precisely quantify N401-glycosylation occupancy. Using this antibody, we clarified that N401 occupancy varies between cell types and increases in an age-dependent manner in mouse forebrains. To address the regulatory mechanism of N401-glycosylation, binding proteins of GluA1 around the N401 site were screened. HSP70 family proteins, including Bip, were identified as candidates. Bip has been known as a molecular chaperone that plays a key role in protein folding in the ER (endoplasmic reticulum). To examine the involvement of Bip in N401-glycosylation, the effect of Bip over-expression on N401 occupancy was evaluated in HEK293T cells, and the results demonstrated Bip increases the N401 glycan-free form by mediating selective prolongation of its protein half-life. Taken together, we propose that the N401-glycosite of GluA1 receives a unique control of modification, and we also propose a novel N-glycosylation occupancy regulatory mechanism by Bip that might be associated with α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors function in the brain.
Collapse
Affiliation(s)
- Ryosuke Midorikawa
- Department of Neuroscience, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Daisuke Takakura
- Project for Utilizing Glycans in the Development of Innovative Drug Discovery Technologies, Shinanomachi Research Park, Keio University School of Medicine, Tokyo, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiko Wakazono
- Department of Neuroscience, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Nana Kawasaki
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kogo Takamiya
- Department of Neuroscience, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| |
Collapse
|
42
|
Lisnyansky Bar-El M, Lee SY, Ki AY, Kapelushnik N, Loewenstein A, Chung KY, Schneidman-Duhovny D, Giladi M, Newman H, Haitin Y. Structural Characterization of Full-Length Human Dehydrodolichyl Diphosphate Synthase Using an Integrative Computational and Experimental Approach. Biomolecules 2019; 9:E660. [PMID: 31661879 PMCID: PMC6921004 DOI: 10.3390/biom9110660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 01/13/2023] Open
Abstract
Dehydrodolichyl diphosphate synthase (DHDDS) is the catalytic subunit of the heteromeric human cis-prenyltransferase complex, synthesizing the glycosyl carrier precursor for N-linked protein glycosylation. Consistent with the important role of N-glycosylation in protein biogenesis, DHDDS mutations result in human diseases. Importantly, DHDDS encompasses a C-terminal region, which does not converge with any known conserved domains. Therefore, despite the clinical importance of DHDDS, our understating of its structure-function relations remains poor. Here, we provide a structural model for the full-length human DHDDS using a multidisciplinary experimental and computational approach. Size-exclusion chromatography multi-angle light scattering revealed that DHDDS forms a monodisperse homodimer in solution. Enzyme kinetics assays revealed that it exhibits catalytic activity, although reduced compared to that reported for the intact heteromeric complex. Our model suggests that the DHDDS C-terminus forms a helix-turn-helix motif, tightly packed against the core catalytic domain. This model is consistent with small-angle X-ray scattering data, indicating that the full-length DHDDS maintains a similar conformation in solution. Moreover, hydrogen-deuterium exchange mass-spectrometry experiments show time-dependent deuterium uptake in the C-terminal domain, consistent with its overall folded state. Finally, we provide a model for the DHDDS-NgBR heterodimer, offering a structural framework for future structural and functional studies of the complex.
Collapse
Affiliation(s)
- Michal Lisnyansky Bar-El
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
| | - Su Youn Lee
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea.
| | - Ah Young Ki
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea.
| | - Noa Kapelushnik
- Department of Ophthalmology, Sheba Medical Center, Ramat Gan 5265601, Israel.
| | - Anat Loewenstein
- Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea.
