1
|
Hurtig JE, Stuart CJ, van Hoof A. Independent neofunctionalization of Dxo1 in Saccharomyces and Candida led to 25S rRNA processing function. RNA (NEW YORK, N.Y.) 2024; 30:1634-1645. [PMID: 39332835 PMCID: PMC11571810 DOI: 10.1261/rna.080210.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Eukaryotic genomes typically encode one member of the DXO/Dxo1/Rai1 family of enzymes, which can hydrolyze the 5' ends of RNAs with a variety of structures that deviate from the canonical 7mGpppN. In contrast, the Saccharomyces genome encodes two family members and the second copy, Dxo1, is a distributive 5' exoribonuclease that is required for the final maturation of the 5' end of 25S rRNA from a 25S' precursor. Here we show that this 25S rRNA maturation function is not conserved across kingdoms, but arose in the budding yeasts. Interestingly, the origin of 25S processing capacity coincides with the duplication of this gene, and this capacity is absent in the nonduplicated genes. Strikingly, two different clades of budding yeasts have undergone parallel evolution: Both duplicated their DXO/Dxo1/Rai1 gene, and in both cases, one copy gained the 25S processing function. This was accompanied by many parallel sequence changes, a remarkable case of reproducible neofunctionalization.
Collapse
Affiliation(s)
- Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Catherine J Stuart
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
- UT MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Tariq A, Piontkivska H. Reovirus infection induces transcriptome-wide unique A-to-I editing changes in the murine fibroblasts. Virus Res 2024; 346:199413. [PMID: 38848818 PMCID: PMC11225029 DOI: 10.1016/j.virusres.2024.199413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The conversion of Adenosine (A) to Inosine (I), by Adenosine Deaminases Acting on RNA or ADARs, is an essential post-transcriptional modification that contributes to proteome diversity and regulation in metazoans including humans. In addition to its transcriptome-regulating role, ADARs also play a major part in immune response to viral infection, where an interferon response activates interferon-stimulated genes, such as ADARp150, in turn dynamically regulating host-virus interactions. A previous report has shown that infection from reoviruses, despite strong activation of ADARp150, does not influence the editing of some of the major known editing targets, while likely editing others, suggesting a potentially nuanced editing pattern that may depend on different factors. However, the results were based on a handful of selected editing sites and did not cover the entire transcriptome. Thus, to determine whether and how reovirus infection specifically affects host ADAR editing patterns, we analyzed a publicly available deep-sequenced RNA-seq dataset, from murine fibroblasts infected with wild-type and mutant reovirus strains that allowed us to examine changes in editing patterns on a transcriptome-wide scale. To the best of our knowledge, this is the first transcriptome-wide report on host editing changes after reovirus infection. Our results demonstrate that reovirus infection induces unique nuanced editing changes in the host, including introducing sites uniquely edited in infected samples. Genes with edited sites are overrepresented in pathways related to immune regulation, cellular signaling, metabolism, and growth. Moreover, a shift in editing targets has also been observed, where the same genes are edited in infection and control conditions but at different sites, or where the editing rate is increased for some and decreased for other differential targets, supporting the hypothesis of dynamic and condition-specific editing by ADARs.
Collapse
Affiliation(s)
- Ayesha Tariq
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA; Brain Health Research Institute, Kent State University, Kent, OH, USA; Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
3
|
Ma Y, Wang J, He X, Liu Y, Zhen S, An L, Yang Q, Niu F, Wang H, An B, Tai X, Yan Z, Wu C, Yang X, Liu X. Molecular mechanism of human ISG20L2 for the ITS1 cleavage in the processing of 18S precursor ribosomal RNA. Nucleic Acids Res 2024; 52:1878-1895. [PMID: 38153123 PMCID: PMC10899777 DOI: 10.1093/nar/gkad1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
The exonuclease ISG20L2 has been initially characterized for its role in the mammalian 5.8S rRNA 3' end maturation, specifically in the cleavage of ITS2 of 12S precursor ribosomal RNA (pre-rRNA). Here, we show that human ISG20L2 is also involved in 18S pre-rRNA maturation through removing the ITS1 region, and contributes to ribosomal biogenesis and cell proliferation. Furthermore, we determined the crystal structure of the ISG20L2 nuclease domain at 2.9 Å resolution. It exhibits the typical αβα fold of the DEDD 3'-5' exonuclease with a catalytic pocket located in the hollow near the center. The catalytic residues Asp183, Glu185, Asp267, His322 and Asp327 constitute the DEDDh motif in ISG20L2. The active pocket represents conformational flexibility in the absence of an RNA substrate. Using structural superposition and mutagenesis assay, we mapped RNA substrate binding residues in ISG20L2. Finally, cellular assays revealed that ISG20L2 is aberrantly up-regulated in colon adenocarcinoma and promotes colon cancer cell proliferation through regulating ribosome biogenesis. Together, these results reveal that ISG20L2 is a new enzymatic member for 18S pre-rRNA maturation, provide insights into the mechanism of ISG20L2 underlying pre-rRNA processing, and suggest that ISG20L2 is a potential therapeutic target for colon adenocarcinoma.
