1
|
Kuleš J, Bujanić M, Rubić I, Šimonji K, Konjević D. A Comprehensive Multi-Omics Study of Serum Alterations in Red Deer Infected by the Liver Fluke Fascioloides magna. Pathogens 2024; 13:922. [PMID: 39599475 PMCID: PMC11597349 DOI: 10.3390/pathogens13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Liver fluke infections are acknowledged as diseases with global prevalence and significant implications for both veterinary and public health. The large American liver fluke, Fascioloides magna, is a significant non-native parasite introduced to Europe, threatening the survival of local wildlife populations. The aim of this study was to analyze differences in the serum proteome and metabolome between F. magna-infected and control red deer. Serum samples from red deer were collected immediately following regular hunting operations, including 10 samples with confirmed F. magna infection and 10 samples from healthy red deer. A proteomics analysis of the serum samples was performed using a tandem mass tag (TMT)-based quantitative approach, and a metabolomics analysis of the serum was performed using an untargeted mass spectrometry-based metabolomics approach. A knowledge-driven approach was applied to integrate omics data. Our findings demonstrated that infection with liver fluke was associated with changes in amino acid metabolism, energy metabolism, lipid metabolism, inflammatory host response, and related biochemical pathways. This study offers a comprehensive overview of the serum proteome and metabolome in response to F. magna infection in red deer, unveiling new potential targets for future research. The identification of proteins, metabolites, and related biological pathways enhances our understanding of host-parasite interactions and may improve current tools for more effective liver fluke control.
Collapse
Affiliation(s)
- Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miljenko Bujanić
- Educational Center for Game Management I/3 “Črnovšćak”, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Rubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Karol Šimonji
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.R.); (K.Š.)
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Manikantan V, Ripley NE, Nielsen MK, Dangoudoubiyam S. Protein profile of extracellular vesicles derived from adult Parascaris spp. Parasit Vectors 2024; 17:426. [PMID: 39390471 PMCID: PMC11468347 DOI: 10.1186/s13071-024-06502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Parascaris spp. represent a significant threat to equine health worldwide, particularly in foals. The long-term survival of parasites in the host necessitates persistent modulation of the host immune response. Intercellular communication achieved through the exchange of molecules via extracellular vesicles (EVs) released from the parasite could be a crucial factor in this regard. This study aimed to isolate and characterize EVs released by adult male and female Parascaris worms and conduct a proteomic analysis to identify sex-specific proteins and potential immunomodulatory factors. METHODS Live adult Parascaris worms were collected, and EVs were isolated from spent culture media using differential ultracentrifugation. Nanoparticle tracking analysis and transmission electron microscopy confirmed the size, concentration, and morphology of the isolated EVs. Proteins within the isolated EVs were analyzed using mass spectrometry-based proteomics (LC-MS/MS). RESULTS Proteomic analysis revealed a total of 113 proteins in Parascaris EVs, with several proteins showing homology to known helminth exosome proteins and exhibiting immunomodulatory functions. Sex-specific differences in EV protein composition were observed, with a distinct abundance of C-type lectins in female EVs, suggesting potential sex-specific roles or regulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed metabolic pathways shared between male and female Parascaris EVs, as well as differences in signal transduction, and cell growth and death pathways, indicating sex-specific variations. CONCLUSIONS These findings imply that Parascaris EVs and their protein cargo are complex. This data potentially opens avenues for discovering innovative approaches to managing and understanding helminth infection.
Collapse
Affiliation(s)
- Vishnu Manikantan
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA
| | - Nichol E Ripley
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40503, USA
| | - Sriveny Dangoudoubiyam
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Liver Proteome Alterations in Red Deer ( Cervus elaphus) Infected by the Giant Liver Fluke Fascioloides magna. Pathogens 2022; 11:pathogens11121503. [PMID: 36558836 PMCID: PMC9786150 DOI: 10.3390/pathogens11121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Liver fluke infections are recognised as diseases with worldwide distribution and considerable veterinary and public health importance. The giant liver fluke, Fascioloides magna, is an important non-native parasite which has been introduced to Europe, posing a threat to the survival of local wildlife populations such as red deer (Cervus elaphus). The aim of the study was to analyse differences in liver proteomes between F. magna-infected and control red deer groups using a label-based high-throughput quantitative proteomics approach. The proteomics analysis identified 234 proteins with differential abundance between the control and infected groups. Our findings showed that F. magna infection in this definitive host is associated with changes in the metabolism of proteins and fatty acids, oxidative stress, fibrosis, and signaling pathways. The identified proteins and associated biological pathways represent a valuable contribution to the understanding of host-parasite interactions and the pathogenesis of liver fluke infection.
Collapse
|
4
|
Wititkornkul B, Hulme BJ, Tomes JJ, Allen NR, Davis CN, Davey SD, Cookson AR, Phillips HC, Hegarty MJ, Swain MT, Brophy PM, Wonfor RE, Morphew RM. Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens 2021; 10:pathogens10070912. [PMID: 34358062 PMCID: PMC8308605 DOI: 10.3390/pathogens10070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Collapse
Affiliation(s)
- Boontarikaan Wititkornkul
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Nathan R. Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Sarah D. Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Matthew J. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Ruth E. Wonfor
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| |
Collapse
|
5
|
Kuleš J, Lovrić L, Gelemanović A, Beer Ljubić B, Rubić I, Bujanić M, Konjević D. Complementary liver and serum protein profile in wild boars infected by the giant liver fluke Fascioloides magna using tandem mass tags quantitative approach. J Proteomics 2021; 247:104332. [PMID: 34298188 DOI: 10.1016/j.jprot.2021.104332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023]
Abstract
Liver fluke, Fascioloides magna, is an important non-native parasite introduced to Europe, posing a threat to survival of local wildlife populations. The aim of this study was to assess the serum and liver protein profile of control and F. magna infected wild boars, by means of shotgun tandem mass tag - based quantitative high resolution proteomics approach. In serum, 4 differentially abundant proteins were found out of total 1073 identified, while in liver from 3520 identified proteins, 116 were differentially abundant between healthy and F. magna infected wild boars. Pathway analysis revealed that most of the proteins differing in abundance are involved in metabolism, biological oxidations, cellular responses to stimuli, fatty acid metabolism, and others. Validation of proteomic results was performed for paraoxonase-1, ceruloplasmin, glutathione S-transferase and liver enzymes by ELISA and automated assays. Complementary analysis of liver and serum in F. magna infection enabled insight into changes of proteome profile of the host at local and sistemic level. Our findings showed that chronic infection with F. magna is associated with immune response in host, oxidative stress and metabolomic changes in liver. SIGNIFICANCE: Liver fluke infections are recognised as worldwide neglected diseases with considerable veterinary and public health importance. Pathological changes, clinical signs and outcome of F. magna infection are strongly related to the type of final hosts and their different tolerance to infection. In order to gain insight into host-parasite interactions in wild boars, dead-end host for F. magna, we assessed proteomics profile of serum and liver of control animals and those infected with F. magna. Proteomics analysis of serum and liver in parallel showed as advantageous and beneficial, demonstrating protein alterations mainly at local level. Bioinformatics analysis enabled elucidation of molecular pathways associated with F. magna infection. Identification and validation of proteins associated with infection may have added value to current tools for efficient liver fluke control.
