1
|
Mirzaei-nasab F, Majd A, Seyedena Y, Hosseinkhan N, Farahani N, Hashemi M. Integrative analysis of exosomal ncRNAs and their regulatory networks in liver cancer progression. Pract Lab Med 2025; 45:e00464. [PMID: 40226122 PMCID: PMC11992429 DOI: 10.1016/j.plabm.2025.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/19/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a significant global health challenge with complex molecular underpinnings. Recent advancements in understanding the role of non-coding RNAs (ncRNAs) and exosomes in cancer biology have opened new avenues for research into potential diagnostic and therapeutic strategies. Methods This study utilized a comprehensive approach to analyze gene expression patterns and regulatory networks in HCC. We integrated RNA sequencing data gathered from both tissue samples and exosomes. The WGCNA and limma R packages were employed to construct co-expression networks and identify differentially expressed ncRNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Results Our analysis demonstrated distinct expression profiles of various ncRNAs in HCC, revealing their intricate interactions with cancer-related genes. Key findings include the identification of a network of microRNAs that interact with selected lncRNAs and their potential roles as biomarkers. Moreover, exosomal RNA was shown to effectively reflect tissue-specific gene expression changes. Conclusions The results of this study highlight the significance of exosomal ncRNAs in the progression of liver cancer, suggesting their potential as both diagnostic biomarkers and therapeutic targets. Future research should focus on the functional implications of these ncRNAs to further elucidate their roles in HCC and explore their applications in clinical settings.
Collapse
Affiliation(s)
- Farzin Mirzaei-nasab
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Majd
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
| | - Yousef Seyedena
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran, Sure
| | - Nazanin Hosseinkhan
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Wang J, Gu CZ, Wang PX, Xian JR, Wang H, Shang AQ, Zhong YC, Zheng WJ, Cheng JW, Yang WJ, Zhou J, Fan J, Guo W, Yang XR, Lu HJ. Integrative proteomic profiling of tumor and plasma extracellular vesicles identifies a diagnostic biomarker panel for colorectal cancer. Cell Rep Med 2025; 6:102090. [PMID: 40311616 DOI: 10.1016/j.xcrm.2025.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/19/2025] [Accepted: 03/27/2025] [Indexed: 05/03/2025]
Abstract
The lack of reliable non-invasive biomarkers for early colorectal cancer (CRC) diagnosis underscores the need for improved diagnostic tools. Extracellular vesicles (EVs) have emerged as promising candidates for liquid-biopsy-based cancer monitoring. Here, we propose a comprehensive workflow that integrates staged mass spectrometry (MS)-based discovery and verification with ELISA-based validation to identify EV protein biomarkers for CRC. Our approach, applied to 1,272 individuals, yields a machine learning model, ColonTrack, incorporating EV proteins HNRNPK, CTTN, and PSMC6. ColonTrack effectively distinguishes CRC from non-CRC cases and identifies early-stage CRC with high accuracy (combined area under the curve [AUC] >0.97, sensitivity ∼0.94, specificity ∼0.93). Our analysis of EV protein profiles from tissue and plasma demonstrates ColonTrack's potential as a robust non-invasive biomarker panel for CRC diagnosis and early detection.
Collapse
Affiliation(s)
- Jun Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China; Department of Chemistry, Institutes of Biomedical Sciences and Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China
| | - Chen-Zheng Gu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Jing-Rong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - An-Quan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College of Jiangsu University, Lianyungang, 222006, P.R. China
| | - Yu-Chen Zhong
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Wen-Jing Zheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China; Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai 200032, P.R. China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, P.R. China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China.
| | - Hao-Jie Lu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China; Department of Chemistry, Institutes of Biomedical Sciences and Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, P.R. China.
| |
Collapse
|
3
|
Ielo C, Breccia M. Extracellular vesicles as source of biomarkers in hematological malignancies: looking towards clinical applications. Expert Rev Mol Diagn 2025:1-12. [PMID: 40178353 DOI: 10.1080/14737159.2025.2488919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION Extracellular vesicles are membranous particles released by cells in physiological and pathological conditions. Their cargo is heterogeneous since it includes different biomolecules such as nucleic acids and proteins. Oncogenic alterations affect the composition of extracellular vesicles and model their content during cancer evolution. AREAS COVERED This review provides an overview of the studies focused on extracellular vesicles as source of biomarkers in hematological malignancies. A special insight into extracellular vesicles-derived biomarkers as tools for evaluating the prognosis of hematological malignancies and their response to treatment is given. EXPERT OPINION Extracellular vesicles are a valuable source of biomarkers in hematological malignancies. However, the translation from the bench to the bedside is challenged by the lack of standardization of the preanalytical variables of the experimental workflow. The release of standard operating procedures and the validation of the extracellular vesicles-derived biomarkers in large cohort of patients will help in exploiting the potential of extracellular vesicles in the clinical setting.
Collapse
Affiliation(s)
- Claudia Ielo
- Department of Translational and Precision Medicine, Sapienza University of Rome - Azienda Policlinico Umberto I, Rome, Italy
| | - Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University of Rome - Azienda Policlinico Umberto I, Rome, Italy
| |
Collapse
|
4
|
Nakaya T. Release of FUS into the extracellular space is regulated by its amino-terminal prion-like domain. FEBS Lett 2025; 599:1046-1054. [PMID: 39737526 DOI: 10.1002/1873-3468.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
5
|
Gu R, Jiang L, Dai S, Yue Y, Li S, Zheng S, Wu L, Zhao S. Identification of exosome-related SERPINB1 as a novel predictor for tumor immune microenvironment and clinical outcomes in ovarian cancer. J Ovarian Res 2025; 18:65. [PMID: 40155942 PMCID: PMC11954311 DOI: 10.1186/s13048-025-01589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND With a high global incidence of over three million new cases in 2020 and a high mortality of over two million fatalities, ovarian cancer is one of the most common malignant tumors in gynecology. Exosomes can control the immunological condition of the tumor microenvironment (TME) by participating in intercellular interactions. Therefore, we aimed to construct an exosome-related prognostic model to predict the clinical outcomes of ovarian cancer patients. METHODS In this research, expression patterns of exosome-related genes were examined in multiple single-cell RNA-sequencing and bulk RNA-sequencing datasets. In addition, a novel exosome-related prognostic model was established by the least absolute shrinkage and selection operator (LASSO) regression method. Then, the correlations between risk score and immunological characteristics of the TME were explored. Moreover, SERPINB1, a gene in the prognostic signature, was further analyzed to reveal its value as a novel biomarker. RESULTS In the current study, combined with single-cell and bulk omics datasets, we constructed an exosome-related prognostic model of four genes (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3). Moreover, the risk score was associated with worse overall survival (OS) in ovarian cancer patients. Further analysis found that patients with high-risk score tended to shape a desert TME with hardly infiltration of immune cells. Then, SERPINB1, positively correlated with the favorable OS and negatively with the risk score, was chosen as the representative biomarker of the model. Moreover, SERPINB1 was positively correlated with the infiltration of immune subpopulations in both public and in-house cohort. In addition, the high-resolution analysis found that SERPINB1+ tumor cells communicated with microenvironment cells frequently, further explaining the potential reason for shaping an inflamed TME. CONCLUSION To sum up, we established a novel exosome-related prognostic model (LGALS3BP, SAT1, SERPINB1, and SH3BGRL3) to predict the prognosis of patients with ovarian cancer and identify the immunological characteristics of the TME. In addition, SERPINB1 was identified as a promising biomarker for prognostic prediction in ovarian cancer.
