1
|
Sha S, Liu Y, Xie W, Li H, Jing Z, Yin Q, Liu S, Zhao H, Liu W. CREG1 alleviates bone loss in osteoporosis by enhancing the osteogenic differentiation of BMSCs through mitophagy. Int Immunopharmacol 2025; 158:114867. [PMID: 40378431 DOI: 10.1016/j.intimp.2025.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/23/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
The pathological process of osteoporosis involves accelerated bone resorption and a decline in bone formation, among which the disruption of the balance between adipogenic and osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) is a crucial part. Cellular repressor of E1A-stimulated genes 1 (CREG1), a small glycoprotein, is mainly localized to the endosomal-lysosomal compartment and is associated with the regulation of mitophagy and cell differentiation. However, its roles in BMSCs osteogenic differentiation and skeletal degenerative disorders, including osteoporosis, are poorly understood. We previously identified CREG1 as being highly expressed in the bone marrow through database analysis and found that its expression increased in the process of BMSCs osteogenic differentiation. In the present study, we demonstrated that the expression of CREG1 was reduced in osteoporosis patients and animal models, and the overexpression of CREG1 contributed to higher bone mass compared with ovariectomy (OVX)-induced bone loss models. Further research revealed that the knockdown of CREG1 inhibited the osteogenic differentiation of BMSCs, while CREG1 overexpression promoted this process. Additionally, we found that CREG1 overexpression was accompanied by an increase in mitophagy levels, and the osteogenic differentiation induced by this overexpression was blocked when mitophagy was inhibited, indicating that CREG1 promoted osteogenic differentiation through inducing mitophagy. Therefore, our findings demonstrated that CREG1 is involved in regulating the osteogenic differentiation of BMSCs, thereby providing new therapeutic targets and pathways for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shiyu Sha
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Yi Liu
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Weiping Xie
- Department of Rehabilitation Medicine, People's Hospital of Dingtao District, Heze, Shandong 274100, People's Republic of China
| | - Haoling Li
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Zhaocheng Jing
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Qingfeng Yin
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Shenghou Liu
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Heng Zhao
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China
| | - Wenguang Liu
- Department of Joint Surgery/Sports Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, People's Republic of China.
| |
Collapse
|
2
|
Khanal V, Carroll M, Carter J, Zhong Y, Chikkamagaluru S, Sato A, Allen R, Wankhade U, Dole N. Lipocalin-2 Regulates Osteocyte Ferroptosis and Osteocyte-Osteoblast Crosstalk via Wnt Signaling to Control Bone Formation. RESEARCH SQUARE 2025:rs.3.rs-6430607. [PMID: 40343339 PMCID: PMC12060985 DOI: 10.21203/rs.3.rs-6430607/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Osteoporosis is a multifactorial disease, and emerging evidence suggests that iron overload contributes to its progression. Here, we identify Lipocalin-2 (LCN2), a cytokine secreted by bone cells with endocrine effects on other tissues, as a local regulator of osteocyte iron metabolism and a mediator of skeletal deterioration. Our findings reveal that LCN2 promotes iron accumulation, mitochondrial dysfunction, and ferroptosis in osteocytes in a process dependent on LCN2 receptor SLC22A17. Genetic ablation of Lcn2 (Dmp1-Cre; Lcn2 fl/fl ) in osteocytes mitigates their ferroptotic vulnerability by preserving mitochondrial integrity and limiting iron overload. Remarkably, LCN2 deletion enhances osteocyte dendricity and lacunocanalicular network, supporting their function in bone remodeling. Mechanistically, we demonstrate that Lcn2 ablation in osteocytes decreases DKK1 and SOST expression in bone, leading to increased Wnt/β-catenin signaling and osteoblast-driven bone formation. Using in vitro and in vivo approaches, we establish the LCN2-SLC22A17 axis as a key pathway linking iron homeostasis, osteocyte dysfunction, and skeletal remodeling. These findings provide insight into a previously unrecognized mechanism underlying iron-driven bone loss and suggest that targeting LCN2 could offer therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
| | | | | | - Ying Zhong
- University of Arkansas for Medical Sciences
| | | | - Amy Sato
- University of Arkansas for Medical Sciences
| | - Ryan Allen
- University of Arkansas for Medical Sciences
| | | | - Neha Dole
- University of Arkansas for Medical Sciences
| |
Collapse
|
3
|
Zhang J, Li W, Liu Y, Zheng J, Liu G, He M, Zheng Z, Zhu M, Cho N, Liang G, Han X, Ying H, Shi Q. OTUD1 delays wound healing by regulating endothelial function and angiogenesis in diabetic mice. J Adv Res 2025:S2090-1232(25)00282-6. [PMID: 40300668 DOI: 10.1016/j.jare.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025] Open
Abstract
INTRODUCTION Diabetic non-healing wounds represent a major complication of diabetes, primarily due to impaired angiogenesis. Ovarian tumor deubiquitinase 1 (OTUD1), a deubiquitinase, has been implicated in vascular pathophysiology; however, its role in endothelial dysfunction and angiogenesis during diabetic wound healing is still poorly understood. OBJECTIVES This study explores whether OTUD1 influences angiogenesis and its underlying mechanisms. METHODS We developed OTUD1 knockout mice and induced type 1 and type 2 diabetes mellitus (T1DM and T2DM) by administering streptozotocin (STZ) alone or in combination with a high-fat diet (HFD), respectively. Human umbilical vein endothelial cells (HUVECs) incubated with high glucose and palmitic acid (HG + PA) were utilized to imitate hyperglycemia-induced endothelial dysfunction in vitro. Mass spectrometry combined with immunoprecipitation analysis was used to analyze the interacting proteins of OTUD1. Moreover, we developed endothelial-specific OTUD1 knockdown db/db mice using an adeno-associated virus serotype 2/BI30 (AAV2/BI30) vector. RESULTS Increased OTUD1 expressions were observed both in diabetic wound tissues and in HUVECs treated with HG + PA. OTUD1 deficiency promoted angiogenesis and fibrosis in wound tissues of T1DM and T2DM mice and alleviated HG + PA-induced endothelial migration inhibition, tube formation impairment, and oxidative stress in HUVECs. Mechanistically, OTUD1 directly interacted with β-catenin, reducing its K63-linked ubiquitination at residues K496, K508, and K625 via its catalytic site C320. This modification facilitated β-catenin phosphorylation, restricted its nuclear translocation, and downregulated the expression of angiogenesis-related factors. Finally, pharmacological inhibition of β-catenin reversed the improvement of delayed wound healing induced by OTUD1 knockdown in db/db mice. CONCLUSION These findings elucidate the OTUD1-β-catenin pathway's role in endothelial dysfunction-associated angiogenesis and suggest OTUD1 as a promising therapeutic target for diabetic non-healing wounds.
Collapse
Affiliation(s)
- Jiajia Zhang
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Weiqi Li
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Yanan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Jianing Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Guoxuan Liu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Mingyang He
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Zehang Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Majun Zhu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China.
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
4
|
Naidu P, Das M, Hansda S, Prateeksha P, Howlader MSI, Siraj MA, Das H. Mechanisms of Ellagic Acid (EA)-Mediated Osteogenic Differentiation of Human Dental Pulp-Derived Stem Cells. ACS OMEGA 2025; 10:15229-15242. [PMID: 40290905 PMCID: PMC12019503 DOI: 10.1021/acsomega.4c10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025]
Abstract
Ellagic acid (EA) is a potent antioxidant that reduces oxidative stress and promotes differentiation. By lowering the harmful levels of reactive oxygen species (ROS), EA fosters an environment conducive to the osteoblastic differentiation (OB) of stem cells. In addition, it promotes autophagy and mitophagy, which are vital for promoting differentiation. Effective autophagic activity recycles damaged organelles and proteins, meeting the energy required during differentiation and shielding from apoptosis. However, molecular mechanisms underlying the osteogenic differentiation of mesenchymal stem cells remain inadequately explored. Therefore, the current study aims to define the regulatory role of EA during the OB of dental pulp-derived stem cells (DPSC) and to study how autophagy and mitophagy are being modulated during this differentiation process. Herein, we showed that the expression level of osteoblast-specific markers, autophagy, and mitophagy-associated markers was significantly elevated during EA-mediated OB differentiation of DPSC. Moreover, we found that the EA induced the osteoblastic-specific markers through canonical BMP2 pathway molecules, reduced ROS in both basal and activated states, and induced autophagy and mitophagy molecules along with enhanced mitochondrial functions. Cell cycle analysis revealed that the G1 phase was arrested via phosphorylation of γ-H2AX, ATM, and CHK2 proteins. Furthermore, in silico analysis revealed that EA strongly binds with osteonectin, a crucial noncollagen protein involved in bone remodeling, and confirmed by Western blot analysis. These results support that EA could be a promising natural compound for bone repair and regeneration applications.
Collapse
Affiliation(s)
- Prathyusha Naidu
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Manjusri Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Surajit Hansda
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Prateeksha Prateeksha
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Sariful Islam Howlader
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Md Afjalus Siraj
- Department
of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Hiranmoy Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| |
Collapse
|
5
|
Jiang J, Li D, Cui D, Wan Y, Zhou P, Cui X, Yu H. Identification of a Novel Mitochondrial-Related Gene Signature for BMSCs in Osteoporosis Combining Single-Cell and Bulk Transcriptome Data. Biochem Genet 2025:10.1007/s10528-025-11099-y. [PMID: 40221950 DOI: 10.1007/s10528-025-11099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
Osteoporosis (OS) is a prevalent skeletal disorder characterized by reduced bone mass and increased fracture risk, often linked to compromised functions of bone mesenchymal stem cells (BMSCs). Mitochondrial dysfunction and aberrant mitophagy are implicated in OS pathogenesis. This study aimed to identify a novel mitochondrial-related gene signature in BMSCs from OS patients by integrating single-cell and bulk transcriptome data. We analyzed single-cell RNA sequencing data from GSE147287 and bulk transcriptome data from GSE35956 to identify differentially expressed mitochondrial-related genes (MRGs) in BMSCs between healthy individuals and OS patients. Key genes were identified using LASSO logistic regression and random forest algorithms, and their differential expression was validated by RT-qPCR, Western blot, and immunofluorescence. Functional assays, including osteogenic differentiation and β-galactosidase staining, were conducted following siRNA-mediated knockdown of DUT. We identified 28 differentially expressed MRGs, with four key genes (DUT, UQCR10, DNAJC4, and MRPL33) further confirmed. Electron microscopy scanning showed damage to BMSCs mitochondria and decreased osteogenic differentiation ability in OS. Silencing DUT significantly impairs the mitochondrial function and osteogenic differentiation ability of BMSCs, indicating its potential role in OS development. This study identifies a mitochondrial gene signature in BMSCs linked to osteoporosis, with DUT emerging as a key regulator. DUT silencing impairs mitochondrial function and osteogenic differentiation, suggesting it as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Jishi Jiang
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Dan Li
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Di Cui
- Fuyang Medical College, Fuyang Normal University, Fuyang, Anhui, China
| | - Yunpeng Wan
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China
| | - Pinghui Zhou
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu University College, Bengbu, Anhui, China.