Collapse
Affiliation(s)
- Josipa Kuleš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | - Lea Lovrić
- Department of Parasitology and Parasitic Diseases With Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Blanka Beer Ljubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miljenko Bujanić
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dean Konjević
- Department of Veterinary Economics and Epidemiology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Vorel J, Cwiklinski K, Roudnický P, Ilgová J, Jedličková L, Dalton JP, Mikeš L, Gelnar M, Kašný M. Eudiplozoon nipponicum (Monogenea, Diplozoidae) and its adaptation to haematophagy as revealed by transcriptome and secretome profiling. BMC Genomics 2021; 22:274. [PMID: 33858339 PMCID: PMC8050918 DOI: 10.1186/s12864-021-07589-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Ectoparasites from the family Diplozoidae (Platyhelminthes, Monogenea) belong to obligate haematophagous helminths of cyprinid fish. Current knowledge of these worms is for the most part limited to their morphological, phylogenetic, and population features. Information concerning the biochemical and molecular nature of physiological processes involved in host–parasite interaction, such as evasion of the immune system and its regulation, digestion of macromolecules, suppression of blood coagulation and inflammation, and effect on host tissue and physiology, is lacking. In this study, we report for the first time a comprehensive transcriptomic/secretome description of expressed genes and proteins secreted by the adult stage of Eudiplozoon nipponicum (Goto, 1891) Khotenovsky, 1985, an obligate sanguivorous monogenean which parasitises the gills of the common carp (Cyprinus carpio). Results RNA-seq raw reads (324,941 Roche 454 and 149,697,864 Illumina) were generated, de novo assembled, and filtered into 37,062 protein-coding transcripts. For 19,644 (53.0%) of them, we determined their sequential homologues. In silico functional analysis of E. nipponicum RNA-seq data revealed numerous transcripts, pathways, and GO terms responsible for immunomodulation (inhibitors of proteolytic enzymes, CD59-like proteins, fatty acid binding proteins), feeding (proteolytic enzymes cathepsins B, D, L1, and L3), and development (fructose 1,6-bisphosphatase, ferritin, and annexin). LC-MS/MS spectrometry analysis identified 721 proteins secreted by E. nipponicum with predominantly immunomodulatory and anti-inflammatory functions (peptidyl-prolyl cis-trans isomerase, homolog to SmKK7, tetraspanin) and ability to digest host macromolecules (cathepsins B, D, L1). Conclusions In this study, we integrated two high-throughput sequencing techniques, mass spectrometry analysis, and comprehensive bioinformatics approach in order to arrive at the first comprehensive description of monogenean transcriptome and secretome. Exploration of E. nipponicum transcriptome-related nucleotide sequences and translated and secreted proteins offer a better understanding of molecular biology and biochemistry of these, often neglected, organisms. It enabled us to report the essential physiological pathways and protein molecules involved in their interactions with the fish hosts. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07589-z.
Collapse
Affiliation(s)
- Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Ilgová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.,Department of Zoology and Fisheries, Centre of Infectious Animal Diseases, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - John P Dalton
- Molecular Parasitology Laboratory, Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
7
|
Huson KM, Atcheson E, Oliver NAM, Best P, Barley JP, Hanna REB, McNeilly TN, Fang Y, Haldenby S, Paterson S, Robinson MW. Transcriptome and Secretome Analysis of Intra-Mammalian Life-Stages of Calicophoron daubneyi Reveals Adaptation to a Unique Host Environment. Mol Cell Proteomics 2021; 20:100055. [PMID: 33581320 PMCID: PMC7973311 DOI: 10.1074/mcp.ra120.002175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paramphistomosis, caused by the rumen fluke, Calicophoron daubneyi, is a parasitic infection of ruminant livestock, which has seen a rapid rise in prevalence throughout Western Europe in recent years. After ingestion of metacercariae (parasite cysts) by the mammalian host, newly excysted juveniles (NEJs) emerge and invade the duodenal submucosa, which causes significant pathology in heavy infections. The immature flukes then migrate upward, along the gastrointestinal tract, and enter the rumen where they mature and begin to produce eggs. Despite their emergence, and sporadic outbreaks of acute disease, we know little about the molecular mechanisms used by C. daubneyi to establish infection, acquire nutrients, and avoid the host immune response. Here, transcriptome analysis of four intramammalian life-cycle stages, integrated with secretome analysis of the NEJ and adult parasites (responsible for acute and chronic diseases, respectively), revealed how the expression and secretion of selected families of virulence factors and immunomodulators are regulated in accordance with fluke development and migration. Our data show that while a family of cathepsins B with varying S2 subsite residues (indicating distinct substrate specificities) is differentially secreted by NEJs and adult flukes, cathepsins L and F are secreted in low abundance by NEJs only. We found that C. daubneyi has an expanded family of aspartic peptidases, which is upregulated in adult worms, although they are under-represented in the secretome. The most abundant proteins in adult fluke secretions were helminth defense molecules that likely establish an immune environment permissive to fluke survival and/or neutralize pathogen-associated molecular patterns such as bacterial lipopolysaccharide in the microbiome-rich rumen. The distinct collection of molecules secreted by C. daubneyi allowed the development of the first coproantigen-based ELISA for paramphistomosis which, importantly, did not recognize antigens from other helminths commonly found as coinfections with rumen fluke.
