1
|
Afshari AR, Chang V, Thomsson KA, Höglund J, Browne EN, Karadzhov G, Mahoney KE, Lucas TM, Rangel-Angarita V, Ryberg H, Gidwani K, Pettersson K, Rolfson O, Björkman LI, Eisler T, Schmidt TA, Jay GD, Malaker SA, Karlsson NG. Glycoproteoforms of Osteoarthritis-associated Lubricin in Plasma and Synovial Fluid. Mol Cell Proteomics 2025; 24:100923. [PMID: 39922311 PMCID: PMC11925169 DOI: 10.1016/j.mcpro.2025.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Lubricin/proteoglycan-4 (PRG-4) is a mucinous glycoprotein that lubricates cartilage and maintains normal tissue function and cell homeostasis. Altered O-glycoproteforms of lubricin have been found in osteoarthritis (OA) synovial fluid (SF), which could ostensibly be used to diagnose early onset OA. However, SF is invasive to obtain and generally would not be surveyed from otherwise healthy individuals. Thus, a plasma-based OA screening tool focused on lubricin glycosylation could be a less invasive method to aid in early-stage OA diagnosis. In this report, we used glycomics and glycoproteomics to characterize glycoproteoforms of OA lubricin in SF and plasma. We obtained near-complete sequence coverage of lubricin's mucin domain and its glycosylation using matched SF and plasma from patients with OA (N = 5). From SF lubricin we observed a spectrum of O-glycans ranging from a single GalNAcα1-Ser/Thr monosaccharide up to branched pentasaccharides. In contrast, plasma based lubricin was predominantly decorated with sialylated Galβ1-3GalNAcα1-Ser/Thr (Sialyl T). To explain the glycosylation differences observed between SF and plasma lubricin, we present splice variant-specific peptides found within the non-glycosylated region, revealing that that the longest spliceoform of lubricin was present exclusively in SF, while additional shorter splice variants could only be detected in plasma. Based on our glycoproteomic data, we developed and validated a lectin assay for lubricin, and applied this on a larger cohort of matched SF/plasma (N = 19) to confirm the glycosylation differences between SF and plasma proteoforms. Next, we leveraged our assay to screen over 100 patient with OA samples (OA patients N = 108/controls N = 38) to probe plasma lubricin as an OA biomarker. Here, we detected a decrease in α2,6 linked sialic acid in patients with OA and further show that the extent of α2,6 and α2,3 sialylation on plasma-associated lubricin correlated with patient characteristics, especially Body Mass Index (BMI).
Collapse
Affiliation(s)
- Ali Reza Afshari
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University Oslo Metropolitan University, Oslo, Norway
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer Höglund
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - George Karadzhov
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Taryn M Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | | | - Henrik Ryberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, and Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kamlesh Gidwani
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Kim Pettersson
- Department of Life Technologies and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Centre, Farmington, Connecticut, USA
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| | - Niclas G Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
2
|
Prajapati M, Vishwanath K, Huang L, Colville M, Reesink H, Paszek M, Bonassar LJ. Specific Degradation of the Mucin Domain of Lubricin in Synovial Fluid Impairs Cartilage Lubrication. ACS Biomater Sci Eng 2024; 10:6915-6926. [PMID: 39425698 DOI: 10.1021/acsbiomaterials.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Progressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood. Here, we demonstrate the application of a novel mucinase (StcE) to selectively degrade lubricin's mucin domain in SF to measure its impact on joint lubrication and friction. Notably, StcE effectively degraded the lubricating ability of SF in a dose-dependent manner starting at nanogram concentrations (1-3.2 ng/mL). Further, the highest StcE doses effectively degraded lubrication to levels on par with trypsin, suggesting that cleavage at the mucin domain of lubricin is sufficient to completely inhibit the lubrication mechanism of the collective protein component in SF. These findings demonstrate the value of mucin-specific experimental approaches to characterize the lubricating properties of SF and reveal key trends in joint lubrication that help us better understand cartilage function in lubrication-deficient joints.
Collapse
Affiliation(s)
- Megh Prajapati
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, New York 14853, United States
| | - Lingting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Marshall Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Heidi Reesink
- Dept. of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Toward Road, Ithaca, New York 14853, United States
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, 273 Tower Road, Ithaca, New York 14850, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, New York 14850, United States
| |
Collapse
|
3
|
Boushehri S, Holey H, Brosz M, Gumbsch P, Pastewka L, Aponte-Santamaría C, Gräter F. O-glycans Expand Lubricin and Attenuate Its Viscosity and Shear Thinning. Biomacromolecules 2024; 25:3893-3908. [PMID: 38815979 PMCID: PMC11238335 DOI: 10.1021/acs.biomac.3c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.
Collapse
Affiliation(s)
- Saber Boushehri
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Hannes Holey
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Matthias Brosz
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| | - Peter Gumbsch
- Karlsruhe
Institute of Technology (KIT), Karlsruhe 76131, Germany
- Fraunhofer
IWM, Wöhlerstraße
11, Freiburg 79108, Germany
| | - Lars Pastewka
- Department
of Microsystems Engineering, University
of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
| | - Camilo Aponte-Santamaría
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
| | - Frauke Gräter
- Heidelberg
Institute for Theoretical Studies, Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany
- University
of Heidelberg, Im Neuenheimer
Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Colville MJ, Huang LT, Schmidt S, Chen K, Vishwanath K, Su J, Williams RM, Bonassar LJ, Reesink HL, Paszek MJ. Recombinant manufacturing of multispecies biolubricants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592580. [PMID: 38746339 PMCID: PMC11092771 DOI: 10.1101/2024.05.05.592580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lubricin, a lubricating glycoprotein abundant in synovial fluid, forms a low-friction brush polymer interface in tissues exposed to sliding motion including joints, tendon sheaths, and the surface of the eye. Despite its therapeutic potential in diseases such as osteoarthritis and dry eye disease, there are few sources available. Through rational design, we developed a series of recombinant lubricin analogs that utilize the species-specific tissue-binding domains at the N- and C-termini to increase biocompatibility while replacing the central mucin domain with an engineered variant that retains the lubricating properties of native lubricin. In this study, we demonstrate the tissue binding capacity of our engineered lubricin product and its retention in the joint space of rats. Next, we present a new bioprocess chain that utilizes a human-derived cell line to produce O-glycosylation consistent with that of native lubricin and a purification strategy that capitalizes on the positively charged, hydrophobic N- and C-terminal domains. The bioprocess chain is demonstrated at 10 L scale in industry-standard equipment utilizing commonly available ion exchange, hydrophobic interaction and size exclusion chromatography resins. Finally, we confirmed the purity and lubricating properties of the recombinant biolubricant. The biomolecular engineering and bioprocessing strategies presented here are an effective means of lubricin production and could have broad applications to the study of mucins in general.
Collapse
Affiliation(s)
- Marshall J. Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ling-Ting Huang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Samuel Schmidt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Kevin Chen
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthew J. Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Martin-Alarcon L, Govedarica A, Ewoldt RH, Bryant SL, Jay GD, Schmidt TA, Trifkovic M. Scale-Dependent Rheology of Synovial Fluid Lubricating Macromolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306207. [PMID: 38161247 DOI: 10.1002/smll.202306207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Synovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear. This study aimed to elucidate this by employing confocal microscopy and multiscale rheometry to examine the microstructure and rheology of solutions containing recombinant human PRG4 (rhPRG4) and HA. Contrary to previous assumptions of an extensive HA-rhPRG4 network, it is discovered that rhPRG4 primarily forms stiff, gel-like aggregates. The properties of these aggregates, including their size and stiffness, are found to be influenced by the viscoelastic characteristics of the surrounding HA matrix. Consequently, the rheology of this system is not governed by a single length scale, but instead responds as a disordered, hierarchical network with solid-like rhPRG4 aggregates distributed throughout the continuous HA phase. These findings provide new insights into the biomechanical function of PRG4 in cartilage lubrication and may have implications in the development of HA-based therapies for joint diseases like osteoarthritis.
