1
|
Huynh U, King J, Zastrow ML. Calcium modulates growth and biofilm formation of Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. Sci Rep 2025; 15:14246. [PMID: 40274962 PMCID: PMC12022101 DOI: 10.1038/s41598-025-98577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Lactobacillaceae are a large, diverse family of Gram-positive lactic acid-producing bacteria. As gut microbiota residents in many mammals, these bacteria are beneficial for health and frequently used as probiotics. Lactobacillaceae abundance in the gastrointestinal tract has been correlated with gastrointestinal pathologies and infection. Microbiota residents must compete for nutrients, including essential metal ions like calcium, zinc, and iron. Recent animal and human studies have revealed that dietary calcium can positively influence the diversity of the gut microbiota and abundance of intestinal Lactobacillaceae species, but the underlying molecular mechanisms remain poorly understood. Here, we investigated the impacts of calcium on the growth and biofilm formation of two distinct Lactobacillaceae species found in the gut microbiota, Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. We found that calcium ions differentially affect both growth and biofilm formation of these species. In general, calcium supplementation promotes the growth of both species, albeit with some variations in the extent to which different growth parameters were impacted. Calcium ions strongly induce biofilm formation of L. acidophilus ATCC 4356 but not L. plantarum ATCC 14917. Based on bioinformatic analyses and experimental chelator studies, we hypothesize that surface proteins specific to L. acidophilus ATCC 4356, like S-layer proteins, are responsible for Ca2+-induced biofilm formation. The ability of bacteria to form biofilms has been linked with their ability to colonize in the gut microbiota. This work shows how metal ions like Ca2+ may be important not just as nutrients for bacteria growth, but also for their ability to facilitate cell-cell interactions and possibly colonization in the gut microbiota.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - John King
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Gleitze S, Ramírez OA, Vega-Vásquez I, Stefan E, Bengtson CP, Paula-Lima A, Bading H, Hidalgo C. Calcium release via IP 3R/RyR channels contributes to the nuclear and mitochondrial Ca 2+ signals elicited by neuronal stimulation. Biochem Biophys Res Commun 2025; 754:151445. [PMID: 40022811 DOI: 10.1016/j.bbrc.2025.151445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 03/04/2025]
Abstract
The brain constantly adapts to environmental changes by modifying the expression of genes that enable synaptic plasticity, learning and memory. The expression of several of these genes requires nuclear calcium (Ca2+) signals, which in turn requires that Ca2+ signals generated by neuronal activity at the synapses or the soma propagate to the nucleus. Since cytoplasmic Ca2+ diffusion is highly restricted, Ca2+ signal propagation to the nucleus requires the participation of other cellular mechanisms. The inositol trisphosphate receptor (IP3R) and the ryanodine receptor (RyR) channels, both of which reside in the endoplasmic reticulum (ER) membrane, play key roles in cellular Ca2+ signal generation. Yet, their roles in the generation of nuclear and mitochondrial Ca2+ signals induced by neuronal activity require further investigation. Here, the impact of IP3R1 or RyR2 knockdown on gabazine-induced nuclear and mitochondrial Ca2+ signals in neurons was evaluated. To this aim, recombinant adeno-associated viruses (rAAVs) were used to introduce small hairpin RNAs (shRNAs) to knockdown type-1 (IP3R1) and type-2 (RyR2) channel expression in cultured rat hippocampal neurons. Additionally, synaptic contact numbers were assessed through immunocytochemistry. Knockdown of IP3R1 or RyR2 channels significantly reduced their protein contents and the generation of gabazine-induced nuclear and mitochondrial Ca2+ signals, without altering synaptic contact numbers. Our results highlight the contribution of IP3R1 and RyR2 channels to the generation of nuclear and mitochondrial Ca2+ signal induced by neuronal activity, reinforcing the role that these Ca2+ release channels play in hippocampal synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile
| | - Omar A Ramírez
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile; Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile; Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Emely Stefan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, 8380453, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago, 8380453, Chile.
| |
Collapse
|
3
|
Deshpande K, Gysbers D, Yus J, van Bendegom D, Nixon E, McClintock R, Quinlan ZA, Marhaver KL, Kelly LW, Espinosa-Marzal RM, Johnson AJW, Juarez G. Direct observation and quantitative characterization of chemotactic behaviors in Caribbean coral larvae exposed to organic and inorganic settlement cues. Sci Rep 2025; 15:10173. [PMID: 40128257 PMCID: PMC11933689 DOI: 10.1038/s41598-025-93194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
Upon their arrival in the water column, coral larvae use physical and chemical cues to navigate toward a suitable habitat and begin their settlement process. To engineer substrates that influence settlement, it is important to have quantitative data about the types and concentrations of chemicals that elicit desired behavioral responses before and after contact with the substrate. Here, we quantified the behavioral and morphological responses of coral larvae (Colpophyllia natans and Orbicella faveolata) to crustose coralline algae exudates (CCA) and ions found in coral skeletons using chemotactic assays in microfluidic channels. Multiple larvae in each channel were tracked over 30 min to quantify their overall attraction or repulsion to the presence of various dissolved chemical cues. Larvae showed repulsion to [Formula: see text], attraction to both [Formula: see text] and CCA exudates, and both attraction and repulsion to [Formula: see text], depending on the concentration. The behavioral and morphological changes exhibited by individual larvae were investigated as well. Using particle tracking methods to quantify larval behavior, we found that the typically straight swimming larvae of C. natans increased turning behavior in regions with high concentrations of CCA exudates and [Formula: see text], a behavior associated with local searching, while they decreased turning behavior near high concentrations of [Formula: see text]. We also found that larvae shrink in length when exposed to 50× the seawater concentration of calcium, a potential stress or escape response, while these larvae elongated when exposed to CCA exudates, a morphological response associated with benthic contact and crawling. These results highlight the value of direct observation in understanding the interplay between coral larvae and their chemical environment. Incorporating cues such as calcium or CCA exudates into artificial substrates can elicit specific behavioral and physical changes in coral larvae, thereby enhancing settlement and contributing to reef restoration efforts.
Collapse
Affiliation(s)
- Koumudhi Deshpande
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Daniel Gysbers
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joaquin Yus
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Daan van Bendegom
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Nixon
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Rayna McClintock
- Department of Oceanography, University of Hawai'I at Mānoa, Honolulu, HI, 96822, USA
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honalulu, HI, 96822, USA
| | - Kristen L Marhaver
- CARMABI Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao.
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amy J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, IL, 60642, USA.
| | - Gabriel Juarez
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Cui J, Xu J, Qi J, Lu X, Liu Y, Xiong J, Yu W, Li C. Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment. PLANT CELL REPORTS 2025; 44:70. [PMID: 40055201 DOI: 10.1007/s00299-025-03459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/23/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE SlIQMs were identified, exogenous calcium and phytohormones induced their expression. SlIQMs's function were verified by VIGS. Calcium synergistically promoted seedling growth with ABA, IAA, MeJA and antagonized growth inhibition with GA3 or SA. The IQM genes, are crucial members of the calmodulin-binding protein family, play pivotal roles in plant growth and stress response. However, the existence and impact of IQM in tomato remain unclear. This study demonstrates that the SlIQMs are randomly distributed across the 4 chromosomes of tomato and exclusively located within the nucleus. Phylogenetic analysis classifies the SlIQMs into 3 distinct subclasses. Analysis of cis-acting elements reveals that SlIQMs may function in stress or hormone process. Quantitative reverse-transcriptase PCR analysis further testified that polyethylene glycol (PEG), abscisic acid (ABA), indole acetic acid (IAA), gibberellin (GA3), methyl jasmonate (MeJA), and salicylic acid (SA) induce expression levels of SlIQM1/2/3/5/6/7. Furthermore, exogenous calcium significantly alleviates detrimental effects on seedlings growth leaded by drought stress. Moreover, the relationships between hormones and calcium were explored. The results showed that calcium synergistically promoted the seedlings growth with ABA, IAA and MeJA, however antagonistic effects on inhibiting growth are observed between calcium and GA3 or SA. The virus-induced silencing of 6 candidate genes caused growth inhibition of tomato seedlings under drought stress and phytohormone treatment. These findings lay the foundation for a comprehensive study of the structure and biological function of SlIQM genes and the interaction between calcium and different plant hormones on plant growth.