Collapse
Affiliation(s)
- Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Erwan Atcheson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Nicola A M Oliver
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Philip Best
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Jason P Barley
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Robert E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland
| | - Tom N McNeilly
- Disease Control Department, Moredun Research Institute, Edinburgh, Scotland
| | - Yongxiang Fang
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Sam Haldenby
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, England
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
8
|
Bartošová-Sojková P, Kyslík J, Alama-Bermejo G, Hartigan A, Atkinson SD, Bartholomew JL, Picard-Sánchez A, Palenzuela O, Faber MN, Holland JW, Holzer AS. Evolutionary Analysis of Cystatins of Early-Emerging Metazoans Reveals a Novel Subtype in Parasitic Cnidarians. BIOLOGY 2021; 10:110. [PMID: 33546310 PMCID: PMC7913475 DOI: 10.3390/biology10020110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Jiří Kyslík
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Gema Alama-Bermejo
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| | - Ashlie Hartigan
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK;
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA; (S.D.A.); (J.L.B.)
| | - Amparo Picard-Sánchez
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595 Castellón, Spain;
| | - Marc Nicolas Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Jason W. Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK; (M.N.F.); (J.W.H.)
| | - Astrid S. Holzer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; (J.K.); (G.A.-B.); (A.P.-S.); (A.S.H.)
| |
Collapse
|
9
|
Nesterenko MA, Starunov VV, Shchenkov SV, Maslova AR, Denisova SA, Granovich AI, Dobrovolskij AA, Khalturin KV. Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae). Parasit Vectors 2020; 13:559. [PMID: 33168070 PMCID: PMC7653818 DOI: 10.1186/s13071-020-04424-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. Methods In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species. Results Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis. Conclusions During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses.![]()
Collapse
Affiliation(s)
- Maksim A Nesterenko
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.
| | - Viktor V Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia.,Zoological Institute, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| | - Sergei V Shchenkov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anna R Maslova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Sofia A Denisova
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey I Granovich
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrey A Dobrovolskij
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin V Khalturin
- Marine Genomics Unit, OIST, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
10
|
Braden LM, Monaghan SJ, Fast MD. Salmon immunological defence and interplay with the modulatory capabilities of its ectoparasite Lepeophtheirus salmonis. Parasite Immunol 2020; 42:e12731. [PMID: 32403169 DOI: 10.1111/pim.12731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/13/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
The salmon louse Lepeophtheirus salmonis (Lsal) is an ectoparasitic copepod that exerts immunomodulatory and physiological effects on its host Atlantic salmon. Over 30 years of research on louse biology, control, host responses and the host-parasite relationship has provided a plethora of information on the intricacies of host resistance and parasite adaptation. Atlantic salmon exhibit temporal and spatial impairment of the immune system and wound healing ability during infection. This immunosuppression may render Atlantic salmon less tolerant to stress and other confounders associated with current management strategies. Contrasting susceptibility of salmonid hosts exists, and early pro-inflammatory Th1 type responses are associated with resistance. Rapid cellular responses to larvae appear to tip the balance of the host-parasite relationship in favour of the host, preventing severe immune-physiological impacts of the more invasive adults. Immunological, transcriptomic, genomic and proteomic evidence suggests pathological impacts occur in susceptible hosts through modulation of host immunity and physiology via pharmacologically active molecules. Co-evolutionary and farming selection pressures may have incurred preference of Atlantic salmon as a host for Lsal reflected in their interactome. Here, we review host-parasite interactions at the primary attachment/feeding site, and the complex life stage-dependent molecular mechanisms employed to subvert host physiology and immune responses.
Collapse
Affiliation(s)
- Laura M Braden
- AquaBounty Canada, Bay Fortune, PEI, Canada.,Department of Pathology and Microbiology, Atlantic Veterinary College-UPEI, Charlottetown, PEI, Canada
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Mark D Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College-UPEI, Charlottetown, PEI, Canada
| |
Collapse
|
11
|
Cortés A, Mikeš L, Muñoz-Antolí C, Álvarez-Izquierdo M, Esteban JG, Horák P, Toledo R. Secreted cathepsin L-like peptidases are involved in the degradation of trapped antibodies on the surface of Echinostoma caproni. Parasitol Res 2019; 118:3377-3386. [PMID: 31720841 DOI: 10.1007/s00436-019-06487-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Antibody trapping is a recently described strategy for immune evasion observed in the intestinal trematode Echinostoma caproni, which may aid to avoiding the host humoral response, thus facilitating parasite survival in the presence of high levels of local-specific antibodies. Parasite-derived peptidases carry out the degradation of trapped antibodies, being essential for this mechanism. Herein, we show that cathepsin-like cysteine endopeptidases are active in the excretory/secretory products (ESPs) of E. caproni and play an important role in the context of antibody trapping. Cysteine endopeptidase activity was detected in the ESPs of E. caproni adults. The affinity probe DCG-04 distinguished a cysteine peptidase band in ESPs, which was specifically recognized by an anti-cathepsin L heterologous antibody. The same antibody localized this protein in the gut and syncytial tegument of adult worms. Studies with cultured parasites showed that in vivo-bound antibodies are removed from the parasite surface in the absence of peptidase inhibitors, while addition of cathepsin L inhibitor prevented their degradation. These results indicate that cathepsin L-like peptidases are involved in the degradation of surface-trapped antibodies and suggest that cysteine peptidases are not only crucial for tissue-invading trematodes, but they can be equally relevant at the parasite-host interface in gut-dwelling flukes.
Collapse
Affiliation(s)
- Alba Cortés
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Carla Muñoz-Antolí
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Álvarez-Izquierdo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Rafael Toledo
- Área de Parasitología, Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
12
|
Huson KM, Morphew RM, Allen NR, Hegarty MJ, Worgan HJ, Girdwood SE, Jones EL, Phillips HC, Vickers M, Swain M, Smith D, Kingston-Smith AH, Brophy PM. Polyomic tools for an emerging livestock parasite, the rumen fluke Calicophoron daubneyi; identifying shifts in rumen functionality. Parasit Vectors 2018; 11:617. [PMID: 30509301 PMCID: PMC6278170 DOI: 10.1186/s13071-018-3225-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting ruminant livestock in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms has not been confirmed in Europe, fatalities have been attributed to severe haemorrhagic enteritis of the small intestine resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently on productivity and economic management of infected livestock, have not been resolved. Limited publicly available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries. RESULTS This dataset identifies a number of genes potentially unique to C. daubneyi and, by comparison to an existing transcriptome for the related Paramphistomum cervi, identifies novel genes which may be unique to the paramphistome group of platyhelminthes. Additionally, we present the first coverage of the excretory/secretory and soluble somatic proteome profiles for adult C. daubneyi and identify the release of extracellular vesicles from adult C. daubneyi parasites during in vitro, ex-host culture. Finally, we have performed the first analysis of rumen fluke impacting upon rumen fermentation parameters using an in vitro gas production study resulting in a significant increase in propionate production. CONCLUSIONS The resulting data provide a discovery platform (transcriptome, proteomes, EV isolation pipeline and in vitro fermentation system) to further study C. daubneyi-host interaction. In addition, the acetate: propionate ratio has been demonstrated to decrease with rumen fluke infection suggesting that acidotic conditions in the rumen may occur.