Collapse
Affiliation(s)
- Rui Gu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liping Jiang
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shuqin Dai
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Yajie Yue
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shangjin Li
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Shudan Zheng
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China
| | - Liwei Wu
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| | - Shaojie Zhao
- Department of Obstetrics and Gynecology, Wuxi School of Medicine, Wuxi Maternity and Child Health Care Hospital, Jiangnan University, Jiangsu, 214002, China.
| |
Collapse
|
6
|
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer 2025; 24:45. [PMID: 39953480 PMCID: PMC11829561 DOI: 10.1186/s12943-025-02233-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/14/2025] [Indexed: 02/17/2025] Open
Abstract
Extracellular vesicles (EVs), nanoscale vesicles secreted by cells, have attracted considerable attention in recent years due to their role in tumor immunomodulation. These vesicles facilitate intercellular communication by transporting proteins, nucleic acids, and other biologically active substances, and they exhibit a dual role in tumor development and immune evasion mechanisms. Specifically, EVs can assist tumor cells in evading immune surveillance and attack by impairing immune cell function or modulating immunosuppressive pathways, thereby promoting tumor progression and metastasis. Conversely, they can also transport and release immunomodulatory factors that stimulate the activation and regulation of the immune system, enhancing the body's capacity to combat malignant diseases. This dual functionality of EVs presents promising avenues and targets for tumor immunotherapy. By examining the biological characteristics of EVs and their influence on tumor immunity, novel therapeutic strategies can be developed to improve the efficacy and relevance of cancer treatment. This review delineates the complex role of EVs in tumor immunomodulation and explores their potential implications for cancer therapeutic approaches, aiming to establish a theoretical foundation and provide practical insights for the advancement of future EVs-based cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Liwen Kuang
- School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
7
|
Gila F, Khoddam S, Jamali Z, Ghasemian M, Shakeri S, Dehghan Z, Fallahi J. Personalized medicine in colorectal cancer: a comprehensive study of precision diagnosis and treatment. Per Med 2025; 22:59-81. [PMID: 39924822 DOI: 10.1080/17410541.2025.2459050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer is a common and fatal disease that affects many people globally. CRC is classified as the third most prevalent cancer among males and the second most frequent cancer among females worldwide. The purpose of this article is to examine how personalized medicine might be used to treat colorectal cancer. The classification of colorectal cancer based on molecular profiling, including the detection of significant gene mutations, genomic instability, and gene dysregulation, is the main topic of this discussion. Advanced technologies and biomarkers are among the detection methods that are explored, demonstrating their potential for early diagnosis and precise prognosis. In addition, the essay explores the world of treatment possibilities by providing light on FDA-approved personalized medicine solutions that provide individualized and precise interventions based on patient characteristics. This article assesses targeted treatments like cetuximab and nivolumab, looks at the therapeutic usefulness of biomarkers like microsatellite instability (MSI) and circulating tumor DNA (ctDNA), and investigates new approaches to combat resistance. Through this, our review provides a thorough overview of personalized medicine in the context of colorectal cancer, ultimately highlighting its potential to revolutionize the field and improve patient care.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jamali
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohmmad Ghasemian
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Pote MS, Gacche RN. Exosomal signaling in cancer metastasis: Molecular insights and therapeutic opportunities. Arch Biochem Biophys 2025; 764:110277. [PMID: 39709108 DOI: 10.1016/j.abb.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Exosomes are membrane-bound extracellular vesicles that play a role in exchanging biological products across membranes and serve as intermediaries in intercellular communication to maintain normal homeostasis. Numerous molecules, including lipids, proteins, and nucleic acids are enclosed in exosomes. Exosomes are constantly released into the extracellular environment and exhibit distinct characteristics based on the secreted cells that produce them. Exosome-mediated cell-to-cell communication has reportedly been shown to affect multiple cancer hallmarks, such as immune response modulation, pre-metastatic niche formation, angiogenesis, stromal cell reprogramming, extracellular matrix architecture remodeling, or even drug resistance, and eventually the development and metastasis of cancer cells. Exosomes can be used as therapeutic targets and possible diagnostic biomarkers by selectively loading oncogenic molecules into them. We highlight the important roles that exosomes play in cancer development in this review, which may lead to the development of fresh approaches for future clinical uses.
Collapse
Affiliation(s)
- Manasi S Pote
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India
| | - Rajesh N Gacche
- Tumor Biology Laboratory, Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, (MS), India.
| |
Collapse
|
9
|
Kasiński D, Szeliski K, Drewa T, Pokrywczyńska M. Extracellular vesicles-a new player in the development of urinary bladder cancer. Ther Adv Med Oncol 2025; 17:17588359241297529. [PMID: 39850919 PMCID: PMC11755519 DOI: 10.1177/17588359241297529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 01/25/2025] Open
Abstract
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Damian Kasiński
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
10
|
Li H, Lin H, Fan T, Huang L, Zhou L, Tian X, Zhao R, Zhang Y, Yang X, Wan L, Zhong H, Jiang N, Wei C, Chen W, Hou L. Exosomes derived from syncytia induced by SARS-2-S promote the proliferation and metastasis of hepatocellular carcinoma cells. Front Cell Infect Microbiol 2025; 14:1415356. [PMID: 39844837 PMCID: PMC11750861 DOI: 10.3389/fcimb.2024.1415356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/29/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear. Methods Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia. Exosomes were purified from the cell supernatant and verified by nanoparticle tracking analysis (NTA), Western blot (WB) analysis and scanning electron microscopy (SEM). Differentially expressed proteins in syncytia-derived exosomes (Syn-Exos) and their functions was analyzed by Proteomic sequencing. Syn-Exo-mediated promotion of hepatocellular carcinoma cells was measured by CCK-8 and Transwell migration assays. The mechanism by which Syn-Exos promote tumor growth was analyzed by Western blotting. A patient-derived xenotransplantation (PDX) mouse model was constructed to evaluate the pathological role of the SARS-CoV-2 spike protein (SARS-2-S). The number of syncytia in the tumor tissue sections was determined by immunofluorescence analysis. Results Syncytium formation promoted the proliferation and migration of hepatocellular carcinoma cells. Proteomic sequencing revealed that proteins that regulate cell proliferation and metastasis in Syn-Exos were significantly upregulated. Syn-Exos promote the proliferation and migration of hepatocellular carcinoma cells. Animal experiments showed that a pseudotyped lentivirus bearing SARS-2-S (SARS-2-Spp) promoted tumor development in PDX mice. More syncytia were found in tumor tissue from SARS-2-Spp mice than from VSV-Gpp mice. Conclusions Syn-Exos induced by SARS-2-S can promote the proliferation and metastasis of hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Huilong Li
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Haotian Lin
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Tinghui Fan
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Linfei Huang
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhou
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaoyu Tian
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruzhou Zhao
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yanhong Zhang
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaopan Yang
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Luming Wan
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhong
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Nan Jiang
- Department of Pharmacy, Medical Supplies Center of People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Congwen Wei
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Genetic engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
11
|
Clay R, Li K, Jin L. Metabolic Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:155. [PMID: 39796781 PMCID: PMC11719658 DOI: 10.3390/cancers17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation. In recent years, the focus of cancer metabolic research has shifted from the regulation and utilization of cancer cell-intrinsic pathways to studying how the metabolic landscape of the tumor affects the anti-tumor immune response. Recent discoveries point to the role that secreted metabolites within the TME play in crosstalk between tumor cell types to promote tumorigenesis and hinder the anti-tumor immune response. In this review, we will explore how crosstalk between metabolites of cancer cells, immune cells, and stromal cells drives tumorigenesis and what effects the competition for resources and metabolic crosstalk has on immune cell function.