Collapse
Affiliation(s)
- Leonardo Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Gregory D Jay
- Department of Emergency Medicine - Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
6
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Mass Spectrometry-Compatible Elution Technique Enables an Improved Mucin-Selective Enrichment Strategy to Probe the Mucinome. Anal Chem 2024; 96:5242-5250. [PMID: 38512228 PMCID: PMC12050071 DOI: 10.1021/acs.analchem.3c05762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to a solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we introduce innovative elution conditions amenable to mucinase digestion and downstream analysis using mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing the glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all of the other enrichment techniques tested. This allowed for the effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Krystyna Maruszko
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Han M, Russo MJ, Desroches PE, Silva SM, Quigley AF, Kapsa RMI, Moulton SE, Greene GW. Calcium ions have a detrimental impact on the boundary lubrication property of hyaluronic acid and lubricin (PRG-4) both alone and in combination. Colloids Surf B Biointerfaces 2024; 234:113741. [PMID: 38184943 DOI: 10.1016/j.colsurfb.2023.113741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Cartilage demineralisation in Osteoarthritis (OA) patients can elevate calcium ion levels in synovial fluid, as evidenced by the prevalence of precipitated calcium phosphate crystals in OA synovial fluid. Although it has been reported that there is a potential connection between elevated concentrations of calcium ions and a deterioration in the lubrication and wear resistance of cartilage tissues, the mechanism behind the strong link between calcium ion concentration and decreased lubrication performance is unclear. In this work, the AFM friction, imaging, and normal force distance measurements were used to investigate the lubrication performances of hyaluronic acid (HA), Lubricin (LUB), and HA-LUB complex in the presence of calcium ions (5 mM, 15 mM, and 30 mM), to understand the possible mechanism behind the change of lubrication property. The results of AFM friction measurements suggest that introducing calcium ions to the environment effectively eliminated the lubrication ability of HA and HA-LUB, especially with relatively low loading applied. The AFM images indicate that it is unlikely that structural or morphological changes in the surface-bound layer upon calcium ions addition are primarily responsible for the friction results demonstrated. Further, the poor correlation between the effect of calcium ions on the adhesion forces and its impact on friction suggests that the decrease in the lubricating ability of both layers is likely a result of changes in the hydration of the HA-LUB surface bound layers than changes in intermolecular or intramolecular binding. This work provides the first experimental evidence lending towards the relationship between bone demineralisation and articular cartilage degradation at the onset of OA and the mechanism through which elevated calcium levels in the synovial fluid act on joint lubrication.
Collapse
Affiliation(s)
- Mingyu Han
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, 671 Sneydes Road, Private Bag 16, Werribee, Victoria 3030, Australia.
| | - Matthew J Russo
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Pauline E Desroches
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saimon M Silva
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Australia; Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria 3065, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia; ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
8
|
Mahoney KE, Chang V, Lucas TM, Maruszko K, Malaker SA. Optimized mucin-selective enrichment strategy to probe the mucinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572204. [PMID: 38187615 PMCID: PMC10769219 DOI: 10.1101/2023.12.18.572204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of healthy and disease-driven biological functions. Previously, we developed a mucin-selective enrichment strategy by employing a catalytically inactive mucinase (StcE) conjugated to solid support. While this method was effective, it suffered from low throughput and high sample requirements. Further, the elution step required boiling in SDS, thus necessitating an in-gel digest with trypsin. Here, we optimized our previous enrichment method to include elution conditions amenable to mucinase digestion and downstream analysis with mass spectrometry. This increased throughput and lowered sample input while maintaining mucin selectivity and enhancing glycopeptide signal. We then benchmarked this technique against different O-glycan binding moieties for their ability to enrich mucins from various cell lines and human serum. Overall, the new method outperformed our previous procedure and all other enrichment techniques tested. This allowed for effective isolation of more mucin-domain glycoproteins, resulting in a high number of O-glycopeptides, thus enhancing our ability to analyze the mucinome.
Collapse
Affiliation(s)
- Keira E. Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vincent Chang
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Taryn M. Lucas
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | | | - Stacy A. Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
9
|
Yin Y, Zhang Y, Guo L, Li P, Wang D, Huang L, Zhao X, Wu G, Li L, Wei X. Effect of Moderate Exercise on the Superficial Zone of Articular Cartilage in Age-Related Osteoarthritis. Diagnostics (Basel) 2023; 13:3193. [PMID: 37892013 PMCID: PMC10605492 DOI: 10.3390/diagnostics13203193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the effect of exercise on the superficial zone of the osteoarticular cartilage during osteoarthritis progression. Three-month-old, nine-month-old, and eighteen-month-old Sprague Dawley rats were randomly divided into two groups, moderate exercise and no exercise, for 10 weeks. Histological staining, immunostaining, and nanoindentation measurements were conducted to detect changes in the superficial zone. X-ray and micro-CT were quantitated to detect alterations in the microarchitecture of the tibial subchondral bone. Cells were extracted from the superficial zone of the cartilage under fluid-flow shear stress conditions to further verify changes in vitro. The number of cells and proteoglycan content in the superficial zone increased more in the exercise group than in the control group. Exercise can change the content and distribution of collagen types I and III in the superficial layer. In addition, TGFβ/pSmad2/3 and Prg4 expression levels increased under the intervention of exercise on the superficial zone. Exercise can improve the Young's modulus of the cartilage and reduce the abnormal subchondral bone remodeling which occurs after superficial zone changes. Moderate exercise delays the degeneration of the articular cartilage by its effect on the superficial zone, and the TGFβ/pSmad2/3 signaling pathways and Prg4 play an important role.
Collapse
Affiliation(s)
- Yukun Yin
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Yuanyu Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Dongming Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lingan Huang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Lu Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan 030001, China; (Y.Y.); (Y.Z.); (L.G.); (P.L.); (D.W.); (L.H.); (G.W.)
| |
Collapse
|
10
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Straubinger R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-Responsive Upconversion Mesoporous Silica Nanospheres for Combined Multimodal Diagnostic Imaging and Targeted Photodynamic and Photothermal Cancer Therapy. ACS NANO 2023; 17:18979-18999. [PMID: 37702397 PMCID: PMC10569106 DOI: 10.1021/acsnano.3c04564] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have gained considerable attention as potential alternatives to conventional cancer treatments. However, these approaches remain limited by low solubility, poor stability, and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome the aforementioned limitations, we engineered biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium, and gadolinium) and the PTA bismuth selenide (NaYF4:Yb/Er/Gd,Bi2Se3) enveloped in a mesoporous silica shell that encapsulates a PS, chlorin e6 (Ce6), within its pores. NaYF4:Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites Ce6 to generate cytotoxic reactive oxygen species (ROS), while Bi2Se3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging of the nanospheres. The mesoporous silica shell is coated with DPPC/cholesterol/DSPE-PEG to retain the encapsulated Ce6 and prevent serum protein adsorption and macrophage recognition that hinder tumor targeting. Finally, the coat is conjugated to the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into malignant cells in the mildly acidic microenvironment of tumors. The nanospheres facilitated tumor magnetic resonance and thermal and fluorescence imaging and exhibited potent NIR laser light-induced anticancer effects in vitro and in vivo via combined ROS production and localized hyperthermia, with negligible toxicity to healthy tissue, hence markedly extending survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Mona Kalmouni
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Tatiana Houhou
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Osama Abdullah
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Liaqat Ali
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Renu Pasricha
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Rainer Straubinger
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Sneha Thomas
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Ahmed Jawaad Afzal
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Francisco N. Barrera
- Department
of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Mazin Magzoub
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| |
Collapse
|
11
|
Ushida K, Sato R, Momma T, Tanaka S, Kaneko T, Morishita H. Jellyfish mucin (qniumucin) extracted with a modified protocol indicated its existence as a constituent of the extracellular matrix. Biochim Biophys Acta Gen Subj 2022; 1866:130189. [PMID: 35716958 DOI: 10.1016/j.bbagen.2022.130189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Jellyfish (JF) mucin (precisely, a mucin-type glycoprotein named qniumucin: Q-mucin) first discovered in JF is mainly composed of highly O-glycosylated domains, and its unique structure suggests its wide applications as a smart material. In this study, the standard protocol used to date was thoroughly reinvestigated because the processing of raw JF was rather difficult and continuous production from frozen sources was also indispensable. Finally, we concluded that Q-mucin is involved not in mucus but in the mesoglea, i.e., the extracellular matrix (ECM), as a part of a very large polymer complex. We added a treatment procedure with a chelate reagent (e.g. EDTA) to inactivate endogenous proteases that induce the spontaneous decomposition of the collagens in ECM. The amino acid composition (AAC) of each precipitate formed upon EtOH addition indicated that Q-mucin dissociates from the biopolymer complex as a constituent highly soluble in deionized water. Since the remaining portion of ECM still seemed to contain a large amount of the precursor of Q-mucin even after the extraction with water is completed, the yield of Q-mucin is expected to increase markedly if an innovative method to decompose EtOH precipitates is developed. The existence of Q-mucin in ECM seems to be described in parallel with that of proteoglycans (PG) in mammalian cartilage because they resemble each other.