Collapse
Affiliation(s)
- Kathryn M Huson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Russell M Morphew
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK.
| | - Nathan R Allen
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Hillary J Worgan
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Susan E Girdwood
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Eleanor L Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Helen C Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Martin Vickers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Martin Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Daniel Smith
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Peter M Brophy
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| |
Collapse
|
13
|
Młocicki D, Sulima A, Bień J, Näreaho A, Zawistowska-Deniziak A, Basałaj K, Sałamatin R, Conn DB, Savijoki K. Immunoproteomics and Surfaceomics of the Adult Tapeworm Hymenolepis diminuta. Front Immunol 2018; 9:2487. [PMID: 30483248 PMCID: PMC6240649 DOI: 10.3389/fimmu.2018.02487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
In cestodiasis, mechanical and molecular contact between the parasite and the host activates the immune response of the host and may result in inflammatory processes, leading to ulceration and intestinal dysfunctions. The aim of the present study was to identify antigenic proteins of the adult cestode Hymenolepis diminuta by subjecting the total protein extracts from adult tapeworms to 2DE immunoblotting (two-dimensional electrophoresis combined with immunoblotting) using sera collected from experimentally infected rats. A total of 36 protein spots cross-reacting with the rat sera were identified using LC-MS/MS. As a result, 68 proteins, including certain structural muscle proteins (actin, myosin, and paramyosin) and moonlighters (heat shock proteins, kinases, phosphatases, and glycolytic enzymes) were identified; most of these were predicted to possess binding and/or catalytic activity required in various metabolic and cellular processes, and reported here as potential antigens of the adult cestode for the first time. As several of these antigens can also be found at the cell surface, the surface-associated proteins were extracted and subjected to in-solution digestion for LC-MS/MS identification (surfaceomics). As a result, a total of 76 proteins were identified, from which 31 proteins, based on 2DE immunoblotting, were predicted to be immunogenic. These included structural proteins actin, myosin and tubulin as well as certain moonlighting proteins (heat-shock chaperones) while enzymes with diverse catalytic activities were found as the most dominating group of proteins. In conclusion, the present study shed new light into the complexity of the enteric cestodiasis by showing that the H. diminuta somatic proteins exposed to the host possess immunomodulatory functions, and that the immune response of the host could be stimulated by diverse mechanisms, involving also those triggering protein export via yet unknown pathways.
Collapse
Affiliation(s)
- Daniel Młocicki
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anna Sulima
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
| | - Justyna Bień
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Anu Näreaho
- Department of Veterinary BiosciencesUniversity of Helsinki, Helsinki, Finland
| | | | - Katarzyna Basałaj
- Witold Stefański Institute of ParasitologyPolish Academy of Sciences, Warsaw, Poland
| | - Rusłan Sałamatin
- Department of General Biology and ParasitologyMedical University of Warsaw, Warsaw, Poland
- Department of Parasitology and Vector-Borne DiseasesNational Institute of Public Health–National Institute of Hygiene, Warsaw, Poland
| | - David Bruce Conn
- Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard UniversityCambridge, MA, United States
- One Health Center, Berry CollegeMount Berry, GA, United States
| | - Kirsi Savijoki
- Division of Pharmaceutical BiosciencesUniversity of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Biswal DK, Roychowdhury T, Pandey P, Tandon V. De novo genome and transcriptome analyses provide insights into the biology of the trematode human parasite Fasciolopsis buski. PLoS One 2018; 13:e0205570. [PMID: 30325945 PMCID: PMC6191129 DOI: 10.1371/journal.pone.0205570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022] Open
Abstract
Many trematode parasites cause infection in humans and are thought to be a major public health problem. Their ecological diversity in different regions provides challenging questions on evolution of these organisms. In this report, we perform transcriptome analysis of the giant intestinal fluke, Fasciolopsis buski, using next generation sequencing technology. Short read sequences derived from polyA containing RNA of this organism were assembled into 30,677 unigenes that led to the annotation of 12,380 genes. Annotation of the assembled transcripts enabled insight into processes and pathways in the intestinal fluke, such as RNAi pathway and energy metabolism. The expressed kinome of the organism was characterized by identifying all protein kinases. A rough draft genome assembly for Fasciolopsis buski is also reported herewith with SRA accessions for crosschecking the findings in the analyzed transcriptome data. Transcriptome data also helped us to identify some of the expressed transposable elements. Though many Long Interspersed elements (LINEs) were identified, only two Short Interspersed Elements (SINEs) were visible. Overall transcriptome and draft genome analysis of F. buski helped us to characterize some of its important biological characteristics and provided enormous resources for development of a suitable diagnostic system and anti-parasitic therapeutic molecules.
Collapse
Affiliation(s)
| | - Tanmoy Roychowdhury
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyatama Pandey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Veena Tandon
- Department of Zoology, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
15
|
Li BW, McNulty SN, Rosa BA, Tyagi R, Zeng QR, Gu KZ, Weil GJ, Mitreva M. Conservation and diversification of the transcriptomes of adult Paragonimus westermani and P. skrjabini. Parasit Vectors 2016; 9:497. [PMID: 27619014 PMCID: PMC5020434 DOI: 10.1186/s13071-016-1785-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Paragonimiasis is an important and widespread neglected tropical disease. Fifteen Paragonimus species are human pathogens, but two of these, Paragonimus westermani and P. skrjabini, are responsible for the bulk of human disease. Despite their medical and economic significance, there is limited information on the gene content and expression of Paragonimus lung flukes. Results The transcriptomes of adult P. westermani and P. skrjabini were studied with deep sequencing technology. Approximately 30 million reads per species were assembled into 21,586 and 25,825 unigenes for P. westermani and P. skrjabini, respectively. Many unigenes showed homology with sequences from other food-borne trematodes, but 1,217 high-confidence Paragonimus-specific unigenes were identified. Analyses indicated that both species have the potential for aerobic and anaerobic metabolism but not de novo fatty acid biosynthesis and that they may interact with host signaling pathways. Some 12,432 P. westermani and P. skrjabini unigenes showed a clear correspondence in bi-directional sequence similarity matches. The expression of shared unigenes was mostly well correlated, but differentially expressed unigenes were identified and shown to be enriched for functions related to proteolysis for P. westermani and microtubule based motility for P. skrjabini. Conclusions The assembled transcriptomes of P. westermani and P. skrjabini, inferred proteins, and extensive functional annotations generated for this project (including identified primary sequence similarities to various species, protein domains, biological pathways, predicted proteases, molecular mimics and secreted proteins, etc.) represent a valuable resource for hypothesis driven research on these medically and economically important species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1785-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben-Wen Li
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Bruce A Rosa
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Rahul Tyagi
- The McDonnell Genome Institute at Washington University, St. Louis, MO, USA
| | - Qing Ren Zeng
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Kong-Zhen Gu
- Department of Parasitology, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Gary J Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,The McDonnell Genome Institute at Washington University, St. Louis, MO, USA.