Collapse
Affiliation(s)
- Jing Cui
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Junrong Xu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jin Qi
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xuefang Lu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunzhi Liu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Jingli Xiong
- The Ziyuan Bureau of Agriculture and Rural, Guilin, 541400, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changxia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Mineda K, Sato K, Nakahara T, Minami K, Ikushima K, Mizuguchi M, Mima S, Yamasaki H, Nagasaka S, Yamashita Y, Abe Y, Hashimoto I. Specific Calcium Signal Responses in Human Keloid-Derived Fibroblasts During Cyclical Stretching: Basic Research. Health Sci Rep 2025; 8:e70461. [PMID: 40041787 PMCID: PMC11872593 DOI: 10.1002/hsr2.70461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background Keloids most commonly develop in the regions where the skin is constantly stretched. Although some keloid-derived fibroblasts exhibit higher single calcium spikes than normal dermal fibroblasts during short-time cyclical stretching, the calcium signal responses to long-time stretching remain unclear. Methods This study compared the intracellular Ca2+ dynamics induced by cyclical stretching stimuli between the control group (normal dermal fibroblasts) and the keloid group (keloid-derived fibroblasts). Each group was cyclically exposed to a two-dimensional stretch (10% strain). A confocal laser microscope was used to examine intracellular Ca2+ for 30 min fluorescently. The fluorescence intensity ratio (Fluo-8H/calcein red-orange) was used to evaluate intracellular Ca2+ concentration every 0.5 s. A calcium spike was a transient ratio increase of ≥ 20%. Receiver operating characteristic analysis was performed to determine the cutoff value of a normal calcium spike. Results No significant difference was observed between the keloid and control groups in the calcium signal response-positive rates (26.9% vs. 25.0%; p = 0.9). However, the calcium spike amplitudes were significantly higher in the keloid group than in the control group (1.66 vs. 1.41; p = 0.02). The cutoff value was 2.12, and 9.6% of keloid-derived fibroblasts exhibited multiple hypercalcium spikes. Discussion We are conducting further research based on the hypothesis that this keloid-specific subpopulation triggers the pathogenesis of keloid formation, that is, collagen overproduction, accelerated angiogenesis, and chronic inflammation.
Collapse
Affiliation(s)
- Kazuhide Mineda
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Katsuya Sato
- Graduate School of Technology, Industrial and Social SciencesTokushima UniversityTokushima CityJapan
| | - Tasuku Nakahara
- Graduate School of Sciences and Technology for InnovationYamaguchi UniversityUbe CityJapan
| | - Kazuyuki Minami
- Graduate School of Sciences and Technology for InnovationYamaguchi UniversityUbe CityJapan
| | - Kenta Ikushima
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Makoto Mizuguchi
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Shunsuke Mima
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Hiroyuki Yamasaki
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Shinji Nagasaka
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Yutaro Yamashita
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Yoshiro Abe
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| | - Ichiro Hashimoto
- Plastic and Reconstructive Surgery, School of MedicineTokushima UniversityTokushima CityJapan
| |
Collapse
|
6
|
Chen F, Zhou R, Zhao L, Huang L, Zhuo Y, Xu S, Lin Y, Che L, Feng B, Wu D, Fang Z. Effects of Dietary Multi-Carbohydrase and Phytase Complex Supplementation on Nutrient Digestibility, Bone Mineralization and Puberty Onset in Gilts. Animals (Basel) 2025; 15:462. [PMID: 40002944 PMCID: PMC11851570 DOI: 10.3390/ani15040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The study was conducted to determine the effects of multi-carbohydrase and phytase complex (MCPC) supplementation in standard and commercial diets on growth performance, nutrient digestibility, bone mineralization, blood biochemical parameters and puberty onset in gilts. A total of 144 healthy gilts (Duroc × (Landrace × York)) were assigned randomly to four treatments (n = 36), with 10 replicate pens (6 pens, each containing 4 gilts, and 4 pens, each containing 3 gilts). The trial consisted of two phases (phase 1: 70-100 kg; phase 2: 100-140 kg). The commercial diet (COM) had 33% higher calcium (Ca) and phosphorus (P) levels than the standard diet (CON) across all phases. The four treatment diets were as follows: CON (phase 1: 0.56 g/kg Ca and 0.49 g/kg P; phase 2: 0.49 g/kg Ca and 0.45 g/kg P), COM (phase 1: 0.75 g/kg Ca and 0.65 g/kg P; phase 2: 0.65 g/kg Ca and 0.60 g/kg P), CON + MCPC and COM + MCPC, where both the CON and COM diets were supplemented with 100 mg/kg of MCPC, respectively. The commercial diet significantly (p < 0.05) increased the total number of follicles and the number of follicles < 4 mm and tended to reduce (p = 0.07) the age at puberty compared to the standard diet. Besides, MCPC supplementation improved the apparent total-tract digestibility (ATTD) of Ca (p < 0.05), P (p < 0.05) and Ash (p = 0.07) in gilts during phase 1, compared to the basal diets without MCPC supplementation. Additionally, MCPC supplementation significantly elevated serum creatinine (CREA, p < 0.05) concentrations and had a tendency to increase serum Ca (p = 0.07) concentrations in gilts. Specifically, COM + MCPC supplementation significantly increased the osteocalcin (OCN) concentration compared with the COM treatment. Moreover, dietary MCPC supplementation significantly improved the bone strength (p < 0.05) compared to the basal diets without MCPC supplementation. In conclusion, dietary MCPC supplementation increased the ATTD of Ca and P in gilts, while also improving bone strength. This improvement not only extends the reproductive lifespan of sows, but it also allows for reduced supplementation levels of Ca and P in the dietary formula.
Collapse
Affiliation(s)
- Fangyuan Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Rui Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Lingjie Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (F.C.); (R.Z.); (L.Z.); (L.H.); (Y.Z.); (S.X.); (Y.L.); (L.C.); (B.F.); (D.W.)
- College of Food Science, Sichuan Agricultural University, Ya’an 611130, China
| |
Collapse
|
7
|
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung MS. Ca XML: Chemistry-informed machine learning explains mutual changes between protein conformations and calcium ions in calcium-binding proteins using structural and topological features. Protein Sci 2025; 34:e70023. [PMID: 39865355 PMCID: PMC11761698 DOI: 10.1002/pro.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025]
Abstract
Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes. However, it is unclear whether the limited experimental data available can be effectively used to train models to accurately predict the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, machine-learning algorithm that implements a game theoretic approach to explain the output of a machine-learning model without the prerequisite of an excessively large database for high-performance prediction of atomic charges. We used the ab initio electronic structure data representing calcium ions and the structures of the disordered segments of calcium-binding peptides with surrounding water molecules to train several explainable models. Network theory was used to extract the topological features of atomic interactions in the structurally complex data dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in protein. Our design created a computational tool of CaXML, which provided a framework of explainable machine learning model to annotate ionic charges of calcium ions in calcium-binding proteins in response to the chemical changes in an environment. Our framework will provide new insights into protein design for engineering functionality based on the limited size of scientific data in a genome space.
Collapse
Affiliation(s)
- Pengzhi Zhang
- Center for Bioinformatics and Computational BiologyHouston Methodist Research InstituteHoustonTexasUSA
| | - Jules Nde
- Department of PhysicsUniversity of WashingtonSeattleWashingtonUSA
| | - Yossi Eliaz
- Department of PhysicsUniversity of HoustonHoustonTexasUSA
- Computer Science DepartmentHIT Holon Institute of TechnologyHolonIsrael
| | | | - Piotr Cieplak
- Bioinformatics and Systems BiologySanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Margaret S. Cheung
- Department of PhysicsUniversity of WashingtonSeattleWashingtonUSA
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratorySeattleWashingtonUSA
| |
Collapse
|
8
|
Seok J, Kim MO, Kim S, Ryu K, Kim J, Lee H, Kim Y, Lee Y. Flavonoid gossypetin protects alveolar bone and limits inflammation in ligature-induced periodontitis in mice. J Periodontol 2025; 96:164-175. [PMID: 39031888 PMCID: PMC11866740 DOI: 10.1002/jper.23-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bacterial-induced inflammation instigates the destruction of hard and soft tissues surrounding teeth in periodontitis. In severe cases, the increased number and activity of osteoclasts induces the resorption of alveolar bones, ultimately leading to tooth loss. Because of their diverse chemical structures and bioactivities, natural compounds are often suggested to treat a wide variety of diseases, including inflammatory disorders. METHODS In the present study, we demonstrated an inhibitory effect of gossypetin, a hexahydroxy flavone, on osteoclast differentiation and bone resorption using in vitro culture of osteoclasts from mouse bone marrow macrophage (BMM) precursors and in vivo model of ligature-induced periodontitis in mice. RESULTS Gossypetin significantly reduced the differentiation of osteoclasts from mouse BMM precursors in the presence of the receptor activator of nuclear factor κB ligand (RANKL). In vitro, gossypetin inhibited critical signaling events downstream of RANKL including the auto-amplification of nuclear factor of activated T-cells, cytoplasmic 1, Ca2+ oscillations, and the generation of reactive oxygen species. In a mouse ligature-induced periodontitis model, the administration of gossypetin significantly reduced osteoclastogenesis and alveolar bone resorption. Furthermore, gossypetin prevented the ligature-induced increase in macrophages and T cells and reduced the production of tumor necrosis factor-α and interleukin-6. CONCLUSION Taken together, these results show anti-osteoclastogenic and anti-inflammatory effects of gossypetin, suggesting the potential use of this natural compound in periodontitis.