Collapse
Affiliation(s)
- Yinliang Ma
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Jiaxu Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- College of Life Sciences, State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453002 Henan, China
| | - Xingyi He
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Yuhang Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Shuo Zhen
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Lina An
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Qian Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Fumin Niu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Hong Wang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Boran An
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002 Hebei, China
| | - Xinyue Tai
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Zhenzhen Yan
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Chen Wu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| | - Xiaoyun Yang
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055 Guangdong, China
| | - Xiuhua Liu
- College of Life Sciences, Hebei Innovation Center for Bioengineering and Biotechnology, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002 Hebei, China
| |
Collapse
|
4
|
Luo M, Ma J, Pan X, Zhang X, Yao H. AEN Suppresses the Replication of Porcine Epidemic Diarrhea Virus by Inducing the Expression of Type I IFN and ISGs in MARC-145 Cells. Pathogens 2023; 13:24. [PMID: 38251332 PMCID: PMC10819003 DOI: 10.3390/pathogens13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Apoptosis-enhancing nuclease (AEN), which shares close evolutionary relationships with the interferon-stimulated gene 20 protein (ISG20) homologs in humans, is a member of the DEDDh exonuclease family. Numerous studies on various pathogens have identified the essential roles of ISG20 in inhibiting virus replication. However, the fundamental functions of AEN during viral infection remain largely unknown. This study discovered that AEN expression was significantly upregulated in MARC-145 cells infected with Porcine epidemic diarrhea virus (PEDV) strain 85-7. In contrast, the amount of AEN protein decreased as viral replication increased. It was found that PEDV nsp1 and nsp5 mediated the decrease in AEN production, suggesting that an increase in AEN was not conducive to virus replication. By comparing AEN and its exonuclease-inactive mutant AEN-4A, we determined that the antiviral activity of AEN was independent of its exonuclease function. qPCR analyses revealed that AEN and AEN-4A could induce a significant increase in the transcription levels of IFN-α, IFN-β, and ISGs (OASL, IFI44, IFIT2, ISG15, Mx1, Mx2), and that AEN-4A has a higher induction ability. Overexpression of AEN and AEN-4A in MARC-145 cells targeting IFN-β knockdown or IFN-deficient Vero cells showed reduced or a complete loss of antiviral activity of both, suggesting that AEN may activate the type I IFN immune response and promote the expression of ISGs, thereby inhibiting PEDV replication. Taken together, our data prove the novel mechanism of AEN-mediated virus restriction.
Collapse
Affiliation(s)
- Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinming Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinqin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Rodríguez-Galán A, Dosil SG, Hrčková A, Fernández-Messina L, Feketová Z, Pokorná J, Fernández-Delgado I, Camafeita E, Gómez MJ, Ramírez-Huesca M, Gutiérrez-Vázquez C, Sánchez-Cabo F, Vázquez J, Vaňáčová Š, Sánchez-Madrid F. ISG20L2: an RNA nuclease regulating T cell activation. Cell Mol Life Sci 2023; 80:273. [PMID: 37646974 PMCID: PMC10468436 DOI: 10.1007/s00018-023-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara G Dosil
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Hrčková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lola Fernández-Messina
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Julie Pokorná
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Irene Fernández-Delgado
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Camafeita
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Ramírez-Huesca
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Francisco Sánchez-Madrid
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
6
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Deymier S, Louvat C, Fiorini F, Cimarelli A. ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio 2022; 12:1096-1111. [PMID: 35174977 PMCID: PMC9157404 DOI: 10.1002/2211-5463.13382] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Interferon-stimulated gene 20 kDa protein (ISG20) is a relatively understudied antiviral protein capable of inhibiting a broad spectrum of viruses. ISG20 exhibits strong RNase properties, and it belongs to the large family of DEDD exonucleases, present in both prokaryotes and eukaryotes. ISG20 was initially characterized as having strong RNase activity in vitro, suggesting that its inhibitory effects are mediated via direct degradation of viral RNAs. This mechanism of action has since been further elucidated and additional antiviral activities of ISG20 highlighted, including direct degradation of deaminated viral DNA and translational inhibition of viral RNA and nonself RNAs. This review focuses on the current understanding of the main molecular mechanisms of viral inhibition by ISG20 and discusses the latest developments on the features that govern specificity or resistance to its action.