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| | - Haiyang Yu
- Department of Orthopedics, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, Fuyang, Anhui, China.
| |
Collapse
|
6
|
Zheng S, Sun X, Chen K, Zhang M, Zou C, Wang L, Guo Z, Jin Z, Ma Z, Li G, Wu G. Metal-Phenolic Modified Coaxial Electrospun Biomembrane Combined with the Photothermal Effect Enhances Bone Regeneration by Ameliorating Oxidative Stress and Mitochondrial Dysfunction via the PI3K/Akt Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15019-15034. [PMID: 40016904 DOI: 10.1021/acsami.4c21265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Critical-sized bone defect regeneration remains a significant clinical challenge due to the complex cascade of biological processes involved. To address this, we developed a sophisticated hierarchical biomembrane (PCS@MPN10) designed to modulate the osteogenic microenvironment. Using coaxial electrospinning, we fabricated a core-shell structure with polylactic acid (PLA) as the membrane base, incorporating simvastatin in the core and chitosan in the shell. The membrane surface was further modified with a tannic acid-iron metal-polyphenol network coating. Our results demonstrated that the biomembrane exhibits excellent biocompatibility, photothermal properties, and significant antibacterial activity. Additionally, the membrane regulates the microenvironment by promoting M1-to-M2 macrophage polarization, showing strong osteogenic potential both in vitro and in vivo. Furthermore, PCS@MPN10+NIR modulates mitochondrial function through the PI3K-AKT pathway, clears mitochondrial reactive oxygen species (ROS), and alleviates cellular oxidative stress, thereby enhancing bone regeneration. Overall, these findings suggest that this biomembrane holds great promise as a strategy for improving bone regeneration in critical-sized defects.
Collapse
Affiliation(s)
- Shikang Zheng
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Sun
- Department of Orthodontics, Hospital of Stomatology, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Kai Chen
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Mingjun Zhang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Chentong Zou
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Lin Wang
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Zhipeng Guo
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518172, P. R. China
| | - Zhaoyi Jin
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Ziyi Ma
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guanyu Li
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| | - Guomin Wu
- Department of Oral, Plastic, and Aesthetic Surgery, The Bethune Hospital of Stomatology, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
7
|
Chen X, Huang X, Zhang X, Chen Z. Metabolism-epigenetic interaction-based bone and dental regeneration: From impacts and mechanisms to treatment potential. Bone 2025; 192:117382. [PMID: 39730093 DOI: 10.1016/j.bone.2024.117382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Metabolic pathways exhibit fluctuating activities during bone and dental loss and defects, suggesting a regulated metabolic plasticity. Skeletal remodeling is an energy-demanding process related to altered metabolic activities. These metabolic changes are frequently associated with epigenetic modifications, including variations in the expression or activity of enzymes modified through epigenetic mechanisms, which directly or indirectly impact cellular metabolism. Metabolic reprogramming driven by bone and dental conditions alters the epigenetic landscape by modulating the activities of DNA and histone modification enzymes at the metabolite level. Epigenetic mechanisms modulate the expression of metabolic genes, consequently influencing the metabolome. The interplay between epigenetics and metabolomics is crucial in maintaining bone and dental homeostasis by preserving cell proliferation and pluripotency. This review, therefore, aims to examine the effects of metabolic reprogramming in bone and dental-related cells on the regulation of epigenetic modifications, particularly acetylation, methylation, and lactylation. We also discuss the effects of chromatin-modifying enzymes on metabolism and the potential therapeutic benefits of dietary compounds as epigenetic modulators. In this review, we highlight the inconsistencies in current research findings and suggest potential approaches to translate fundamental insights into clinical treatments for bone and tooth diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyuan Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiatong Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Centre for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Centre of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
8
|
Bai Y, Wu Z, Leary SC, Fang C, Yu M, Genth H, Xie Y, Shi J, Xiang J. Focal Adhesion Kinase Alleviates Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation by Activating Transcriptional Wnt/β-Catenin-BMP2-COL1 and Metabolic SIRT1-PGC-1α-CPT1A Pathways. Int J Mol Sci 2025; 26:1669. [PMID: 40004131 PMCID: PMC11855299 DOI: 10.3390/ijms26041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The metabolic poise, or balance, between glycolysis and fatty acid oxidation (FAO) has recently been found to play a critical role in osteogenic differentiation and homeostasis. While simulated microgravity (SMG) is known to impede osteoblast differentiation (OBD) by inhibiting the Wnt/β-catenin pathway, how it affects osteoblast metabolism in this context remains unclear. We previously analyzed the effect of SMG on the differentiation of pre-osteoblast MC3T3-E1 cells and found that it reduced focal adhesion kinase (FAK) activity. This, in turn, downregulated Wnt/β-catenin and two of its downstream targets critical for OBD bone morphogenic protein-2 (BMP2) and type-1 collagen (COL1) formation, leading to a reduction in alkaline phosphatase (ALP) activity and cell matrix mineralization. In this study, we further analyzed how SMG-induced alterations in energy metabolism contribute to the inhibition of OBD in MC3T3-E1 cells. Consistent with our earlier findings, we demonstrated that SMG inhibits OBD by downregulating the collective activity of FAK and the Wnt/β-catenin-BMP2-COL1 transcriptional pathway. Interestingly, we observed that SMG also reduces the abundance of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and carnitine palmitoyl transferase-1α (CPT1A), which are all key metabolic factors regulating mitochondrial number and FAO capacity. Accordingly, we found that the mitochondrial content and FAO potential of MC3T3-E1 cells were lower upon exposure to SMG but were both rescued upon administration of the FAK activator cytotoxic necrotizing factor-1 (CNF1), thereby allowing cells to overcome SMG-induced inhibition of OBD. Taken together, our study indicates that the metabolic regulator SIRT1 may be a new target for reversing SMG-induced bone loss.
Collapse
Affiliation(s)
- Yiling Bai
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Zhaojia Wu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Chen Fang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Michelle Yu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Harald Genth
- Institute of Toxicology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Yufeng Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Jinhui Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4, Canada; (Y.B.); (Z.W.); (C.F.); (M.Y.)
- Department of Oncology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
9
|
Catheline SE, Smith CO, McArthur M, Yu C, Brookes PS, Eliseev RA. Energy metabolism in osteoprogenitors and osteoblasts: Role of the pentose phosphate pathway. J Biol Chem 2025; 301:108016. [PMID: 39608710 PMCID: PMC11721538 DOI: 10.1016/j.jbc.2024.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
Bioenergetic preferences of osteolineage cells, including osteoprogenitors and osteoblasts (OBs), are a matter of intense debate. Early studies pointed to OB reliance on glucose and aerobic glycolysis while more recent works indicated the importance of glutamine as a mitochondrial fuel. Aiming to clarify this issue, we performed metabolic tracing of 13C-labeled glucose and glutamine in human osteolineage cells: bone marrow stromal (a.k.a. mesenchymal stem) cells and bone marrow stromal cell-derived OBs. Glucose tracing showed noncanonical direction of glucose metabolism with high labeling of early glycolytic steps and the pentose phosphate pathway (PPP) but very low labeling of late glycolytic steps and the Krebs cycle. Labeling of Krebs cycle and late steps of glycolysis was primarily from glutamine. These data suggest that in osteolineage cells, glucose is metabolized primarily via the PPP while glutamine is metabolized in the mitochondria, also feeding into the late steps of glycolysis likely via the malate-aspartate shuttle. This metabolic setup did not change after induction of differentiation. To evaluate the importance of this setup for osteolineage cells, we used the inhibitors of either PPP or malate-aspartate shuttle and observed a significant reduction in both cell growth and ability to differentiate. In sum, we observed a distinct metabolic wiring in osteolineage cells with high flux of glucose through the PPP and glutamine flux fueling both mitochondria and late steps of glycolysis. This wiring likely reflects their unique capacity to rapidly proliferate and produce extracellular matrix, e.g., after bone fracture.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Matthew McArthur
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Chen Yu
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, New York, USA; Department of Pathology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
10
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
11
|
Li J, Zhang X, Peng ZX, Chen JH, Liang JH, Ke LQ, Huang D, Cheng WX, Lin S, Li G, Hou R, Zhong WZ, Lin ZJ, Qin L, Chen GQ, Zhang P. Metabolically activated energetic materials mediate cellular anabolism for bone regeneration. Trends Biotechnol 2024; 42:1745-1776. [PMID: 39237385 DOI: 10.1016/j.tibtech.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation. Additionally, it raises citrate levels in the tricarboxylic acid (TCA) cycle, facilitating the synthesis of citrate-containing apatite during hBMSCs osteogenesis. Furthermore, 3HB administration significantly increased bone mass in rats with osteoporosis induced by ovariectomy. The findings also showed that P(3HB-co-4HB) scaffold substantially enhances long-term vascularized bone regeneration in rat cranial defect models. These findings reveal a previously unknown role of 3HB in promoting osteogenesis of hBMSCs and highlight the metabolic activation of P(3HB-co-4HB) scaffold for bone regeneration.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| | - Xu Zhang
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Zi-Xin Peng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hai Chen
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian-Hui Liang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li-Qing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Dan Huang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wen-Xiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Sien Lin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gang Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Rui Hou
- Nam Yue Natural Medicine Co., Ltd., Macau, China
| | | | - Zheng-Jie Lin
- Department of Stomatology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, 518067, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Guo-Qiang Chen
- School of Life Sciences, Center of Synthetic and Systems Biology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Pei L, Yao Z, Liang D, Yang K, Tao L. Mitochondria in skeletal system-related diseases. Biomed Pharmacother 2024; 181:117505. [PMID: 39499974 DOI: 10.1016/j.biopha.2024.117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Skeletal system-related diseases, such as osteoporosis, arthritis, osteosarcoma and sarcopenia, are becoming major public health concerns. These diseases are characterized by insidious progression, which seriously threatens patients' health and quality of life. Early diagnosis and prevention in high-risk populations can effectively prevent the deterioration of these patients. Mitochondria are essential organelles for maintaining the physiological activity of the skeletal system. Mitochondrial functions include contributing to the energy supply, modulating the Ca2+ concentration, maintaining redox balance and resisting the inflammatory response. They participate in the regulation of cellular behaviors and the responses of osteoblasts, osteoclasts, chondrocytes and myocytes to external stimuli. In this review, we describe the pathogenesis of skeletal system diseases, focusing on mitochondrial function. In addition to osteosarcoma, a characteristic of which is active mitochondrial metabolism, mitochondrial damage occurs during the development of other diseases. Impairment of mitochondria leads to an imbalance in osteogenesis and osteoclastogenesis in osteoporosis, cartilage degeneration and inflammatory infiltration in arthritis, and muscle atrophy and excitationcontraction coupling blockade in sarcopenia. Overactive mitochondrial metabolism promotes the proliferation and migration of osteosarcoma cells. The copy number of mitochondrial DNA and mitochondria-derived peptides can be potential biomarkers for the diagnosis of these disorders. High-risk factor detection combined with mitochondrial component detection contributes to the early detection of these diseases. Targeted mitochondrial intervention is an effective method for treating these patients. We analyzed skeletal system-related diseases from the perspective of mitochondria and provided new insights for their diagnosis, prevention and treatment by demonstrating the relationship between mitochondria and the skeletal system.
