1
|
Jin D, Wek SA, Cordova RA, Wek RC, Lacombe D, Michaud V, Musier-Forsyth K. Aminoacylation-defective bi-allelic mutations in human EPRS1 associated with psychomotor developmental delay, epilepsy, and deafness. Clin Genet 2023; 103:358-363. [PMID: 36411955 PMCID: PMC9898101 DOI: 10.1111/cge.14269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Aminoacyl-tRNA synthetases are enzymes that ensure accurate protein synthesis. Variants of the dual-functional cytoplasmic human glutamyl-prolyl-tRNA synthetase, EPRS1, have been associated with leukodystrophy, diabetes and bone disease. Here, we report compound heterozygous variants in EPRS1 in a 4-year-old female patient presenting with psychomotor developmental delay, seizures and deafness. Functional studies of these two missense mutations support major defects in enzymatic function in vitro and contributed to confirmation of the diagnosis.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus OH 43210, USA
| | - Sheree A. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Ricardo A. Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis IN 46202, USA
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France
- INSERM U1211, Rare Diseases, Genetics and Metabolism, University of Bordeaux, Bordeaux, France
- Co-corresponding authors ,
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus OH 43210, USA
- Co-corresponding authors ,
| |
Collapse
|
2
|
Memezawa S, Sato T, Ochiai A, Fukawa M, Sawaguchi S, Sango K, Miyamoto Y, Yamauchi J. The Antiepileptic Valproic Acid Ameliorates Charcot-Marie-Tooth 2W (CMT2W) Disease-Associated HARS1 Mutation-Induced Inhibition of Neuronal Cell Morphological Differentiation Through c-Jun N-terminal Kinase. Neurochem Res 2022; 47:2684-2702. [PMID: 35380399 DOI: 10.1007/s11064-022-03587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
Hereditary peripheral neuropathies called Charcot-Marie-Tooth (CMT) disease affect the sensory nerves as well as motor neurons. CMT diseases are composed of a heterogeneous group of diseases. They are characterized by symptoms such as muscle weakness and wasting. Type 2 CMT (CMT2) disease is a neuropathy with blunted or disrupted neuronal morphological differentiation phenotypes including process formation of peripheral neuronal axons. In the early stages of CMT2, demyelination that occurs in Schwann cells (glial cells) is rarely observed. CMT2W is an autosomal-dominant disease and is responsible for the gene encoding histidyl-tRNA synthetase 1 (HARS1), which is a family molecule of cytoplasmic aminoacyl-tRNA synthetases and functions by ligating histidine to its cognate tRNA. Despite increasing knowledge of the relationship of mutations on responsible genes with diseases, it still remains unclear how each mutation affects neuronal differentiation. Here we show that in neuronal N1E-115 cells, a severe Asp364-to-Tyr (D364Y) mutation of HARS1 leads to formation of small aggregates of HARS1 proteins; in contrast, wild type proteins are distributed throughout cell bodies. Expression of D364Y mutant proteins inhibited process formation whereas expression of wild type proteins possessed the normal differentiation ability to grow processes. Pretreatment with the antiepileptic valproic acid recovered inhibition of process formation by D364Y mutant proteins through the c-Jun N-terminal kinase signaling pathway. Taken together, these results indicate that the D364Y mutation of HARS1 causes HARS1 proteins to form small aggregates, inhibiting process growth, and that these effects are recovered by valproic acid. This could be a potential therapeutic drug for CMT2W at the cellular levels.