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
- Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| | - Hadas Newman
- Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
43
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019; 118:880-892. [PMID: 31579312 PMCID: PMC6774629 DOI: 10.1016/j.trac.2018.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
44
|
Chen Z, Huang J, Li L. Recent advances in mass spectrometry (MS)-based glycoproteomics in complex biological samples. Trends Analyt Chem 2019. [PMID: 31579312 DOI: 10.1016/jtrac.2018.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Protein glycosylation plays a key role in various biological processes and disease-related pathological progression. Mass spectrometry (MS)-based glycoproteomics is a powerful approach that provides a system-wide profiling of the glycoproteome in a high-throughput manner. There have been numerous significant technological advances in this field, including improved glycopeptide enrichment, hybrid fragmentation techniques, emerging specialized software packages, and effective quantitation strategies, as well as more dedicated workflows. With increasingly sophisticated glycoproteomics tools on hand, researchers have extensively adapted this approach to explore different biological systems both in terms of in-depth glycoproteome profiling and comparative glycoproteome analysis. Quantitative glycoproteomics enables researchers to discover novel glycosylation-based biomarkers in various diseases with potential to offer better sensitivity and specificity for disease diagnosis. In this review, we present recent methodological developments in MS-based glycoproteomics and highlight its utility and applications in answering various questions in complex biological systems.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
45
|
Miyamoto S, Nakashima M, Ohashi T, Hiraide T, Kurosawa K, Yamamoto T, Takanashi J, Osaka H, Inoue K, Miyazaki T, Wada Y, Okamoto N, Saitsu H. A case of de novo splice site variant in SLC35A2 showing developmental delays, spastic paraplegia, and delayed myelination. Mol Genet Genomic Med 2019; 7:e814. [PMID: 31231989 PMCID: PMC6687661 DOI: 10.1002/mgg3.814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDGs) are genetic diseases caused by pathogenic variants of genes involved in protein or lipid glycosylation. De novo variants in the SLC35A2 gene, which encodes a UDP-galactose transporter, are responsible for CDGs with an X-linked dominant manner. Common symptoms related to SLC35A2 variants include epilepsy, psychomotor developmental delay, hypotonia, abnormal facial and skeletal features, and various magnetic resonance imaging (MRI) findings. METHODS Whole-exome sequencing was performed on the patient's DNA, and candidate variants were confirmed by Sanger sequencing. cDNA analysis was performed to assess the effect of the splice site variant using peripheral leukocytes. The X-chromosome inactivation pattern was studied using the human androgen receptor assay. RESULTS We identified a de novo splice site variant in SLC35A2 (NM_005660.2: c.274+1G>A) in a female patient who showed severe developmental delay, spastic paraplegia, mild cerebral atrophy, and delayed myelination on MRI, but no seizures. The variant led to an aberrant splicing resulting in an in-frame 33-bp insertion, which caused an 11-amino acid insertion in the presumptive cytoplasmic loop. X-inactivation pattern was random. Partial loss of galactose and sialic acid of the N-linked glycans of serum transferrin was observed. CONCLUSION This case would expand the phenotypic spectrum of SLC35A2-related disorders to delayed myelination with spasticity and no seizures.
Collapse
Affiliation(s)
- Sachiko Miyamoto
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Mitsuko Nakashima
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Tsukasa Ohashi
- Department of PediatricsNiigata University Medical and Dental HospitalNiigataJapan
| | - Takuya Hiraide
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Kenji Kurosawa
- Division of Medical GeneticsKanagawa Children's Medical CenterYokohamaJapan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical SciencesTokyoJapan
| | - Junichi Takanashi
- Department of Pediatrics and Pediatric NeurologyTokyo Women's Medical University, Yachiyo Medical CenterYachiyoJapan
| | - Hitoshi Osaka
- Department of PediatricsJichi Medical UniversityTochigiJapan
| | - Ken Inoue
- Department of Mental Retardation & Birth Defect ResearchNational Institute of NeuroscienceNational Center of Neurology & PsychiatryJapan
| | - Takehiro Miyazaki
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| | - Yoshinao Wada
- Department of Molecular MedicineOsaka Women's and Children's HospitalOsakaJapan
| | - Nobuhiko Okamoto
- Department of Molecular MedicineOsaka Women's and Children's HospitalOsakaJapan
- Department of Medical GeneticsOsaka Women's and Children's HospitalOsakaJapan
| | - Hirotomo Saitsu
- Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan
| |
Collapse
|
46
|
Shrimal S, Gilmore R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 2019; 29:288-297. [PMID: 30312397 DOI: 10.1093/glycob/cwy093] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/12/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is one of the most common protein modification reactions in eukaryotic cells, occurring upon the majority of proteins that enter the secretory pathway. X-ray crystal structures of the single subunit OSTs from eubacterial and archaebacterial organisms revealed the location of donor and acceptor substrate binding sites and provided the basis for a catalytic mechanism. Cryoelectron microscopy structures of the octameric yeast OST provided substantial insight into the organization and assembly of the multisubunit oligosaccharyltransferases. Furthermore, the cryoelectron microscopy structure of a complex consisting of a mammalian OST complex, the protein translocation channel and a translating ribosome revealed new insight into the mechanism of cotranslational glycosylation.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| |
Collapse
|
47
|
Shurer CR, Kuo JCH, Roberts LM, Gandhi JG, Colville MJ, Enoki TA, Pan H, Su J, Noble JM, Hollander MJ, O'Donnell JP, Yin R, Pedram K, Möckl L, Kourkoutis LF, Moerner WE, Bertozzi CR, Feigenson GW, Reesink HL, Paszek MJ. Physical Principles of Membrane Shape Regulation by the Glycocalyx. Cell 2019; 177:1757-1770.e21. [PMID: 31056282 PMCID: PMC6768631 DOI: 10.1016/j.cell.2019.04.017] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 02/19/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyx. Mucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.