Collapse
Affiliation(s)
- Liang Pei
- Department of Pediatrics, Shengjing Hospital of China Medical University, China
| | - Zhuo Yao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Dong Liang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China..
| |
Collapse
|
13
|
Sautchuk R, Martinez J, Catheline SE, Eliseev RA. Cyclophilin D, regulator of the mitochondrial permeability transition, impacts bone development and fracture repair. Bone 2024; 189:117258. [PMID: 39299628 PMCID: PMC11924584 DOI: 10.1016/j.bone.2024.117258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Mitochondrial Permeability Transition Pore (MPTP) and its key positive regulator, Cyclophilin D (CypD), control activity of cell oxidative metabolism important for differentiation of stem cells of various lineages including osteogenic lineage. Our previous work (Sautchuk et al., 2022) showed that CypD gene, Ppif, is transcriptionally repressed during osteogenic differentiation by regulatory Smad transcription factors in BMP canonical pathway, a major driver of osteoblast (OB) differentiation. Such a repression favors closure of the MPTP, priming OBs to higher usage of mitochondrial oxidative metabolism. The physiological role of CypD/MPTP regulation was demonstrated by its inverse correlation with BMP signaling in aging and bone fracture healing in addition to the negative effect of CypD gain-of-function (GOF) on bone maintenance. Here we show evidence that CypD GOF also negatively affects bone development and growth as well as fracture healing in adult mice. Developing craniofacial and long bones presented with delayed ossification and decreased growth rate, respectively, whereas in fracture, bony callus volume was diminished. Given that Genome Wide Association Studies showed that PPIF locus is associated with both body height and bone mineral density, our new data provide functional evidence for the role of PPIF gene product, CypD, and thus MPTP in bone growth and repair.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - John Martinez
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | - Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14624, USA; Department of Pharmacology & Physiology, University of Rochester, Rochester, NY 14624, USA; Department of Pathology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
14
|
Ma S, Lin J, Yang M, Wang J, Lu L, Liang Y, Yang Y, Liu Y, Wang D, Yang Y. Zhuangyao Jianshen Wan ameliorates senile osteoporosis in SAMP6 mice through Modulation of the GCN5L1-mediated PI3K/Akt/wnt signaling pathway. J Orthop Translat 2024; 49:308-324. [PMID: 39568803 PMCID: PMC11576941 DOI: 10.1016/j.jot.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 11/22/2024] Open
Abstract
Background Senile osteoporosis (SOP) is a systemic bone disease characterized by increased susceptibility to fractures. However, there is currently no effective treatment for SOP. The Zhuangyao Jianshen Wan (ZYJSW) pill is traditionally believed to possess kidney-nourishing and bone-strengthening effects, demonstrating efficacy in treating fractures. Despite this, its effectiveness and mechanism in SOP remain unclear. This study aims to investigate the therapeutic potential of ZYJSW in treating SOP in senescence accelerated mouse prone 6 (SAMP6, P6) mice, and elucidate the underlying mechanisms. Methods Four-month-old SAMP6 mice were categorized into six groups: the model group (SAMP6), low, medium, and high-dose ZYJSW treatment groups, calcitriol treatment (positive control 1) group, and metformin treatment (positive control 2) group. Gastric administration was carried out for 15 weeks, and a normal control group comprising four-month-old Senescence-Accelerated Mouse Resistant 1 (SAMR1) mice. Changes in body weight, liver and kidney function, bone protective effects, and muscle quality were evaluated using various assays, including H&E staining, Goldner staining, bone tissue morphology analysis, Micro-CT imaging, and biomechanical testing. Qualitative analysis and quality control of ZYJSW were performed via LC-MS/MS analysis. To explore mechanisms, network pharmacology and proteomics were employed, and the identified proteins were validated by Western blotting. Results Oral administration of ZYJSW to P6 mice exerted preventive efficacy against osteopenia, impaired bone microstructure, and poor bone and muscle quality. ZYJSW attenuated the imbalance in bone metabolism by promoting bone formation, as evidenced by the upregulation of key factors such as Runt-related transcription factor 2 (RUNX2), Bone Morphogenetic Protein (BMP2), Osteoprotegerin (OPG) and Osteocalcin (OCN), while simultaneously inhibiting bone resorption through the downregulation of TNF receptor associated factor 6 (TRAF6), Tartrate resistant acid phosphatase (TRAP), Receptor activator for nuclear factor-κB ligand (RANKL) and Cathepsin K (CTSK). Additionally, ZYJSW enhanced muscle structure and function by counteracting the elevation of Ubiquitin (Ub), Muscle RING-finger protein-1 (Murf-1), F-Box Protein 32 (FBOX32), and Myogenin (Myog). Network pharmacology predictions, proteomics analysis corroborated by published literature demonstrated the role of ZYJSW involving in safeguarding mitochondrial biogenesis. This was achieved by suppressing GCN5L1 expression, contributing to the heightened expression of TFAM, PGC-1α, and nuclear respiratory factor-1 (NRF-1) proteins. ZYJSW also positively modulated Wnt signaling pathways responsible for bone formation, due to regulating expressions of key components like β-catenin, GSK-3β, and LRP5. In addition, ZYJSW causes the downregulation of the PI3K/Akt pathway by inhibiting the phosphorylation of both PI3K and Akt. Conclusions The study highlights the significance of ZYJSW in preserving the health of both bone and muscle in P6 mice, potentially through the regulation of the GCN5L1-mediated PI3K/Akt/Wnt signaling pathway. The translational potential of this article Our research provides evidence and a mechanistic rationale for ZYJSW as a candidate for SOP treatment, offering insights for further exploration and strategy development.
Collapse
Affiliation(s)
- Shaoyong Ma
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jian Lin
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Meng Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - JiaJia Wang
- School of Traditional Chinese Medicine, Zhanjiang University of Science and Technology, Zhanjiang 524094, Guangdong, China
| | - Lujiao Lu
- Affiliated Hospital, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ying Liang
- School of Women and Children's Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yan Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524037, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Yajun Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
15
|
Lu F, Zhang S, Dong S, Wang M, Pang K, Zhao Y, Huang J, Kang J, Liu N, Zhang X, Zhao D, Lu F, Zhang W. Exogenous hydrogen sulfide enhances myogenic differentiation of C2C12 myoblasts under high palmitate stress. Heliyon 2024; 10:e38661. [PMID: 39416846 PMCID: PMC11481675 DOI: 10.1016/j.heliyon.2024.e38661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Skeletal muscle atrophy was one of main complications of type 2 diabetes mellitus. Hydrogen sulfide (H2S) is involved in various physiological functions, such as anti-hypertension and anti-oxidant. Skeletal muscle atrophy caused by type 2 diabetes could lead to the regeneration of muscle fibers. Wnt signaling pathway plays a crucial important role in this process. H2S maybe regulate the Wnt signaling pathway to alleviate skeletal muscle atrophy, however, this role has not been clarified. The aim of this study is to investigate the potential regulatory role of H2S in the Wnt signaling pathway. C2C12 myoblasts treated with 500 μmol palmitate as an in vitro model. Western blot was used to detect the levels of CSE, PKM1, β-catenin, MuRF1, MYOG, MYF6 and MYOD1. In addition, MuRF1 was mutated at Cys44 and MuRF1 S-sulfhydration was detected by biotin switch assay. The interaction between PKM1 and MuRF1 was assessed via Co-immunoprecipitation. Differentiation of C2C12 myoblasts was evaluated using LAMININ staining. These data showed the levels of CSE, β-catenin, PKM1, MYOG, MYF6 and MYOD1 were decreased in pal group, compared with control and pal + NaHS groups. MuRF1 Cys44 mutants increased the protein levels of β-catenin, MYOG, MYF6 and MYOD1 in pal group. Our results suggest that H2S regulates the S-sulfhydration levels of MuRF1 at Cys44, influencing the ubiquitination levels of PKM1 and ultimately promoting myoblast differentiation.