Collapse
Affiliation(s)
- Jiwon Seok
- Department of Biochemistry, School of DentistryKyungpook National UniversityDaeguSouth Korea
| | - Myoung Ok Kim
- Department of Animal Biotechnology, College of Ecology and Environmental ScienceKyungpook National UniversitySangjuSouth Korea
| | - Sung‐Hyun Kim
- Department of Bio‐Medical AnalysisKorea Polytechnic CollegeChungnamSouth Korea
| | - Ka‐Young Ryu
- Department of Biochemistry, School of DentistryKyungpook National UniversityDaeguSouth Korea
| | - Jae‐Young Kim
- Department of Biochemistry, School of DentistryKyungpook National UniversityDaeguSouth Korea
| | - Heon‐Jin Lee
- Department of Oral Microbiology, School of DentistryKyungpook National UniversityDaeguSouth Korea
| | - Yong‐Gun Kim
- Department of Periodontology, School of DentistryKyungpook National UniversityDaeguSouth Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of DentistryKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
9
|
Alsheikh R, Aldulaimi H, Hinawi R, Al-Sadi F, Al-Baker A, Alkuwari A, Sameer M, Al-Abdulla G, Shi Z, Rathnaiah Babu G. Association of serum magnesium and calcium with metabolic syndrome: a cross-sectional study from the Qatar-biobank. Nutr Metab (Lond) 2025; 22:8. [PMID: 39885554 PMCID: PMC11783880 DOI: 10.1186/s12986-024-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/28/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Metabolic syndrome (MetS) and its constituent comorbidities, along with mineral imbalances, pose a significant health burden in the Qatari population. Although Magnesium (Mg) and Calcium (Ca) have been individually linked to MetS, the impact of the calcium-to-magnesium ratio (Ca: Mg) on MetS remains unclear, especially in the adult population of Qatar. In this study, we aim to investigate the association between the total serum concentrations of Ca, Mg and Ca: Mg ratio with the outcome of MetS. METHODS This comprehensive cross-sectional study included data on 9693 participants collected by Qatar Biobank (QBB). The serum levels of Mg and Ca, in addition to recorded metabolic parameters for the study participants, were used in the analyses. The presence of MetS was deemed as our primary outcome and its components as secondary outcomes. Logistic regression models were run to examine these associations. RESULTS AND CONCLUSION MetS was present in more than 19% of the population. The mean serum Mg was higher in the non-MetS group 0.83 ± 0.06 mmol/L compared to the MetS group 0.81 ± 0.08 mmol/L. Conversely, the mean serum Ca and Ca: Mg ratio were higher in the MetS group (2.33 ± 0.09 mmol/L, 2.92 ± 0.36 mmol/L) compared to the non-MetS group (2.30 ± 0.08 mmol/L, 2.77 ± 0.23 mmol/L) respectively. In the context of MetS, we observed a negative dose-response relationship between Mg quartiles and MetS. In contrast, we found a positive association between Ca as well as Ca: Mg ratio and MetS.
Collapse
Affiliation(s)
- Raneem Alsheikh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Haneen Aldulaimi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rami Hinawi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Fatima Al-Sadi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alanoud Al-Baker
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Aldana Alkuwari
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Muhammad Sameer
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ghalya Al-Abdulla
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zumin Shi
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Giridhara Rathnaiah Babu
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Thapa G, Bhattacharya A, Bhattacharya S. Dynamics of AKAP/Calmodulin complex is largely driven by ionic occupancy state. J Mol Graph Model 2025; 134:108904. [PMID: 39547129 DOI: 10.1016/j.jmgm.2024.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
AKAP79/150 is a scaffold protein found in dendritic spines and other neuronal compartments. It localizes and regulates phosphorylation by protein kinase A and C and is, in turn regulated by Ca2+, mediated by Calmodulin (CaM). Thus, the interaction of AKAP79/150 with CaM is of biological interest. A 2017 study used a peptide cross linking coupled to mass spectrometry (XLMS) to identify the CaM binding site on AKAP79/150 and subsequently solved an X-ray crystallography structure of CaM in complex with a short helical AKAP79/150 peptide. The XRD structure revealed an unusual mixed ionic occupancy state of CaM as bound to the AKAP79/150 peptide. In this molecular dynamics-based study, we have explored the motional modes of the CaM-AKAP helix complex under three ionic occupancy conditions. Our results indicate that the dynamics of this CaM backbone is largely dominated by the ionic occupancy state. We find that binding of the AKAP79/150 peptide to CaM is not preferentially stabilized in energetic terms in the Ca2+ state as compared to apo. However, the Mg2+ state is destabilized energetically as compared to the apo state. In addition, in the Ca2+ state, the AKAP79/150 peptide appears to be preferentially stabilized by additional hydrogen bonds. Our simulations suggest that further structural biology studies should be carried out, with a focus on driving the system equilibrium to full Ca2+ occupancy. NMR studies may be able to capture conformational states which are not seen in crystals.
Collapse
Affiliation(s)
- Gauri Thapa
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | | | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
11
|
Gazzo DV, Zartman JJ. Calcium Imaging in Drosophila. Methods Mol Biol 2025; 2861:257-271. [PMID: 39395111 DOI: 10.1007/978-1-0716-4164-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.
Collapse
Affiliation(s)
- David V Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
12
|
Zuo W, Tian M, Qi J, Zhang G, Hu J, Wang S, Bao Y. The functions of EF-hand proteins from host and zoonotic pathogens. Microbes Infect 2025; 27:105276. [PMID: 38072184 DOI: 10.1016/j.micinf.2023.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EF-hand proteins not only regulate biological processes, but also influence immunity and infection. In this review, we summarize EF-hand proteins' functions in host and zoonotic pathogens, with details in structures, Ca2+ affinity, downstream targets and functional mechanisms. Studies entitled as EF-hand-related but with less solid features were also discussed. We believe it could raise cautions and facilitate proper research strategy for researchers.
Collapse
Affiliation(s)
- Wei Zuo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangdong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, Fujian, China.
| |
Collapse
|
13
|
Lévêque M, Mirval S, Barrault C, Fixe I, Coraux C, Sage E, Becq F, Vandebrouck C. The F508del-CFTR trafficking correctors elexacaftor and tezacaftor are CFTR-independent Ca 2+-mobilizing agonists normalizing abnormal Ca 2+ levels in human airway epithelial cells. Respir Res 2024; 25:436. [PMID: 39702307 DOI: 10.1186/s12931-024-03059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel. For people with CF (pwCF) affected by the most common pathogenic variant F508del, a tritherapy, named Trikafta/Kaftrio (ETI: elexacaftor (VX-445) /tezacaftor (VX-661) / ivacaftor (VX-770)) was successfully developed. However, in CF airway epithelial cells the calcium homeostasis is also disturbed; it is observed an increased calcium mobilization in CF cells compared to non-CF cells. Here, we studied the effects of ETI on intracellular calcium levels in F508del-CFTR airway epithelial cells to determine whether these compounds, individually or collectively, could normalize intracellular calcium levels. METHODS We measured intracellular calcium variations using human airway epithelial cells (hAEC) from pwCF, human bronchial epithelial CFBE41o- F508del-CFTR cells and Chinese Hamster Ovary (CHO) cells using the fluorescent probe Fluo4-AM, in the presence or absence of extracellular calcium. The rescue to the plasma membrane of F508del-CFTR protein by ETI was determined by western blot. The SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), was also analysed by western blotting and by interference assay. RESULTS We show that ETI normalizes calcium homeostasis in our cellular models. However, we also found that (1) each ETI-corrector compound is capable of mobilizing calcium acutely in the absence of CFTR, and (2) tezacaftor mobilizes calcium from the endoplasmic reticulum (ER) probably via inhibition of the SERCA pump. CONCLUSIONS We show that ETI not only corrects the abnormal trafficking and function of F508del-CFTR but also normalizes calcium homeostasis in our cellular models. Finally, we identified SERCA as a potential intracellular target for tezacaftor.
Collapse
Affiliation(s)
| | | | | | | | - Christelle Coraux
- INSERM, P3Cell UMR-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, Reims, France
| | - Edouard Sage
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | | | | |
Collapse
|
14
|
Zheng Y, Ju Y, Liu Y, Yang F. Piezoelectric Nanoparticle-Based Ultrasound Wireless Piezoelectric Neuromodulation Inhibits Epileptiform Activity of Primary Neurons. ACS APPLIED BIO MATERIALS 2024; 7:8543-8551. [PMID: 39556669 DOI: 10.1021/acsabm.4c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Piezoelectric materials, renowned for their ability to convert mechanical energy into electrical energy, have gained attention for their potential in biomedical applications. In particular, piezoelectric nanoparticles, such as barium titanate nanoparticles, hold great promise for treating neurologically related diseases. In this study, barium titanate piezoelectric nanoparticles are used as stimulators to directly treat epileptic neurons. After being modified by polyethylene glycol, barium titanate nanoparticles have shown excellent biocompatibility and dispersibility. Furthermore, such nanoparticles offer wireless piezoelectric stimulation to neurons in response to low-intensity pulsed ultrasound. More importantly, our experiments reveal that piezoelectric stimulation immediately reduces neuronal intracellular calcium concentration and restores cell viability. These effects are attributed to the opening of voltage-gated calcium channels and the release of active substances. These findings offer insights into the potential of piezoelectric stimulation as an approach for epilepsy treatment and enhance our understanding of the mechanisms underlying electrical stimulation in epileptic neurons.