Collapse
Affiliation(s)
| | | | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (R.C.); (K.L.)
| |
Collapse
|
12
|
Azizian S, Cui J. DeepMiRBP: a hybrid model for predicting microRNA-protein interactions based on transfer learning and cosine similarity. BMC Bioinformatics 2024; 25:381. [PMID: 39695955 DOI: 10.1186/s12859-024-05985-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Interactions between microRNAs and RNA-binding proteins are crucial for microRNA-mediated gene regulation and sorting. Despite their significance, the molecular mechanisms governing these interactions remain underexplored, apart from sequence motifs identified on microRNAs. To date, only a limited number of microRNA-binding proteins have been confirmed, typically through labor-intensive experimental procedures. Advanced bioinformatics tools are urgently needed to facilitate this research. METHODS We present DeepMiRBP, a novel hybrid deep learning model specifically designed to predict microRNA-binding proteins by modeling molecular interactions. This innovation approach is the first to target the direct interactions between small RNAs and proteins. DeepMiRBP consists of two main components. The first component employs bidirectional long short-term memory (Bi-LSTM) neural networks to capture sequential dependencies and context within RNA sequences, attention mechanisms to enhance the model's focus on the most relevant features and transfer learning to apply knowledge gained from a large dataset of RNA-protein binding sites to the specific task of predicting microRNA-protein interactions. Cosine similarity is applied to assess RNA similarities. The second component utilizes Convolutional Neural Networks (CNNs) to process the spatial data inherent in protein structures based on Position-Specific Scoring Matrices (PSSM) and contact maps to generate detailed and accurate representations of potential microRNA-binding sites and assess protein similarities. RESULTS DeepMiRBP achieved a prediction accuracy of 87.4% during training and 85.4% using testing, with an F score of 0.860. Additionally, we validated our method using three case studies, focusing on microRNAs such as miR-451, -19b, -23a, -21, -223, and -let-7d. DeepMiRBP successfully predicted known miRNA interactions with recently discovered RNA-binding proteins, including AGO, YBX1, and FXR2, identified in various exosomes. CONCLUSIONS Our proposed DeepMiRBP strategy represents the first of its kind designed for microRNA-protein interaction prediction. Its promising performance underscores the model's potential to uncover novel interactions critical for small RNA sorting and packaging, as well as to infer new RNA transporter proteins. The methodologies and insights from DeepMiRBP offer a scalable template for future small RNA research, from mechanistic discovery to modeling disease-related cell-to-cell communication, emphasizing its adaptability and potential for developing novel small RNA-centric therapeutic interventions and personalized medicine.
Collapse
Affiliation(s)
- Sasan Azizian
- School of Computing, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588-0115, USA
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588-0115, USA.
| |
Collapse
|
13
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Kim S, Kang Y, Shin H, Lee EB, Ham BJ, Choi Y. Liquid Biopsy-Based Detection and Response Prediction for Depression. ACS NANO 2024; 18:32498-32507. [PMID: 39501510 PMCID: PMC11604100 DOI: 10.1021/acsnano.4c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Proactively predicting antidepressant treatment response before medication failures is crucial, as it reduces unsuccessful attempts and facilitates the development of personalized therapeutic strategies, ultimately enhancing treatment efficacy. The current decision-making process, which heavily depends on subjective indicators, underscores the need for an objective, indicator-based approach. This study developed a method for detecting depression and predicting treatment response through deep learning-based spectroscopic analysis of extracellular vesicles (EVs) from plasma. EVs were isolated from the plasma of both nondepressed and depressed groups, followed by Raman signal acquisition, which was used for AI algorithm development. The algorithm successfully distinguished depression patients from healthy individuals and those with panic disorder, achieving an AUC accuracy of 0.95. This demonstrates the model's capability to selectively diagnose depression within a nondepressed group, including those with other mental health disorders. Furthermore, the algorithm identified depression-diagnosed patients likely to respond to antidepressants, classifying responders and nonresponders with an AUC accuracy of 0.91. To establish a diagnostic foundation, the algorithm applied explainable AI (XAI), enabling personalized medicine for companion diagnostics and highlighting its potential for the development of liquid biopsy-based mental disorder diagnosis.
Collapse
Affiliation(s)
- Seungmin Kim
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
| | - Youbin Kang
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Hyunku Shin
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Eun Byul Lee
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Byung-Joo Ham
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Yeonho Choi
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
- Exopert
Corporation, Seoul 02841, Republic of Korea
- School
of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
15
|
Lui K, Cheung KK, Ng WWM, Wang Y, Au DWH, Cho WC. The Impact of Genetic Mutations on the Efficacy of Immunotherapies in Lung Cancer. Int J Mol Sci 2024; 25:11954. [PMID: 39596025 PMCID: PMC11594099 DOI: 10.3390/ijms252211954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, primarily driven by genetic mutations. The most common genetic alterations implicated in lung cancer include mutations in TP53, KRAS, KEAP1, NF1, EGFR, NRF2, ATM, ALK, Rb1, BRAF, MET, and ERBB2. Targeted therapies have been developed to inhibit cancer growth by focusing on these specific genetic mutations. However, either the mutations are undruggable or the efficacy of these therapies is often compromised over time due to the emergence of drug resistance, which can occur through additional mutations in the targeted protein or alternative growth signaling pathways. In recent years, immunotherapy has emerged as a promising approach to enhance the effectiveness of cancer treatment by leveraging the body's immune system. Notable advancements include immune checkpoint inhibitors, monoclonal antibodies targeting cell surface receptors, antibody-drug conjugates, and bispecific antibodies. This review provides an overview of the mechanisms of FDA-approved immunotherapeutic drugs, offering an updated perspective on the current state and future developments in lung cancer therapy. More importantly, the factors that positively and negatively impact the immunotherapy's efficacy will also be discussed.