Collapse
Affiliation(s)
- Fangping Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, China
| | - Shiwu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengyi Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Kemiao Pang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiayi Huang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jiaxin Kang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Xueya Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Dechao Zhao
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Zhang W, Bai Y, Hao L, Zhao Y, Zhang L, Ding W, Qi Y, Xu Q. One-carbon metabolism supports S-adenosylmethionine and m6A methylation to control the osteogenesis of bone marrow stem cells and bone formation. J Bone Miner Res 2024; 39:1356-1370. [PMID: 39126376 DOI: 10.1093/jbmr/zjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/25/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
The skeleton is a metabolically active organ undergoing continuous remodeling initiated by bone marrow stem cells (BMSCs). Recent research has demonstrated that BMSCs adapt the metabolic pathways to drive the osteogenic differentiation and bone formation, but the mechanism involved remains largely elusive. Here, using a comprehensive targeted metabolome and transcriptome profiling, we revealed that one-carbon metabolism was promoted following osteogenic induction of BMSCs. Methotrexate (MTX), an inhibitor of one-carbon metabolism that blocks S-adenosylmethionine (SAM) generation, led to decreased N6-methyladenosine (m6A) methylation level and inhibited osteogenic capacity. Increasing intracellular SAM generation through betaine addition rescued the suppressed m6A content and osteogenesis in MTX-treated cells. Using S-adenosylhomocysteine (SAH) to inhibit the m6A level, the osteogenic activity of BMSCs was consequently impeded. We also demonstrated that the pro-osteogenic effect of m6A methylation mediated by one-carbon metabolism could be attributed to HIF-1α and glycolysis pathway. This was supported by the findings that dimethyloxalyl glycine rescued the osteogenic potential in MTX-treated and SAH-treated cells by upregulating HIF-1α and key glycolytic enzymes expression. Importantly, betaine supplementation attenuated MTX-induced m6A methylation decrease and bone loss via promoting the abundance of SAM in rat. Collectively, these results revealed that one-carbon metabolite SAM was a potential promoter in BMSC osteogenesis via the augmentation of m6A methylation, and the cross talk between metabolic reprogramming, epigenetic modification, and transcriptional regulation of BMSCs might provide strategies for bone regeneration.
Collapse
Affiliation(s)
- Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Lujin Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
17
|
Wang Y, Lin S, Chen L, Li M, Zhu Z, Zhuang Z, Cai M, Zhang H, Xing C, Li W, Yang R. Mitochondrial components transferred by MSC-derived exosomes promoted bone regeneration under high salt microenvironment via DRP1/Wnt signaling. NANO RESEARCH 2024; 17:8301-8315. [DOI: 10.1007/s12274-024-6758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 03/10/2025]
|
18
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
19
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
20
|
Choi J, Kang S, An HI, Kim CE, Lee S, Pack CG, Yoon YI, Jin H, Cho YP, Kim CJ, Namgoong JM, Kim JK, Tak E. Fasudil and viscosity of gelatin promote hepatic differentiation by regulating organelles in human umbilical cord matrix-mesenchymal stem cells. Stem Cell Res Ther 2024; 15:229. [PMID: 39075621 PMCID: PMC11288082 DOI: 10.1186/s13287-024-03851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Eun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation (AMIT), University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Yang X, Zhang ZC, Lu YN, Chen HL, Wang HS, Lin T, Chen QQ, Chen JS, He WB. Identification and experimental validation of programmed cell death- and mitochondria-associated biomarkers in osteoporosis and immune microenvironment. Front Genet 2024; 15:1439171. [PMID: 39130750 PMCID: PMC11310001 DOI: 10.3389/fgene.2024.1439171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Background: Prior research has demonstrated that programmed cell death (PCD) and mitochondria assume pivotal roles in controlling cellular metabolism and maintaining bone cell equilibrium. Nonetheless, the comprehensive elucidation of their mode of operation in osteoporosis (OP) warrants further investigation. Therefore, this study aimed at analyzing the role of genes associated with PCD (PCD-RGs) and mitochondria (mortality factor-related genes; MRGs) in OP. Methods: Differentially expressed genes (DEGs) were identified by subjecting the GSE56815 dataset obtained from the Gene Expression Omnibus database to differential expression analysis and comparing OP patients with healthy individuals. The genes of interest were ascertained through the intersection of DEGs, MRGs, and PCD-RGs; these genes were filtered using machine learning methodologies to discover potential biomarkers. The prospective biomarkers displaying uniform patterns and statistically meaningful variances were identified by evaluating their levels in the GSE56815 dataset and conducting quantitative real-time polymerase chain reaction-based assessments. Moreover, the functional mechanisms of these biomarkers were further delineated by constructing a nomogram, which conducted gene set enrichment analysis, explored immune infiltration, generated regulatory networks, predicted drug responses, and performed molecular docking analyses. Results: Eighteen candidate genes were documented contingent upon the intersection between 2,354 DEGs, 1,136 MRGs, and 1,548 PCD-RGs. The biomarkers DAP3, BIK, and ACAA2 were upregulated in OP and were linked to oxidative phosphorylation. Furthermore, the predictive ability of the nomogram designed based on the OP biomarkers exhibited a certain degree of accuracy. Correlation analysis revealed a strong positive correlation between CD56dim natural killer cells and ACAA2 and a significant negative correlation between central memory CD4+ T cells and DAP3. DAP3, BIK, and ACAA2 were regulated by multiple factors; specifically, SETDB1 and ZNF281 modulated ACAA2 and DAP3, whereas TP63 and TFAP2C governed DAP3 and BIK. Additionally, a stable binding force was observed between the drugs (estradiol, valproic acid, and CGP52608) and the biomarkers. Conclusion: This investigation evidenced that the biomarkers DAP3, BIK, and ACAA2 are associated with PCD and mitochondria in OP, potentially facilitate the diagnosis of OP in clinical settings.
Collapse
Affiliation(s)
- Xiu Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zheng-Chao Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, China
- Fujian Trauma Medicine Center, Fuzhou, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, China
| | - Yun-Nan Lu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Paediatric Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medicine College of Fujian Medical University, Fuzhou, China
| | - Han-Lin Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-Shen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Tao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qing-Quan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jin-Shui Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wu-Bing He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, China
- Fujian Trauma Medicine Center, Fuzhou, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, China
| |
Collapse
|
22
|
Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous Titanium Implant Surface Accelerates Osteogenesis via the Piezo1/Acetyl-CoA/β-Catenin Pathway. NANO LETTERS 2024; 24:8257-8267. [PMID: 38920296 PMCID: PMC11247543 DOI: 10.1021/acs.nanolett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
Collapse
Affiliation(s)
- Qian Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Run-Long Pan
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Hui Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Jun-Jun Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Song-He Lu
- Scientific
Research Department, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
23
|
Chen J, Hao Z, Li H, Wang J, Chen T, Wang Y, Shi G, Wang J, Wang Z, Zhang Z, Li J. Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies. Theranostics 2024; 14:3859-3899. [PMID: 38994021 PMCID: PMC11234277 DOI: 10.7150/thno.96516] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.
Collapse
Affiliation(s)
- Jiayao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jianping Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zepu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Zheyuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China
| |
Collapse
|
24
|
Bai Y, Zhang W, Hao L, Zhao Y, Tsai IC, Qi Y, Xu Q. Acetyl-CoA-dependent ac 4C acetylation promotes the osteogenic differentiation of LPS-stimulated BMSCs. Int Immunopharmacol 2024; 133:112124. [PMID: 38663312 DOI: 10.1016/j.intimp.2024.112124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Lili Hao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - I-Chen Tsai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Yipin Qi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
25
|
Shang X, Jin Y, Xue Y, Pan X, Zhu H, Meng X, Cao Z, Rui Y. Overexpression of ETV2 in BMSCs promoted wound healing in cutaneous wound mice by triggering the differentiation of BMSCs into endothelial cells and modulating the transformation of M1 phenotype macrophages to M2 phenotype macrophages. Tissue Cell 2024; 87:102334. [PMID: 38430850 DOI: 10.1016/j.tice.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to investigate the effects of E26-transformation-specific variant-2 (ETV2) overexpression on wound healing in a cutaneous wound (CW) model and clarify associated mechanisms. pLVX-ETV2 lentivirus expressing ETV2 was constructed and infected into BMSCs to generate ETV2-overexpressed BMSCs (BMSCs+pLVX+ETV2). The RT-PCR assay was applied to amplify ETV2, VE-cadherin, vWF, ARG-1, IL-6, iNOS, TGF-β, IL-10, TNF-α. Western blot was used to determine expression of VE-cadherin and vWF. ETV2 induced differentiation of BMSCs into ECs by increasing CDH5/CD31, triggering tube-like structures, inducing Dil-Ac-LDL positive BMSCs. ETV2 overexpression increased the gene transcription and expression of VE-cadherin and vWF (P<0.01). Transcription of M1 phenotype specific iNOS gene was lower and transcription of M2 phenotype specific ARG-1 gene was higher in the RAW264.7+BMSCs+ETV2 group compared to the RAW264.7+BMSCs+pLVX group (P<0.01). ETV2 overexpression (RAW264.7+BMSCs+ETV2) downregulated IL-6 and TNF-α, and upregulated IL-10 and TGF-β gene transcription compared to RAW264.7+BMSCs+pLVX group (P<0.01). ETV2-overexpressed BMSCs promoted wound healing in CW mice and triggered the migration of BMSCs to the wound region and macrophage activation. ETV2-overexpressed BMSCs promoted collagen fibers and blood vessel formation in the wound region of CW mice. In conclusion, this study revealed a novel biofunction of ETV2 molecule in the wound healing process. ETV2 overexpression in BMSCs promoted wound healing in CW mice by triggering BMSCs differentiation into endothelial cells and modulating the transformation of M1 pro-inflammatory and M2 anti-inflammatory macrophages in vitro and in vivo.