Collapse
Affiliation(s)
- Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Riken (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Rie Sato
- Riken (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoko Momma
- Riken (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinra Tanaka
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuma Kaneko
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiromasa Morishita
- Riken (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Russo MJ, Han M, Menon NG, Quigley AF, Kapsa RMI, Moulton SE, Guijt RM, M Silva S, Schmidt TA, Greene GW. Novel Boundary Lubrication Mechanisms from Molecular Pillows of Lubricin Brush-Coated Graphene Oxide Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5351-5360. [PMID: 35465662 DOI: 10.1021/acs.langmuir.1c02970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are numerous biomedical applications where the interfacial shearing of surfaces can cause wear and friction, which can lead to a variety of medical complications such as inflammation, irritation, and even bacterial infection. We introduce a novel nanomaterial additive comprised of two-dimensional graphene oxide nanosheets (2D-NSCs) coated with lubricin (LUB) to reduce the amount of tribological stress in biomedical settings, particularly at low shear rates where boundary lubrication dominates. LUB is a glycoprotein found in the articular joints of mammals and has recently been discovered as an ocular surface boundary lubricant. The ability of LUB to self-assemble into a "telechelic" brush layer on a variety of surfaces was exploited here to coat the top and bottom surfaces of the ultrathin 2D-NSCs in solution, effectively creating a biopolymer-coated nanosheet. A reduction in friction of almost an order of magnitude was measured at a bioinspired interface. This reduction was maintained after repeated washing (5×), suggesting that the large aspect ratio of the 2D-NSCs facilitates effective lubrication even at diluted concentrations. Importantly, and unlike LUB-only treatment, the lubrication effect can be eliminated over 15 rinsing cycles, suggesting that the LUB-coated 2D-NSCs do not exhibit any binding interactions with the shearing surfaces. The effective lubricating properties of the 2D-NSCs combined with full reversibility through rinsing make the LUB-coated 2D-NSCs an intriguing candidate as a lubricant for biomedical applications.
Collapse
Affiliation(s)
- Matthew J Russo
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Mingyu Han
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
| | - Nikhil G Menon
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut 06030 United States
| | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut 06030 United States
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
| |
Collapse
|
13
|
Konstantinidi A, Nason R, Čaval T, Sun L, Sørensen DM, Furukawa S, Ye Z, Vincentelli R, Narimatsu Y, Vakhrushev SY, Clausen H. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J Biol Chem 2022; 298:101784. [PMID: 35247390 PMCID: PMC8980628 DOI: 10.1016/j.jbc.2022.101784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022] Open
Abstract
Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom-up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom-up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.
Collapse
Affiliation(s)
- Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomislav Čaval
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Noordwijk KJ, Qin R, Diaz-Rubio ME, Zhang S, Su J, Mahal LK, Reesink HL. Metabolism and global protein glycosylation are differentially expressed in healthy and osteoarthritic equine carpal synovial fluid. Equine Vet J 2022; 54:323-333. [PMID: 33587757 PMCID: PMC8364562 DOI: 10.1111/evj.13440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Carpal osteochondral fragmentation and subsequent post-traumatic osteoarthritis (PTOA) are leading causes of wastage in the equine athlete. Identification of synovial fluid biomarkers could contribute to the diagnosis and understanding of osteoarthritis (OA) pathophysiology. OBJECTIVE The aim of this study was to identify differentially expressed metabolic and glycosylation pathways in synovial fluid from healthy horses and horses with naturally occurring carpal OA. STUDY DESIGN Cross-sectional, in vivo metabolomics and glycomics study. METHODS In cohort 1, carpal synovial fluid (n = 12 horses; n = 6 healthy, n = 6 OA) was analysed using high-resolution liquid chromatography mass spectrometry (LC-MS). In cohort 2 (n = 40 horses; n = 20 healthy, n = 20 OA), carpal synovial fluid was analysed using lectin microarrays and a lubricin sandwich ELISA. RESULTS Metabolomic analysis identified >4900 LC-MS features of which 84 identifiable metabolites were differentially expressed (P < .05) between healthy and OA joints, including key pathways related to inflammation (histidine and tryptophan metabolism), oxidative stress (arginine biosynthesis) and collagen metabolism (lysine metabolism). Principle Component Analysis and Partial Least Squares Discriminant Analysis demonstrated separation between healthy and OA synovial fluid. Lectin microarrays identified distinct glycosylation patterns between healthy and OA synovial fluid, including increased Core 1/Core 3 O-glycosylation, increased α-2,3 sialylation and decreased α-1,2 fucosylation in OA. O-glycans predominated over N-glycans in all synovial fluid samples, and synovial fluid lubricin was increased in OA joints as compared to controls. MAIN LIMITATIONS The sample size in cohort 1 was limited, and there is inherent variation in severity and duration of joint injury in naturally occurring OA. However, LC-MS identified up to 5000 unique features. CONCLUSIONS These data suggest new potential diagnostic and therapeutic targets for equine OA. Future targeted metabolomic and glycomic studies should be performed to verify these results. Lectin microarrays could be investigated as a potential screening tool for the diagnosis and therapeutic monitoring of equine OA.
Collapse
Affiliation(s)
- Kira J. Noordwijk
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rui Qin
- Department of Chemistry, New York University, New York, NY, USA,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Maria E. Diaz-Rubio
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Jin Su
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, New York University, New York, NY, USA,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Heidi L. Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
16
|
Khwannimit D, M Silva S, Desroches PE, Quigley AF, Kapsa RMI, Greene GW, Moulton SE. Potential Pulse-Facilitated Active Adsorption of Lubricin Polymer Brushes Can Both Accelerate Self-Assembly and Control Grafting Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11188-11193. [PMID: 34506141 DOI: 10.1021/acs.langmuir.1c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-assembled lubricin (LUB) monolayers are an effective antiadhesive coating for biomedical applications. Long deposition times and limited control over the monolayer grafting density remain impediments to commercialization and applications in advanced sensor technologies. This work describes a novel potential pulse-facilitated coating method that reduces coating times to mere seconds while also providing high-level control over the achieved grafting density. This is the first time that the potential pulse-facilitated method is applied for direct assembling of a large and complex polyelectrolyte.
Collapse
Affiliation(s)
- Duangruedee Khwannimit
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Melbourne/Victoria 3122, Australia
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Melbourne/Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, John Street, Hawthorn, Melbourne, Victoria 3122, Australia
| | - Pauline E Desroches
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, 221 Burwood Highway, Burwood, Melbourne/Victoria 3216, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
| | - Anita F Quigley
- School of Electrical and Biomedical Engineering, RMIT University, 124 La Trobe Street, Melbourne/Victoria 3001, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
| | - Robert M I Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, 124 La Trobe Street, Melbourne/Victoria 3001, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, 221 Burwood Highway, Burwood, Melbourne/Victoria 3216, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Melbourne/Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, 41 Victoria Parade, Fitzroy, Melbourne/Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, John Street, Hawthorn, Melbourne, Victoria 3122, Australia
| |
Collapse
|
17
|
Szin N, Silva SM, Moulton SE, Kapsa RMI, Quigley AF, Greene GW. Cellular Interactions with Lubricin and Hyaluronic Acid-Lubricin Composite Coatings on Gold Electrodes in Passive and Electrically Stimulated Environments. ACS Biomater Sci Eng 2021; 7:3696-3708. [PMID: 34283570 DOI: 10.1021/acsbiomaterials.1c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the field of bionics, the long-term effectiveness of implantable bionic interfaces depends upon maintaining a "clean" and unfouled electrical interface with biological tissues. Lubricin (LUB) is an innately biocompatible glycoprotein with impressive antifouling properties. Unlike traditional antiadhesive coatings, LUB coatings do not passivate electrode surfaces, giving LUB coatings great potential for controlling surface fouling of implantable electrode interfaces. This study characterizes the antifouling properties of bovine native LUB (N-LUB), recombinant human LUB (R-LUB), hyaluronic acid (HA), and composite coatings of HA and R-LUB (HA/R-LUB) on gold electrodes against human primary fibroblasts and chondrocytes in passive and electrically stimulated environments for up to 96 h. R-LUB coatings demonstrated highly effective antifouling properties, preventing nearly all adhesion and proliferation of fibroblasts and chondrocytes even under biphasic electrical stimulation. N-LUB coatings, while showing efficacy in the short term, failed to produce sustained antifouling properties against fibroblasts or chondrocytes over longer periods of time. HA/R-LUB composite films also demonstrated highly effective antifouling performance equal to the R-LUB coatings in both passive and electrically stimulated environments. The high electrochemical stability and long-lasting antifouling properties of R-LUB and HA/R-LUB coatings in electrically stimulating environments reveal the potential of these coatings for controlling unwanted cell adhesion in implantable bionic applications.