| |
Collapse
|
16
|
Ma J, He JJ, Liu GH, Leontovyč R, Kašný M, Zhu XQ. Complete mitochondrial genome of the giant liver fluke Fascioloides magna (Digenea: Fasciolidae) and its comparison with selected trematodes. Parasit Vectors 2016; 9:429. [PMID: 27492461 PMCID: PMC4973546 DOI: 10.1186/s13071-016-1699-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 11/20/2022] Open
Abstract
Background Representatives of the trematode family Fasciolidae are responsible for major socio-economic losses worldwide. Fascioloides magna is an important pathogenic liver fluke of wild and domestic ungulates. To date, only a limited number of studies concerning the molecular biology of F. magna exist. Therefore, the objective of the present study was to determine the complete mitochondrial (mt) genome sequence of F. magna, and assess the phylogenetic relationships of this fluke with other trematodes based on the mtDNA dataset. Findings The complete F. magna mt genome sequence is 14,047 bp. The gene content and arrangement of the F. magna mt genome is similar to those of Fasciola spp., except that trnE is located between trnG and the only non-coding region in F. magna mt genome. Phylogenetic relationships of F. magna with selected trematodes using Bayesian inference (BI) was reconstructed based on the concatenated amino acid sequences for 12 protein-coding genes, which confirmed that the genus Fascioloides is closely related to the genus Fasciola; the intergeneric differences of amino acid composition between the genera Fascioloides and Fasciola ranged 17.97–18.24 %. Conclusions The determination of F. magna mt genome sequence provides a valuable resource for further investigations of the phylogeny of the family Fasciolidae and other trematodes, and represents a useful platform for designing appropriate molecular markers. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1699-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 44, Czech Republic. .,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, PR China.
| |
Collapse
|
17
|
Haçarız O, Sayers GP. The omic approach to parasitic trematode research-a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [PMID: 27126082 DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
Abstract
The evolution of technologies to explore parasite biology at a detailed level has made significant advances in recent years, particularly with the development of omic-based strategies. Whilst extensive efforts have been made in the past to develop therapeutic and prophylactic control strategies for trematode parasites, only the therapeutic anthelmintic approach can be regarded as usable in clinical practice. Currently, there is no commercialised prophylactic strategy (such as vaccination) for protection of the definitive host against any trematode parasite. Since 2010 in particular, the integration of omic technologies, including liquid chromatography-mass spectrometry (LC-MS) and next-generation sequencing (NGS), has been increasingly reported in trematode-related studies. Both LC-MS and NGS facilitate a better understanding of the biology of trematodes and provide a promising route to identifying clinically important biological characteristics of parasitic trematodes. In this review, we focus on the application, advantages, and disadvantages of omic technologies (LC-MS and NGS) in trematode research within the past 5 years and explore the use and translation of the omic-based research results into practical tools to deal with infection.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, Gebze, Kocaeli, Turkey.
| | - Gearóid P Sayers
- Department of Science, Technology, Engineering and Mathematics, Institute of Technology Tralee, Tralee,, Co. Kerry, Ireland
| |
Collapse
|
18
|
Liu GH, Xu MJ, Chang QC, Gao JF, Wang CR, Zhu XQ. De novo transcriptomic analysis of the female and male adults of the blood fluke Schistosoma turkestanicum. Parasit Vectors 2016; 9:143. [PMID: 26968659 PMCID: PMC4788885 DOI: 10.1186/s13071-016-1436-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/05/2016] [Indexed: 12/19/2022] Open
Abstract
Background Schistosoma turkestanicum is a parasite of considerable veterinary importance as an agent of animal schistosomiasis in many countries, including China. The S. turkestanicum cercariae can also infect humans, causing cercarial dermatitis in many countries and regions of the world. In spite of its significance as a pathogen of animals and humans, there is little transcriptomic and genomic data in the public databases. Methods Herein, we performed the transcriptome Illumina RNA sequencing (RNA-seq) of adult males and females of S. turkestanicum and de novo transcriptome assembly. Results Approximately 81.1 (female) and 80.5 (male) million high-quality clean reads were obtained and then 29,526 (female) and 41,346 (male) unigenes were assembled. A total of 34,624 unigenes were produced from S. turkestanicum females and males, with an average length of 878 nucleotides (nt) and N50 of 1480 nt. Of these unigenes, 25,158 (72.7 %) were annotated by blast searches against the NCBI non-redundant protein database. Among these, 21,995 (63.5 %), 22,189 (64.1 %) and 13,754 (39.7 %) of the unigenes had significant similarity in the NCBI non-redundant protein (NR), non-redundant nucleotide (NT) and Swiss-Prot databases, respectively. In addition, 3150 unigenes were identified to be expressed specifically in females and 1014 unigenes were identified to be expressed specifically in males. Interestingly, several pathways associated with gonadal development and sex maintenance were found, including the Wnt signaling pathway (103; 2 %) and progesterone-mediated oocyte maturation (77; 1.5 %). Conclusions The present study characterized and compared the transcriptomes of adult female and male blood fluke, S. turkestanicum. These results will not only serve as valuable resources for future functional genomics studies to understand the molecular aspects of S. turkestanicum, but also will provide essential information for ongoing whole genome sequencing efforts on this pathogenic blood fluke.
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province, 510642, PR China
| | - Qiao-Cheng Chang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China
| | - Jun-Feng Gao
- Department of Parasitology, Heilongjiang Institute of Veterinary Science, Qiqihar, Heilongjiang Province, 161006, PR China
| | - Chun-Ren Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163319, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, PR China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu Province, 225009, PR China.
| |
Collapse
|
19
|
Chen W, Ning D, Wang X, Chen T, Lv X, Sun J, Wu D, Huang Y, Xu J, Yu X. Identification and characterization of Clonorchis sinensis cathepsin B proteases in the pathogenesis of clonorchiasis. Parasit Vectors 2015; 8:647. [PMID: 26691339 PMCID: PMC4687107 DOI: 10.1186/s13071-015-1248-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/05/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human clonorchiasis is a prevailing food-borne disease caused by Clonorchis sinensis infection. Functional characterizations of key molecules from C. sinensis could facilitate the intervention of C. sinensis associated diseases. METHODS In this study, immunolocalization of C. sinensis cathepsin B proteases (CsCBs) in C. sinensis worms was investigated. Four CsCBs were expressed in Pichia pastoris yeast cells. Purified yCsCBs were measured for enzymatic and hydrolase activities in the presence of various host proteins. Cell proliferation, wound-healing and transwell assays were performed to show the effect of CsCBs on human cells. RESULTS CsCBs were localized in the excretory vesicle, oral sucker and intestinal tract of C. sinensis. Recombinant yCsCBs from yeast showed active enzymatic activity at pH 5.0-5.5 and at 37-42 °C. yCsCBs can degrade various host proteins including human serum albumin, human fibronectin, human hemoglobin and human IgG. CsCBs were detected in liver tissues of mice and cancer patients afflicted with clonorchiasis. Various bioassays collectively demonstrated that CsCBs could promote cell proliferation, migration and invasion of human cancer cells. CONCLUSION Our results demonstrated that CsCBs can degrade various human proteins and we proved that the secreted CsCBs are involved in the pathogenesis of clonorchiasis.