Collapse
Affiliation(s)
- Xiuchao Shang
- Medical College, Soochow University, Suzhou. China; The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yesheng Jin
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yuan Xue
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Haiquan Zhu
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Xiangsheng Meng
- The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zhihai Cao
- Medical College, Soochow University, Suzhou. China
| | - Yongjun Rui
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
26
|
Nesbeth PDC, Ziegler TR, Tripathi AK, Dabeer S, Weiss D, Hao L, Smith MR, Jones DP, Maner-Smith KM, Tu CL, Chang W, Weitzmann MN, Alvarez JA. Linoleic acid blunts early osteoblast differentiation and impairs oxidative phosphorylation in vitro. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102617. [PMID: 38788347 PMCID: PMC11293625 DOI: 10.1016/j.plefa.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Linoleic acid (LNA), an essential polyunsaturated fatty acid (PUFA), plays a crucial role in cellular functions. However, excessive intake of LNA, characteristic of Western diets, can have detrimental effects on cells and organs. Human observational studies have shown an inverse relationship between plasma LNA concentrations and bone mineral density. The mechanism by which LNA impairs the skeleton is unclear, and there is a paucity of research on the effects of LNA on bone-forming osteoblasts. METHODS The effect of LNA on osteoblast differentiation, cellular bioenergetics, and production of oxidized PUFA metabolites in vitro, was studied using primary mouse bone marrow stromal cells (BMSC) and MC3T3-E1 osteoblast precursors. RESULTS LNA treatment decreased alkaline phosphatase activity, an early marker of osteoblast differentiation, but had no effect on committed osteoblasts or on mineralization by differentiated osteoblasts. LNA suppressed osteoblast commitment by blunting the expression of Runx2 and Osterix, key transcription factors involved in osteoblast differentiation, and other key osteoblast-related factors involved in bone formation. LNA treatment was associated with increased production of oxidized LNA- and arachidonic acid-derived metabolites and blunted oxidative phosphorylation, resulting in decreased ATP production. CONCLUSION Our results show that LNA inhibited early differentiation of osteoblasts and this inhibitory effect was associated with increased production of oxidized PUFA metabolites that likely impaired energy production via oxidative phosphorylation.
Collapse
Affiliation(s)
- Paula-Dene C Nesbeth
- Nutrition and Health Sciences Doctoral Program, Laney Graduate School, Emory University, Atlanta, GA, USA; Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA
| | - Ashish Kumar Tripathi
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sadaf Dabeer
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Daiana Weiss
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Li Hao
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Matthew R Smith
- Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Chia-Ling Tu
- Endocrine Research Unit, San Francisco VA Healthcare System, University of California, San Francisco, CA, USA
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco VA Healthcare System, University of California, San Francisco, CA, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, GA, USA.
| |
Collapse
|
27
|
Ma L, Wang H, Huang X, Huang H, Peng Y, Liu H, Wang X, Cao Z. CXXC5 mitigates P. gingivalis-inhibited cementogenesis by influencing mitochondrial biogenesis. Cell Commun Signal 2024; 22:4. [PMID: 38167023 PMCID: PMC10763120 DOI: 10.1186/s12964-023-01283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cementoblasts on the tooth-root surface are responsible for cementum formation (cementogenesis) and sensitive to Porphyromonas gingivalis stimulation. We have previously proved transcription factor CXXC-type zinc finger protein 5 (CXXC5) participates in cementogenesis. Here, we aimed to elucidate the mechanism in which CXXC5 regulates P. gingivalis-inhibited cementogenesis from the perspective of mitochondrial biogenesis. METHODS In vivo, periapical lesions were induced in mouse mandibular first molars by pulp exposure, and P. gingivalis was applied into the root canals. In vitro, a cementoblast cell line (OCCM-30) was induced cementogenesis and submitted for RNA sequencing. These cells were co-cultured with P. gingivalis and examined for osteogenic ability and mitochondrial biogenesis. Cells with stable CXXC5 overexpression were constructed by lentivirus transduction, and PGC-1α (central inducer of mitochondrial biogenesis) was down-regulated by siRNA transfection. RESULTS Periapical lesions were enlarged, and PGC-1α expression was reduced by P. gingivalis treatment. Upon apical inflammation, Cxxc5 expression decreased with Il-6 upregulation. RNA sequencing showed enhanced expression of osteogenic markers, Cxxc5, and mitochondrial biogenesis markers during cementogenesis. P. gingivalis suppressed osteogenic capacities, mitochondrial biogenesis markers, mitochondrial (mt)DNA copy number, and cellular ATP content of cementoblasts, whereas CXXC5 overexpression rescued these effects. PGC-1α knockdown dramatically impaired cementoblast differentiation, confirming the role of mitochondrial biogenesis on cementogenesis. CONCLUSIONS CXXC5 is a P. gingivalis-sensitive transcription factor that positively regulates cementogenesis by influencing PGC-1α-dependent mitochondrial biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Neto NGB, Suku M, Hoey DA, Monaghan MG. 2P-FLIM unveils time-dependent metabolic shifts during osteogenic differentiation with a key role of lactate to fuel osteogenesis via glutaminolysis identified. Stem Cell Res Ther 2023; 14:364. [PMID: 38087380 PMCID: PMC10717614 DOI: 10.1186/s13287-023-03606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) utilize discrete biosynthetic pathways to self-renew and differentiate into specific cell lineages, with undifferentiated hMSCs harbouring reliance on glycolysis and hMSCs differentiating towards an osteogenic phenotype relying on oxidative phosphorylation as an energy source. METHODS In this study, the osteogenic differentiation of hMSCs was assessed and classified over 14 days using a non-invasive live-cell imaging modality-two-photon fluorescence lifetime imaging microscopy (2P-FLIM). This technique images and measures NADH fluorescence from which cellular metabolism is inferred. RESULTS During osteogenesis, we observe a higher dependence on oxidative phosphorylation (OxPhos) for cellular energy, concomitant with an increased reliance on anabolic pathways. Guided by these non-invasive observations, we validated this metabolic profile using qPCR and extracellular metabolite analysis and observed a higher reliance on glutaminolysis in the earlier time points of osteogenic differentiation. Based on the results obtained, we sought to promote glutaminolysis further by using lactate, to improve the osteogenic potential of hMSCs. Higher levels of mineral deposition and osteogenic gene expression were achieved when treating hMSCs with lactate, in addition to an upregulation of lactate metabolism and transmembrane cellular lactate transporters. To further clarify the interplay between glutaminolysis and lactate metabolism in osteogenic differentiation, we blocked these pathways using BPTES and α-CHC respectively. A reduction in mineralization was found after treatment with BPTES and α-CHC, demonstrating the reliance of hMSC osteogenesis on glutaminolysis and lactate metabolism. CONCLUSION In summary, we demonstrate that the osteogenic differentiation of hMSCs has a temporal metabolic profile and shift that is observed as early as day 3 of cell culture using 2P-FLIM. Furthermore, extracellular lactate is shown as an essential metabolite and metabolic fuel to ensure efficient osteogenic differentiation and as a signalling molecule to promote glutaminolysis. These findings have significant impact in the use of 2P-FLIM to discover potent approaches towards bone tissue engineering in vitro and in vivo by engaging directly with metabolite-driven osteogenesis.
Collapse
Affiliation(s)
- Nuno G B Neto
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Meenakshi Suku
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - David A Hoey
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- Advanced Materials for Bioengineering Research (AMBER), Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Ireland.
- CURAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
- Advanced Materials for Bioengineering Research (AMBER), Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Ning T, Guo H, Ma M, Zha Z. BRD4 facilitates osteogenic differentiation of human bone marrow mesenchymal stem cells through WNT4/NF-κB pathway. J Orthop Surg Res 2023; 18:876. [PMID: 37980502 PMCID: PMC10656925 DOI: 10.1186/s13018-023-04335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hBMSCs) are a major source of osteoblast precursor cells and are directly involved in osteoporosis (OP) progression. Bromodomain-containing protein 4 (BRD4) is an important regulator for osteogenic differentiation. Therefore, its role and mechanism in osteogenic differentiation process deserve further investigation. METHODS hBMSCs osteogenic differentiation was evaluated by flow cytometry, alkaline phosphatase assay and alizarin red staining. Western blot was used to test osteogenic differentiation-related proteins, BRD4 protein, WNT family members-4 (WNT4)/NF-κB-related proteins, and glycolysis-related proteins. Metabolomics techniques were used to detect metabolite changes and metabolic pathways. BRD4 and WNT4 mRNA levels were determined using quantitative real-time PCR. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to detect BRD4 and WNT4 interaction. Glycolysis ability was assessed by testing glucose uptake, lactic acid production, and ATP levels. RESULTS After successful induction of osteogenic differentiation, the expression of BRD4 was increased significantly. BRD4 knockdown inhibited hBMSCs osteogenic differentiation. Metabolomics analysis showed that BRD4 expression was related to glucose metabolism in osteogenic differentiation. Moreover, BRD4 could directly bind to the promoter of the WNT4 gene. Further experiments confirmed that recombinant WNT4 reversed the inhibition effect of BRD4 knockdown on glycolysis, and NF-κB inhibitors (Bardoxolone Methyl) overturned the suppressive effect of BRD4 knockdown on hBMSCs osteogenic differentiation. CONCLUSION BRD4 promoted hBMSCs osteogenic differentiation by inhibiting NF-κB pathway via enhancing WNT4 expression.