Collapse
Affiliation(s)
- Natalie Szin
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| | - Saimon M Silva
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Simon E Moulton
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Robert M I Kapsa
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Anita F Quigley
- Aikenhead Centre for Medical Discovery, St. Vincent's Hospital Melbourne, Melbourne, VIC 3065, Australia.,School of Electrical and Biomedical Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, VIC 3216, Australia
| |
Collapse
|
18
|
Nason R, Büll C, Konstantinidi A, Sun L, Ye Z, Halim A, Du W, Sørensen DM, Durbesson F, Furukawa S, Mandel U, Joshi HJ, Dworkin LA, Hansen L, David L, Iverson TM, Bensing BA, Sullam PM, Varki A, Vries ED, de Haan CAM, Vincentelli R, Henrissat B, Vakhrushev SY, Clausen H, Narimatsu Y. Display of the human mucinome with defined O-glycans by gene engineered cells. Nat Commun 2021; 12:4070. [PMID: 34210959 PMCID: PMC8249670 DOI: 10.1038/s41467-021-24366-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mucins are a large family of heavily O-glycosylated proteins that cover all mucosal surfaces and constitute the major macromolecules in most body fluids. Mucins are primarily defined by their variable tandem repeat (TR) domains that are densely decorated with different O-glycan structures in distinct patterns, and these arguably convey much of the informational content of mucins. Here, we develop a cell-based platform for the display and production of human TR O-glycodomains (~200 amino acids) with tunable structures and patterns of O-glycans using membrane-bound and secreted reporters expressed in glycoengineered HEK293 cells. Availability of defined mucin TR O-glycodomains advances experimental studies into the versatile role of mucins at the interface with pathogenic microorganisms and the microbiome, and sparks new strategies for molecular dissection of specific roles of adhesins, glycoside hydrolases, glycopeptidases, viruses and other interactions with mucin TRs as highlighted by examples.
Collapse
Affiliation(s)
- Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wenjuan Du
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hansen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonor David
- Institute of Molecular Pathology and Immunology of the University of Porto/I3S, Porto, Portugal.,Medical Faculty of the University of Porto, Porto, Portugal
| | - Tina M Iverson
- Departments of Pharmacology and Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Barbara A Bensing
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Paul M Sullam
- Department of Medicine, The San Francisco Veterans Affairs Medical Center, and the University of California, San Francisco, CA, USA
| | - Ajit Varki
- The Glycobiology Research and Training Center, and the Department of Cellular and Molecular Medicine, University of California, San Diego, CA, USA
| | - Erik de Vries
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Cornelis A M de Haan
- Section Virology, Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, CL, Utrecht, the Netherlands
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. .,GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
19
|
Maenohara Y, Chijimatsu R, Tachibana N, Uehara K, Xuan F, Mori D, Murahashi Y, Nakamoto H, Oichi T, Chang SH, Matsumoto T, Omata Y, Yano F, Tanaka S, Saito T. Lubricin Contributes to Homeostasis of Articular Cartilage by Modulating Differentiation of Superficial Zone Cells. J Bone Miner Res 2021; 36:792-802. [PMID: 33617044 DOI: 10.1002/jbmr.4226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/10/2022]
Abstract
Lubricin encoded by the proteoglycan 4 (Prg4) gene is produced from superficial zone (SFZ) cells of articular cartilage and synoviocytes, which is indispensable for lubrication of joint surfaces. Loss-of-function of human and mouse Prg4 results in early-onset arthropathy accompanied by lost SFZ cells and hyperplastic synovium. Here, we focused on increases in the thickness of articular cartilage in Prg4-knockout joints and analyzed the underlying mechanisms. In the late stage of articular cartilage development, the articular cartilage was thickened at 2 to 4 weeks and the SFZ disappeared at 8 weeks in Prg4-knockout mice. Similar changes were observed in cultured Prg4-knockout femoral heads. Cell tracking showed that Prg4-knockout SFZ cells at 1 week of age expanded to deep layers after 1 week. In in vitro experiments, overexpression of Prg4 lacking a mucin-like domain suppressed differentiation of ATDC5 cells markedly, whereas pellets of Prg4-knockout SFZ cells showed enhanced differentiation. RNA sequencing identified matrix metalloproteinase 9 (Mmp9) as the top upregulated gene by Prg4 knockout. Mmp9 expressed in the SFZ was further induced in Prg4-knockout mice. The increased expression of Mmp9 by Prg4 knockout was canceled by IκB kinase (IKK) inhibitor treatment. Phosphorylation of Smad2 was also enhanced in Prg4-knockout cell pellets, which was canceled by the IKK inhibitor. Expression of Mmp9 and phosphorylated Smad2 during articular cartilage development was enhanced in Prg4-knockout joints. Lubricin contributes to homeostasis of articular cartilage by suppressing differentiation of SFZ cells, and the nuclear factor-kappa B-Mmp9-TGF-β pathway is probably responsible for the downstream action of lubricin. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yuji Maenohara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Tachibana
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Uehara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fengjun Xuan
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Mori
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasutaka Murahashi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Nakamoto
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Oichi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Song Ho Chang
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takumi Matsumoto
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasunori Omata
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Huang J, Wu M, Zhang Y, Kong S, Liu M, Jiang B, Yang P, Cao W. OGP: A Repository of Experimentally Characterized O-Glycoproteins to Facilitate Studies on O-Glycosylation. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:611-618. [PMID: 33581334 PMCID: PMC9039567 DOI: 10.1016/j.gpb.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/17/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022]
Abstract
Numerous studies on cancers, biopharmaceuticals, and clinical trials have necessitated comprehensive and precise analysis of protein O-glycosylation. However, the lack of updated and convenient databases deters the storage of and reference to emerging O-glycoprotein data. To resolve this issue, an O-glycoprotein repository named OGP was established in this work. It was constructed with a collection of O-glycoprotein data from different sources. OGP contains 9354 O-glycosylation sites and 11,633 site-specific O-glycans mapping to 2133 O-glycoproteins, and it is the largest O-glycoprotein repository thus far. Based on the recorded O-glycosylation sites, an O-glycosylation site prediction tool was developed. Moreover, an OGP-based website is already available (https://www.oglyp.org/). The website comprises four specially designed and user-friendly modules: statistical analysis, database search, site prediction, and data submission. The first version of OGP repository and the website allow users to obtain various O-glycoprotein-related information, such as protein accession Nos., O-glycosylation sites, O-glycopeptide sequences, site-specific O-glycan structures, experimental methods, and potential O-glycosylation sites. O-glycosylation data mining can be performed efficiently on this website, which will greatly facilitate related studies. In addition, the database is accessible from OGP website (https://www.oglyp.org/download.php).
Collapse
Affiliation(s)
- Jiangming Huang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China
| | - Mengxi Wu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China
| | - Siyuan Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Mingqi Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Biyun Jiang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai 200032, China.
| | - Weiqian Cao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; The Fifth People's Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai 200032, China.
| |
Collapse
|
21
|
Flowers SA, Thomsson KA, Ali L, Huang S, Mthembu Y, Regmi SC, Holgersson J, Schmidt TA, Rolfson O, Björkman LI, Sundqvist M, Karlsson-Bengtsson A, Jay GD, Eisler T, Krawetz R, Karlsson NG. Decrease of core 2 O-glycans on synovial lubricin in osteoarthritis reduces galectin-3 mediated crosslinking. J Biol Chem 2020; 295:16023-16036. [PMID: 32928962 DOI: 10.1074/jbc.ra120.012882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Indexed: 11/06/2022] Open
Abstract
The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liaqat Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Shan Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yolanda Mthembu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Suresh C Regmi
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Ola Rolfson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Chalmers University of Technology, Gothenburg, Sweden
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School and Division of Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Thomas Eisler
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
23
|
Cathepsin g Degrades Both Glycosylated and Unglycosylated Regions of Lubricin, a Synovial Mucin. Sci Rep 2020; 10:4215. [PMID: 32144329 PMCID: PMC7060204 DOI: 10.1038/s41598-020-61161-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Lubricin (PRG4) is a mucin type protein that plays an important role in maintaining normal joint function by providing lubrication and chondroprotection. Improper lubricin modification and degradation has been observed in idiopathic osteoarthritis (OA), while the detailed mechanism still remains unknown. We hypothesized that the protease cathepsin G (CG) may participate in degrading lubricin in synovial fluid (SF). The presence of endogenous CG in SF was confirmed in 16 patients with knee OA. Recombinant human lubricin (rhPRG4) and native lubricin purified from the SF of patients were incubated with exogenous CG and lubricin degradation was monitored using western blot, staining by Coomassie or Periodic Acid-Schiff base in gels, and with proteomics. Full length lubricin (∼300 kDa), was efficiently digested with CG generating a 25-kDa protein fragment, originating from the densely glycosylated mucin domain (∼250 kDa). The 25-kDa fragment was present in the SF from OA patients, and the amount was increased after incubation with CG. A CG digest of rhPRG4 revealed 135 peptides and 72 glycopeptides, and confirmed that the protease could cleave in all domains of lubricin, including the mucin domain. Our results suggest that synovial CG may take part in the degradation of lubricin, which could affect the pathological decrease of the lubrication in degenerative joint disease.