Collapse
Affiliation(s)
- Yuxiang Zheng
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yongxu Ju
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| |
Collapse
|
15
|
Panday N, Sigdel D, Adam I, Ramirez J, Verma A, Eranki AN, Wang W, Wang D, Ping P. Data-Driven Insights into the Association Between Oxidative Stress and Calcium-Regulating Proteins in Cardiovascular Disease. Antioxidants (Basel) 2024; 13:1420. [PMID: 39594561 PMCID: PMC11590986 DOI: 10.3390/antiox13111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A growing body of biomedical literature suggests a bidirectional regulatory relationship between cardiac calcium (Ca2+)-regulating proteins and reactive oxygen species (ROS) that is integral to the pathogenesis of various cardiac disorders via oxidative stress (OS) signaling. To address the challenge of finding hidden connections within the growing volume of biomedical research, we developed a data science pipeline for efficient data extraction, transformation, and loading. Employing the CaseOLAP (Context-Aware Semantic Analytic Processing) algorithm, our pipeline quantifies interactions between 128 human cardiomyocyte Ca2+-regulating proteins and eight cardiovascular disease (CVD) categories. Our machine-learning analysis of CaseOLAP scores reveals that the molecular interfaces of Ca2+-regulating proteins uniquely associate with cardiac arrhythmias and diseases of the cardiac conduction system, distinguishing them from other CVDs. Additionally, a knowledge graph analysis identified 59 of the 128 Ca2+-regulating proteins as involved in OS-related cardiac diseases, with cardiomyopathy emerging as the predominant category. By leveraging a link prediction algorithm, our research illuminates the interactions between Ca2+-regulating proteins, OS, and CVDs. The insights gained from our study provide a deeper understanding of the molecular interplay between cardiac ROS and Ca2+-regulating proteins in the context of CVDs. Such an understanding is essential for the innovation and development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Namuna Panday
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Dibakar Sigdel
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
| | - Irsyad Adam
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Joseph Ramirez
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Aarushi Verma
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Anirudh N. Eranki
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Wei Wang
- Department of Computer Science, University of California, Los Angeles, CA 90095, USA;
- Department of Computational Medicine, University of California, Los Angeles, CA 90095, USA
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
| | - Ding Wang
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
| | - Peipei Ping
- Department of Physiology, School of Medicine, University of California, Los Angeles, CA 90095, USA; (N.P.); (D.S.)
- NHLBI Integrated Cardiovascular Data Science Training Program (iDISCOVER), University of California, Los Angeles, CA 90095, USA; (I.A.); (J.R.); (A.V.); (A.N.E.)
- Scalable Analytics Institute (ScAi), University of California, Los Angeles, CA 90095, USA
- Department of Bioinformatics and Biomedical Informatics, University of California, Los Angeles, CA 90095, USA
- Department of Medicine/Cardiology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Lei Q, Phan TH, Divakarla SK, Kalionis B, Chrzanowski W. Metals in nanomotion: probing the role of extracellular vesicles in intercellular metal transfer. NANOSCALE 2024; 16:19730-19742. [PMID: 39355972 DOI: 10.1039/d4nr02841d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Metals in living organisms and environments are essential for key biological functions such as enzymatic activity, and DNA and RNA synthesis. This means that disruption of metal ion homeostasis and exchange between cells can lead to diseases. EVs are believed to play an essential role in transporting metals between cells, but the mechanism of metal packaging and exchange remains to be elucidated. Here, we established the elemental composition of EVs at the nanoscale and single-vesicle level and showed that the metal content depends on the cell type and culture microenvironment. We also demonstrated that EVs participate in the exchange of metal elements between cells. Specifically, we used two classes of EVs derived from papaya fermented fluid (PaEVs), and decidual mesenchymal stem/stromal cells (DEVs). To show that EVs transfer metal elements to cells, we treated human osteoblast-like cells (MG63) and bone marrow mesenchymal stem cells (BMMSCs) with both classes of EVs. We found that both classes of EVs contained various metal elements, such as Ca, P, Mg, Fe, Na, Zn, and K, originating from their parent cells, but their relative concentrations did not mirror the ones found in the parent cells. Single-particle analysis of P, Ca, and Fe in DEVs and PaEVs revealed varying element masses. Assuming spherical geometry, the mean mass of P was converted to a mean size of 62 nm in DEVs and 24 nm in PaEVs, while the mean sizes of Ca and Fe in DEVs were smaller, converting to 20 nm and 30 nm respectively. When EVs interacted with BMMSCs and MG63, DEVs increased Ca, P, and Fe concentrations in BMMSCs and increased Fe concentration in MG63, while PaEVs increased Ca concentrations in BMMSCs and had no effect on MG63. The EV cargo, including proteins, nucleic acids, and lipids, differs from their origin in composition, and this variation extends to the element composition of EVs in our study. This fundamental understanding of EV-mediated metal exchange between cells could offer a new way of assessing EV functionality by measuring their elemental composition. Additionally, it will contribute novel insights into the mechanisms underlying EV production and their biological activity.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
| | - Thanh H Phan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney NSW, Australia
| | | | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, and Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, Australia.
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Sweden
| |
Collapse
|
17
|
Venn AA, Techer N, Segonds N, Tambutté E, Tambutté S. Quantification of cytosolic 'free' calcium in isolated coral cells with confocal microscopy. J Exp Biol 2024; 227:jeb247638. [PMID: 39206669 DOI: 10.1242/jeb.247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Despite its prominent role as an intracellular messenger in all organisms, cytosolic free calcium ([Ca2+]i) has never been quantified in corals or cnidarians in general. Ratiometric calcium dyes and cell imaging have been key methods in successful research on [Ca2+]i in model systems, and could be applied to corals. Here, we developed a procedure to quantify [Ca2+]i in isolated cells from the model coral species Stylophora pistillata using Indo-1 and confocal microscopy. We quantified [Ca2+]i in coral cells with and without intracellular dinoflagellate symbionts, and verified our procedure on cultured mammalian cells. We then used our procedure to measure changes in [Ca2+]i in coral cells exposed to a classic inhibitor of [Ca2+]i regulation, thapsigargin, and also used it to record elevations in [Ca2+]i in coral cells undergoing apoptosis. Our procedure paves the way for future studies into intracellular calcium in corals and other cnidarians.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Nathalie Techer
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Natacha Segonds
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| |
Collapse
|
18
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
19
|
Narayanasamy S, Ong HL, Ambudkar IS. A Deep Dive into the N-Terminus of STIM Proteins: Structure-Function Analysis and Evolutionary Significance of the Functional Domains. Biomolecules 2024; 14:1200. [PMID: 39456133 PMCID: PMC11506743 DOI: 10.3390/biom14101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium is an important second messenger that is involved in almost all cellular processes. Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physiological function and can contribute to various diseased conditions. STIM and Orai proteins play important roles in maintaining [Ca2+]i through store-operated Ca2+ entry (SOCE), with STIM being the primary regulatory protein that governs the function of Orai channels. STIM1 and STIM2 are single-pass ER-transmembrane proteins with their N- and C-termini located in the ER lumen and cytoplasm, respectively. The N-terminal EF-SAM domain of STIMs senses [Ca2+]ER changes, while the C-terminus mediates clustering in ER-PM junctions and gating of Orai1. ER-Ca2+ store depletion triggers activation of the STIM proteins, which involves their multimerization and clustering in ER-PM junctions, where they recruit and activate Orai1 channels. In this review, we will discuss the structure, organization, and function of EF-hand motifs and the SAM domain of STIM proteins in relation to those of other eukaryotic proteins.