Collapse
Affiliation(s)
- Carolyn R Shurer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joe Chin-Hun Kuo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Jay G Gandhi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hao Pan
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Jin Su
- Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jade M Noble
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Hollander
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - John P O'Donnell
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rose Yin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Leonhard Möckl
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Gerald W Feigenson
- Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Heidi L Reesink
- Department of Clinical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Field of Biophysics, Cornell University, Ithaca, NY 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA.
| |
Collapse
|
48
|
Allen KN, Imperiali B. Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Curr Opin Struct Biol 2019; 59:81-90. [PMID: 31003021 DOI: 10.1016/j.sbi.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
Peripheral and integral membrane proteins feature in stepwise assembly of complex glycans and glycoconjugates. Catalysis on membrane-bound substrates features challenges with substrate solubility and active-site accessibility. However, advantages in enzyme and substrate orientation and control of lateral membrane diffusion provide order to the multistep processes. Recent glycosyltransferase (GT) studies show that substrate diversity is met by the selection of folds which do not converge upon a common mechanism. Examples of polyprenol phosphate phosphoglycosyl transferases (PGTs) highlight that divergent fold families catalyze the same reaction with different mechanisms. Lipid A biosynthesis enzymes illustrate that variations on the robust Rossmann fold allow substrate diversity. Improved understanding of GT and PGT structure and function holds promise for better function prediction and improvement of therapeutic inhibitory ligands.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, MA 02215, United States; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA 02118, United States.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
49
|
Niknejad N, Jafar-Nejad H. Unbiased glycomics: a powerful tool in rare disease diagnosis and research. Transl Res 2019; 206:1-4. [PMID: 30528322 DOI: 10.1016/j.trsl.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Nima Niknejad
- Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
50
|
Zhang L, Ma S, Chen Y, Wang Y, Ou J, Uyama H, Ye M. Facile Fabrication of Biomimetic Chitosan Membrane with Honeycomb-Like Structure for Enrichment of Glycosylated Peptides. Anal Chem 2019; 91:2985-2993. [PMID: 30673210 DOI: 10.1021/acs.analchem.8b05215] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the study of glycoproteomics with mass spectrometry, certain pretreatments of samples are required for eliminating the interference of nonglycopeptides and improving the efficiency of glycopeptides detection. Although hydrophilic interaction chromatography (HILIC) has been developed for enrichment of glycosylated peptides, a plethora of hydrophilic materials always suffered from large steric hindrance, great cost, and difficulty with modifications of high-density hydrophilic groups. In this work, a 1 mm thick biomimetic honeycomb chitosan membrane (BHCM) with honeycomb-like accessible macropores was directly prepared by the freeze-casting method as an adsorbent for HILIC. The N-glycopeptides from trypsin digests of immunoglobulin G (IgG), mixture of IgG and bovine serum albumin (BSA), and serum proteins were enriched using this material and compared with a commercial material ZIC-HILIC. The biomimetic membrane could identify as many as 32 N-glycopeptides from the IgG digest, exhibiting high sensitivity (about 50 fmol) and a wide scope for glycopeptide enrichment. A molar ratio of IgG trypsin digest to bovine serum albumin trypsin digest as low as 1/500 verified the outstanding specificity and efficiency for glycopeptide enrichment. In addition, 270 unique N-glycosylation sites of 400 unique glycopeptides from 146 glycosylated proteins were identified from the triplicate analysis of 2 μL human serum. Furthermore, 48 unique O-glycosylation sites of 278 unique O-glycopeptides were identified from the triplicate analysis of 30 μg deglycosylated fetuin digest. These results indicated that the chitosan-based membrane prepared in this work had great potential for pretreatment of samples in glycoproteomics.
Collapse
Affiliation(s)
- Luwei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Shujuan Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yao Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Hiroshi Uyama
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education , Northwest University , Xi'an , Shaanxi 710127 , China.,Department of Applied Chemistry, Graduate School of Engineering , Osaka University , Suita 565-0871 , Japan
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|