Collapse
|
24
|
Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3:95. [PMID: 32127636 PMCID: PMC7054360 DOI: 10.1038/s42003-020-0817-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sumaya Al-Hosani
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
25
|
Flowers SA, Grant OC, Woods RJ, Rebeck GW. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2020; 30:74-85. [PMID: 31616924 PMCID: PMC7335482 DOI: 10.1093/glycob/cwz084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
Abstract
The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| | - Oliver C Grant
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Robert J Woods
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| |
Collapse
|
26
|
Flowers SA, Lane CS, Karlsson NG. Deciphering Isomers with a Multiple Reaction Monitoring Method for the Complete Detectable O-Glycan Repertoire of the Candidate Therapeutic, Lubricin. Anal Chem 2019; 91:9819-9827. [PMID: 31246420 DOI: 10.1021/acs.analchem.9b01485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation is a fundamental post-translational modification, occurring on half of all proteins. Despite its significance, our understanding is limited, in part due to the inherent difficulty in studying these branched, multi-isomer structures. Accessible, detailed, and quantifiable methods for studying glycans, particularly O-glycans, are needed. Here we take a multiple reaction monitoring (MRM) approach to differentiate and relatively quantify all detectable glycans, including isomers, on the heavily O-glycosylated protein lubricin. Lubricin (proteoglycan 4) is essential for lubrication of the joint and eye. Given the therapeutic potential of lubricin, it is essential to understand its O-glycan repertoire in biological and recombinantly produced samples. O-Glycans were released by reductive β-elimination and defined, showing a range of 26 neutral, sulfated, sialylated, and both sulfated and sialylated core 1 (Galβ1-3GalNAcα1-) and core 2 (Galβ1-3(GlcNAcβ1-6)GalNAcα1-) structures. Isomer-specific MRM transitions allowed effective differentiation of neutral glycan isomers as well as sulfated isomeric structures, where the sulfate was retained on the fragment ions. This strategy was not as effective with labile sialylated structures; instead, it was observed that the optimal collision energy for the m/z 290.1 sialic acid B-fragment differed consistently between sialic acid isomers, allowing differentiation between isomers when fragmentation spectra were insufficient. This approach was also effective for purchased Neu5Acα2-3Galβ1-4Glc and Neu5Acα2-6Galβ1-4Glc and for Neu5Acα2-3Galβ1-4GlcNAc and Neu5Acα2-6Galβ1-4GlcNAc linkage isomers with the Neu5Acα2-6 consistently requiring more energy for optimal generation of the m/z 290.1 fragment. Overall, this method provides an effective and easily accessible approach for the quantification and annotation of complex released O-glycan samples.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden.,Department of Neuroscience , Georgetown University , 3970 Reservoir Road NW, New Research Building EP20 , Washington, D.C. , United States
| | - Catherine S Lane
- SCIEX , Phoenix House, Lakeside Drive, Centre Park , Warrington WA1 1RX , United Kingdom
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Medicinaregatan 9A , 40530 Gothenburg , Sweden
| |
Collapse
|
27
|
Das N, Schmidt TA, Krawetz RJ, Dufour A. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation. Bioessays 2018; 41:e1800166. [DOI: 10.1002/bies.201800166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Tannin A. Schmidt
- Biomedical Engineering Department; School of Dental Medicine; University of Connecticut Health Center; Farmington CT 06030 USA
| | - Roman J. Krawetz
- Cell Biology and Anatomy; Cumming School of Medicine; University of Calgary; 3330 Hospital Drive NW Calgary Alberta T2N4N1 Canada
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
| | - Antoine Dufour
- McCaig institute for Bone and Joint Health; University of Calgary; Calgary Alberta T2N4N1 Canada
- Physiology & Pharmacology; Cumming School of Medicine; University of Calgary; Calgary Alberta T2N4N1 Canada
| |
Collapse
|
28
|
Bensing BA, Li Q, Park D, Lebrilla CB, Sullam PM. Streptococcal Siglec-like adhesins recognize different subsets of human plasma glycoproteins: implications for infective endocarditis. Glycobiology 2018; 28:601-611. [PMID: 29796594 PMCID: PMC6054165 DOI: 10.1093/glycob/cwy052] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis are typically found among the normal oral microbiota but can also cause infective endocarditis. These organisms express cell surface serine-rich repeat adhesins containing "Siglec-like" binding regions (SLBRs) that mediate attachment to α2-3-linked sialic acids on human glycoproteins. Two known receptors for the Siglec-like adhesins are the salivary mucin MG2/MUC7 and platelet GPIbα, and the interaction of streptococci with these targets may contribute to oral colonization and endocarditis, respectively. The SLBRs display a surprising diversity of preferences for defined glycans, ranging from highly selective to broader specificity. In this report, we characterize the glycoproteins in human plasma recognized by four SLBRs that prefer different α2-3 sialoglycan structures. We found that the SLBRs recognize a surprisingly small subset of plasma proteins that are extensively O-glycosylated. The preferred plasma protein ligands for a sialyl-T antigen-selective SLBR are proteoglycan 4 (lubricin) and inter-alpha-trypsin inhibitor heavy chain H4. Conversely, the preferred ligand for a 3'sialyllactosamine-selective SLBR is glycocalicin (the extracellular portion of platelet GPIbα). All four SLBRs recognize C1 inhibitor but detect distinctly different glycoforms of this key regulator of the complement and kallikrein protease cascades. The four plasma ligands have potential roles in thrombosis and inflammation, and each has been cited as a biomarker for one or more vascular or other diseases. The combined results suggest that the interaction of Siglec-like adhesins with different subsets of plasma glycoproteins could have a significant impact on the propensity of streptococci to establish endocardial infections.
Collapse
Affiliation(s)
- Barbara A Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Qiongyu Li
- Department of Chemistry, University of California, Davis, CA, USA
| | - Dayoung Park
- Department of Chemistry, University of California, Davis, CA, USA
| | | | - Paul M Sullam
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Pinger J, Nešić D, Ali L, Aresta-Branco F, Lilic M, Chowdhury S, Kim HS, Verdi J, Raper J, Ferguson MAJ, Papavasiliou FN, Stebbins CE. African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat. Nat Microbiol 2018; 3:932-938. [PMID: 29988048 PMCID: PMC6108419 DOI: 10.1038/s41564-018-0187-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 11/09/2022]
Abstract
The African trypanosome Trypanosoma brucei spp. is a paradigm for antigenic variation, the orchestrated alteration of cell surface molecules to evade host immunity. The parasite elicits robust antibody-mediated immune responses to its variant surface glycoprotein (VSG) coat, but evades immune clearance by repeatedly accessing a large genetic VSG repertoire and 'switching' to antigenically distinct VSGs. This persistent immune evasion has been ascribed exclusively to amino-acid variance on the VSG surface presented by a conserved underlying protein architecture. We establish here that this model does not account for the scope of VSG structural and biochemical diversity. The 1.4-Å-resolution crystal structure of the variant VSG3 manifests divergence in the tertiary fold and oligomeric state. The structure also reveals an O-linked carbohydrate on the top surface of VSG3. Mass spectrometric analysis indicates that this O-glycosylation site is heterogeneously occupied in VSG3 by zero to three hexose residues and is also present in other VSGs. We demonstrate that this O-glycosylation increases parasite virulence by impairing the generation of protective immunity. These data alter the paradigm of antigenic variation by the African trypanosome, expanding VSG variability beyond amino-acid sequence to include surface post-translational modifications with immunomodulatory impact.