Collapse
Affiliation(s)
- Wenjun Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Dan Ning
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, 511430, China.
| | - Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Xiaoli Lv
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, 511430, China.
| | - De Wu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, 511430, China.
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
20
|
Ranasinghe SL, Fischer K, Gobert GN, McManus DP. Functional expression of a novel Kunitz type protease inhibitor from the human blood fluke Schistosoma mansoni. Parasit Vectors 2015; 8:408. [PMID: 26238343 PMCID: PMC4524284 DOI: 10.1186/s13071-015-1022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths. METHODS We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1. RESULTS SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time. CONCLUSIONS We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.
Collapse
Affiliation(s)
- Shiwanthi L Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,School of Public Health, The University of Queensland, Brisbane, QLD, Australia.
| | - Katja Fischer
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Brinkman DL, Jia X, Potriquet J, Kumar D, Dash D, Kvaskoff D, Mulvenna J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genomics 2015; 16:407. [PMID: 26014501 PMCID: PMC4445812 DOI: 10.1186/s12864-015-1568-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The box jellyfish, Chironex fleckeri, is the largest and most dangerous cubozoan jellyfish to humans. It produces potent and rapid-acting venom and its sting causes severe localized and systemic effects that are potentially life-threatening. In this study, a combined transcriptomic and proteomic approach was used to identify C. fleckeri proteins that elicit toxic effects in envenoming. RESULTS More than 40,000,000 Illumina reads were used to de novo assemble ∼ 34,000 contiguous cDNA sequences and ∼ 20,000 proteins were predicted based on homology searches, protein motifs, gene ontology and biological pathway mapping. More than 170 potential toxin proteins were identified from the transcriptome on the basis of homology to known toxins in publicly available sequence databases. MS/MS analysis of C. fleckeri venom identified over 250 proteins, including a subset of the toxins predicted from analysis of the transcriptome. Potential toxins identified using MS/MS included metalloproteinases, an alpha-macroglobulin domain containing protein, two CRISP proteins and a turripeptide-like protease inhibitor. Nine novel examples of a taxonomically restricted family of potent cnidarian pore-forming toxins were also identified. Members of this toxin family are potently haemolytic and cause pain, inflammation, dermonecrosis, cardiovascular collapse and death in experimental animals, suggesting that these toxins are responsible for many of the symptoms of C. fleckeri envenomation. CONCLUSIONS This study provides the first overview of a box jellyfish transcriptome which, coupled with venom proteomics data, enhances our current understanding of box jellyfish venom composition and the molecular structure and function of cnidarian toxins. The generated data represent a useful resource to guide future comparative studies, novel protein/peptide discovery and the development of more effective treatments for jellyfish stings in humans. (Length: 300).
Collapse
Affiliation(s)
- Diane L Brinkman
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - Xinying Jia
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Jeremy Potriquet
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Dhirendra Kumar
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - Debasis Dash
- G.N. Ramachandran Knowledge Center for Genome Informatics, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.
| | - David Kvaskoff
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
| | - Jason Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia. .,The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the 'microturbellarian' roots of platyhelminth evolutionary innovation. eLife 2015; 4:e05503. [PMID: 25764302 PMCID: PMC4398949 DOI: 10.7554/elife.05503] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Flatworms number among the most diverse invertebrate phyla and represent the most biomedically significant branch of the major bilaterian clade Spiralia, but to date, deep evolutionary relationships within this group have been studied using only a single locus (the rRNA operon), leaving the origins of many key clades unclear. In this study, using a survey of genomes and transcriptomes representing all free-living flatworm orders, we provide resolution of platyhelminth interrelationships based on hundreds of nuclear protein-coding genes, exploring phylogenetic signal through concatenation as well as recently developed consensus approaches. These analyses robustly support a modern hypothesis of flatworm phylogeny, one which emphasizes the primacy of the often-overlooked 'microturbellarian' groups in understanding the major evolutionary transitions within Platyhelminthes: perhaps most notably, we propose a novel scenario for the interrelationships between free-living and vertebrate-parasitic flatworms, providing new opportunities to shed light on the origins and biological consequences of parasitism in these iconic invertebrates.
Collapse
Affiliation(s)
- Christopher E Laumer
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| |
Collapse
|
23
|
Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, Zhang Y, Wang Y, Xu Y, Cao J. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation. PLoS Negl Trop Dis 2014; 8:e3392. [PMID: 25500817 PMCID: PMC4263413 DOI: 10.1371/journal.pntd.0003392] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cystic hydatid disease (CHD) is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs) are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs) released by the parasite. Methodology/Principal Findings A large number of nonredundant sequences as unigenes were generated (26,514), of which 22,910 (86.4%) were mapped to the newly published E. granulosus genome and 17,705 (66.8%) were distributed within the coding sequence (CDS) regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN) pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways. Conclusions/Significance This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control. The successful infection establishment of parasites depends on their ability to combat their host's immune system while maintaining metabolic adaptation to their hosts. The mechanisms of these processes are not well understood. We used the protoscoleces (PSCs) of E. granulosus as a model system to study this complex host-parasite interaction by investigating the role of excretory-secretory proteins (ESPs) in the physiological adaptation of the parasite. Using Roche 454 sequencing technology and in silico secretome analysis, we predicted 2280 ESPs and analyzed their biological functions. Our analysis of the bioinformatic data suggested that ESPs are integral to the metabolism of carbohydrates and proteins within the parasite and/or hosts. We also found that ESPs are involved in mediating the immune responses of hosts and function within key development-related signaling pathways. We found 11 intracellular enzymes, 25 molecular chaperones and four proteases that were highly represented in the ESPs, in addition to 44 antigenic proteins that showed promise as candidates for vaccine or serodiagnostic development purposes. These findings provide valuable information on the mechanisms of metabolic adaptation in parasites that will aid the development of novel hydatid treatment and control targets.