Collapse
Affiliation(s)
- Séverine Deymier
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| | | | | | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI)Université de LyonInsermU1111Université Claude Bernard Lyon 1CNRSUMR5308École Nationale Supérieur de LyonFrance
| |
Collapse
|
9
|
Yin J, Lin C, Jiang M, Tang X, Xie D, Chen J, Ke R. CENPL, ISG20L2, LSM4, MRPL3 are four novel hub genes and may serve as diagnostic and prognostic markers in breast cancer. Sci Rep 2021; 11:15610. [PMID: 34341433 PMCID: PMC8328991 DOI: 10.1038/s41598-021-95068-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated multiple bioinformatic methods and RNA in situ detection technology to identify and validate hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes were up-regulated in tumor tissues and associated with cancer progression. The receiver operating characteristic analysis and Kaplan-Meier survival analysis indicated that these four hub genes are promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast cancer development, their exact functional mechanisms deserve further in-depth study.
Collapse
Affiliation(s)
- Jinbao Yin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
- Department of Pathology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Xinbin Tang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Danlin Xie
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Jingwen Chen
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China.
| |
Collapse
|
10
|
Zhou Y, Xu B, Zhou Y, Liu J, Zheng X, Liu Y, Deng H, Liu M, Ren X, Xia J, Kong X, Huang T, Jiang J. Identification of Key Genes With Differential Correlations in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:675438. [PMID: 34026765 PMCID: PMC8131847 DOI: 10.3389/fcell.2021.675438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND With the advent of large-scale molecular profiling, an increasing number of oncogenic drivers contributing to precise medicine and reshaping classification of lung adenocarcinoma (LUAD) have been identified. However, only a minority of patients archived improved outcome under current standard therapies because of the dynamic mutational spectrum, which required expanding susceptible gene libraries. Accumulating evidence has witnessed that understanding gene regulatory networks as well as their changing processes was helpful in identifying core genes which acted as master regulators during carcinogenesis. The present study aimed at identifying key genes with differential correlations between normal and tumor status. METHODS Weighted gene co-expression network analysis (WGCNA) was employed to build a gene interaction network using the expression profile of LUAD from The Cancer Genome Atlas (TCGA). R package DiffCorr was implemented for the identification of differential correlations between tumor and adjacent normal tissues. STRING and Cytoscape were used for the construction and visualization of biological networks. RESULTS A total of 176 modules were detected in the network, among which yellow and medium orchid modules showed the most significant associations with LUAD. Then genes in these two modules were further chosen to evaluate their differential correlations. Finally, dozens of novel genes with opposite correlations including ATP13A4-AS1, HIGD1B, DAP3, and ISG20L2 were identified. Further biological and survival analyses highlighted their potential values in the diagnosis and treatment of LUAD. Moreover, real-time qPCR confirmed the expression patterns of ATP13A4-AS1, HIGD1B, DAP3, and ISG20L2 in LUAD tissues and cell lines. CONCLUSION Our study provided new insights into the gene regulatory mechanisms during transition from normal to tumor, pioneering a network-based algorithm in the application of tumor etiology.
Collapse
Affiliation(s)
- You Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Bin Xu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Yi Zhou
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Jian Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Yingting Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Haifeng Deng
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Ming Liu
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiubao Ren
- Department of Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jingting Jiang
- Tumor Biological Diagnosis and Treatment Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute of Cell Therapy, Soochow University, Changzhou, China
| |
Collapse
|
11
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
12
|
Aubert M, O'Donohue MF, Lebaron S, Gleizes PE. Pre-Ribosomal RNA Processing in Human Cells: From Mechanisms to Congenital Diseases. Biomolecules 2018; 8:biom8040123. [PMID: 30356013 PMCID: PMC6315592 DOI: 10.3390/biom8040123] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ribosomal RNAs, the most abundant cellular RNA species, have evolved as the structural scaffold and the catalytic center of protein synthesis in every living organism. In eukaryotes, they are produced from a long primary transcript through an intricate sequence of processing steps that include RNA cleavage and folding and nucleotide modification. The mechanisms underlying this process in human cells have long been investigated, but technological advances have accelerated their study in the past decade. In addition, the association of congenital diseases to defects in ribosome synthesis has highlighted the central place of ribosomal RNA maturation in cell physiology regulation and broadened the interest in these mechanisms. Here, we give an overview of the current knowledge of pre-ribosomal RNA processing in human cells in light of recent progress and discuss how dysfunction of this pathway may contribute to the physiopathology of congenital diseases.