Collapse
Affiliation(s)
- Jason Pinger
- The Rockefeller University, Laboratory of Lymphocyte Biology, New York, NY, USA
| | - Dragana Nešić
- The Rockefeller University, Laboratory of Structural Microbiology, New York, NY, USA.,The Rockefeller University, Allen and Frances Adler Laboratory of Blood and Vascular Biology, New York, NY, USA
| | - Liaqat Ali
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.,Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Mirjana Lilic
- The Rockefeller University, Laboratory of Structural Microbiology, New York, NY, USA.,The Rockefeller University, Laboratory of Molecular Biophysics, New York, NY, USA
| | - Shanin Chowdhury
- The Rockefeller University, Laboratory of Lymphocyte Biology, New York, NY, USA
| | - Hee-Sook Kim
- The Rockefeller University, Laboratory of Lymphocyte Biology, New York, NY, USA
| | - Joseph Verdi
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
30
|
Yilmaz S, Uludağ Alkaya D, Kasapçopur Ö, Barut K, Akdemir ES, Celen C, Youngblood MW, Yasuno K, Bilguvar K, Günel M, Tüysüz B. Genotype-phenotype investigation of 35 patients from 11 unrelated families with camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome. Mol Genet Genomic Med 2018; 6:230-248. [PMID: 29397575 PMCID: PMC5902402 DOI: 10.1002/mgg3.364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a rare autosomal recessive condition characterized by camptodactyly, noninflammatory arthropathy, coxa vara, and pericarditis. CACP is caused by mutations in the proteoglycan 4 (PRG4) gene, which encodes a lubricating glycoprotein present in the synovial fluid and at the surface of articular cartilage. METHODS In the present study, we compared the clinical and molecular findings of CACP syndrome in 35 patients from 11 unrelated families. In 28 patients, whole exome sequencing was used to investigate genomic variations. RESULTS We found that camptodactyly of hands was the first symptom presented by most patients. Swelling of wrists, knees, and elbows began before 4 years of age, while the age of joint involvement was variable. Patients reported an increased pain level after the age of 10, and severe hip involvement developed after 20 years old. All patients presented developmental coxa vara and seven patients (~22%) had pleural effusion, pericarditis, and/or ascites. We identified nine novel genomic alterations, including the first case of homozygous complete deletion of exon 1 in the PRG4 gene. CONCLUSION With this study, we contribute to the catalog of CACP causing variants. We confirm that the skeletal component of this disease worsens with age, and presents the potential mechanisms for interfamily variability, by discussing the influence of a modifier gene and escape from nonsense-mediated mRNA decay. We believe that this report will increase awareness of this familial arthropathic condition and the characteristic clinical and radiological findings will facilitate the differentiation from the common childhood rheumatic diseases such as juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- Saliha Yilmaz
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Dilek Uludağ Alkaya
- Department of Pediatric GeneticsCerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
| | - Özgür Kasapçopur
- Department of Pediatric RheumatologyCerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
| | - Kenan Barut
- Department of Pediatric RheumatologyCerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
| | - Ekin S. Akdemir
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Cemre Celen
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Mark W. Youngblood
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Katsuhito Yasuno
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Kaya Bilguvar
- Department of GeneticsYale Center for Genome AnalysisYale School of MedicineNew HavenCTUSA
| | - Murat Günel
- Department of NeurosurgeryProgram on NeurogeneticsYale School of MedicineYale UniversityNew HavenCTUSA
| | - Beyhan Tüysüz
- Department of Pediatric GeneticsCerrahpasa Medical FacultyIstanbul UniversityIstanbulTurkey
| |
Collapse
|
31
|
Khakshooy A, Balenton N, Chiappelli F. Lubricin: A Principal Modulator of the Psychoneuroendocrine - Osteoimmune Interactome - Implications for Novel Treatments of Osteoarthritic Pathologies. Bioinformation 2017; 13:343-346. [PMID: 29162967 PMCID: PMC5680716 DOI: 10.6026/97320630013343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Lubricin is a synovial glycoprotein that contributes to joint lubrication. We propose the hypothesis that lubricin is a key modulator of the psychoneuroendocrine-osteoimmune interactome, with important clinical relevance for osteoarthritic pathologies. We consider a variety of neuroendocrine-immune factors, including inflammatory cytokines and chemokines that may contribute to the modulation of lubricin in rheumatic complications. Based on our preliminary immunocytochemistry and fractal analysis data, and in the context of translational research of modern healthcare, we propose that molecular lubricin gene expression modification by means of the novel CRISPR/Cas system be considered for osteoarthritic therapies.
Collapse
Affiliation(s)
- Allen Khakshooy
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel 3109601
| | - Nicole Balenton
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Department of the Health Sciences, CSUN, Northridge, CA 91330
| | - Francesco Chiappelli
- Laboratory of Human Psychoneuroendocrine-Osteoimmunology; School of Dentistry, UCLA Center for the Health Sciences, Los Angeles, CA 90095-1668
- Evidence-Based Decision Practice-Based Research Network, DGSO, Los Angeles, CA 91403
- Department of the Health Sciences, CSUN, Northridge, CA 91330
| |
Collapse
|
32
|
Lubricin binds cartilage proteins, cartilage oligomeric matrix protein, fibronectin and collagen II at the cartilage surface. Sci Rep 2017; 7:13149. [PMID: 29030641 PMCID: PMC5640667 DOI: 10.1038/s41598-017-13558-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Lubricin, a heavily O-glycosylated protein, is essential for boundary lubrication of articular cartilage. Strong surface adherence of lubricin is required given the extreme force it must withstand. Disulfide bound complexes of lubricin and cartilage oligomeric matrix protein (COMP) have recently been identified in arthritic synovial fluid suggesting they may be lost from the cartilage surface in osteoarthritis and inflammatory arthritis. This investigation was undertaken to localise COMP-lubricin complexes within cartilage and investigate if other cartilage proteins are involved in anchoring lubricin to the joint. Immunohistochemical analysis of human cartilage biopsies showed lubricin and COMP co-localise to the cartilage surface. COMP knockout mice, however, presented with a lubricin layer on the articular cartilage leading to the further investigation of additional lubricin binding mechanisms. Proximity ligation assays (PLA) on human cartilage biopsies was used to localise additional lubricin binding partners and demonstrated that lubricin bound COMP, but also fibronectin and collagen II on the cartilage surface. Fibronectin and collagen II binding to lubricin was confirmed and characterised by solid phase binding assays with recombinant lubricin fragments. Overall, COMP, fibronectin and collagen II bind lubricin, exposed on the articular cartilage surface suggesting they may be involved in maintaining essential boundary lubrication.
Collapse
|
33
|
Flowers SA, Kalamajski S, Ali L, Björkman LI, Raj JR, Aspberg A, Karlsson NG, Jin C. Cartilage oligomeric matrix protein forms protein complexes with synovial lubricin via non-covalent and covalent interactions. Osteoarthritis Cartilage 2017; 25:1496-1504. [PMID: 28373131 DOI: 10.1016/j.joca.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Understanding the cartilage surface structure, lost in arthritic disease, is essential for developing strategies to effectively restore it. Given that adherence of the lubricating protein, lubricin, to the cartilage surface is critical for boundary lubrication, an interaction with cartilage oligomeric matrix protein (COMP) was investigated. COMP, an abundant cartilage protein, is known to be important for matrix formation. DESIGN Synovial fluid (SF) from arthritic patients was used to detect possible COMP-lubricin complexes by immunological methods. Recombinant (RC) COMP and lubricin fragments were expressed to characterize this bonding and mass spectrometry employed to specifically identify the cysteines involved in inter-protein disulfide bonds. RESULTS COMP-lubricin complexes were identified in the SF of arthritic patients by Western blot, co-immunoprecipitation and sandwich ELISA. RC fragment solid-phase binding assays showed that the C-terminal (amino acids (AA) 518-757) of COMP bound non-covalently to the N-terminal of lubricin (AA 105-202). Mass spectrometry determined that although cysteines throughout COMP were involved in binding with lubricin, the cysteines in lubricin were primarily focused to an N-terminal region (AA 64-86). The close proximity of the non-covalent and disulfide binding domains on lubricin suggest a two-step mechanism to strongly bind lubricin to COMP. CONCLUSION These data demonstrate that lubricin forms a complex network with COMP involving both non-covalent and covalent bonds. This complex between lubricin and the cartilage protein COMP can be identified in the SF of patients with arthritis conditions including osteoarthritis (OA) and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- S A Flowers
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - S Kalamajski
- Department of Clinical Sciences Lund, Division of Rheumatology and Molecular Skeletal Biology, Lund University, Lund, Sweden.
| | - L Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - L I Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - J R Raj
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - A Aspberg
- Department of Clinical Sciences Lund, Division of Rheumatology and Molecular Skeletal Biology, Lund University, Lund, Sweden.