Collapse
Affiliation(s)
- Ki Lui
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Winnie Wing-Man Ng
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Yanping Wang
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - Doreen W. H. Au
- Department of Health Sciences, School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong SAR, China; (Y.W.); (D.W.H.A.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
16
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Kellner M, Hörmann J, Fackler S, Hu Y, Zhou T, Lu L, Ilik I, Aktas T, Feederle R, Hauck SM, Gires O, Gärtner K, Li L, Zeidler R. The Nuclear Speckles Protein SRRM2 Is Exposed on the Surface of Cancer Cells. Cells 2024; 13:1563. [PMID: 39329747 PMCID: PMC11430694 DOI: 10.3390/cells13181563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The membrane composition of extracellular vesicles (EVs) largely reflects that of the plasma membrane of the cell of origin. We therefore hypothesized that EVs could be used for immunizations to generate monoclonal antibodies against well-known tumor antigens but possibly also against hitherto unknown tumor-associated target molecules. From an immunization experiment, we obtained a monoclonal antibody specific for SRRM2, an RNA-binding protein involved in splicing and a major component of nuclear speckles. Here, we used this antibody to demonstrate that SRRM2 is exposed on the surface of most cancer cell lines from various entities and, even more important, on cancer cells in vivo. Moreover, we demonstrated that SRRM2-specific CAR-T cells are functional in vitro and in vivo. Collectively, we identified SRRM2 as a promising new target molecule exposed on the cancer cell surface and showed that our SRRM2-specific antibody can be used as a basis for the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Markus Kellner
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Julia Hörmann
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
- Eximmium Biotechnologies GmbH, 81377 Munich, Germany
| | - Susanne Fackler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Yuanyu Hu
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Tielin Zhou
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Lin Lu
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Ibrahim Ilik
- Otto Warburg Laboratories, 14195 Berlin, Germany
| | - Tugce Aktas
- Otto Warburg Laboratories, 14195 Berlin, Germany
| | - Regina Feederle
- Core Facility Monoclonal Antibodies, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M. Hauck
- Proteomics and Metabolomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, LMU University Hospital, 81377 Munich, Germany
| | | | - Lietao Li
- Zeno Therapeutics Pte. Ltd., 600 North Bridge Road, Singapore 188778, Singapore
| | - Reinhard Zeidler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Feodor-Lynen-Str. 21, 81377 Munich, Germany
- Department of Otorhinolaryngology, LMU University Hospital, 81377 Munich, Germany
| |
Collapse
|
18
|
Zheng Y, Li J, Xu D, Liu L, Li Y, Yi J, Dong J, Pang D, Tang H. Tunneling nanotubes mediate KRas transport: Inducing tumor heterogeneity and altering cellular membrane mechanical properties. Acta Biomater 2024; 185:312-322. [PMID: 38969079 DOI: 10.1016/j.actbio.2024.06.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Mutation in oncogene KRas plays a crucial role in the occurrence and progression of numerous malignant tumors. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. We hypothesize that oncogene KRas mutations are intrinsic to alterations in cellular mechanics that promote malignant tumor generation and progression. Here, we demonstrate the use of optical tweezers coupled with a confocal fluorescence imaging system and gene interference technique to reveal that the mutant KRas protein can be transported between homogeneous and heterogeneous tumor cells by tunneling nanotubes (TNTs), resulting in a significant reduction of membrane tension and acceleration of membrane phospholipid flow in the recipient cells. Simultaneously, the changes in membrane mechanical properties of the tumor cells also enhance the metastatic and invasive ability of the tumors, which further contribute to the deterioration of the tumors. This finding helps to clarify the association between oncogene mutations and changes in the mechanical properties of tumor cells, which provides a theoretical basis for the development of cancer treatment strategies. STATEMENT OF SIGNIFICANCE: Here, we present a laser confocal fluorescence system integrated with optical tweezers to observe the transfer of mutant KRasG12D protein from mutant cells to wild-type cells through TNTs. Malignancy involves changes in cell mechanics for extensive cellular deformation during metastatic dissemination. Our results demonstrate a significant decrease in membrane tension and an increase in membrane phospholipid flow in recipient cells. These alterations in mechanical properties augment the migration and invasive capabilities of tumor cells, contributing to tumor malignancy. Our findings propose that cellular mechanical properties could serve as new markers for tumor development, and targeting membrane tension may hold potential as a therapeutic strategy.
Collapse
Affiliation(s)
- Yawen Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiangtao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Dadi Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Liu Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Yuyao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Jiayao Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Daiwen Pang
- College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Hongwu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
19
|
Miao G, Liu J, Zhang Y, Zhou G, Wang F, Huang P, Zhang Y, Wang C, Wang Y, Zeng M, Liu L. A scoring system for stratifying the risk of postoperative bone metastases in colorectal cancer. Surgery 2024; 176:660-667. [PMID: 38890102 DOI: 10.1016/j.surg.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Surveillance recommendations for postoperative high-risk colorectal bone metastases patients remain in a gray area of guidelines. We aimed to develop a risk stratification system to select ideal candidates for follow-up of colorectal bone metastases status. METHODS Postoperative colorectal cancer patients were included to develop a risk-scoring system to predict bone metastases. Risk scores were calculated based on the predictive factors for bone metastases, which were identified using the Cox proportional hazard regression model. Kaplan-Meier curves visualize the differences between risk groups. RESULTS Eight risk factors (age, lymph node metastasis, pathologic tumor deposit, KRAS mutation status, suspicious retroperitoneal lymph node metastasis, lung metastasis status, largest thickness of colorectal cancer lesion, largest short diameter of lymph node) were predictors of colorectal bone metastases and incorporated into the risk scoring system, and the patients were categorized into 2 risk groups. In the low-risk group, the 1, 3, and 5-year colorectal bone metastases rates were 2.4%, 4.6%, and 3.7%, respectively, whereas in the high-risk group, the 1, 3, and 5-year colorectal bone metastases rates were 15.6%, 29.9%, and 44.4%, respectively. The risk scoring system exhibited a C-index of 0.706, 0.795, and 0.841 in 1, 3, and 5 years, respectively. The Kaplan-Meier curve demonstrates that the incidence of colorectal bone metastases was higher in the high-risk group than in the low-risk group (50.5% vs 11.4%, P < .001). CONCLUSION This risk-scoring system may be valuable in predicting colorectal bone metastases in colorectal cancer patients, and we suggest that colorectal bone metastases status surveillance be added in the high-risk group.