Collapse
Affiliation(s)
- Tao Ning
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Huihui Guo
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Mingming Ma
- Department of Orthopedics, Fuyang People's Hospital, No.501 Sanqing Road, Fuyang City, 236000, Anhui Province, People's Republic of China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, 510630, Guangdong Province, People's Republic of China.
| |
Collapse
|
30
|
Catheline SE, Kaiser E, Eliseev RA. Mitochondrial Genetics and Function as Determinants of Bone Phenotype and Aging. Curr Osteoporos Rep 2023; 21:540-551. [PMID: 37542684 DOI: 10.1007/s11914-023-00816-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recently published scientific literature regarding the effects of mitochondrial function and mitochondrial genome mutations on bone phenotype and aging. RECENT FINDINGS While aging and sex steroid levels have traditionally been considered the most important risk factors for development of osteoporosis, mitochondrial function and genetics are being increasingly recognized as important determinants of bone health. Recent studies indicate that mitochondrial genome variants found in different human populations determine the risk of complex degenerative diseases. We propose that osteoporosis should be among such diseases. Studies have shown the deleterious effects of mitochondrial DNA mutations and mitochondrial dysfunction on bone homeostasis. Mediators of such effects include oxidative stress, mitochondrial permeability transition, and dysregulation of autophagy. Mitochondrial health plays an important role in bone homeostasis and aging, and understanding underlying mechanisms is critical in leveraging this relationship clinically for therapeutic benefit.
Collapse
Affiliation(s)
- Sarah E Catheline
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Ethan Kaiser
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, USA
| | - Roman A Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, USA.
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, USA.
| |
Collapse
|
31
|
Nakashima K, Kunisaki Y, Hosokawa K, Gotoh K, Yao H, Yuta R, Semba Y, Nogami J, Kikushige Y, Stumpf PS, MacArthur BD, Kang D, Akashi K, Ohga S, Arai F. POT1a deficiency in mesenchymal niches perturbs B-lymphopoiesis. Commun Biol 2023; 6:996. [PMID: 37773433 PMCID: PMC10541440 DOI: 10.1038/s42003-023-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.
Collapse
Affiliation(s)
- Kentaro Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisayuki Yao
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yuta
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Semba
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
- Mathematical Sciences, University of Southampton, Southampton, UK
- The Alan Turing Institute, London, UK
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
32
|
Liu XP, Li JQ, Li RY, Cao GL, Feng YB, Zhang W. Loss of N-acetylglucosaminyl transferase V is involved in the impaired osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Anim 2023; 72:413-424. [PMID: 37019682 PMCID: PMC10435351 DOI: 10.1538/expanim.22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
The imbalance of bone resorption and bone formation causes osteoporosis (OP), a common skeletal disorder. Decreased osteogenic activity was found in the bone marrow cultures from N-acetylglucosaminyl transferase V (MGAT5)-deficient mice. We hypothesized that MGAT5 was associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and involved in the pathological mechanisms of osteoporosis. To test this hypothesis, the mRNA and protein expression levels of MGAT5 were determined in bone tissues of ovariectomized (OVX) mice, a well-established OP model, and the role of MGAT5 in osteogenic activity was investigated in murine BMSCs. As expected, being accompanied by the loss of bone mass density and osteogenic markers (runt-related transcription factor 2, osteocalcin and osterix), a reduced expression of MGAT5 in vertebrae and femur tissues were found in OP mice. In vitro, knockdown of Mgat5 inhibited the osteogenic differentiation potential of BMSCs, as evidenced by the decreased expressions of osteogenic markers and less alkaline phosphatase and alizarin red S staining. Mechanically, knockdown of Mgat5 suppressed the nuclear translocation of β-catenin, thereby downregulating the expressions of downstream genes c-myc and axis inhibition protein 2, which were also associated with osteogenic differentiation. In addition, Mgat5 knockdown inhibited bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β signaling pathway. In conclusion, MGAT5 may modulate the osteogenic differentiation of BMSCs via the β-catenin, BMP type 2 (BMP2) and TGF-β signals and involved in the process of OP.
Collapse
Affiliation(s)
- Xiao-Po Liu
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Jia-Qi Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Ruo-Yu Li
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| | - Guo-Long Cao
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Yun-Bo Feng
- Department of Orthopedics, Tangshan Gongren Hospital, No. 27, Wenhua Road, Tangshan 063000, Hebei, P.R. China
| | - Wei Zhang
- Department of Spinal Surgery, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang 050051, Hebei, P.R. China
| |
Collapse
|
33
|
He Y, Wang S, Liu S, Qin D, Liu Z, Wang L, Chen X, Zhang L. MSL1 Promotes Liver Regeneration by Driving Phase Separation of STAT3 and Histone H4 and Enhancing Their Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301094. [PMID: 37279389 PMCID: PMC10427353 DOI: 10.1002/advs.202301094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Indexed: 06/08/2023]
Abstract
Male-specific lethal 1 (MSL1) is critical for the formation of MSL histone acetyltransferase complex which acetylates histone H4 Lys16 (H4K16ac) to activate gene expression. However, the role of MSL1 in liver regeneration is poorly understood. Here, this work identifies MSL1 as a key regulator of STAT3 and histone H4 (H4) in hepatocytes. MSL1 forms condensates with STAT3 or H4 through liquid-liquid phase separation to enrich acetyl-coenzyme A (Ac-CoA), and Ac-CoA in turn enhances MSL1 condensate formation, synergetically promoting the acetylation of STAT3 K685 and H4K16, thus stimulating liver regeneration after partial hepatectomy (PH). Additionally, increasing Ac-CoA level can enhance STAT3 and H4 acetylation, thus promoting liver regeneration in aged mice. The results demonstrate that MSL1 condensate-mediated STAT3 and H4 acetylation play an important role in liver regeneration. Thus, promoting the phase separation of MSL1 and increasing Ac-CoA level may be a novel therapeutic strategy for acute liver diseases and transplantation.
Collapse
Affiliation(s)
- Yucheng He
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shichao Wang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Shenghui Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Dan Qin
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Zhangmei Liu
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| | - Liqiang Wang
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Xiangmei Chen
- Department of NephrologyChinese PLA General HospitalChinese PLA Institute of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney Diseases28th Fuxing RoadBeijing100853China
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio‐medical CenterHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
34
|
Quarato ER, Salama NA, Li AJ, Smith CO, Zhang J, Kawano Y, McArthur M, Liesveld JL, Becker MW, Elliott MR, Eliseev RA, Calvi LM. Efferocytosis by bone marrow mesenchymal stromal cells disrupts osteoblastic differentiation via mitochondrial remodeling. Cell Death Dis 2023; 14:428. [PMID: 37452070 PMCID: PMC10349065 DOI: 10.1038/s41419-023-05931-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The efficient clearance of dead and dying cells, efferocytosis, is critical to maintain tissue homeostasis. In the bone marrow microenvironment (BMME), this role is primarily fulfilled by professional bone marrow macrophages, but recent work has shown that mesenchymal stromal cells (MSCs) act as a non-professional phagocyte within the BMME. However, little is known about the mechanism and impact of efferocytosis on MSCs and on their function. To investigate, we performed flow cytometric analysis of neutrophil uptake by ST2 cells, a murine bone marrow-derived stromal cell line, and in murine primary bone marrow-derived stromal cells. Transcriptional analysis showed that MSCs possess the necessary receptors and internal processing machinery to conduct efferocytosis, with Axl and Tyro3 serving as the main receptors, while MerTK was not expressed. Moreover, the expression of these receptors was modulated by efferocytic behavior, regardless of apoptotic target. MSCs derived from human bone marrow also demonstrated efferocytic behavior, showing that MSC efferocytosis is conserved. In all MSCs, efferocytosis impaired osteoblastic differentiation. Transcriptional analysis and functional assays identified downregulation in MSC mitochondrial function upon efferocytosis. Experimentally, efferocytosis induced mitochondrial fission in MSCs. Pharmacologic inhibition of mitochondrial fission in MSCs not only decreased efferocytic activity but also rescued osteoblastic differentiation, demonstrating that efferocytosis-mediated mitochondrial remodeling plays a critical role in regulating MSC differentiation. This work describes a novel function of MSCs as non-professional phagocytes within the BMME and demonstrates that efferocytosis by MSCs plays a key role in directing mitochondrial remodeling and MSC differentiation. Efferocytosis by MSCs may therefore be a novel mechanism of dysfunction and senescence. Since our data in human MSCs show that MSC efferocytosis is conserved, the consequences of MSC efferocytosis may impact the behavior of these cells in the human skeleton, including bone marrow remodeling and bone loss in the setting of aging, cancer and other diseases.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Allison J Li
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Charles O Smith
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane Zhang
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuko Kawano
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane L Liesveld
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael R Elliott
- University of Virginia, Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA, USA
| | - Roman A Eliseev
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
35
|
Huang Y, Dou Y, Yang B, He B, Zhang X, Zhang K, Yang X. Nicotinamide mononucleotide supplementation mitigates osteopenia induced by modeled microgravity in rats. Cell Stress Chaperones 2023; 28:385-394. [PMID: 37195399 PMCID: PMC10352228 DOI: 10.1007/s12192-023-01356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023] Open
Abstract
Exposure to weightlessness causes severe osteopenia, resulting in raised fracture risk. The current study aimed to investigate whether nicotinamide mononucleotide (NMN) supplementation protected against the osteopenia in hindlimb unloading (HLU) rats in vivo and modeled microgravity-induced osteoblastic dysfunction in vitro. The 3-mo-old rats were exposed to HLU and intragastrically administered NMN every 3 days (500 mg/kg body weight) for 4 weeks. NMN supplementation mitigated HLU-induced bone loss, evidenced by greater bone mass and biomechanical properties and better trabecular bone structure. NMN supplementation mitigated HLU-induced oxidative stress, evidenced by greater levels of nicotinamide adenine dinucleotide and activities of superoxide dismutase 2 and lesser malondialdehyde levels. Modeled microgravity stimulation using rotary wall vessel bioreactor in MC3T3-E1 cells inhibited osteoblast differentiation, which was reversed by NMN treatment. Furthermore, NMN treatment mitigated microgravity-induced mitochondrial impairments, evidenced by lesser reactive oxygen species generation and greater adenosine triphosphate production, mtDNA copy number, and activities of superoxide dismutase 2 and Complex I and II. Additionally, NMN promoted activation of AMP-activated protein kinase (AMPK), evidenced by greater AMPKα phosphorylation. Our research suggested that NMN supplementation attenuated osteoblastic mitochondrial impairment and mitigated osteopenia induced by modeled microgravity.