Collapse
Affiliation(s)
| | | | - Indu S. Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA; (S.N.); (H.L.O.)
| |
Collapse
|
20
|
Dupuy R, Buttersack T, Trinter F, Richter C, Gholami S, Björneholm O, Hergenhahn U, Winter B, Bluhm H. The solvation shell probed by resonant intermolecular Coulombic decay. Nat Commun 2024; 15:6926. [PMID: 39138192 PMCID: PMC11322543 DOI: 10.1038/s41467-024-51417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Molecules involved in solvation shells have properties differing from those of the bulk solvent, which can in turn affect reactivity. Among key properties of these molecules are their nature and electronic structure. Widely used tools to characterize this type of property are X-ray-based spectroscopies, which, however, usually lack the capability to selectively probe the solvation-shell molecules. A class of X-ray triggered "non-local" processes has the recognized potential to provide this selectivity. Intermolecular Coulombic decay (ICD) and related processes involve neighbouring molecules in the decay of the X-ray-excited target, and are thus naturally sensitive to its immediate environment. Applying electron spectroscopy to aqueous solutions, we explore the resonant flavours of ICD and demonstrate how it can inform on the first solvation shell of excited solvated cations. One particular ICD process turns out to be a potent marker of the formation of ion pairs. Another gives a direct access to the electron binding energies of the water molecules in the first solvation shell, a quantity previously elusive to direct measurements. The resonant nature of the processes makes them readily measurable, providing powerful new spectroscopic tools.
Collapse
Affiliation(s)
- Rémi Dupuy
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matiere et Rayonnement, LCPMR, F-75005, Paris Cedex 05, France.
| | - Tillmann Buttersack
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Florian Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Clemens Richter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Shirin Gholami
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Uwe Hergenhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Hendrik Bluhm
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
21
|
Manori B, Da'adoosh B, Haitin Y, Giladi M. Identification of a magnesium-binding site at the primary allosteric calcium sensor of the sodium-calcium exchanger: Implications for physiological regulation. Protein Sci 2024; 33:e5114. [PMID: 38989557 PMCID: PMC11237548 DOI: 10.1002/pro.5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Sodium-calcium exchanger (NCX) proteins are ubiquitously expressed and play a pivotal role in cellular calcium homeostasis by mediating uphill calcium efflux across the cell membrane. Intracellular calcium allosterically regulates the exchange activity by binding to two cytoplasmic calcium-binding domains, CBD1 and CBD2. However, the calcium-binding affinities of these domains are seemingly inadequate to sense physiological calcium oscillations. Previously, magnesium binding to either domain was shown to tune their affinity for calcium, bringing it into the physiological range. However, while the magnesium-binding site of CBD2 was identified, the identity of the CBD1 magnesium site remains elusive. Here, using molecular dynamics in combination with differential scanning fluorimetry and mutational analysis, we pinpoint the magnesium-binding site in CBD1. Specifically, among four calcium-binding sites (Ca1-Ca4) in this domain, only Ca1 can accommodate magnesium with an affinity similar to its free intracellular concentration. Moreover, our results provide mechanistic insights into the modulation of the regulatory calcium affinity by magnesium, which allows an adequate NCX activity level throughout varying physiological needs.
Collapse
Affiliation(s)
- Bar Manori
- Department of Physiology and Pharmacology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
| | - Benny Da'adoosh
- Blavatnic Center for Drug DiscoveryTel Aviv UniversityTel AvivIsrael
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medical and Health SciencesTel Aviv UniversityTel AvivIsrael
- Tel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
22
|
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung MS. Chemistry-informed Machine Learning Explains Calcium-binding Proteins' Fuzzy Shape for Communicating Changes in the Atomic States of Calcium Ions. ARXIV 2024:arXiv:2407.17017v1. [PMID: 39108291 PMCID: PMC11302678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proteins' fuzziness are features for communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. Binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit, but it is unclear whether the limited experimental data available can be used to train models to accurately predict the charges of calcium-binding protein variants. Here, we developed a chemistry-informed, machine-learning algorithm that implements a game theoretic approach to explain the output of a machine-learning model without the prerequisite of an excessively large database for high-performance prediction of atomic charges. We used the ab initio electronic structure data representing calcium ions and the structures of the disordered segments of calcium-binding peptides with surrounding water molecules to train several explainable models. Network theory was used to extract the topological features of atomic interactions in the structurally complex data dictated by the coordination chemistry of a calcium ion, a potent indicator of its charge state in protein. With our designs, we provided a framework of explainable machine learning model to annotate atomic charges of calcium ions in calcium-binding proteins with domain knowledge in response to the chemical changes in an environment based on the limited size of scientific data in a genome space.
Collapse
Affiliation(s)
- Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, TX, USA
| | - Jules Nde
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Yossi Eliaz
- Department of Physics, University of Houston, Houston, TX, USA
- Computer Science Department, HIT Holon Institute of Technology, Holon, Israel
| | | | - Piotr Cieplak
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Margaret S Cheung
- Department of Physics, University of Washington, Seattle, WA, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
23
|
Gil-Martins E, Cagide-Fagín F, Martins D, Borer A, Barbosa DJ, Fernandes C, Chavarria D, Remião F, Borges F, Silva R. Mechanistic Insights into the Neurotoxicity of 2,5-Dimethoxyphenethylamines (2C) and Corresponding N-(2-methoxybenzyl)phenethylamine (NBOMe) Drugs. J Xenobiot 2024; 14:772-797. [PMID: 38921653 PMCID: PMC11204507 DOI: 10.3390/jox14020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Substituted phenethylamines including 2C (2,5-dimethoxyphenethylamines) and NBOMe (N-(2-methoxybenzyl)phenethylamines) drugs are potent psychoactive substances with little to no knowledge available on their toxicity. In the present in vitro study, we explored the mechanisms underlying the neurotoxicity of six substituted phenethylamines: 2C-T-2, 2C-T-4, 2C-T-7 and their corresponding NBOMes. These drugs were synthesized and chemically characterized, and their cytotoxicity (0-1000 μM) was evaluated in differentiated SH-SY5Y cells and primary rat cortical cultures, by the NR uptake and MTT reduction assays. In differentiated SH-SY5Y cells, mitochondrial membrane potential, intracellular ATP and calcium levels, reactive oxygen species production, and intracellular total glutathione levels were also evaluated. All the tested drugs exhibited concentration-dependent cytotoxic effects towards differentiated SH-SY5Y cells and primary rat cortical cultures. The NBOMe drugs presented higher cytotoxicity than their counterparts, which correlates with the drug's lipophilicity. These cytotoxic effects were associated with mitochondrial dysfunction, evident through mitochondrial membrane depolarization and lowered intracellular ATP levels. Intracellular calcium imbalance was observed for 2C-T-7 and 25T7-NBOMe, implying a disrupted calcium regulation. Although reactive species levels remained unchanged, a reduction in intracellular total GSH content was observed. Overall, these findings contribute to a deeper understanding of these drugs, shedding light on the mechanisms underpinning their neurotoxicity.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (A.B.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Fernando Cagide-Fagín
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Daniel Martins
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Ana Borer
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (A.B.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (A.B.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (D.M.); (C.F.); (D.C.); (F.B.)
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (A.B.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
24
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
25
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
26
|
Abdul-Rahman T, Bliss ZSB, Lizano-Jubert I, Muñoz MJS, Garg N, Pachchipulusu VK, Ashinze P, Miteu GD, Baig R, Omar DA, Badawy MM, Bukhari SMA, Wireko AA, Aborode AT, Atallah O, Mahmoud HA, Aldosoky W, Abohashem S. Beyond symptoms: Unlocking the potential of coronary calcium scoring in the prevention and treatment of coronary artery disease. Curr Probl Cardiol 2024; 49:102378. [PMID: 38185434 DOI: 10.1016/j.cpcardiol.2024.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Coronary Artery Disease (CAD) represents a persistent global health menace, particularly prevalent in Eastern European nations. Often asymptomatic until its advanced stages, CAD can precipitate life-threatening events like myocardial infarction or stroke. While conventional risk factors provide some insight into CAD risk, their predictive accuracy is suboptimal. Amidst this, Coronary Calcium Scoring (CCS), facilitated by non-invasive computed tomography (CT), emerges as a superior diagnostic modality. By quantifying calcium deposits in coronary arteries, CCS serves as a robust indicator of atherosclerotic burden, thus refining risk stratification and guiding therapeutic interventions. Despite certain limitations, CCS stands as an instrumental tool in CAD management and in thwarting adverse cardiovascular incidents. This review delves into the pivotal role of CCS in CAD diagnosis and treatment, elucidates the involvement of calcium in atherosclerotic plaque formation, and outlines the principles and indications of utilizing CCS for predicting major cardiovascular events.