Collapse
Affiliation(s)
- Wei Pan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| | - Xiuming Han
- Department of Parasitic Diseases, Qinghai Institute for Endemic Disease Prevention and Control, Zong Zhai, Xining, Qinghai, People's Republic of China
| | - Ying Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Hua Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanyan Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yumei Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yanjuan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Yuxin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, People's Republic of China
- WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, People's Republic of China
- * E-mail: (YS); (JC)
| |
Collapse
|
24
|
Systems biology studies of adult paragonimus lung flukes facilitate the identification of immunodominant parasite antigens. PLoS Negl Trop Dis 2014; 8:e3242. [PMID: 25329661 PMCID: PMC4199545 DOI: 10.1371/journal.pntd.0003242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/04/2014] [Indexed: 01/05/2023] Open
Abstract
Background Paragonimiasis is a food-borne trematode infection acquired by eating raw or undercooked crustaceans. It is a major public health problem in the far East, but it also occurs in South Asia, Africa, and in the Americas. Paragonimus worms cause chronic lung disease with cough, fever and hemoptysis that can be confused with tuberculosis or other non-parasitic diseases. Treatment is straightforward, but diagnosis is often delayed due to a lack of reliable parasitological or serodiagnostic tests. Hence, the purpose of this study was to use a systems biology approach to identify key parasite proteins that may be useful for development of improved diagnostic tests. Methodology/Principal Findings The transcriptome of adult Paragonimus kellicotti was sequenced with Illumina technology. Raw reads were pre-processed and assembled into 78,674 unique transcripts derived from 54,622 genetic loci, and 77,123 unique protein translations were predicted. A total of 2,555 predicted proteins (from 1,863 genetic loci) were verified by mass spectrometric analysis of total worm homogenate, including 63 proteins lacking homology to previously characterized sequences. Parasite proteins encoded by 321 transcripts (227 genetic loci) were reactive with antibodies from infected patients, as demonstrated by immunoaffinity purification and high-resolution liquid chromatography-mass spectrometry. Serodiagnostic candidates were prioritized based on several criteria, especially low conservation with proteins in other trematodes. Cysteine proteases, MFP6 proteins and myoglobins were abundant among the immunoreactive proteins, and these warrant further study as diagnostic candidates. Conclusions The transcriptome, proteome and immunolome of adult P. kellicotti represent a major advance in the study of Paragonimus species. These data provide a powerful foundation for translational research to develop improved diagnostic tests. Similar integrated approaches may be useful for identifying novel targets for drugs and vaccines in the future. Paragonimiasis is a food-borne trematode infection that people acquire when they eat raw or undercooked crustaceans. Disease symptoms (including cough, fever, blood in sputum, etc.) can be similar to those observed in patients with tuberculosis or bacterial pneumonia, frequently resulting in misdiagnosis. Although the infection is relatively easy to treat, diagnosis is complicated. Available diagnostic assays rely on total parasite homogenate to facilitate the detection of Paragonimus-specific antibodies in patients. Though these blot-based assays have shown high sensitivity and specificity, they are inconvenient because total parasite homogenate is not readily available. This study used next generation genomic and proteomic methods to identify transcripts and proteins expressed in adult Paragonimus flukes. We then used sera from patients infected with P. kellicotti to isolate immunoreactive proteins, and these were analyzed by mass spectrometry. The annotated transcriptome and the associated proteome of the antibody immune response represent a significant advance in research on Paragonimus. This information will be a valuable resource for further research on Paragonimus and paragonimiasis. Thus this project illustrates the potential power of employing systems biology for translational research in parasitology.
Collapse
|
25
|
Sotillo J, Sanchez-Flores A, Cantacessi C, Harcus Y, Pickering D, Bouchery T, Camberis M, Tang SC, Giacomin P, Mulvenna J, Mitreva M, Berriman M, LeGros G, Maizels RM, Loukas A. Secreted proteomes of different developmental stages of the gastrointestinal nematode Nippostrongylus brasiliensis. Mol Cell Proteomics 2014; 13:2736-51. [PMID: 24994561 PMCID: PMC4188999 DOI: 10.1074/mcp.m114.038950] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Hookworms infect more than 700 million people worldwide and cause more morbidity than most other human parasitic infections. Nippostrongylus brasiliensis (the rat hookworm) has been used as an experimental model for human hookworm because of its similar life cycle and ease of maintenance in laboratory rodents. Adult N. brasiliensis, like the human hookworm, lives in the intestine of the host and releases excretory/secretory products (ESP), which represent the major host-parasite interface. We performed a comparative proteomic analysis of infective larval (L3) and adult worm stages of N. brasiliensis to gain insights into the molecular bases of host-parasite relationships and determine whether N. brasiliensis could indeed serve as an appropriate model for studying human hookworm infections. Proteomic data were matched to a transcriptomic database assembled from 245,874,892 Illumina reads from different developmental stages (eggs, L3, L4, and adult) of N. brasiliensis yielding∼18,426 unigenes with 39,063 possible isoform transcripts. From this analysis, 313 proteins were identified from ESPs by LC-MS/MS-52 in the L3 and 261 in the adult worm. Most of the proteins identified in the study were stage-specific (only 13 proteins were shared by both stages); in particular, two families of proteins-astacin metalloproteases and CAP-domain containing SCP/TAPS-were highly represented in both L3 and adult ESP. These protein families are present in most nematode groups, and where studied, appear to play roles in larval migration and evasion of the host's immune response. Phylogenetic analyses of defined protein families and global gene similarity analyses showed that N. brasiliensis has a greater degree of conservation with human hookworm than other model nematodes examined. These findings validate the use of N. brasiliensis as a suitable parasite for the study of human hookworm infections in a tractable animal model.