Collapse
Affiliation(s)
- Shiori Memezawa
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takanari Sato
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Arisa Ochiai
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Miku Fukawa
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Sui Sawaguchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan. .,Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
3
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhang R, Noordam L, Ou X, Ma B, Li Y, Das P, Shi S, Liu J, Wang L, Li P, Verstegen MMA, Reddy DS, van der Laan LJW, Peppelenbosch MP, Kwekkeboom J, Smits R, Pan Q. The biological process of lysine-tRNA charging is therapeutically targetable in liver cancer. Liver Int 2021; 41:206-219. [PMID: 33084231 PMCID: PMC7820958 DOI: 10.1111/liv.14692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mature transfer RNAs (tRNA) charged with amino acids decode mRNA to synthesize proteins. Dysregulation of translational machineries has a fundamental impact on cancer biology. This study aims to map the tRNAome landscape in liver cancer patients and to explore potential therapeutic targets at the interface of charging amino acid with tRNA. METHODS Resected tumour and paired tumour-free (TFL) tissues from hepatocellular carcinoma (HCC) patients (n = 69), and healthy liver tissues from organ transplant donors (n = 21), HCC cell lines, and cholangiocarcinoma (CC) patient-derived tumour organoids were used. RESULTS The expression levels of different mature tRNAs were highly correlated and closely clustered within individual tissues, suggesting that different members of the tRNAome function cooperatively in protein translation. Interestingly, high expression of tRNA-Lys-CUU in HCC tumours was associated with more tumour recurrence (HR 1.1; P = .022) and worse patient survival (HR 1.1; P = .0037). The expression of Lysyl-tRNA Synthetase (KARS), the enzyme catalysing the charge of lysine to tRNA-Lys-CUU, was significantly upregulated in HCC tumour tissues compared to tumour-free liver tissues. In HCC cell lines, lysine deprivation, KARS knockdown or treatment with the KARS inhibitor cladosporin effectively inhibited overall cell growth, single cell-based colony formation and cell migration. This was mechanistically mediated by cell cycling arrest and induction of apoptosis. Finally, these inhibitory effects were confirmed in 3D cultured patient-derived CC organoids. CONCLUSIONS The biological process of charging tRNA-Lys-CUU with lysine sustains liver cancer cell growth and migration, and is clinically relevant in HCC patients. This process can be therapeutically targeted and represents an unexplored territory for developing novel treatment strategies against liver cancer.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Lisanne Noordam
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Xumin Ou
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands,Institute of Preventive Veterinary MedicineSichuan Agricultural UniversityChengduChina
| | - Buyun Ma
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Yunlong Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Pronay Das
- Organic Chemistry DivisionCSIR‐National Chemical LaboratoryPuneIndia
| | - Shaojun Shi
- Department of SurgeryErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Jiaye Liu
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Ling Wang
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Pengfei Li
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | | | | | | | - Maikel P. Peppelenbosch
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Ron Smits
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
5
|
Liu S, Refaei M, Liu S, Decker A, Hinerman JM, Herr AB, Howell M, Musier-Forsyth K, Tsang P. Hairpin RNA-induced conformational change of a eukaryotic-specific lysyl-tRNA synthetase extension and role of adjacent anticodon-binding domain. J Biol Chem 2020; 295:12071-12085. [PMID: 32611767 PMCID: PMC7443506 DOI: 10.1074/jbc.ra120.013852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Human lysyl-tRNA synthetase (hLysRS) is essential for aminoacylation of tRNALys Higher eukaryotic LysRSs possess an N-terminal extension (Nterm) previously shown to facilitate high-affinity tRNA binding and aminoacylation. This eukaryote-specific appended domain also plays a critical role in hLysRS nuclear localization, thus facilitating noncanonical functions of hLysRS. The structure is intrinsically disordered and therefore remains poorly characterized. Findings of previous studies are consistent with the Nterm domain undergoing a conformational transition to an ordered structure upon nucleic acid binding. In this study, we used NMR to investigate how the type of RNA, as well as the presence of the adjacent anticodon-binding domain (ACB), influences the Nterm conformation. To explore the latter, we used sortase A ligation to produce a segmentally labeled tandem-domain protein, Nterm-ACB. In the absence of RNA, Nterm remained disordered regardless of ACB attachment. Both alone and when attached to ACB, Nterm structure remained unaffected by titration with single-stranded RNAs. The central region of the Nterm domain adopted α-helical structure upon titration of Nterm and Nterm-ACB with RNA hairpins containing double-stranded regions. Nterm binding to the RNA hairpins resulted in CD spectral shifts consistent with an induced helical structure. NMR and fluorescence anisotropy revealed that Nterm binding to hairpin RNAs is weak but that the binding affinity increases significantly upon covalent attachment to ACB. We conclude that the ACB domain facilitates induced-fit conformational changes and confers high-affinity RNA hairpin binding, which may be advantageous for functional interactions of LysRS with a variety of different binding partners.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Maryanne Refaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shuohui Liu
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Aaron Decker
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer M. Hinerman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew B. Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mike Howell
- Protein Express, Inc., Cincinnati, Ohio, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | - Pearl Tsang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Preger C, Wigren E, Ossipova E, Marks C, Lengqvist J, Hofström C, Andersson O, Jakobsson PJ, Gräslund S, Persson H. Generation and validation of recombinant antibodies to study human aminoacyl-tRNA synthetases. J Biol Chem 2020; 295:13981-13993. [PMID: 32817337 DOI: 10.1074/jbc.ra120.012893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/10/2020] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) have long been viewed as mere housekeeping proteins and have therefore often been overlooked in drug discovery. However, recent findings have revealed that many aaRSs have noncanonical functions, and several of the aaRSs have been linked to autoimmune diseases, cancer, and neurological disorders. Deciphering these roles has been challenging because of a lack of tools to enable their study. To help solve this problem, we have generated recombinant high-affinity antibodies for a collection of thirteen cytoplasmic and one mitochondrial aaRSs. Selected domains of these proteins were produced recombinantly in Escherichia coli and used as antigens in phage display selections using a synthetic human single-chain fragment variable library. All targets yielded large sets of antibody candidates that were validated through a panel of binding assays against the purified antigen. Furthermore, the top-performing binders were tested in immunoprecipitation followed by MS for their ability to capture the endogenous protein from mammalian cell lysates. For antibodies targeting individual members of the multi-tRNA synthetase complex, we were able to detect all members of the complex, co-immunoprecipitating with the target, in several cell types. The functionality of a subset of binders for each target was also confirmed using immunofluorescence. The sequences of these proteins have been deposited in publicly available databases and repositories. We anticipate that this open source resource, in the form of high-quality recombinant proteins and antibodies, will accelerate and empower future research of the role of aaRSs in health and disease.