Collapse
Affiliation(s)
- Gengyun Miao
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jingjing Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Radiology, Dongying People's Hospital, Shandong, China
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Fang Wang
- Shanghai United Imaging Intelligence Co, Ltd, Shanghai, China
| | - Peng Huang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Yunfei Zhang
- Shanghai United Imaging Intelligence Co, Ltd, Shanghai, China; Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Cheng Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
| | - Liheng Liu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Larsen JH, Jensen IS, Svenningsen P. Benchmarking transcriptome deconvolution methods for estimating tissue- and cell-type-specific extracellular vesicle abundances. J Extracell Vesicles 2024; 13:e12511. [PMID: 39320021 PMCID: PMC11423344 DOI: 10.1002/jev2.12511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
Extracellular vesicles (EVs) contain cell-derived lipids, proteins and RNAs; however, determining the tissue- and cell-type-specific EV abundances in body fluids remains a significant hurdle for our understanding of EV biology. While tissue- and cell-type-specific EV abundances can be estimated by matching the EV's transcriptome to a tissue's/cell type's expression signature using deconvolutional methods, a comparative assessment of deconvolution methods' performance on EV transcriptome data is currently lacking. We benchmarked 11 deconvolution methods using data from four cell lines and their EVs, in silico mixtures, 118 human plasma and 88 urine EVs. We identified deconvolution methods that estimated cell type-specific abundances of pure and in silico mixed cell line-derived EV samples with high accuracy. Using data from two urine EV cohorts with different EV isolation procedures, four deconvolution methods produced highly similar results. The three methods were also concordant in their tissue- and cell-type-specific plasma EV abundance estimates. We identified driving factors for deconvolution accuracy and highlighted the importance of implementing biological knowledge in creating the tissue/cell type signature. Overall, our analyses demonstrate that the deconvolution algorithms DWLS and CIBERSORTx produce highly similar and accurate estimates of tissue- and cell-type-specific EV abundances in biological fluids.
Collapse
Affiliation(s)
| | - Iben Skov Jensen
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Per Svenningsen
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
21
|
Espiau-Romera P, Gordo-Ortiz A, Ortiz-de-Solórzano I, Sancho P. Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:455-470. [PMID: 39697624 PMCID: PMC11648520 DOI: 10.20517/evcna.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 12/20/2024]
Abstract
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
22
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
23
|
Zeng X, Wang R, Tang S, Dong X, Liao L, Chen S, Kong J, Chen L, Li Y, Shao G, Zhang X, Wong YH, Xie Q. Exosomal circ_CCDC7/gga-miR-6568-3p/Pax7 axis accelerates the differentiation of chicken embryonic stem cells infected with subgroup J avian leukosis virus. Poult Sci 2024; 103:103898. [PMID: 38936216 PMCID: PMC11259737 DOI: 10.1016/j.psj.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.
Collapse
Affiliation(s)
- Xiaona Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Ruonan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Shengqiu Tang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Xiaoying Dong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Liqin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yajuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China
| | - Yung Hou Wong
- Division of Life Sciences and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Zeng X, Liu T, Tang S, Dong X, Li Y, Liao L, Chen S, Chen L, Kong J, Dai Z, Feng K, Wong YH, Xie Q. Exosomal miR-7-25207 Increases Subgroup J Avian Leukosis Virus Titers by Targeting the Akt-CyclinQ1 and PRC1-YAF2 Dual Pathways. Microorganisms 2024; 12:1495. [PMID: 39065263 PMCID: PMC11279298 DOI: 10.3390/microorganisms12071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is a major pathogen in poultry, causing substantial economic losses to the poultry industry worldwide. Exosomal small RNAs derived from virus-infected cells or biological fluids can serve as viral transmission vectors. However, the role and mechanism of exosomal miRNA in ALV-J infection are unclear. In this study, we demonstrated that exosomal microRNA-7-25207 (miR-7-25207) could increase the titers of ALV-J. Exosomes isolated from ALV-J-infected DF-1 cells (Exo-ALV-J) contained partial viral proteins from ALV-J and could transmit the infection to uninfected DF-1 cells, leading to productive infection. Additionally, the RNA expression profile of exosomes was altered following ALV-J infection. miRNA analysis revealed that the expression of exosomal miR-7-25207 increased. Overexpression of miR-7-25207 significantly increased the titers of ALV-J in transfected cells. Furthermore, miR-7-25207 directly suppressed the expression of Akt and PRC1. Akt, in turn, directly inhibited CyclinQ1 expression, while PRC1 directly interfered with YAF2 expression. In conclusion, ALV-J infection activates the expression of miR-7-25207, which is subsequently delivered via exosomes to uninfected cells, increasing ALV-J titers by targeting Akt-CyclinQ1 and PRC1-YAF2 dual pathways. These findings suggest that exosomal miR-7-25207 may serve as a potential biomarker for clinical parameters in ALV-J infection.
Collapse
Affiliation(s)
- Xiaona Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Shengqiu Tang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
| | - Xiaoying Dong
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China; (S.T.); (X.D.)
| | - Yajuan Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Liqin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Sheng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Liyi Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jie Kong
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yung-Hou Wong
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China;
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (T.L.); (Y.L.); (L.L.); (S.C.); (L.C.); (J.K.); (Z.D.); (K.F.)
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| |
Collapse
|
25
|
Suwakulsiri W, Xu R, Rai A, Shafiq A, Chen M, Greening DW, Simpson RJ. Comparative proteomic analysis of three major extracellular vesicle classes secreted from human primary and metastatic colorectal cancer cells: Exosomes, microparticles, and shed midbody remnants. Proteomics 2024; 24:e2300057. [PMID: 37507836 DOI: 10.1002/pmic.202300057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission. Here, we isolate sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs secreted from human isogenic primary (SW480) and metastatic (SW620) colorectal cancer (CRC) cell lines in milligram quantities for label-free MS/MS-based proteomic profiling. Purified EVs revealed selective composition packaging of exosomal protein markers in SW480/SW620-sEVs/Exos, metabolic enzymes in SW480/SW620-lEVs/MPs, while centralspindlin complex proteins, nucleoproteins, splicing factors, RNA granule proteins, translation-initiation factors, and mitochondrial proteins selectively traffic to SW480/SW620- lEVs/sMB-Rs. Collectively, we identify 39 human cancer-associated genes in EVs; 17 associated with SW480-EVs, 22 with SW620-EVs. We highlight oncogenic receptors/transporters selectively enriched in sEVs/Exos (EGFR/FAS in SW480-sEVs/Exos and MET, TGFBR2, ABCB1 in SW620-sEVs/Exos). Interestingly, MDK, STAT1, and TGM2 are selectively enriched in SW480-lEVs/sMB-Rs, and ADAM15 to SW620-lEVs/sMB-Rs. Our study reveals sEVs/Exos, lEVs/MPs, and lEVs/sMB-Rs have distinct protein signatures that open potential diagnostic avenues of distinct types of EVs for clinical utility.
Collapse
Affiliation(s)
- Wittaya Suwakulsiri
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Rong Xu
- Nanobiotechnology Laboratory, Centre Clinical, Australia Centre for Blood Diseases, School, Monash University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Adnan Shafiq
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| | - Maoshan Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard J Simpson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science (LIMS), School of Agriculture, Biomedicine and Environment (SABE), La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
27
|
Kzar Al-Shukri HH, Abdul-Jabbar Ali S, Al-Akkam KA, Hjazi A, Rasulova I, Mustafa YF, Al-Saidi DN, Alasheqi MQ, Alawadi A, Alsaalamy A. The role of exo-miRNA in diagnosis and treatment of cancers, focusing on effective miRNAs in colorectal cancer. Cell Biol Int 2024; 48:280-289. [PMID: 38225535 DOI: 10.1002/cbin.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Small extracellular (EV) particles known as exosomes are released by a variety of cell types, including immune system cells, stem cells, and tumor cells. They are regarded as a subgroup of EVs and have a diameter that ranges from 30 to 150 nm. Proteins, lipids, nucleic acids (including RNA and DNA), and different bioactive compounds are among the wide range of biomolecules that make up the cargo of exosomes. Exosomes are crucial for intercellular communication because they let cells share information and signaling chemicals. They are involved in various physiological and pathological processes, including immune responses, tissue regeneration, cancer progression, and neurodegenerative diseases. In conclusion, it is essential to continue research into exosome-based cancer medicines to advance understanding, improve treatment plans, create personalized tactics, ensure safety, and speed up clinical translation.