Collapse
Affiliation(s)
- Maxime Aubert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France.
| |
Collapse
|
13
|
Izzi B, Noro F, Cludts K, Freson K, Hoylaerts MF. Cell-Specific PEAR1 Methylation Studies Reveal a Locus that Coordinates Expression of Multiple Genes. Int J Mol Sci 2018; 19:ijms19041069. [PMID: 29614055 PMCID: PMC5979289 DOI: 10.3390/ijms19041069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Chromosomal interactions connect distant enhancers and promoters on the same chromosome, activating or repressing gene expression. PEAR1 encodes the Platelet-Endothelial Aggregation Receptor 1, a contact receptor involved in platelet function and megakaryocyte and endothelial cell proliferation. PEAR1 expression during megakaryocyte differentiation is controlled by DNA methylation at its first CpG island. We identified a PEAR1 cell-specific methylation sensitive region in endothelial cells and megakaryocytes that showed strong chromosomal interactions with ISGL20L2, RRNAD1, MRLP24, HDGF and PRCC, using available promoter capture Hi-C datasets. These genes are involved in ribosome processing, protein synthesis, cell cycle and cell proliferation. We next studied the methylation and expression profile of these five genes in Human Umbilical Vein Endothelial Cells (HUVECs) and megakaryocyte precursors. While cell-specific PEAR1 methylation corresponded to variability in expression for four out of five genes, no methylation change was observed in their promoter regions across cell types. Our data suggest that PEAR1 cell-type specific methylation changes may control long distance interactions with other genes. Further studies are needed to show whether such interaction data might be relevant for the genome-wide association data that showed a role for non-coding PEAR1 variants in the same region and platelet function, platelet count and cardiovascular risk.
Collapse
Affiliation(s)
- Benedetta Izzi
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo Neuromed, Via dell'Elettronica, 86077 Pozzilli (IS), Italy.
| | - Katrien Cludts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Montellese C, Montel-Lehry N, Henras AK, Kutay U, Gleizes PE, O'Donohue MF. Poly(A)-specific ribonuclease is a nuclear ribosome biogenesis factor involved in human 18S rRNA maturation. Nucleic Acids Res 2017; 45:6822-6836. [PMID: 28402503 PMCID: PMC5499762 DOI: 10.1093/nar/gkx253] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 01/28/2023] Open
Abstract
The poly-A specific ribonuclease (PARN), initially characterized for its role in mRNA catabolism, supports the processing of different types of non-coding RNAs including telomerase RNA. Mutations in PARN are linked to dyskeratosis congenita and pulmonary fibrosis. Here, we show that PARN is part of the enzymatic machinery that matures the human 18S ribosomal RNA (rRNA). Consistent with its nucleolar steady-state localization, PARN is required for 40S ribosomal subunit production and co-purifies with 40S subunit precursors. Depletion of PARN or expression of a catalytically-compromised PARN mutant results in accumulation of 3΄ extended 18S rRNA precursors. Analysis of these processing intermediates reveals a defect in 3΄ to 5΄ trimming of the internal transcribed spacer 1 (ITS1) region, subsequent to endonucleolytic cleavage at site E. Consistent with a function of PARN in exonucleolytic trimming of 18S-E pre-rRNA, recombinant PARN can process the corresponding ITS1 RNA fragment in vitro. Trimming of 18S-E pre-rRNA by PARN occurs in the nucleus, upstream of the final endonucleolytic cleavage by the endonuclease NOB1 in the cytoplasm. These results identify PARN as a new component of the ribosome biogenesis machinery in human cells. Defects in ribosome biogenesis could therefore underlie the pathologies linked to mutations in PARN.