Collapse
Affiliation(s)
- Charlotta Preger
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Edvard Wigren
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Ossipova
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carolyn Marks
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Camilla Hofström
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Oskar Andersson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Gräslund
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development, Stockholm, Sweden .,School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
The aminoacyl-tRNA synthetases are an essential and universally distributed family of enzymes that plays a critical role in protein synthesis, pairing tRNAs with their cognate amino acids for decoding mRNAs according to the genetic code. Synthetases help to ensure accurate translation of the genetic code by using both highly accurate cognate substrate recognition and stringent proofreading of noncognate products. While alterations in the quality control mechanisms of synthetases are generally detrimental to cellular viability, recent studies suggest that in some instances such changes facilitate adaption to stress conditions. Beyond their central role in translation, synthetases are also emerging as key players in an increasing number of other cellular processes, with far-reaching consequences in health and disease. The biochemical versatility of the synthetases has also proven pivotal in efforts to expand the genetic code, further emphasizing the wide-ranging roles of the aminoacyl-tRNA synthetase family in synthetic and natural biology.
Collapse
Affiliation(s)
- Miguel Angel Rubio Gomez
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Felhi R, Charif M, Sfaihi L, Mkaouar-Rebai E, Desquiret-Dumas V, Kallel R, Bris C, Goudenège D, Guichet A, Bonneau D, Procaccio V, Reynier P, Amati-Bonneau P, Hachicha M, Fakhfakh F, Lenaers G. Mutations in aARS genes revealed by targeted next-generation sequencing in patients with mitochondrial diseases. Mol Biol Rep 2020; 47:3779-3787. [PMID: 32319008 DOI: 10.1007/s11033-020-05425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases are a clinically heterogeneous group of multisystemic disorders that arise as a result of various mitochondrial dysfunctions. Autosomal recessive aARS deficiencies represent a rapidly growing group of severe rare inherited mitochondrial diseases, involving multiple organs, and currently without curative option. They might be related to defects of mitochondrial aminoacyl t-RNA synthetases (mtARS) that are ubiquitous enzymes involved in mitochondrial aminoacylation and the translation process. Here, using NGS analysis of 281 nuclear genes encoding mitochondrial proteins, we identified 4 variants in different mtARS in three patients from unrelated Tunisian families, with clinical features of mitochondrial disorders. Two homozygous variants were found in KARS (c.683C>T) and AARS2 (c.1150-4C>G), respectively in two patients, while two heterozygous variants in EARS2 (c.486-7C>G) and DARS2 (c.1456C>T) were concomitantly found in the third patient. Bio-informatics investigations predicted their pathogenicity and deleterious effects on pre-mRNA splicing and on protein stability. Thus, our results suggest that mtARS mutations are common in Tunisian patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Rahma Felhi
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Majida Charif
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Lamia Sfaihi
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia
| | - Valerie Desquiret-Dumas
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Rim Kallel
- Departments of Pathology, University Hospital Habib Bourguiba, Sfax, Tunisia
| | - Céline Bris
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Agnès Guichet
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Mongia Hachicha
- Departments of Pediatry, University Hospital Hedi Chaker, Sfax, Tunisia
| | - Faiza Fakhfakh
- Molecular and Functional Genetics Laboratory, Faculty of Science of Sfax, University of Sfax, Route Soukra, Km 3, Sfax, Tunisia.
| | - Guy Lenaers
- MitoLab Team, Institut MitoVasc, UMR CNRS6015, INSERM U1083, Angers University, Angers, France
| |
Collapse
|