Collapse
Affiliation(s)
- Hamzah H Kzar Al-Shukri
- Department of Biochemistry, College of Veterinary Medicine, Al-Qasim Green University, Babylon, Iraq
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Dahlia N Al-Saidi
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Kirkuk, Iraq
| |
Collapse
|
28
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
29
|
Teixeira AF, Wang Y, Iaria J, Ten Dijke P, Zhu HJ. Simultaneously targeting extracellular vesicle trafficking and TGF-β receptor kinase activity blocks signaling hyperactivation and metastasis. Signal Transduct Target Ther 2023; 8:456. [PMID: 38105247 PMCID: PMC10725874 DOI: 10.1038/s41392-023-01711-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. Transforming growth factor beta (TGF-β) signaling drives metastasis and is strongly enhanced during cancer progression. Yet, the use of on-target TGF-β signaling inhibitors in the treatment of cancer patients remains unsuccessful, highlighting a gap in the understanding of TGF-β biology that limits the establishment of efficient anti-metastatic therapies. Here, we show that TGF-β signaling hyperactivation in breast cancer cells is required for metastasis and relies on increased small extracellular vesicle (sEV) secretion. Demonstrating sEV's unique role, TGF-β signaling levels induced by sEVs exceed the activity of matching concentrations of soluble ligand TGF-β. Further, genetic disruption of sEV secretion in highly-metastatic breast cancer cells impairs cancer cell aggressiveness by reducing TGF-β signaling to nearly-normal levels. Otherwise, TGF-β signaling activity in non-invasive breast cancer cells is inherently low, but can be amplified by sEVs, enabling invasion and metastasis of poorly-metastatic breast cancer cells. Underscoring the translational potential of inhibiting sEV trafficking in advanced breast cancers, treatment with dimethyl amiloride (DMA) decreases sEV secretion, TGF-β signaling activity, and breast cancer progression in vivo. Targeting both the sEV trafficking and TGF-β signaling by combining DMA and SB431542 at suboptimal doses potentiated this effect, normalizing the TGF-β signaling in primary tumors to potently reduce circulating tumor cells, metastasis, and tumor self-seeding. Collectively, this study establishes sEVs as critical elements in TGF-β biology, demonstrating the feasibility of inhibiting sEV trafficking as a new therapeutic approach to impair metastasis by normalizing TGF-β signaling levels in breast cancer cells.
Collapse
Affiliation(s)
- Adilson Fonseca Teixeira
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China
| | - Yanhong Wang
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Josephine Iaria
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Hong-Jian Zhu
- Department of Surgery (The Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
31
|
Marassi V, Giordani S, Placci A, Punzo A, Caliceti C, Zattoni A, Reschiglian P, Roda B, Roda A. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9432. [PMID: 38067805 PMCID: PMC10708636 DOI: 10.3390/s23239432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Anna Placci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Angela Punzo
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy—CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
| |
Collapse
|
32
|
Jimenez L, Barman B, Jung YJ, Cocozza L, Krystofiak E, Saffold C, Vickers KC, Wilson JT, Dawson TR, Weaver AM. Culture conditions greatly impact the levels of vesicular and extravesicular Ago2 and RNA in extracellular vesicle preparations. J Extracell Vesicles 2023; 12:e12366. [PMID: 37885043 PMCID: PMC10603024 DOI: 10.1002/jev2.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/05/2023] [Indexed: 10/28/2023] Open
Abstract
Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant. In addition, RNA-binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV-containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra- and extra-vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Bahnisikha Barman
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Youn Jae Jung
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - Lauren Cocozza
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Evan Krystofiak
- Cell Imaging Shared Resource EM FacilityVanderbilt UniversityNashvilleTennesseeUSA
| | - Cherie Saffold
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of MedicineVanderbilt UniversityMedical CenterNashvilleTennesseeUSA
| | - John T. Wilson
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Chemical and Biomolecular EngineeringVanderbilt University School of EngineeringNashvilleTennesseeUSA
| | - T. Renee Dawson
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Alissa M. Weaver
- Department of Cell and Developmental BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Extracellular Vesicle ResearchVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
33
|
Lee YJ, Chae S, Choi D. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol 2023; 13:1256585. [PMID: 37823055 PMCID: PMC10562638 DOI: 10.3389/fonc.2023.1256585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect their microenvironment, favoring their progression and response to extracellular stress. These EVs contain dynamically regulating molecular cargos (proteins and nucleic acids) selected from their parental cells, representing the active biological functionality for cancer progression. These EVs are heterogeneous according to their size and molecular composition and are usually defined based on their biogenetic mechanisms, such as exosomes and ectosomes. Recent single EV detection technologies, such as nano-flow cytometry, have revealed the dynamically regulated molecular diversity within bulk EVs, indicating complex EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be changed by internal oncogenic transformation or external stress such as chemotherapy. Among the altered combinations of EV subtypes, only a specific set of EVs represents functional molecular cargo, enabling cancer progression and immune modulation in the tumor microenvironment through their altered targeting efficiency and specificity. This review covers the heterogeneity of EVs discovered by emerging single EV analysis technologies, which reveal the complex distribution of EVs affected by oncogenic transformation and chemotherapy. Encouragingly, these unique molecular signatures in individual EVs indicate the status of their parental cancer cells. Thus, precise molecular profiling of circulating single EVs would open new areas for in-depth monitoring of the cancer microenvironment and shed new light on non-invasive diagnostic approaches using liquid biopsy.
Collapse
Affiliation(s)
| | | | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, Republic of Korea
| |
Collapse
|
34
|
Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:461-485. [PMID: 38707985 PMCID: PMC11067132 DOI: 10.20517/evcna.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.
Collapse
Affiliation(s)
- Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 163-8001, Japan
| | - Gabriel Cardial Tobias
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
35
|
Hui J, Zhou M, An G, Zhang H, Lu Y, Wang X, Zhao X. Regulatory role of exosomes in colorectal cancer progression and potential as biomarkers. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0119. [PMID: 37553810 PMCID: PMC10476469 DOI: 10.20892/j.issn.2095-3941.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC) remains an enormous challenge to human health worldwide. Unfortunately, the mechanism underlying CRC progression is not well understood. Mounting evidence has confirmed that exosomes play a vital role in CRC progression, which has attracted extensive attention among researchers. In addition to acting as messengers between CRC cells, exosomes also participate in the CRC immunomodulatory process and reshape immune function. As stable message carriers and liquid biopsy option under development, exosomes are promising biomarkers in the diagnosis or treatment of CRC. In this review we have described and analyzed the biogenesis and release of exosomes and current research on the role of exosomes in immune regulation and metastasis of CRC. Moreover, we have discussed candidate exosomal molecules as potential biomarkers to diagnose CRC, predict CRC progression, or determine CRC chemoresistance, and described the significance of exosomes in the immunotherapy of CRC. This review provides insight to further understand the role of exosomes in CRC progression and identify valuable biomarkers that facilitate the clinical management of CRC patients.