Collapse
Affiliation(s)
| | | | | | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, United States
| | | | - Patrick Ashinze
- Department of Medical Services, Saint Francis Catholic Hospital, Okpara Inland, Delta, Nigeria
| | - Goshen David Miteu
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Rusab Baig
- Shadan Institute of Medical Sciences, Hyderabad, India
| | | | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | - Wesam Aldosoky
- Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Shady Abohashem
- Massachusetts General Hospital and Harvard Medical School, Boston, United States.
| |
Collapse
|
27
|
Saravanan V, Ahammed I, Bhattacharya A, Bhattacharya S. Uncovering allostery and regulation in SORCIN through molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:1812-1825. [PMID: 37098805 DOI: 10.1080/07391102.2023.2202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Soluble resistance-related calcium-binding protein or Sorcin is an allosteric, calcium-binding Penta-EF hand (PEF) family protein implicated in multi-drug resistant cancers. Sorcin is known to bind chemotherapeutic molecules such as Doxorubicin. This study uses in-silico molecular dynamics simulations to explore the dynamics and allosteric behavior of Sorcin in the context of Ca2+ uptake and Doxorubicin binding. The results show that Ca2+ binding induces large, but reversible conformational changes in the Sorcin structure which manifest as rigid body reorientations that preserve the local secondary structure. A reciprocal allosteric handshake centered around the EF5 hand is found to be key in Sorcin dimer formation and stabilization. Binding of Doxorubicin results in rearrangement of allosteric communities which disrupts long-range allosteric information transfer from the N-terminal domain to the middle lobe. However, this binding does not result in secondary structure destabilization. Sorcin does not appear to have a distinct Ca2+ activated mode of Doxorubicin binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ijas Ahammed
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akash Bhattacharya
- Visiting Assistant Professor of Physics, St. Mary's University, San Antonio, Texas, USA
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
28
|
Rabinowitch I, Colón-Ramos DA, Krieg M. Understanding neural circuit function through synaptic engineering. Nat Rev Neurosci 2024; 25:131-139. [PMID: 38172626 DOI: 10.1038/s41583-023-00777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Daniel A Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
29
|
Sneyers F, Speelman-Rooms F, Verhelst SHL, Bootman MD, Bultynck G. Cellular effects of BAPTA: Are they only about Ca 2+ chelation? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119589. [PMID: 37739271 DOI: 10.1016/j.bbamcr.2023.119589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Intracellular Ca2+ signals play a vital role in a broad range of cell biological and physiological processes in all eukaryotic cell types. Dysregulation of Ca2+ signaling has been implicated in numerous human diseases. Over the past four decades, the understanding of how cells use Ca2+ as a messenger has flourished, largely because of the development of reporters that enable visualization of Ca2+ signals in different cellular compartments, and tools that can modulate cellular Ca2+ signaling. One such tool that is frequently used is BAPTA; a fast, high-affinity Ca2+-chelating molecule. By making use of a cell-permeable acetoxymethyl ester (AM) variant, BAPTA can be readily loaded into the cytosol of cells (referred to as BAPTAi), where it is trapped and able to buffer changes in cytosolic Ca2+. Due to the ease of loading of the AM version of BAPTA, this reagent has been used in hundreds of studies to probe the role of Ca2+ signaling in specific processes. As such, for decades, researchers have almost universally attributed changes in biological processes caused by BAPTAi to the involvement of Ca2+ signaling. However, BAPTAi has often been used without any form of control, and in many cases has neither been shown to be retained in cells for the duration of experiments nor to buffer any Ca2+ signals. Moreover, increasing evidence points to off-target cellular effects of BAPTA that are clearly not related to Ca2+ chelation. Here, we briefly introduce Ca2+ signaling and the history of Ca2+ chelators and fluorescent Ca2+ indicators. We highlight Ca2+-independent effects of BAPTAi on a broad range of molecular targets and describe some of BAPTAi's impacts on cell functions that occur independently of its Ca2+-chelating properties. Finally, we propose strategies for determining whether Ca2+ chelation, the binding of other metal ions, or off-target interactions with cell components are responsible for BAPTAi's effect on a particular process and suggest some future research directions.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Martin D Bootman
- The Open University, Cancer Research Group, School of Life, Health and Chemical Sciences, Milton Keynes, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
30
|
Xu M, Zhang Z, Ling C, Jiao Y, Zhang X. Genome-Wide Identification of the IQM Gene Family and Their Transcriptional Responses to Abiotic Stresses in Kiwifruit ( Actinidia eriantha). Genes (Basel) 2024; 15:147. [PMID: 38397137 PMCID: PMC10887524 DOI: 10.3390/genes15020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
IQM is a plant-specific calcium-binding protein that plays a pivotal role in various aspects of plant growth response to stressors. We investigated the IQM gene family and its expression patterns under diverse abiotic stresses and conducted a comprehensive analysis and characterization of the AeIQMs, including protein structure, genomic location, phylogenetic relationships, gene expression profiles, salt tolerance, and expression patterns of this gene family under different abiotic stresses. Based on phylogenetic analysis, these 10 AeIQMs were classified into three distinct subfamilies (I-III). Analysis of the protein motifs revealed a considerable level of conservation among these AeIQM proteins within their respective subfamilies in kiwifruit. The genomic distribution of the 10 AeIQM genes spanned across eight chromosomes, where four pairs of IQM gene duplicates were associated with segmental duplication events. qRT-PCR analysis revealed diverse expression patterns of these AeIQM genes under different hormone treatments, and most AeIQMs showed inducibility by salt stress. Further investigations indicated that overexpression of AeIQMs in yeast significantly enhanced salt tolerance. These findings suggest that AeIQM genes might be involved in hormonal signal transduction and response to abiotic stress in Actinidia eriantha. In summary, this study provides valuable insights into the physiological functions of IQMs in kiwifruit.
Collapse
Affiliation(s)
- Minyan Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhi Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chengcheng Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Yuhuan Jiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xin Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
31
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
32
|
Hou J, Huang Z, Zeng W, Wu Z, Zhang L. Serum calcium is associated with sudden cardiac arrest in stroke patients from ICU: a multicenter retrospective study based on the eICU collaborative research database. Sci Rep 2024; 14:1700. [PMID: 38242966 PMCID: PMC10799080 DOI: 10.1038/s41598-023-51027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024] Open
Abstract
This primary objective of our study was to investigate the relationship between serum calcium levels and the occurrence of sudden cardiac arrest (SCA) in stroke patients. We analyzed the clinical data of 10,423 acute stroke patients admitted to the intensive care unit. The association between serum calcium and SCA following an acute stroke was assessed through multivariate logistic regression. We explored the non-linear connection between serum calcium levels and SCA in stroke patients using a generalized additive model and smooth curve fitting. Our study uncovered that serum calcium serves as an independent risk factor for sudden cardiac arrest in stroke patients. Notably, we observed that the relationship between serum calcium levels upon admission and the occurrence of SCA in stroke patients within the hospital was non-linear. Furthermore, we identified inflection points in serum calcium levels at 8.2 and 10.4 mg/dL. These findings emphasize a non-linear relationship between serum calcium levels and the risk of SCA in stroke patients. Maintaining serum calcium within the range of 8.2-10.4 mg/dL could lead to a significant reduction in the incidence of cardiac arrest among stroke patients.
Collapse
Affiliation(s)
- Jianfei Hou
- Department of Functional Examination, The First People's Hospital of Chenzhou, Chenzhou, 423001, China
| | - Zhenhua Huang
- Department of Emergency, Shenzhen Second People's Hospital Shenzhen, Shenzhen, 518035, China
| | - Wenfei Zeng
- Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zhanxing Wu
- Department of Emergency, Shenzhen Second People's Hospital Shenzhen, Shenzhen, 518035, China.
| | - Lingna Zhang
- Department of Functional Examination, The First People's Hospital of Chenzhou, Chenzhou, 423001, China.
| |
Collapse
|
33
|
Novikova IV, Grekhnev DA, Oshkolova A, Nomerovskaya MA, Kolesnikov DO, Krisanova AV, Yuskovets VN, Chernov NM, Yakovlev IP, Kaznacheyeva EV, Vigont VA. 1,2,3,4-dithiadiazole derivatives as a novel class of calcium signaling modulators. Biochem Biophys Res Commun 2024; 691:149333. [PMID: 38043197 DOI: 10.1016/j.bbrc.2023.149333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Aberrant calcium signaling is associated with a diverse range of pathologies, including cardiovascular and neurodegenerative diseases, diabetes, cancer, etc… So, therapeutic strategies based on the correction of pathological calcium signaling are becoming extremely in demand. Thus, the development of novel calcium signaling modulators remains highly actual. Previously we found that 1,2,3,4-dithiadiazole derivative 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide can strongly reduce calcium uptake through store-operated calcium (SOC) channels. Here we tested several structurally related compounds and found that most of them can effectively affect SOC channels and attenuate calcium content in the endoplasmic reticulum, thus, establishing 1,2,3,4-dithiadiazoles as a novel class of SOC channel inhibitors. Comparing different 1,2,3,4-dithiadiazole derivatives we showed that previously published 3-(4-nitrophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole-2-oxide and newly tested 3-(3,5-difluorophenyl)-5-phenyl-3H-1,2,3,4-dithiadiazole 2-oxide demonstrated the highest efficacy of SOC entry reduction, supposing the important role of electron-withdrawing substituents to realize the inhibitory activity of 1,2,3,4-dithiadiazoles.