| | - N G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - C Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Degradation of proteoglycan 4/lubricin by cathepsin S: Potential mechanism for diminished ocular surface lubrication in Sjögren's syndrome. Exp Eye Res 2017; 161:1-9. [DOI: 10.1016/j.exer.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 11/15/2022]
|
35
|
Raj A, Wang M, Liu C, Ali L, Karlsson NG, Claesson PM, Dėdinaitė A. Molecular synergy in biolubrication: The role of cartilage oligomeric matrix protein (COMP) in surface-structuring of lubricin. J Colloid Interface Sci 2017; 495:200-206. [DOI: 10.1016/j.jcis.2017.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022]
|
36
|
Greene GW, Thapa R, Holt SA, Wang X, Garvey CJ, Tabor RF. Structure and Property Changes in Self-Assembled Lubricin Layers Induced by Calcium Ion Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2559-2570. [PMID: 28215089 DOI: 10.1021/acs.langmuir.6b03992] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lubricin (LUB) is a "mucin-like" glycoprotein found in synovial fluids and coating the cartilage surfaces of articular joints, which is now generally accepted as one of the body's primary boundary lubricants and antiadhesive agents. LUB's superior lubrication and antiadhesion are believed to derive from its unique interfacial properties by which LUB molecules adhere to surfaces (and biomolecules, such as hyaluronic acid and collagen) through discrete interactions localized to its two terminal end domains. These regionally specific interactions lead to self-assembly behavior and the formation of a well-ordered "telechelic" polymer brush structure on most substrates. Despite its importance to biological lubrication, detailed knowledge on the LUB's self-assembled brush structure is insufficient and derived mostly from indirect and circumstantial evidence. Neutron reflectometry (NR) was used to directly probe the self-assembled LUB layers, confirming the polymer brush architecture and resolving the degree of hydration and level of surface coverage. While attempting to improve the LUB contrast in the NR measurements, the LUB layers were exposed to a 20 mM solution of CaCl2, which resulted in a significant change in the polymer brush structural parameters consisting of a partial denaturation of the surface-binding end-domain regions, partial dehydration of the internal mucin-domain "loop", and collapse of the outer mucin-domain surface region. A series of atomic force microscopy measurements investigating the LUB layer surface morphology, mechanical properties, and adhesion forces in phosphate-buffered saline and CaCl2 solutions reveal that the structural changes induced by calcium ion interactions also significantly alter key properties, which may have implications to LUB's efficacy as a boundary lubricant and wear protector in the presence of elevated calcium ion concentrations.
Collapse
Affiliation(s)
- George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University , Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Rajiv Thapa
- School of Chemistry, Monash University , Clayton 3800 Australia
| | - Stephen A Holt
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization , Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Xiaoen Wang
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University , Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Christopher J Garvey
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization , Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University , Clayton 3800 Australia
| |
Collapse
|
37
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Solka KA, Miller IJ, Schmid TM. Sialidase Unmasks Mucin Domain Epitopes of Lubricin. J Histochem Cytochem 2016; 64:647-668. [PMID: 27680668 DOI: 10.1369/0022155416668139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lubricin is a secreted, mucin-like glycoprotein and proteoglycan abundant in synovial fluid that provides boundary lubrication and prevents cell adhesion in synovial joints. The antilubricin S6.79 monoclonal antibody recognizes an O-linked glycopeptide epitope in lubricin's mucin domain. The central, long mucin domain of lubricin is extensively O-glycosylated with Gal(β1-3)GalNAc-O-Ser/Thr, and about two thirds of the O-glycosylated sites are capped with sialic acid. Our aim was to determine whether removal of sialic acid by sialidase could improve the detection of lubricin in a number of human tissues using the S6.79 monoclonal antibody. Sialidase treatment caused a dramatic increase in antibody reactivity in human pericardium, splenic capsule and trabeculae, plasma, serum, eye sleep extract, and liver sinusoids. Sialidase had minimal effect on S6.79 antibody reactivity with lubricin in synovial fluid and synovial tissue. These observations suggest that the origin of lubricin in blood may be different from that in synovial fluid and that desialylation of lubricin is essential for unmasking epitopes within the mucin domain.
Collapse
Affiliation(s)
- Kathryn A Solka
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois (KAS, TMS)
| | - Ira J Miller
- Department of Pathology, Rush University Medical Center, Chicago, Illinois (IJM)
| | - Thomas M Schmid
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois (KAS, TMS)
| |
Collapse
|
39
|
Martin-Alarcon L, Schmidt T. Rheological effects of macromolecular interactions in synovial fluid. Biorheology 2016; 53:49-67. [DOI: 10.3233/bir-15104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L. Martin-Alarcon
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - T.A. Schmidt
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
40
|
Reesink HL, Bonnevie ED, Liu S, Shurer CR, Hollander MJ, Bonassar LJ, Nixon AJ. Galectin-3 Binds to Lubricin and Reinforces the Lubricating Boundary Layer of Articular Cartilage. Sci Rep 2016; 6:25463. [PMID: 27157803 PMCID: PMC4860590 DOI: 10.1038/srep25463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Lubricin is a mucinous, synovial fluid glycoprotein that enables near frictionless joint motion via adsorption to the surface of articular cartilage and its lubricating properties in solution. Extensive O-linked glycosylation within lubricin’s mucin-rich domain is critical for its boundary lubricating function; however, it is unknown exactly how glycosylation facilitates cartilage lubrication. Here, we find that the lubricin glycome is enriched with terminal β-galactosides, known binding partners for a family of multivalent lectins called galectins. Of the galectin family members present in synovial fluid, we find that galectin-3 is a specific, high-affinity binding partner for lubricin. Considering the known ability of galectin-3 to crosslink glycoproteins, we hypothesized that galectins could augment lubrication via biomechanical stabilization of the lubricin boundary layer. We find that competitive inhibition of galectin binding results in lubricin loss from the cartilage surface, and addition of multimeric galectin-3 enhances cartilage lubrication. We also find that galectin-3 has low affinity for the surface layer of osteoarthritic cartilage and has reduced affinity for sialylated O-glycans, a glycophenotype associated with inflammatory conditions. Together, our results suggest that galectin-3 reinforces the lubricin boundary layer; which, in turn, enhances cartilage lubrication and may delay the onset and progression of arthritis.
Collapse
Affiliation(s)
- Heidi L Reesink
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Sherry Liu
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| | - Carolyn R Shurer
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States of America
| | - Michael J Hollander
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Alan J Nixon
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
41
|
Lee CS, Taib NAM, Ashrafzadeh A, Fadzli F, Harun F, Rahmat K, Hoong SM, Abdul-Rahman PS, Hashim OH. Unmasking Heavily O-Glycosylated Serum Proteins Using Perchloric Acid: Identification of Serum Proteoglycan 4 and Protease C1 Inhibitor as Molecular Indicators for Screening of Breast Cancer. PLoS One 2016; 11:e0149551. [PMID: 26890881 PMCID: PMC4758733 DOI: 10.1371/journal.pone.0149551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022] Open
Abstract
Heavily glycosylated mucin glycopeptides such as CA 27.29 and CA 15-3 are currently being used as biomarkers for detection and monitoring of breast cancer. However, they are not well detected at the early stages of the cancer. In the present study, perchloric acid (PCA) was used to enhance detection of mucin-type O-glycosylated proteins in the serum in an attempt to identify new biomarkers for early stage breast cancer. Sensitivity and specificity of an earlier developed sandwich enzyme-linked lectin assay were significantly improved with the use of serum PCA isolates. When a pilot case-control study was performed using the serum PCA isolates of normal participants (n = 105) and patients with stage 0 (n = 31) and stage I (n = 48) breast cancer, higher levels of total O-glycosylated proteins in sera of both groups of early stage breast cancer patients compared to the normal control women were demonstrated. Further analysis by gel-based proteomics detected significant inverse altered abundance of proteoglycan 4 and plasma protease C1 inhibitor in both the early stages of breast cancer patients compared to the controls. Our data suggests that the ratio of serum proteoglycan 4 to protease C1 inhibitor may be used for screening of early breast cancer although this requires further validation in clinically representative populations.
Collapse
Affiliation(s)
- Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Ashrafzadeh
- Medical Biotechnology Laboratory, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Faizah Harun
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kartini Rahmat
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - See Mee Hoong
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Puteri Shafinaz Abdul-Rahman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
42
|
Liquid chromatography-tandem mass spectrometry-based fragmentation analysis of glycopeptides. Glycoconj J 2016; 33:261-72. [PMID: 26780731 DOI: 10.1007/s10719-016-9649-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
Abstract
The use of liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS(n)) for the glycoproteomic characterization of glycopeptides is a growing field of research. The N- and O-glycosylated peptides (N- and O-glycopeptides) analyzed typically originate from protease-digested glycoproteins where many of them are expected to be biomedically important. Examples of LC-MS(2) and MS(3) fragmentation strategies used to pursue glycan structure, peptide identity and attachment-site identification analyses of glycopeptides are described in this review. MS(2) spectra, using the CID and HCD fragmentation techniques of a complex biantennary N-glycopeptide and a core 1 O-glycopeptide, representing two examples of commonly studied glycopeptide types, are presented. A few practical tips for accomplishing glycopeptide analysis using reversed-phase LC-MS(n) shotgun proteomics settings, together with references to the latest glycoproteomic studies, are presented.