Collapse
Affiliation(s)
- Juan Hui
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Guangzhou An
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Radiation Protection Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, Faculty of Preventive Medicine, Air Force Medical University, Xi’an 710032, China
| | - Hui Zhang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| | - Xin Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
36
|
Nicolao MC, Rodrigues CR, Coccimiglio MB, Ledo C, Docena GH, Cumino AC. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasit Vectors 2023; 16:255. [PMID: 37516852 PMCID: PMC10387209 DOI: 10.1186/s13071-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Echinococcus granulosus sensu lato species complex causes cystic echinococcosis, a zoonotic disease of medical importance. Parasite-derived small extracellular vesicles (sEVs) are involved in the interaction with hosts intervening in signal transduction related to parasite proliferation and disease pathogenesis. Although the characteristics of sEVs from E. granulosus protoscoleces and their interaction with host dendritic cells (DCs) have been described, the effect of sEVs recovered during parasite pharmacological treatment on the immune response remains unexplored. METHODS Here, we isolated and characterized sEVs from control and drug-treated protoscoleces by ultracentrifugation, transmission electron microscopy, dynamic light scattering, and proteomic analysis. In addition, we evaluated the cytokine response profile induced in murine bone marrow-derived dendritic cells (BMDCs) by qPCR. RESULTS The isolated sEVs, with conventional size between 50 and 200 nm, regardless of drug treatment, showed more than 500 cargo proteins and, importantly, 20 known antigens and 70 potential antigenic proteins, and several integral-transmembrane and soluble proteins mainly associated with signal transduction, immunomodulation, scaffolding factors, extracellular matrix-anchoring, and lipid transport. The identity and abundance of proteins in the sEV-cargo from metformin- and albendazole sulfoxide (ABZSO)-treated parasites were determined by proteomic analysis, detecting 107 and eight exclusive proteins, respectively, which include proteins related to the mechanisms of drug action. We also determined that the interaction of murine BMDCs with sEVs derived from control parasites and those treated with ABZSO and metformin increased the expression of pro-inflammatory cytokines such as IL-12 compared to control cells. Additionally, protoscolex-derived vesicles from metformin treatments induced the production of IL-6, TNF-α, and IL-10. However, the expression of IL-23 and TGF-β was downregulated. CONCLUSIONS We demonstrated that sEV-cargo derived from drug-treated E. granulosus protoscoleces have immunomodulatory functions, as they enhance DC activation towards a type 1 pro-inflammatory profile against the parasite, and therefore support the proposal of a new approach for the prevention and treatment of secondary echinococcosis.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina
| | - Magalí B Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Camila Ledo
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Guillermo H Docena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
37
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 304] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
38
|
Backe SJ, Votra SD, Stokes MP, Sebestyén E, Castelli M, Torielli L, Colombo G, Woodford MR, Mollapour M, Bourboulia D. PhosY-secretome profiling combined with kinase-substrate interaction screening defines active c-Src-driven extracellular signaling. Cell Rep 2023; 42:112539. [PMID: 37243593 PMCID: PMC10569185 DOI: 10.1016/j.celrep.2023.112539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - SarahBeth D Votra
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Matteo Castelli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Luca Torielli
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, 27100 Pavia, Italy
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
39
|
Kim S, Choi BH, Shin H, Kwon K, Lee SY, Yoon HB, Kim HK, Choi Y. Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning. ACS Sens 2023; 8:2391-2400. [PMID: 37279515 DOI: 10.1021/acssensors.3c00681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
Collapse
Affiliation(s)
- Seungmin Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Kihun Kwon
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyun Bin Yoon
- Department of Chemical Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hyun Koo Kim
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02580, Republic of Korea
| |
Collapse
|
40
|
Kim M, Son IT, Noh GT, Woo SY, Lee RA, Oh BY. Exosomes Derived from Colon Cancer Cells Promote Tumor Progression and Affect the Tumor Microenvironment. J Clin Med 2023; 12:3905. [PMID: 37373600 DOI: 10.3390/jcm12123905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer-cell-derived exosomes confer oncogenic properties in their tumor microenvironment and to other cells; however, the exact mechanism underlying this process is unclear. Here, we investigated the roles of cancer-cell-derived exosomes in colon cancer. Exosomes were isolated from colon cancer cell lines, HT-29, SW480, and LoVo, using an ExoQuick-TC kit, identified using Western blotting for exosome markers, and characterized using transmission electron microscopy and nanosight tracking analysis. The isolated exosomes were used to treat HT-29 to evaluate their effect on cancer progression, specifically cell viability and migration. Cancer-associated fibroblasts (CAFs) were obtained from patients with colorectal cancer to analyze the effect of the exosomes on the tumor microenvironment. RNA sequencing was performed to evaluate the effect of the exosomes on the mRNA component of CAFs. The results showed that exosome treatment significantly increased cancer cell proliferation, upregulated N-cadherin, and downregulated E-cadherin. Exosome-treated cells exhibited higher motility than control cells. Compared with control CAFs, exosome-treated CAFs showed more downregulated genes. The exosomes also altered the regulation of different genes involved in CAFs. In conclusion, colon cancer-cell-derived exosomes affect cancer cell proliferation and the epithelial-mesenchymal transition. They promote tumor progression and metastasis and affect the tumor microenvironment.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Gyoung Tae Noh
- Department of Surgery, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul 03760, Republic of Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea
| | - Bo Young Oh
- Department of Surgery, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
41
|
Li C, Wang F, Cui L, Li S, Zhao J, Liao L. Association between abnormal lipid metabolism and tumor. Front Endocrinol (Lausanne) 2023; 14:1134154. [PMID: 37305043 PMCID: PMC10248433 DOI: 10.3389/fendo.2023.1134154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Metabolic Reprogramming is a sign of tumor, and as one of the three major substances metabolism, lipid has an obvious impact. Abnormal lipid metabolism is related to the occurrence of various diseases, and the proportion of people with abnormal lipid metabolism is increasing year by year. Lipid metabolism is involved in the occurrence, development, invasion, and metastasis of tumors by regulating various oncogenic signal pathways. The differences in lipid metabolism among different tumors are related to various factors such as tumor origin, regulation of lipid metabolism pathways, and diet. This article reviews the synthesis and regulatory pathways of lipids, as well as the research progress on cholesterol, triglycerides, sphingolipids, lipid related lipid rafts, adipocytes, lipid droplets, and lipid-lowering drugs in relation to tumors and their drug resistance. It also points out the limitations of current research and potential tumor treatment targets and drugs in the lipid metabolism pathway. Research and intervention on lipid metabolism abnormalities may provide new ideas for the treatment and survival prognosis of tumors.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Fei Wang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Lili Cui
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Shaoxin Li
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
| | - Junyu Zhao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
42
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
43
|
Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023; 31:1231-1250. [PMID: 36805147 PMCID: PMC10188647 DOI: 10.1016/j.ymthe.2023.02.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Collapse
Affiliation(s)
- Julia Rädler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Dhanu Gupta
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Antje Zickler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Samir El Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
44
|
Ren X, Kang C, Garcia-Contreras L, Kim D. Understanding of Ovarian Cancer Cell-Derived Exosome Tropism for Future Therapeutic Applications. Int J Mol Sci 2023; 24:8166. [PMID: 37175872 PMCID: PMC10179437 DOI: 10.3390/ijms24098166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Exosomes, a subtype of extracellular vesicles, ranging from 50 to 200 nm in diameter, and mediate cell-to-cell communication in normal biological and pathological processes. Exosomes derived from tumors have multiple functions in cancer progression, resistance, and metastasis through cancer exosome-derived tropism. However, there is no quantitative information on cancer exosome-derived tropism. Such data would be highly beneficial to guide cancer therapy by inhibiting exosome release and/or uptake. Using two fluorescent protein (mKate2) transfected ovarian cancer cell lines (OVCA4 and OVCA8), cancer exosome tropism was quantified by measuring the released exosome from ovarian cancer cells and determining the uptake of exosomes into parental ovarian cancer cells, 3D spheroids, and tumors in tumor-bearing mice. The OVCA4 cells release 50 to 200 exosomes per cell, and the OVCA8 cells do 300 to 560 per cell. The uptake of exosomes by parental ovarian cancer cells is many-fold higher than by non-parental cells. In tumor-bearing mice, most exosomes are homing to the parent cancer rather than other tissues. We successfully quantified exosome release and uptake by the parent cancer cells, further proving the tropism of cancer cell-derived exosomes. The results implied that cancer exosome tropism could provide useful information for future cancer therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (X.R.); (C.K.); (L.G.-C.)
| | - Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (X.R.); (C.K.); (L.G.-C.)
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (X.R.); (C.K.); (L.G.-C.)
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (X.R.); (C.K.); (L.G.-C.)
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
45
|
Reilly L, Seddighi S, Singleton AB, Cookson MR, Ward ME, Qi YA. Variant biomarker discovery using mass spectrometry-based proteogenomics. FRONTIERS IN AGING 2023; 4:1191993. [PMID: 37168844 PMCID: PMC10165118 DOI: 10.3389/fragi.2023.1191993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis. While genomic variants-including single nucleotide variants, frameshift variants, and mis-splicing isoforms-are commonly detected at the DNA or RNA level, their translated variant protein or polypeptide products are ultimately the functional units of the associated disease. These products are often released in biofluids and could be leveraged for clinical diagnosis and patient stratification. Recent emergence of integrated analysis of genomics with mass spectrometry-based proteomics for biomarker discovery, also known as proteogenomics, have significantly advanced the understanding disease risk variants, precise medicine, and biomarker discovery. In this review, we discuss variant proteins in the context of cancers and neurodegenerative diseases, outline current and emerging proteogenomic approaches for biomarker discovery, and provide a comprehensive proteogenomic strategy for detection of putative biomarker candidates in human biospecimens. This strategy can be implemented for proteogenomic studies in any field of enquiry. Our review timely addresses the need of biomarkers for aging related diseases.
Collapse
Affiliation(s)
- Luke Reilly
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
46
|
Minic Z, Li Y, Hüttmann N, Uppal GK, D’Mello R, Berezovski MV. Lysine Acetylome of Breast Cancer-Derived Small Extracellular Vesicles Reveals Specific Acetylation Patterns for Metabolic Enzymes. Biomedicines 2023; 11:biomedicines11041076. [PMID: 37189694 DOI: 10.3390/biomedicines11041076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer-derived small extracellular vesicles have been proposed as promising potential biomarkers for diagnosis and prognosis of breast cancer (BC). We performed a proteomic study of lysine acetylation of breast cancer-derived small extracellular vesicles (sEVs) to understand the potential role of the aberrant acetylated proteins in the biology of invasive ductal carcinoma and triple-negative BC. Three cell lines were used as models for this study: MCF10A (non-metastatic), MCF7 (estrogen and progesterone receptor-positive, metastatic) and MDA-MB-231 (triple-negative, highly metastatic). For a comprehensive protein acetylation analysis of the sEVs derived from each cell line, acetylated peptides were enriched using the anti-acetyl-lysine antibody, followed by LC-MS/MS analysis. In total, there were 118 lysine-acetylated peptides, of which 22, 58 and 82 have been identified in MCF10A, MCF7 and MDA-MB-231 cell lines, respectively. These acetylated peptides were mapped to 60 distinct proteins and mainly identified proteins involved in metabolic pathways. Among the acetylated proteins identified in cancer-derived sEVs from MCF7 and MDA-MB-231 cell lines are proteins associated with the glycolysis pathway, annexins and histones. Five acetylated enzymes from the glycolytic pathway, present only in cancer-derived sEVs, were validated. These include aldolase (ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK1), enolase (ENO) and pyruvate kinase M1/2 (PKM). For three of these enzymes (ALDOA, PGK1 and ENO) the specific enzymatic activity was significantly higher in MDA-MB-231 when compared with MCF10A-derived sEVs. This study reveals that sEVs contain acetylated glycolytic metabolic enzymes that could be interesting potential candidates for early BC diagnostics.
Collapse
Affiliation(s)
- Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Yingxi Li
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Gurcharan K. Uppal
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Rochelle D’Mello
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Maxim V. Berezovski
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
47
|
Ahmed AA, Monir M, Sabry D, Mostafa A. In vitro study to evaluate the effect of granulocyte colony stimulating factor on colorectal adenocarcinoma and on mesenchymal stem cells trans differentiation into cancer stem cells by cancer cells derived exosomes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
Colorectal cancer (CRC) is a common and lethal malignancies with poor prognosis. CRC cells release extracellular vesicles called exosomes to facilitate tumor progression by passing bioactive molecules such as proteins and nucleic acids between cells of the tumor and their microenvironment. Granulocyte colony stimulating factor (G-CSF) is a hematopoietic growth factor which mainly affects the lineage of neutrophil and exerts direct anti-tumor effects on various tumor types. The purpose of our study is to investigate the effect of G-CSF on CRC cells and to evaluate its capability to attenuate the potentiality of CRC cells derived exosomes to induce bone marrow-derived mesenchymal stem cells (BM-MSCs) malignant transformation into cancer stem cells (CSCs).
Results
The level of both lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT-1) (p = 0.014) & β-catenin (p = 0.01) was significantly decreased, whereas programmed cell death 4 (PDCD4) (p = 0.018) was increased in CRC exosomes pre-treated with G-CSF compared to untreated CRC exosomes. Additionally, there was a significant decrease in the cell proliferation in CRC cells pre-treated with G-CSF compared to untreated CRC cells (p = 0.008). Flow cytometric analysis of BM-MSCs showed that G-CSF could attenuate their transformation into CSCs.
Conclusion
G-CSF can be a promising therapeutic agent for CRC treatment.
Collapse
|
48
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
49
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
50
|
Kotelevets L, Chastre E. Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:1107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|