Collapse
Affiliation(s)
- Javier Sotillo
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | | | - Cinzia Cantacessi
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; ¶Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Yvonne Harcus
- ‖Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Darren Pickering
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Tiffany Bouchery
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Mali Camberis
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Shiau-Choot Tang
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul Giacomin
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Jason Mulvenna
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia; ‡‡Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Makedonka Mitreva
- §§The Genome Institute, Washington University School of Medicine, St. Louis, Missouri; ¶¶Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew Berriman
- §Parasite Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Graham LeGros
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Rick M Maizels
- ‖Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, UK
| | - Alex Loukas
- From the ‡Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia;
| |
Collapse
|
26
|
Wang X, Hu F, Hu X, Chen W, Huang Y, Yu X. Proteomic identification of potential Clonorchis sinensis excretory/secretory products capable of binding and activating human hepatic stellate cells. Parasitol Res 2014; 113:3063-71. [PMID: 24894083 DOI: 10.1007/s00436-014-3972-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/25/2014] [Indexed: 01/21/2023]
Abstract
Epidemiological and experimental evidence demonstrated that Clonorchis sinensis is an important risk factor of hepatic fibrosis and cholangiocarcinoma. C. sinensis excretory/secretory products (CsESPs) are protein complex including proteases, antioxidant enzymes, and metabolic enzymes, which may contribute to pathogenesis of liver fluke-associated hepatobiliary diseases. However, potential CsESP candidates involved into hepatic fibrosis and cholangiocarcinoma still remain to be elucidated. In the present study, we performed proteomic identification of CsESP candidates capable of binding and activating human hepatic stellate cell line LX-2. Immunofluorescence analysis confirmed the interaction of CsESPs with LX-2 cell membrane. LX-2 cells could be stimulated by CsESPs from 24 h post incubation (p < 0.05). Specifically, 50 μg/ml of CsESPs showed the strongest effect on cell proliferation in methyl thiazolyl tetrazolium (MTT) assay which could also be demonstrated by flow cytometry analysis (p < 0.01). Furthermore, expression level of human type III collagen in LX-2 cells treated with CsESPs was significantly higher than that in control cells measured by molecular beacon and semiquantitative reverse transcription (RT)-PCR approaches (p < 0.01). Finally, CsESPs before and after incubation with LX-2 cells were subjected to two-dimensional gel electrophoresis (2-DE) analysis and matrix associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis. Nine proteins with abundance change above threefold were Rho GTPase-activating protein, mitochondrial cytochrome c oxidase subunit Va, α-enolase, phospholipase C, interleukin-15, insect-derived growth factor, cytochrome c oxidase subunit VI, DNAH1 protein, and kinesin light chain. Taken together, we identified potential CsESP candidates capable of binding and activating human hepatic stellate cells, providing more direct evidences that are previously unknown to accelerate strategies for C. sinensis prevention.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Prasopdee S, Sotillo J, Tesana S, Laha T, Kulsantiwong J, Nolan MJ, Loukas A, Cantacessi C. RNA-Seq reveals infection-induced gene expression changes in the snail intermediate host of the carcinogenic liver fluke, Opisthorchis viverrini. PLoS Negl Trop Dis 2014; 8:e2765. [PMID: 24676090 PMCID: PMC3967946 DOI: 10.1371/journal.pntd.0002765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/16/2014] [Indexed: 01/29/2023] Open
Abstract
Background Bithynia siamensis goniomphalos is the snail intermediate host of the liver fluke, Opisthorchis viverrini, the leading cause of cholangiocarcinoma (CCA) in the Greater Mekong sub-region of Thailand. Despite the severe public health impact of Opisthorchis-induced CCA, knowledge of the molecular interactions occurring between the parasite and its snail intermediate host is scant. The examination of differences in gene expression profiling between uninfected and O. viverrini-infected B. siamensis goniomphalos could provide clues on fundamental pathways involved in the regulation of snail-parasite interplay. Methodology/Principal Findings Using high-throughput (Illumina) sequencing and extensive bioinformatic analyses, we characterized the transcriptomes of uninfected and O. viverrini-infected B. siamensis goniomphalos. Comparative analyses of gene expression profiling allowed the identification of 7,655 differentially expressed genes (DEGs), associated to 43 distinct biological pathways, including pathways associated with immune defense mechanisms against parasites. Amongst the DEGs with immune functions, transcripts encoding distinct proteases displayed the highest down-regulation in Bithynia specimens infected by O. viverrini; conversely, transcription of genes encoding heat-shock proteins and actins was significantly up-regulated in parasite-infected snails when compared to the uninfected counterparts. Conclusions/Significance The present study lays the foundation for functional studies of genes and gene products potentially involved in immune-molecular mechanisms implicated in the ability of the parasite to successfully colonize its snail intermediate host. The annotated dataset provided herein represents a ready-to-use molecular resource for the discovery of molecular pathways underlying susceptibility and resistance mechanisms of B. siamensis goniomphalos to O. viverrini and for comparative analyses with pulmonate snail intermediate hosts of other platyhelminths including schistosomes. Despite recent significant advances in knowledge of the fundamental biology of the carcinogenic liver fluke Opisthorchis viverrini, little is known of the complement of molecular interactions occurring between this parasite and its prosobranch snail intermediate host, Bithynia siamensis goniomphalos. The determination of such interactions is a key, necessary component of the development of future integrated control strategies for liver fluke infection and associated bile duct cancer. Here, we use cutting-edge high-throughput sequencing technologies and advanced bioinformatic analyses to characterize, for the first time, qualitative and quantitative differences in gene expression between uninfected and O. viverrini-infected B. siamensis goniomphalos collected from an endemic region of Northeast Thailand. The analyses led to the identification of a number of molecules putatively involved in immune defense pathways against invading O. viverrini, and of key biological mechanisms potentially implicated in the ability of the parasite to successfully colonize its snail intermediate host. We believe that this ready-to-use molecular resource will provide the scientific community with new tools for the development of strategies to control the spread of liver fluke infection and the resulting bile duct cancer.
Collapse
Affiliation(s)
- Sattrachai Prasopdee
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thewarach Laha
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jutharat Kulsantiwong
- Department of Biology, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, Thailand
| | - Matthew J. Nolan
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Cinzia Cantacessi
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Mason L, Amani P, Cross M, Baker J, Bailey UM, Jones MK, Gasser RB, Hofmann A. The Relevance of Structural Biology in Studying Molecules Involved in Parasite–Host Interactions: Potential for Designing New Interventions. Aust J Chem 2014. [DOI: 10.1071/ch14304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New interventions against infectious diseases require a detailed knowledge and understanding of pathogen–host interactions and pathogeneses at the molecular level. The combination of the considerable advances in systems biology research with methods to explore the structural biology of molecules is poised to provide new insights into these areas. Importantly, exploring three-dimensional structures of proteins is central to understanding disease processes, and establishing structure–function relationships assists in identification and assessment of new drug and vaccine targets. Frequently, the molecular arsenal deployed by invading pathogens, and in particular parasites, reveals a common theme whereby families of proteins with conserved three-dimensional folds play crucial roles in infectious processes, but individual members of such families show high levels of specialisation, which is often achieved through grafting particular structural features onto the shared overall fold. Accordingly, the applicability of predictive methodologies based on the primary structure of proteins or genome annotations is limited, particularly when thorough knowledge of molecular-level mechanisms is required. Such instances exemplify the need for experimental three-dimensional structures provided by protein crystallography, which remain an essential component of this area of research. In the present article, we review two examples of key protein families recently investigated in our laboratories, which could represent intervention targets in the metabolome or secretome of parasites.
Collapse
|
29
|
Garg G, Bernal D, Trelis M, Forment J, Ortiz J, Valero ML, Pedrola L, Martinez-Blanch J, Esteban JG, Ranganathan S, Toledo R, Marcilla A. The transcriptome of Echinostoma caproni adults: Further characterization of the secretome and identification of new potential drug targets. J Proteomics 2013; 89:202-14. [DOI: 10.1016/j.jprot.2013.06.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 02/01/2023]
|