Collapse
Affiliation(s)
- Yunfei Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Yusheng Dou
- Department of Should and Elbow Joint, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Baorong He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xuefang Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Ke Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China
| | - Xiaobin Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.99 Yanxiang Road, Xi'an, 710054, Shaanxi Province, China.
| |
Collapse
|
36
|
Sautchuk R, Yu C, McArthur M, Massie C, Brookes PS, Porter GA, Awad H, Eliseev RA. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging. J Bone Miner Res 2023; 38:522-540. [PMID: 36779737 PMCID: PMC10101909 DOI: 10.1002/jbmr.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The mitochondrial permeability transition pore (MPTP) and its positive regulator, cyclophilin D (CypD), play important pathophysiological roles in aging. In bone tissue, higher CypD expression and pore activity are found in aging; however, a causal relationship between CypD/MPTP and bone degeneration needs to be established. We previously reported that CypD expression and MPTP activity are downregulated during osteoblast (OB) differentiation and that manipulations in CypD expression affect OB differentiation and function. Using a newly developed OB-specific CypD/MPTP gain-of-function (GOF) mouse model, we here present evidence that overexpression of a constitutively active K166Q mutant of CypD (caCypD) impairs OB energy metabolism and function, and bone morphological and biomechanical parameters. Specifically, in a spatial-dependent and sex-dependent manner, OB-specific CypD GOF led to a decrease in oxidative phosphorylation (OxPhos) levels, higher oxidative stress, and general metabolic adaptations coincident with the decreased bone organic matrix content in long bones. Interestingly, accelerated bone degeneration was present in vertebral bones regardless of sex. Overall, our work confirms CypD/MPTP overactivation as an important pathophysiological mechanism leading to bone degeneration and fragility in aging. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Chen Yu
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Matthew McArthur
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
| | - Christine Massie
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
| | - George A Porter
- Department of Pediatrics, Division of Cardiology, University of Rochester, Rochester, NY, USA
| | - Hani Awad
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Roman A Eliseev
- Center for Musculoskeletal ResearchUniversity of Rochester, Rochester, NY, USA
- Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, USA
- Department of Pathology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
37
|
Gao X, Di X, Li J, Kang Y, Xie W, Sun L, Zhang J. Extracellular Calcium-Induced Calcium Transient Regulating the Proliferation of Osteoblasts through Glycolysis Metabolism Pathways. Int J Mol Sci 2023; 24:4991. [PMID: 36902420 PMCID: PMC10003245 DOI: 10.3390/ijms24054991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
During bone remodeling, high extracellular calcium levels accumulated around the resorbing bone tissue as soon as the activation of osteoclasts. However, if and how calcium is involved in the regulation of bone remodeling remains unclear. In this study, the effect of high extracellular calcium concentrations on osteoblast proliferation and differentiation, intracellular calcium ([Ca2+]i) levels, metabolomics, and the expression of proteins related to energy metabolism were investigated. Our results showed that high extracellular calcium levels initiated a [Ca2+]i transient via the calcium-sensing receptor (CaSR) and promoted the proliferation of MC3T3-E1 cells. Metabolomics analysis showed that the proliferation of MC3T3-E1 cells was dependent on aerobic glycolysis, but not the tricarboxylic acid cycle. Moreover, the proliferation and glycolysis of MC3T3-E1 cells were suppressed following the inhibition of AKT. These results indicate that calcium transient triggered by high extracellular calcium levels activated glycolysis via AKT-related signaling pathways and ultimately promoted the proliferation of osteoblasts.
Collapse
Affiliation(s)
- Xiaohang Gao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Xiaohui Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Jingjing Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Yiting Kang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Wenjun Xie
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi’an 710119, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 711049, China
| |
Collapse
|
38
|
Zhang X, Sun J, Zhou M, Li C, Zhu Z, Gan X. The role of mitochondria in the peri-implant microenvironment. Exp Physiol 2023; 108:398-411. [PMID: 36648334 PMCID: PMC10103875 DOI: 10.1113/ep090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we consider the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and bone resorption during osseointegration. What advances does it highlight? Mitochondria contribute to the behaviours of peri-implant cell lines based on metabolic and reactive oxygen species signalling modulations, which will contribute to the research field and the development of new treatment strategies for improving implant success. ABSTRACT Osseointegration is a dynamic biological process in the local microenvironment adjacent to a bone implant, which is crucial for implant performance and success of the implant surgery. Recently, the role of mitochondria in the peri-implant microenvironment during osseointegration has gained much attention. Mitochondrial regulation has been verified to be essential for cellular events in osseointegration and as a therapeutic target for peri-implant diseases in the peri-implant microenvironment. In this review, we summarize our current knowledge of the key role of mitochondria in the peri-implant milieu, including the regulation of mitochondrial reactive oxygen species and mitochondrial metabolism in angiogenesis, the polarization of macrophage immune responses, and bone formation and resorption during osseointegration, which will contribute to the research field and the development of new treatment strategies to improve implant success. In addition, we indicate limitations in our current understanding of the regulation of mitochondria in osseointegration and suggest topics for further study.
Collapse
Affiliation(s)
- Xidan Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Jiyu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Min Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Chen Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Zhuoli Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xueqi Gan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
39
|
Jia X, Wang L, Chen Y, Ning X, Zhang Z, Xin H, Lv QX, Hou Y, Liu F, Kong L. TiO 2nanotubes induce early mitochondrial fission in BMMSCs and promote osseointegration. Biomed Mater 2023; 18. [PMID: 36720171 DOI: 10.1088/1748-605x/acb7bc] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Nanotopography can promote osseointegration, but how bone marrow mesenchymal stem cells (BMMSCs) respond to this physical stimulus is unclear. Here, we found that early exposure of BMMSCs to nanotopography (6 h) caused mitochondrial fission rather than fusion, which was necessary for osseointegration. We analyzed the changes in mitochondrial morphology and function of BMMSCs located on the surfaces of NT100 (100 nm nanotubes) and ST (smooth) by super-resolution microscopy and other techniques. Then, we found that both ST and NT100 caused a significant increase in mitochondrial fission early on, but NT100 caused mitochondrial fission much earlier than those on ST. In addition, the mitochondrial functional statuses were good at the 6 h time point, this is at odds with the conventional wisdom that fusion is good. This fission phenomenon adequately protected mitochondrial membrane potential (MMP) and respiration and reduced reactive oxygen species. Interestingly, the MMP and oxygen consumption rate of BMMSCs were reduced when mitochondrial fission was inhibited by Mdivi-1(Inhibition of dynamin-related protein 1 fission) in the early stage. In addition, the effect on osseointegration was significantly worse, and this effect did not improve with time. Taken together, the findings indicate that early mitochondrial fission plays an important role in nanotopography-mediated promotion of osseointegration, which is of great significance to the surface structure design of biomaterials.
Collapse
Affiliation(s)
- Xuelian Jia
- College of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Le Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yicheng Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Xiaona Ning
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China.,Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, People's Republic of China
| | - Zhouyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - He Xin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Qian-Xin Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yan Hou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
40
|
Sun H, Zheng M, Liu J, Fan W, He H, Huang F. Melatonin promoted osteogenesis of human periodontal ligament cells by regulating mitochondrial functions through the translocase of the outer mitochondrial membrane 20. J Periodontal Res 2023; 58:53-69. [PMID: 36373245 DOI: 10.1111/jre.13068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 μM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 μM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION We found that melatonin promoted osteogenesis of hPDLCs and 1 μM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.
Collapse
Affiliation(s)
- Haoyun Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Miaomiao Zheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiawei Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
41
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
42
|
Xin L, Wen Y, Song J, Chen T, Zhai Q. Bone regeneration strategies based on organelle homeostasis of mesenchymal stem cells. Front Endocrinol (Lausanne) 2023; 14:1151691. [PMID: 37033227 PMCID: PMC10081449 DOI: 10.3389/fendo.2023.1151691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The organelle modulation has emerged as a crucial contributor to the organismal homeostasis. The mesenchymal stem cells (MSCs), with their putative functions in maintaining the regeneration ability of adult tissues, have been identified as a major driver to underlie skeletal health. Bone is a structural and endocrine organ, in which the organelle regulation on mesenchymal stem cells (MSCs) function has most been discovered recently. Furthermore, potential treatments to control bone regeneration are developing using organelle-targeted techniques based on manipulating MSCs osteogenesis. In this review, we summarize the most current understanding of organelle regulation on MSCs in bone homeostasis, and to outline mechanistic insights as well as organelle-targeted approaches for accelerated bone regeneration.
Collapse
Affiliation(s)
- Liangjing Xin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yao Wen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Tao Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Qiming Zhai, ; Tao Chen, ; Jinlin Song,
| |
Collapse
|
43
|
Hussein AI, Carroll D, Bui M, Wolff A, Matheny H, Hogue B, Lybrand K, Cooke M, Bragdon B, Morgan E, Demissie S, Gerstenfeld L. Oxidative metabolism is impaired by phosphate deficiency during fracture healing and is mechanistically related to BMP induced chondrocyte differentiation. Bone Rep 2023. [DOI: 10.1016/j.bonr.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
44
|
Yang YY, Luo HH, Deng YX, Yao XT, Zhang J, Su YX, He BC. Pyruvate dehydrogenase kinase 4 promotes osteoblastic potential of BMP9 by boosting Wnt/β-catenin signaling in mesenchymal stem cells. Int J Biochem Cell Biol 2023; 154:106341. [PMID: 36442735 DOI: 10.1016/j.biocel.2022.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein 9 (BMP9) is an effective osteogenic factor and a promising candidate for bone tissue engineering. The osteoblastic potential of BMP9 needs to be further increased to overcome its shortcomings. However, the details of how BMP9 triggers osteogenic differentiation in mesenchymal stem cells (MSCs) are unclear. In this study, we used real-time PCR, western blot, histochemical staining, mouse ectopic bone formation model, immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation to investigate the role of pyruvate dehydrogenase kinase 4 (PDK4) in BMP9-induced osteogenic differentiation of C3H10T1/2 cells, as well as the underlying mechanism. We found that PDK4 was upregulated by BMP9 in C3H10T1/2 cells. BMP9-induced osteogenic markers and bone mass were increased by PDK4 overexpression, but decreased by PDK4 silencing. β-catenin protein level was increased by BMP9, which was enhanced by PDK overexpression and decreased by PDK4 silencing. BMP9-induced osteogenic markers were reduced by PDK4 silencing, which was almost reversed by β-catenin overexpression. PDK4 increased the BMP9-induced osteogenic markers, which was almost eliminated by β-catenin silencing. Sclerostin was mildly decreased by BMP9 or PDK4, and significantly decreased by combined BMP9 and PDK4. In contrast, sclerostin increased significantly when BMP9 was combined with PDK4 silencing. BMP9-induced p-SMAD1/5/9 was increased by PDK4 overexpression, but was reduced by PDK4 silencing. PDK4 interacts with p-SMAD1/5/9 and regulates the sclerostin promoter. These findings suggest that PDK4 can increase the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via the downregulation of sclerostin. PDK4 may be an effective target to strengthen BMP9-induced osteogenesis.