Collapse
Affiliation(s)
| | - Nathalie Montel-Lehry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Ulrike Kutay
- Institut für Biochemie, ETH Zurich, Zurich CH-8093, Switzerland
| | - Pierre-Emmanuel Gleizes
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| |
Collapse
|
15
|
Moraleva A, Magoulas C, Polzikov M, Hacot S, Mertani HC, Diaz JJ, Zatsepina O. Involvement of the specific nucleolar protein SURF6 in regulation of proliferation and ribosome biogenesis in mouse NIH/3T3 fibroblasts. Cell Cycle 2017; 16:1979-1991. [PMID: 28873013 DOI: 10.1080/15384101.2017.1371880] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolar proteins which link cell proliferation to ribosome biogenesis are regarded to be potentially oncogenic. Here, in order to examine the involvement of an evolutionary conserved nucleolar protein SURF6/Rrp14 in proliferation and ribosome biogenesis in mammalian cells, we established stably transfected mouse NIH/3T3 fibroblasts capable of conditional overexpression of the protein. Cell proliferation was monitored in real-time, and various cell cycle parameters were quantified based on flow cytometry, Br-dU-labeling and conventional microscopy data. We show that overexpression of SURF6 accelerates cell proliferation and promotes transition through all cell cycle phases. The most prominent SURF6 pro-proliferative effects include a significant reduction of the population doubling time, from 19.8 ± 0.7 to 16.2 ± 0.5 hours (t-test, p < 0.001), and of the length of cell division cycle, from 17.6 ± 0.6 to 14.0 ± 0.4 hours (t-test, p < 0.001). The later was due to the shortening of all cell cycle phases but the length of G1 period was reduced most, from 5.7 ± 0.4 to 3.8 ± 0.3 hours, or by ∼30%, (t-test, p < 0.05). By Northern blots and qRT-PCR, we further showed that the acceleration of cell proliferation was concomitant with an accumulation of rRNA species along both ribosomal subunit maturation pathways. It is evident, therefore, that like the yeast homologue Rrp14, mammalian SURF6 is involved in various steps of rRNA processing during ribosome biogenesis. We concluded that SURF6 is a novel positive regulator of proliferation and G1/S transition in mammals, implicating that SURF6 is a potential oncogenic protein, which can be further studied as a putative target in anti-cancer therapy.
Collapse
Affiliation(s)
- Anastasiia Moraleva
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russian Federation
| | - Charalambos Magoulas
- b Centre for Investigative and Diagnostic Oncology, Department of Natural Sciences, School of Science and Technology , Middlesex University , London , United Kingdom
| | - Mikhail Polzikov
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russian Federation
| | - Sabine Hacot
- c Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard , Université Claude Bernard Lyon I, Université de Lyon , Lyon , France
| | - Hichem C Mertani
- c Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard , Université Claude Bernard Lyon I, Université de Lyon , Lyon , France
| | - Jean-Jacques Diaz
- c Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard , Université Claude Bernard Lyon I, Université de Lyon , Lyon , France
| | - Olga Zatsepina
- a Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences , Moscow , Russian Federation.,c Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard , Université Claude Bernard Lyon I, Université de Lyon , Lyon , France
| |
Collapse
|
16
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
17
|
Wirbisky SE, Freeman JL. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:1-8. [PMID: 28111253 PMCID: PMC5325771 DOI: 10.1016/j.cbpc.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/30/2022]
Abstract
Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47909, United States.
| |
Collapse
|
18
|
Zheng Z, Wang L, Pan J. Interferon-stimulated gene 20-kDa protein (ISG20) in infection and disease: Review and outlook. Intractable Rare Dis Res 2017; 6:35-40. [PMID: 28357179 PMCID: PMC5359350 DOI: 10.5582/irdr.2017.01004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Interferon-stimulated exonuclease gene 20 (ISG20) is an RNA exonuclease in the yeast RNA exonuclease 4 homolog (REX4) subfamily and the DEDDh exonuclease family, and this gene codes for a 20-kDa protein. Those exonucleases are involved in cleaving single-stranded RNA and DNA. ISG20 is also referred to as HEM45 (HeLa estrogen-modulated, band 45). Expression of ISG20 can be induced or regulated by both type I and II interferons (IFNs) in various cell lines. ISG20 plays a role in mediating interferon's antiviral activities. In addition, ISG20 may be a potential susceptibility biomarker or pharmacological target in some inflammatory conditions. Exonucleases are useful components of many physiological processes. Despite recent advances in our understanding of the functions of ISG20, much work remains to be done with regard to uncovering the mechanism of action of ISG20 in specific diseases and adapting ISG20 for use as a biomarker of disease. This review describes current information on ISG20 and its potential use in marking disease. This review describes several research achievements thus far and it seeks to provide some new ideas for future related research.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Center, Ji'nan, China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Ji'nan, China
- Key Laboratory for Biotech-drugs of the Ministry of Health, Ji'nan, China
- Address correspondence to: Dr. Jihong Pan, Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan, Shandong 250062, China. E-mail:
| |
Collapse
|
19
|
McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC DEVELOPMENTAL BIOLOGY 2015; 15:45. [PMID: 26597593 PMCID: PMC4657325 DOI: 10.1186/s12861-015-0095-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023]
Abstract
Background The endogenous ability to dedifferentiate, re-pattern, and re-differentiate adult cells to repair or replace damaged or missing structures is exclusive to only a few tetrapod species. The Mexican axolotl is one example of these species, having the capacity to regenerate multiple adult structures including their limbs by generating a group of progenitor cells, known as the blastema, which acquire pattern and differentiate into the missing tissues. The formation of a limb regenerate is dependent on cells in the connective tissues that retain memory of their original position in the limb, and use this information to generate the pattern of the missing structure. Observations from recent and historic studies suggest that blastema cells vary in their potential to pattern distal structures during the regeneration process; some cells are plastic and can be reprogrammed to obtain new positional information while others are stable. Our previous studies showed that positional information has temporal and spatial components of variation; early bud (EB) and apical late bud (LB) blastema cells are plastic while basal-LB cells are stable. To identify the potential cellular and molecular basis of this variation, we compared these three cell populations using histological and transcriptional approaches. Results Histologically, the basal-LB sample showed greater tissue organization than the EB and apical-LB samples. We also observed that cell proliferation was more abundant in EB and apical-LB tissue when compared to basal-LB and mature stump tissue. Lastly, we found that genes associated with cellular differentiation were expressed more highly in the basal-LB samples. Conclusions Our results characterize histological and transcriptional differences between EB and apical-LB tissue compared to basal-LB tissue. Combined with our results from a previous study, we hypothesize that the stability of positional information is associated with tissue organization, cell proliferation, and pathways of cellular differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0095-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Antony Athippozhy
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| | - Carlos Diaz-Castillo
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - Charless Fowlkes
- Donald Bren School of Information and Computer Science, University of California, Irvine, CA, 92602, USA.