Collapse
Affiliation(s)
- Iuliia V Novikova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Dmitriy A Grekhnev
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Arina Oshkolova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Maria A Nomerovskaya
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Dmitrii O Kolesnikov
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Alena V Krisanova
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Valeriy N Yuskovets
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Nikita M Chernov
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Igor P Yakovlev
- Organic Chemistry Department, Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov st. 14, Saint-Petersburg, 197376, Russian Federation
| | - Elena V Kaznacheyeva
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation
| | - Vladimir A Vigont
- Institute of Cytology RAS, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russian Federation.
| |
Collapse
|
34
|
Dilaver RG, Ikizler TA. Personalizing electrolytes in the dialysis prescription: what, why and how? Clin Kidney J 2024; 17:sfad210. [PMID: 38186873 PMCID: PMC10768751 DOI: 10.1093/ckj/sfad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 01/09/2024] Open
Abstract
Maintenance hemodialysis patients suffer from multiple comorbidities and treatment-related complications. A personalized approach to hemodialysis prescription could reduce some of these burdens by preventing complications such as excessive changes in blood pressure, arrhythmias, post-dialysis fatigue and decreased quality of life. A patient-centered approach to dialysate electrolyte concentrations represents one such opportunity. In addition to modifications in dialysate electrolyte concentrations, consideration of individual factors such as patients' serum concentrations, medication profiles, nutritional status and comorbidities is critical to tailoring hemodialysis prescriptions to optimize patient outcomes. The development of personalized dialysis treatment depends on the collection of comprehensive patient data, advances in technology, resource allocation and patient involvement in decision-making. This review discusses how the treatment of maintenance hemodialysis patients could benefit from individualized changes in certain dialysis fluid components.
Collapse
Affiliation(s)
- R Gulsah Dilaver
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T Alp Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Stéger A, Palmgren M. Hypothesis paper: the development of a regulatory layer in P2B autoinhibited Ca 2+-ATPases may have facilitated plant terrestrialization and animal multicellularization. PLANT SIGNALING & BEHAVIOR 2023; 18:2204284. [PMID: 37096591 PMCID: PMC10132250 DOI: 10.1080/15592324.2023.2204284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the appearance of plants and animals, new challenges emerged. These multicellular eukaryotes had to solve for example the difficulties of multifaceted communication between cells and adaptation to new habitats. In this paper, we are looking for one piece of the puzzle that made the development of complex multicellular eukaryotes possible with a focus on regulation of P2B autoinhibited Ca2+-ATPases. P2B ATPases pump Ca2+ out of the cytosol at the expense of ATP hydrolysis, and thereby maintain a steep gradient between the extra- and intracytosolic compartments which is utilized for Ca2+-mediated rapid cell signaling. The activity of these enzymes is regulated by a calmodulin (CaM)-responsive autoinhibitory region, which can be located in either termini of the protein, at the C-terminus in animals and at the N-terminus in plants. When the cytoplasmic Ca2+ level reaches a threshold, the CaM/Ca2+ complex binds to a calmodulin-binding domain (CaMBD) in the autoinhibitor, which leads to the upregulation of pump activity. In animals, protein activity is also controlled by acidic phospholipids that bind to a cytosolic portion of the pump. Here, we analyze the appearance of CaMBDs and the phospholipid-activating sequence and show that their evolution in animals and plants was independent. Furthermore, we hypothesize that different causes may have initiated the appearance of these regulatory layers: in animals, it is linked to the appearance of multicellularity, while in plants it co-occurs with their water-to-land transition.
Collapse
Affiliation(s)
- Anett Stéger
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- CONTACT Michael Palmgren Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, FrederiksbergDK-1871, Denmark
| |
Collapse
|
36
|
Gorniak L, Bechwar J, Westermann M, Steiniger F, Wegner CE. Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph. Microbiol Spectr 2023; 11:e0086723. [PMID: 37909735 PMCID: PMC10848612 DOI: 10.1128/spectrum.00867-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | | | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
37
|
Terrell K, Choi S, Choi S. Calcium's Role and Signaling in Aging Muscle, Cellular Senescence, and Mineral Interactions. Int J Mol Sci 2023; 24:17034. [PMID: 38069357 PMCID: PMC10706910 DOI: 10.3390/ijms242317034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Calcium research, since its pivotal discovery in the early 1800s through the heating of limestone, has led to the identification of its multi-functional roles. These include its functions as a reducing agent in chemical processes, structural properties in shells and bones, and significant role in cells relating to this review: cellular signaling. Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium's role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. Changes seen in calcium upon aging may also be influenced by its crosstalk with other minerals such as iron and zinc. This review investigates the role of calcium signaling in aging muscle and cellular senescence. We also aim to elucidate the interactions among calcium, iron, and zinc across various cells and conditions, ultimately deepening our understanding of calcium signaling in muscle aging.
Collapse
Affiliation(s)
| | | | - Sangyong Choi
- Department of Nutritional Sciences, College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
38
|
Yadav P, Panigrahi AR, Beura SK, Singh SK. Platelet-derived microvesicles induce intracellular calcium mobilization in human platelets. Cell Biol Int 2023; 47:1964-1975. [PMID: 37650361 DOI: 10.1002/cbin.12084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Platelet-derived microvesicles (PMVs) represent a significant proportion of microvesicles in circulation and have been linked to various pathophysiological complications. Recent research suggests that PMVs carry significant amounts of cargo that can affect cellular functions by influencing calcium oscillations in target cells. As calcium is involved in multiple cellular processes, including hemostasis and thrombosis, this study aimed to investigate the impact of PMVs on platelet calcium mobilization. The study found that PMVs increase platelet intracellular calcium levels via both intracellular storage and extracellular space in a dose-dependent manner. The study highlighted the critical role of the dense tubular system, acidic vacuoles, mitochondrial stores, and store-operated calcium entry (SOCE) in PMV-mediated calcium release in human platelets. Moreover, the study revealed that PMV-induced calcium rise in platelets does not occur via sarcoendoplasmic reticulum calcium ATPase, and extracellular calcium addition further increases the calcium level in platelets, demonstrating the involvement of SOCE. These findings provide insights into the platelet stimulation signaling mechanisms and contributes to our understanding of platelet and cell behavior when exposed to PMV-rich environments.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
39
|
Kscheschinski B, Kramar M, Alim K. Calcium regulates cortex contraction in Physarum polycephalum. Phys Biol 2023; 21:016001. [PMID: 37975194 DOI: 10.1088/1478-3975/ad0a9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The tubular network-forming slime moldPhysarum polycephalumis able to maintain long-scale contraction patterns driven by an actomyosin cortex. The resulting shuttle streaming in the network is crucial for the organism to respond to external stimuli and reorganize its body mass giving rise to complex behaviors. However, the chemical basis of the self-organized flow pattern is not fully understood. Here, we present ratiometric measurements of free intracellular calcium in simple morphologies ofPhysarumnetworks. The spatiotemporal patterns of the free calcium concentration reveal a nearly anti-correlated relation to the tube radius, suggesting that calcium is indeed a key regulator of the actomyosin activity. We compare the experimentally observed phase relation between the radius and the calcium concentration to the predictions of a theoretical model including calcium as an inhibitor. Numerical simulations of the model suggest that calcium indeed inhibits the contractions inPhysarum, although a quantitative difference to the experimentally measured phase relation remains. Unraveling the mechanism underlying the contraction patterns is a key step in gaining further insight into the principles ofPhysarum's complex behavior.