Collapse
Affiliation(s)
- Yuan-Yuan Yang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hong-Hong Luo
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi-Xuan Deng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin-Tong Yao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu-Xi Su
- Department of Orthopedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, People's Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
45
|
Chen DQ, Chen L, Guo Y, Wu XQ, Zhao TT, Zhao HL, Zhang HJ, Yan MH, Zhang GQ, Li P. Poricoic acid A suppresses renal fibroblast activation and interstitial fibrosis in UUO rats via upregulating Sirt3 and promoting β-catenin K49 deacetylation. Acta Pharmacol Sin 2022; 44:1038-1050. [PMID: 36470978 PMCID: PMC10104829 DOI: 10.1038/s41401-022-01026-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022]
Abstract
AbstractRenal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg−1·d−1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-β1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-β1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated β-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of β-catenin was responsible for Sirt3-mediated β-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating β-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing β-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.
Collapse
|
46
|
Huang W, Wu X, Xiang S, Qiao M, Li H, Zhu Y, Zhu Z, Zhao Z. Regulatory of miRNAs in tri-lineage differentiation of C3H10T1/2. Stem Cell Res Ther 2022; 13:521. [PMID: 36414991 PMCID: PMC9682817 DOI: 10.1186/s13287-022-03205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes, which play a vital role in cell generation, metabolism, apoptosis and stem cell differentiation. C3H10T1/2, a mesenchymal cell extracted from mouse embryos, is capable of osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. Extensive studies have shown that not only miRNAs can directly trigger targeted genes to regulate the tri-lineage differentiation of C3H10T1/2, but it also can indirectly regulate the differentiation by triggering different signaling pathways or various downstream molecules. This paper aims to clarify the regulatory roles of different miRNAs on C3H10T1/2 differentiation, and discussing their balance effect among osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation of C3H10T1/2. We also review the biogenesis of miRNAs, Wnt signaling pathways, MAPK signaling pathways and BMP signaling pathways and provide some specific examples of how these signaling pathways act on C3H10T1/2 tri-lineage differentiation. On this basis, we hope that a deeper understanding of the differentiation and regulation mechanism of miRNAs in C3H10T1/2 can provide a promising therapeutic method for the clinical treatment of bone defects, osteoporosis, osteoarthritis and other diseases.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mingxin Qiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hanfei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
47
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
48
|
Hydrothermal Synthesis of Fluorapatite Coatings over Titanium Implants for Enhanced Osseointegration-An In Vivo Study in the Rabbit. J Funct Biomater 2022; 13:jfb13040241. [PMID: 36412882 PMCID: PMC9680447 DOI: 10.3390/jfb13040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
This work aims at the development and characterization of fluorapatite coatings, innovatively prepared by the hydrothermal method, aiming for enhanced osseointegration of titanium implants. Fluoride-containing coatings were prepared and characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy-attenuated total reflectance, and X-ray photoelectron spectroscopy. The biological response was characterized by microtomographic evaluation and histomorphometric analysis upon orthotopic implantation in a translational rabbit experimental model. Physic-chemical analysis revealed the inclusion of fluoride in the apatite lattice with fluorapatite formation, associated with the presence of citrate species. The in vivo biological assessment of coated implants revealed an enhanced bone formation process-with increased bone-to-implant contact and bone volume. The attained enhancement of the osteogenic process may be attributable to the conjoined modulatory activity of selected fluoride and citrate levels within the produced coatings. In this regard, the production of fluorapatite coatings with citrate, through the hydrothermal method, entails a promising approach for enhanced osseointegration in implant dentistry and orthopedic applications.
Collapse
|
49
|
Yan L, Xie M, Tan B, Xu H, Yi Q, Ye L, Zhang X, Zhang Y, Tian J, Zhu J. The effects of β-catenin on cardiomyogenesis via Islet-1 and MLIP ubiquitination. Exp Biol Med (Maywood) 2022; 247:1956-1967. [PMID: 36112854 PMCID: PMC9742745 DOI: 10.1177/15353702221119792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can treat myocardial injury-related diseases by differentiating into cardiomyocytes. Islet-1 plays an essential role in cardiac maturation. We have discovered that Islet-1 plays a crucial role in the histone acetylation regulation in this process. In addition, to increase GATA4/Nkx2.5 expression, Islet-1 may bind to Gcn5 and then guide Gcn5 to the GATA4/Nkx2.5 promoters, thereby facilitating the differentiation of MSCs into cardiomyocytes. Islet-1 is an important factor in the maturation of the heart. We have previously found that the pivotal factor in histone acetylation regulation in this process is Islet-1. Furthermore, Islet-1 and Gcn5 may boost GATA4/Nkx2.5 expression, which in turn promotes cardiomyocyte differentiation from MSCs. But the molecular mechanism of Islet-1 binding to GCN5 has not been elucidated. In this study, we found that the competitive binding relationship between Islet-1 and MLIP and GCN5 affected myocardial differentiation. The key enzymes of ubiquitination modification of MLIP and Islet-1 are UBE3C and WWP1, respectively. When short hairpin RNA (shRNA) was used to inhibit β-catenin expression, we found that the expression of UBE3C was upregulated, modifying MLIP ubiquitination and reducing its expression, and it upregulated Islet-1 by inhibiting the expression of WWP1. By using the chromatin immunoprecipitation (ChIP) and luciferase reporter system, we found that when MLIP binds to Islet-1, it significantly inhibits the transcriptional activity of Islet-1. In summary, our results show that decreasing β-catenin regulates the ubiquitination of Islet-1 and MLIP, affecting their expression, reducing the amount of Islet-1 binding to MLIP, and increasing the amount of binding to GCN5 in the nucleus. Therefore, the transcriptional activity of Islet-1 is significantly activated, inducing C3H10T1/2 cells to differentiate into myocytes. Further knowledge of biochemical pathways, including molecular signaling pathways, can provide more insights into the myocardial differentiation mechanism of MSCs.
Collapse
Affiliation(s)
- Liang Yan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Min Xie
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 404100, P.R. China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Liang Ye
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Yin Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China
| | - Jie Tian
- Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400015, P.R. China,Chongqing Key Laboratory of Pediatrics, Chongqing 404100, P.R. China,Jing Zhu.
| |
Collapse
|
50
|
Deng L, Li X, Ren X, Lai S, Zhu Y, Li J, Huang H, Mu Y. A grooved porous hydroxyapatite scaffold induces osteogenic differentiation via regulation of PKA activity by upregulating miR-129-5p expression. J Periodontal Res 2022; 57:1238-1255. [PMID: 36222334 DOI: 10.1111/jre.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Hydroxyapatite scaffolds with different morphologies have been widely used in bone tissue engineering. Moreover, microRNAs (miRNAs) have been proven to be extensively involved in regulating bone regeneration. We developed grooved porous hydroxyapatite (HAG) scaffolds with good osteogenic efficiency. However, little is known about the role of miRNAs in HAG scaffold-mediated promotion of bone regeneration. The objective of this study was to reveal the mechanism from the perspective of differential miRNA expression. METHODS Scanning electron microscopy (SEM) was used to perform the coculture of cells and scaffolds. The miRNA profiles were generated by a microarray assay. A synthetic miR-129-5p mimic and inhibitor were used for overexpression or inhibition. The expression of osteogenic marker mRNAs and proteins was detected by quantitative real-time PCR (qRT-PCR), Western blotting, and immunofluorescence. An ALP activity kit and alizarin red staining (ARS) were used to measure ALP activity and mineral deposition formation. Cell migration ability was examined by wound healing and transwell assays. Protein kinase A (PKA) activity was measured by enzyme-linked immunosorbent assay (ELISA) after miR-129-5p transfection. Target genes were identified by a dual-luciferase reporter assay. H89 preculture evaluated the cross talk between miR-129-5p and PKA activity. Heterotopic implantation models, hematoxylin-eosin (HE), immunohistochemistry staining, and micro-CT were used to evaluate miR-129-5p osteogenesis in vivo. RESULTS miRNAs were differentially expressed during osteogenic differentiation induced by HAG in vitro and in vivo. miR-129-5p was the only highly expressed miRNA both in vitro and in vivo. miR-129-5p overexpression promoted osteoblast differentiation and cell migration, while its inhibition weakened the effect of HAG. Moreover, miR-129-5p activated PKA to regulate the phosphorylation of β-catenin and cAMP-response element binding protein (CREB) by inhibiting cAMP-dependent protein kinase inhibitor alpha (Pkia). H89 prevented the effects of miR-129-5p on osteogenic differentiation and cell migration. HE, immunohistochemistry staining and micro-CT results showed that miR-129-5p promoted in vivo osteogenesis of the HAG scaffold. CONCLUSION The HAG scaffold activates Pka by upregulating miR-129-5p and inhibiting Pkia, resulting in CREB-dependent transcriptional activation and accumulation of β-catenin and promoting osteogenic marker expression.
Collapse
Affiliation(s)
- Li Deng
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Xinlun Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohua Ren
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yushu Zhu
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|