| | - David M Gardiner
- Department of Developmental and Cellular Biology, University of California, Irvine, CA, 92602, USA.
| | - S Randal Voss
- Department of Biology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA.
| |
Collapse
|
20
|
Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:225-42. [PMID: 25346433 PMCID: PMC4361047 DOI: 10.1002/wrna.1269] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/04/2014] [Accepted: 08/29/2014] [Indexed: 12/23/2022]
Abstract
Ribosomal RNAs are the most abundant and universal noncoding RNAs in living organisms. In eukaryotes, three of the four ribosomal RNAs forming the 40S and 60S subunits are borne by a long polycistronic pre-ribosomal RNA. A complex sequence of processing steps is required to gradually release the mature RNAs from this precursor, concomitant with the assembly of the 79 ribosomal proteins. A large set of trans-acting factors chaperone this process, including small nucleolar ribonucleoparticles. While yeast has been the gold standard for studying the molecular basis of this process, recent technical advances have allowed to further define the mechanisms of ribosome biogenesis in animals and plants. This renewed interest for a long-lasting question has been fueled by the association of several genetic diseases with mutations in genes encoding both ribosomal proteins and ribosome biogenesis factors, and by the perspective of new anticancer treatments targeting the mechanisms of ribosome synthesis. A consensus scheme of pre-ribosomal RNA maturation is emerging from studies in various kinds of eukaryotic organisms. However, major differences between mammalian and yeast pre-ribosomal RNA processing have recently come to light. WIREs RNA 2015, 6:225–242. doi: 10.1002/wrna.1269
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse-Paul Sabatier CNRS, UMR 5099, Toulouse, France
| | | | | | | | | |
Collapse
|
21
|
Sun Z, Jiang Q, Wang L, Zhou Z, Wang M, Yi Q, Song L. The comparative proteomics analysis revealed the modulation of inducible nitric oxide on the immune response of scallop Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2014; 40:584-94. [PMID: 25149594 DOI: 10.1016/j.fsi.2014.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/28/2014] [Accepted: 08/07/2014] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is an important gasotransmitter which plays a key role on the modulation of immune response in all vertebrates and invertebrates. In the present study, the modulation of inducible NO on immune response of scallop Chlamys farreri was investigated via proteomic analysis. Total proteins from hepatopancreas of scallops treated with lipopolysaccharide (LPS) and/or the inhibitor of vertebrate inducible NO synthase (S-methylisothiourea sulfate, SMT) for 12 h were analyzed via 2-D PAGE and ImageMaster 2D Platinum. There were 890, 1189 and 1046 protein spots detected in the groups treated by phosphate buffered saline (PBS), LPS and LPS+SMT, respectively, and 26 differentially expressed protein spots were identified among them. These proteins were annotated with binding or catalytic activity, and most of them were involved in metabolic or cellular processes. Some immune-related or antioxidant-related molecules such as single Ig IL-1-related receptor, guanine nucleotide-binding protein subunit beta-like protein and peroxiredoxin were identified, and the changes of their expression levels in LPS group were intensified significantly after adding SMT. The decreased expression level of tyrosinase and increased level of glutathione S-transferase 4 in LPS group were diametrically reversed by appending SMT. Moreover, interferon stimulated exonuclease gene 20-like protein and copper chaperone for superoxide dismutase were only induced by LPS+SMT stimulation but not by LPS stimulation. These data indicated that NO could modulate many immunity processes in scallop, such as NF-κB transactivation, cytoskeleton reorganization and other pivotal processes, and it was also involved in the energy metabolism, posttranslational modification, detoxification and redox balance during the immune response.