Collapse
Affiliation(s)
- Bjoern Kscheschinski
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Mirna Kramar
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Karen Alim
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
40
|
Leonetti P, Hanafy MS, Tayade R, Ramakrishnan M, Sonah H, Jacobsen HJ. Editorial: Leveraging genomics, phenomics, and plant biotechnology approaches for improving abiotic and biotic stress tolerance in cereals and legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1307390. [PMID: 38023923 PMCID: PMC10660271 DOI: 10.3389/fpls.2023.1307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Paola Leonetti
- Institute of Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Bari, Italy
| | - Moemen S. Hanafy
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muthusamy Ramakrishnan
- Bamboo Research Institute, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Hans- Joerg Jacobsen
- Institute of Plant Genetics, Section of Plant Biotechnology, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
41
|
Palmgren M. P-type ATPases: Many more enigmas left to solve. J Biol Chem 2023; 299:105352. [PMID: 37838176 PMCID: PMC10654040 DOI: 10.1016/j.jbc.2023.105352] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023] Open
Abstract
P-type ATPases constitute a large ancient super-family of primary active pumps that have diverse substrate specificities ranging from H+ to phospholipids. The significance of these enzymes in biology cannot be overstated. They are structurally related, and their catalytic cycles alternate between high- and low-affinity conformations that are induced by phosphorylation and dephosphorylation of a conserved aspartate residue. In the year 1988, all P-type sequences available by then were analyzed and five major families, P1 to P5, were identified. Since then, a large body of knowledge has accumulated concerning the structure, function, and physiological roles of members of these families, but only one additional family, P6 ATPases, has been identified. However, much is still left to be learned. For each family a few remaining enigmas are presented, with the intention that they will stimulate interest in continued research in the field. The review is by no way comprehensive and merely presents personal views with a focus on evolution.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
42
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
43
|
Lei Z, Wang H, Zhai Y, Sun M, Chen S, Yin P, Wang X. Insights into the mediation of Ca 2+ signaling in the promoting effects of LETX-VI on the synthesis and release of dopamine. J Cell Commun Signal 2023:10.1007/s12079-023-00783-6. [PMID: 37702818 DOI: 10.1007/s12079-023-00783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Latroeggtoxin-VI (LETX-VI) is an active protein and was previously demonstrated to have effects on the synthesis and release of dopamine. Hererin, the involvement of Ca2+ signaling in the effects of LETX-VI on dopamine was systematically investigated, using PC12 cells as a neuron model. LETX-VI was shown to promote dopamine release from PC12 cells both in the presence and absence of extracellular Ca2+; however the presence of extracellular Ca2+ was favorable for enhancing the promoting effects of LETX-VI on dopamine, because LETX-VI facilitated the influx of extracellular Ca2+ through the L-type calcium channels in plasma membrane (PM) to increase cytosolic Ca2+ concentration. LETX-VI was able to penetrate the PM of PC12 cells to act on the Ca2+ channel proteins IP3Rs and RyRs in the endoplasm reticulum (ER) membrane, opening the Ca2+ channels and promoting the release of ER Ca2+ to elevate cytosolic Ca2+ level. With the help of intracellular Ca2+ chelator BAPTA, the elevated cytosolic Ca2+ level was proven to play crucial role for the enhanced promoting effects of LETX-VI on dopamine. Taken together, LETX-VI is able to open the Ca2+ channels in both PM and ER membrane simultaneously to facilitate extracellular Ca2+ influx and ER Ca2+ release, and thus increases the cytosolic Ca2+ concentration to enhance the promoting effects on the synthesis and release of dopamine.
Collapse
Affiliation(s)
- Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
44
|
Silvestri R, Nicolì V, Gangadharannambiar P, Crea F, Bootman MD. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol 2023; 20:524-543. [PMID: 36964408 DOI: 10.1038/s41585-023-00738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/26/2023]
Abstract
Cancer cells proliferate, differentiate and migrate by repurposing physiological signalling mechanisms. In particular, altered calcium signalling is emerging as one of the most widespread adaptations in cancer cells. Remodelling of calcium signalling promotes the development of several malignancies, including prostate cancer. Gene expression data from in vitro, in vivo and bioinformatics studies using patient samples and xenografts have shown considerable changes in the expression of various components of the calcium signalling toolkit during the development of prostate cancer. Moreover, preclinical and clinical evidence suggests that altered calcium signalling is a crucial component of the molecular re-programming that drives prostate cancer progression. Evidence points to calcium signalling re-modelling, commonly involving crosstalk between calcium and other cellular signalling pathways, underpinning the onset and temporal progression of this disease. Discrete alterations in calcium signalling have been implicated in hormone-sensitive, castration-resistant and aggressive variant forms of prostate cancer. Hence, modulation of calcium signals and downstream effector molecules is a plausible therapeutic strategy for both early and late stages of prostate cancer. Based on this premise, clinical trials have been undertaken to establish the feasibility of targeting calcium signalling specifically for prostate cancer.
Collapse
Affiliation(s)
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Martin D Bootman
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
45
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
46
|
Asensio-Cob D, Rodríguez JM, Luque D. Rotavirus Particle Disassembly and Assembly In Vivo and In Vitro. Viruses 2023; 15:1750. [PMID: 37632092 PMCID: PMC10458742 DOI: 10.3390/v15081750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rotaviruses (RVs) are non-enveloped multilayered dsRNA viruses that are major etiologic agents of diarrheal disease in humans and in the young in a large number of animal species. The viral particle is composed of three different protein layers that enclose the segmented dsRNA genome and the transcriptional complexes. Each layer defines a unique subparticle that is associated with a different phase of the replication cycle. Thus, while single- and double-layered particles are associated with the intracellular processes of selective packaging, genome replication, and transcription, the viral machinery necessary for entry is located in the third layer. This modular nature of its particle allows rotaviruses to control its replication cycle by the disassembly and assembly of its structural proteins. In this review, we examine the significant advances in structural, molecular, and cellular RV biology that have contributed during the last few years to illuminating the intricate details of the RV particle disassembly and assembly processes.
Collapse
Affiliation(s)
- Dunia Asensio-Cob
- Department of Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G0A4, Canada;
| | - Javier M. Rodríguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Luque
- Electron Microscopy Unit UCCT/ISCIII, 28220 Majadahonda, Spain
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Mitroshina EV, Krivonosov MI, Pakhomov AM, Yarullina LE, Gavrish MS, Mishchenko TA, Yarkov RS, Vedunova MV. Unravelling the Collective Calcium Dynamics of Physiologically Aged Astrocytes under a Hypoxic State In Vitro. Int J Mol Sci 2023; 24:12286. [PMID: 37569663 PMCID: PMC10419080 DOI: 10.3390/ijms241512286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Astrocytes serve many functions in the brain related to maintaining nerve tissue homeostasis and regulating neuronal function, including synaptic transmission. It is assumed that astrocytes are crucial players in determining the physiological or pathological outcome of the brain aging process and the development of neurodegenerative diseases. Therefore, studies on the peculiarities of astrocyte physiology and interastrocytic signaling during aging are of utmost importance. Calcium waves are one of the main mechanisms of signal transmission between astrocytes, and in the present study we investigated the features of calcium dynamics in primary cultures of murine cortical astrocytes in physiological aging and hypoxia modeling in vitro. Specifically, we focused on the assessment of calcium network dynamics and the restructuring of the functional network architecture in primary astrocytic cultures. Calcium imaging was performed on days 21 ("young" astrocyte group) and 150 ("old" astrocyte group) of cultures' development in vitro. While the number of active cells and frequency of calcium events were decreased, we observed a reduced degree of correlation in calcium dynamics between neighboring cells, which was accompanied by a reduced number of functionally connected cells with fewer and slower signaling events. At the same time, an increase in the mRNA expression of anti-apoptotic factor Bcl-2 and connexin 43 was observed in "old" astrocytic cultures, which can be considered as a compensatory response of cells with a decreased level of intercellular communication. A hypoxic episode aggravates the depression of the connectivity of calcium dynamics of "young" astrocytes rather than that of "old" ones.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Mikhail I. Krivonosov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Alexander M. Pakhomov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 603950 Nizhny Novgorod, Russia
| | - Laysan E. Yarullina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria S. Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Roman S. Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia; (E.V.M.); (A.M.P.); (L.E.Y.); (M.S.G.); (T.A.M.); (R.S.Y.)
| |
Collapse
|
48
|
Saldanha O, Schiller L, Hauser K. Calcium-induced compaction and clustering of vesicles tracked with molecular resolution. Biophys J 2023; 122:2646-2654. [PMID: 37218132 PMCID: PMC10397570 DOI: 10.1016/j.bpj.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Theory and simulations predict the complex nature of calcium interaction with the lipid membrane. By maintaining the calcium concentrations at physiological conditions, herein we demonstrate experimentally the effect of Ca2+ in a minimalistic cell-like model. For this purpose, giant unilamellar vesicles (GUVs) with a neutral lipid DOPC are generated, and the ion-lipid interaction is observed with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy providing molecular resolution. Firstly, Ca2+ encapsulated within the vesicle binds to the phosphate head groups of the inner leaflets and triggers vesicle compaction. This is tracked by changes in vibrational modes of the lipid groups. As the calcium concentration within the GUV increases, IR intensities change indicating vesicle dehydration and lateral compression of the membrane. Secondly, by inducing a calcium gradient across the membrane up to a ratio of 1:20, interaction between several vesicles occurs as Ca2+ can bind to the outer leaflets leading to vesicle clustering. It is observed that larger calcium gradients induce stronger interactions. These findings with an exemplary biomimetic model reveal that divalent calcium ions not only cause local changes to the lipid packing but also have macroscopic implications to initiate vesicle-vesicle interaction.
Collapse
Affiliation(s)
- Oliva Saldanha
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Laura Schiller
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
49
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Abstract
Ligands of the Hedgehog (HH) pathway are paracrine signaling molecules that coordinate tissue development in metazoans. A remarkable feature of HH signaling is the repeated use of cholesterol in steps spanning ligand biogenesis, secretion, dispersal, and reception on target cells. A cholesterol molecule covalently attached to HH ligands is used as a molecular baton by transfer proteins to guide their secretion, spread, and reception. On target cells, a signaling circuit composed of a cholesterol transporter and sensor regulates transmission of HH signals across the plasma membrane to the cytoplasm. The repeated use of cholesterol in signaling supports the view that the HH pathway likely evolved by coopting ancient systems to regulate the abundance or organization of sterol-like lipids in membranes.
Collapse
Affiliation(s)
- Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom;
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|