Collapse
|
43
|
Svala E, Jin C, Rüetschi U, Ekman S, Lindahl A, Karlsson NG, Skiöldebrand E. Characterisation of lubricin in synovial fluid from horses with osteoarthritis. Equine Vet J 2015; 49:116-123. [PMID: 26507102 DOI: 10.1111/evj.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/14/2015] [Indexed: 12/19/2022]
Abstract
REASON FOR PERFORMING STUDY The glycoprotein lubricin contributes to the boundary lubrication of the articular cartilage surface. The early events of osteoarthritis involve the superficial layer where lubricin is synthesised. OBJECTIVES To characterise the glycosylation profile of lubricin in synovial fluid from horses with osteoarthritis and study secretion and degradation of lubricin in an in vitro inflammation cartilage model. STUDY DESIGN In vitro study. METHODS Synovial fluid samples collected from horses with joints with normal articular cartilage and structural osteoarthritic lesions; with and without osteochondral fragments, were analysed for the lubricin glycosylation profiles. Articular cartilage explants were stimulated with or without interleukin-1β for 25 days. Media samples collected at 3-day intervals were analysed by quantitative proteomics, western blot and enzyme-linked immunosorbent assay. RESULTS O-glycosylation profiles in synovial fluid revealed both Core 1 and 2 O-glycans, with Core 1 O-glycans predominating. Synovial fluid from normal joints (49.5 ± 1.9%) contained significantly lower amounts of monosialylated Core 1 O-glycans compared with joints with osteoarthritis (53.8 ± 7.8%, P = 0.03) or joints with osteochondral fragments (57.3 ± 8.8%, P = 0.001). Additionally, synovial fluid from normal joints (26.7 ± 6.7%) showed higher amounts of disialylated Core 1 O-glycan than from joints with osteochondral fragments (21.2 ± 4.9%, P = 0.03). A C-terminal proteolytic cleavage site in lubricin was found in synovial fluid from normal and osteochondral fragment joints and in media from interleukin-1β stimulated and unstimulated articular cartilage explants. CONCLUSIONS This is the first demonstration of a change in the glycosylation profile of lubricin in synovial fluid from diseased equine joints compared with that from normal joints. We demonstrate an identical proteolytic cleavage site of lubricin both in vitro and in vivo. The reduced sialation of lubricin in synovial fluid from diseased joints may affect the boundary lubricating ability of the superficial layer of articular cartilage and could be one of the early events in the progression of osteoarthritis.
Collapse
Affiliation(s)
- E Svala
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - C Jin
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - U Rüetschi
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - S Ekman
- Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden
| | - N G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Sweden
| | - E Skiöldebrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Gothenburg University, Sweden.,Section of Pathology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
Zacchi LF, Schulz BL. N-glycoprotein macroheterogeneity: biological implications and proteomic characterization. Glycoconj J 2015; 33:359-76. [DOI: 10.1007/s10719-015-9641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
45
|
Alquraini A, Garguilo S, D'Souza G, Zhang LX, Schmidt TA, Jay GD, Elsaid KA. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther 2015; 17:353. [PMID: 26643105 PMCID: PMC4672561 DOI: 10.1186/s13075-015-0877-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Background Lubricin/proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and superficial zone chondrocytes. PRG4 has a homeostatic multifaceted role in the joint. PRG4 intra-articular treatment retards progression of cartilage degeneration in pre-clinical posttraumatic osteoarthritis models. The objective of this study is to evaluate the binding of recombinant human PRG4 (rhPRG4) and native human PRG4 (nhPRG4) to toll-like receptors 2 and 4 (TLR2 and TLR4) and whether this interaction underpins a PRG4 anti-inflammatory role in synovial fluid (SF) from patients with osteoarthritis (OA) and rheumatoid arthritis (RA). Methods rhPRG4 and nhPRG4 binding to TLR2 and TLR4 was evaluated using a direct enzyme linked immunosorbent assay (ELISA). Association of rhPRG4 with TLR2 and TLR4 overexpressing human embryonic kidney (HEK) cells was studied by flow cytometry. Activation of TLR2 and TLR4 on HEK cells by agonists Pam3CSK4 and lipopolysaccharide (LPS) was studied in the absence or presence of nhPRG4 at 50, 100 and 150 μg/ml. Activation of TLR2 and TLR4 by OA SF and RA SF and the effect of nhPRG4 SF treatment on receptor activation was assessed. PRG4 was immunoprecipitated from pooled OA and RA SF. TLR2 and TLR4 activation by pooled OA and RA SF with or without PRG4 immunoprecipitation was compared. Results rhPRG4 and nhPRG4 exhibited concentration-dependent binding to TLR2 and TLR4. rhPRG4 associated with TLR2- and TLR4-HEK cells in a time-dependent manner. Co-incubation of nhPRG4 (50, 100 and 150 μg/ml) and Pam3CSK4 or LPS reduced TLR2 or TLR4 activation compared to Pam3CSK4 or LPS alone (p <0.05). OA SF and RA SF activated TLR2 and TLR4 and nhPRG4 treatment reduced SF-induced receptor activation (p <0.001). PRG4 depletion by immunoprecipitation significantly increased TLR2 activation by OA SF and RA SF (p <0.001). Conclusion PRG4 binds to TLR2 and TLR4 and this binding mediates a novel anti-inflammatory role for PRG4.
Collapse
Affiliation(s)
- Ali Alquraini
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Steven Garguilo
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Gerard D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| | - Ling X Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA.
| | - Tannin A Schmidt
- Faculty of Kinesiology and Schulich School of Engineering, University of Calgary, Calgary, Canada.
| | - Gregory D Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI, USA. .,Department of Biomedical Engineering, Brown University, Providence, RI, USA.
| | - Khaled A Elsaid
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 179 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Chaudhury NMA, Proctor GB, Karlsson NG, Carpenter GH, Flowers SA. Reduced Mucin-7 (Muc7) Sialylation and Altered Saliva Rheology in Sjögren's Syndrome Associated Oral Dryness. Mol Cell Proteomics 2015; 15:1048-59. [PMID: 26631508 DOI: 10.1074/mcp.m115.052993] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome is a chronic autoimmune disorder characterized by lymphocytic infiltration and hypofunction of salivary and lacrimal glands. This loss of salivary function leads to oral dryness, impaired swallowing and speech, and increased infection and is associated with other autoimmune diseases and an increased risk of certain cancers. Despite the implications of this prevalent disease, diagnosis currently takes years, partly due to the diversity in patient presentation. Saliva is a complicated biological fluid with major constituents, including heavily glycosylated mucins MUC5B and MUC7, important for its viscoelastic and hydrating and lubricating properties. This study investigated Sjögren's patient's perception of dryness (bother index questionnaires) along with the rheological, protein composition, and glycan analysis of whole mouth saliva and the saliva on the mucosal surface (residual mucosal saliva) to understand the properties that most affect patient wellbeing. Sjögren's patients exhibited a statistically significant reduction in residual mucosal saliva, salivary flow rate, and extensional rheology, spinnbarkeit (stringiness). Although the concentration of mucins MUC5B and MUC7 were similar between patients and controls, a comparison of protein Western blotting and glycan staining identified a reduction in mucin glycosylation in Sjögren's, particularly on MUC7. LC-MS/MS analysis of O-glycans released from MUC7 by β-elimination revealed that although patients had an increase in core 1 sulfation, the even larger reduction in sialylation resulted in a global decline of charged glycans. This was primarily due to the loss of the extended core 2 disialylated structure, with and without fucosylation. A decrease in the extended, fucosylated core 2 disialylated structure on MUC7, residual mucosal wetness, and whole mouth saliva flow rate appeared to have a negative and cumulative effect on the perception of oral dryness. The observed changes in MUC7 glycosylation could be a potential diagnostic tool for saliva quality and taken into consideration for future therapies for this multifactorial syndrome.
Collapse
Affiliation(s)
- Nayab M A Chaudhury
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Gordon B Proctor
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Niclas G Karlsson
- §Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| | - Guy H Carpenter
- From the ‡Salivary Unit, Mucosal and Salivary Biology, Dental Institute, King's College London, Guy's Hospital, Floor 17, Tower Wing, London SE1 9RT, UK
| | - Sarah A Flowers
- §Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 405 30, Gothenburg, Sweden
| |
Collapse
|