Collapse
Affiliation(s)
- Zhibin Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiufen Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
22
|
MDM2 mediates nonproteolytic polyubiquitylation of the DEAD-Box RNA helicase DDX24. Mol Cell Biol 2014; 34:3321-40. [PMID: 24980433 DOI: 10.1128/mcb.00320-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MDM2 mediates the ubiquitylation and thereby triggers the proteasomal degradation of the tumor suppressor protein p53. However, genetic evidence suggests that MDM2 contributes to multiple regulatory networks independently of p53 degradation. We have now identified the DEAD-box RNA helicase DDX24 as a nucleolar protein that interacts with MDM2. DDX24 was found to bind to the central region of MDM2, resulting in the polyubiquitylation of DDX24 both in vitro and in vivo. Unexpectedly, however, the polyubiquitylation of DDX24 did not elicit its proteasomal degradation but rather promoted its association with preribosomal ribonucleoprotein (pre-rRNP) processing complexes that are required for the early steps of pre-rRNA processing. Consistently with these findings, depletion of DDX24 in cells impaired pre-rRNA processing and resulted both in abrogation of MDM2 function and in consequent p53 stabilization. Our results thus suggest an unexpected role of MDM2 in the nonproteolytic ubiquitylation of DDX24, which may contribute to the regulation of pre-rRNA processing.
Collapse
|
23
|
Mapping the cleavage sites on mammalian pre-rRNAs: Where do we stand? Biochimie 2012; 94:1521-32. [DOI: 10.1016/j.biochi.2012.02.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/01/2012] [Indexed: 11/23/2022]
|
24
|
Simabuco FM, Morello LG, Aragão AZB, Paes Leme AF, Zanchin NIT. Proteomic characterization of the human FTSJ3 preribosomal complexes. J Proteome Res 2012; 11:3112-26. [PMID: 22540864 DOI: 10.1021/pr201106n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In eukaryotes, ribosome biogenesis involves excision of transcribed spacer sequences from the preribosomal RNA, base and ribose covalent modification at specific sites, assembly of ribosomal proteins, and transport of subunits from the nucleolus to the cytoplasm where mature ribosomes engage in mRNA translation. The biochemical reactions throughout ribosome synthesis are mediated by factors that associate transiently to the preribosomal complexes. In this work, we describe the complexes containing the human protein FTSJ3. This protein functions in association with NIP7 in ribosome synthesis and contains a putative RNA-methyl-transferase domain (FtsJ) in the N-terminal region and two uncharacterized domains in the central (DUF3381) and C-terminal (Spb1_C) regions. FLAG-tagged FTSJ3 coimmunoprecipitates both RPS and RPL proteins, ribosome synthesis factors, and proteins whose function in ribosome synthesis has not been demonstrated yet. A similar set of proteins coimmunoprecipitates with the Spb1_C domain, suggesting that FTSJ3 interaction with the preribosome complexes is mediated by the Spb1_C domain. Approximately 50% of the components of FTSJ3 complexes are shared by complexes described for RPS19, Par14, nucleolin, and NOP56. A significant number of factors are also found in complexes described for nucleophosmin, SBDS, ISG20L2, and NIP7. These findings provide information on the dynamics of preribosome complexes in human cells.
Collapse
Affiliation(s)
- Fernando M Simabuco
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais , Rua Giuseppe Maximo Scolfaro 10000, P.O. Box 6192, CEP 13083-970, Campinas SP, Brazil
| | | | | | | | | |
Collapse
|
25
|
The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2. Mol Cell Biol 2011; 32:430-44. [PMID: 22083961 DOI: 10.1128/mcb.06019-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosome synthesis entails the formation of mature rRNAs from long precursor molecules, following a complex pre-rRNA processing pathway. Why the generation of mature rRNA ends is so complicated is unclear. Nor is it understood how pre-rRNA processing is coordinated at distant sites on pre-rRNA molecules. Here we characterized, in budding yeast and human cells, the evolutionarily conserved protein Las1. We found that, in both species, Las1 is required to process ITS2, which separates the 5.8S and 25S/28S rRNAs. In yeast, Las1 is required for pre-rRNA processing at both ends of ITS2. It is required for Rrp6-dependent formation of the 5.8S rRNA 3' end and for Rat1-dependent formation of the 25S rRNA 5' end. We further show that the Rat1-Rai1 5'-3' exoribonuclease (exoRNase) complex functionally connects processing at both ends of the 5.8S rRNA. We suggest that pre-rRNA processing is coordinated at both ends of 5.8S rRNA and both ends of ITS2, which are brought together by pre-rRNA folding, by an RNA processing complex. Consistently, we note the conspicuous presence of ~7- or 8-nucleotide extensions on both ends of 5.8S rRNA precursors and at the 5' end of pre-25S RNAs suggestive of a protected spacer fragment of similar length.
Collapse
|
26
|
Zhou Z, Wang N, Woodson SE, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols JE, Guo JT, Holbrook MR, Lemon SM, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology 2011; 409:175-88. [PMID: 21036379 PMCID: PMC3018280 DOI: 10.1016/j.virol.2010.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/05/2010] [Accepted: 10/06/2010] [Indexed: 01/19/2023]
Abstract
ISG20 is an interferon-inducible 3'-5' exonuclease that inhibits replication of several human and animal RNA viruses. However, the specificities of ISG20's antiviral action remain poorly defined. Here we determine the impact of ectopic expression of ISG20 on replication of several positive-strand RNA viruses from distinct viral families. ISG20 inhibited infections by cell culture-derived hepatitis C virus (HCV) and a pestivirus, bovine viral diarrhea virus and a picornavirus, hepatitis A virus. Moreover, ISG20 demonstrated cell-type specific antiviral activity against yellow fever virus, a classical flavivirus. Overexpression of ISG20, however, did not inhibit propagation of severe acute respiratory syndrome coronavirus, a highly-pathogenic human coronavirus in Huh7.5 cells. The antiviral effects of ISG20 were all dependent on its exonuclease activity. The closely related cellular exonucleases, ISG20L1 and ISG20L2, did not inhibit HCV replication. Together, these data may help better understand the antiviral specificity and action of ISG20.
Collapse
Affiliation(s)
- Zhi Zhou
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Infectious Diseases, the Second Teaching Hospital, Chongqing Medical University, Chongqing, China
| | - Nan Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara E. Woodson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Qingming Dong
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie Wang
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuqiong Liang
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rene Rijnbrand
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Lai Wei
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Joan E. Nichols
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Ju-Tao Guo
- Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA, USA
| | - Michael R. Holbrook
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley M. Lemon
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Internal Medicine, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kui Li
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
27
|
Polzikov MA, Veĭko NN, Zharskaia OO, Magoulas KB, Zatsepina OV. [Overexpression of the nucleolar protein SURF-6 in mouse fibroblasts NIH/3T3 leads to stabilisation of intragenic transcribed spacers of the pre-rRNA]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:661-71. [PMID: 21063453 DOI: 10.1134/s1068162010050092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SURF-6 is an evolutionary conserved nucleolar protein that is required for maintenance of cell viability, but its functional significance in mammals still remains illusive. In the present work we examined effects of SURF-6 overexpression in mouse NIH/3T3 fibroblasts transfected with two plasmids. The plasmid pUHrT62-1 encodes a tetracycline-dependant trans-activator, the protein rtTA, the plasmid pBI-SURF6--the genes of EGFP (enhanced green fluorescent protein) and of mouse SURF-6 which expression was controlled by the rtTA-responsive bi-directorial promoter. Western blot analysis showed that the SURF-6 level was severely augmented in cells transfected with pUHrT62-1 and pBI-SURF6 and incubated with the inducer--doxycycline opposed to the transfected but not-induced cells. The increase of SURF-6 was observed in 24 and 48 h after adding the inducer doxycycline. Dot-hybridization of isolated RNA with biotinilated oligonucleotide probes to various regions of mouse primarily pre-rRNA transcripts showed that overexpression of SURF-6 enhanced levels of the second intragenic transcribed spacer ITS2 in about seven folds and of the 5' external transcribed spacer 5'ETS in two folds. Amounts of fragments corresponding to 18S, 5.8S and 28S rRNA remained almost unchanged. These observations for the first time demonstrated that mammalian SURF-6 helps to stabilize or prevents premature cleavage of the pre-rRNA intragenic transcribed spacers, particularly of ITS2, similar to its homologue in S. cerevisiae the protein Rrp14. Today metazoan proteins that play a similar role in ribosome biogenesis, are not described.
Collapse
|
28
|
Wild T, Horvath P, Wyler E, Widmann B, Badertscher L, Zemp I, Kozak K, Csucs G, Lund E, Kutay U. A protein inventory of human ribosome biogenesis reveals an essential function of exportin 5 in 60S subunit export. PLoS Biol 2010; 8:e1000522. [PMID: 21048991 PMCID: PMC2964341 DOI: 10.1371/journal.pbio.1000522] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 09/03/2010] [Indexed: 12/20/2022] Open
Abstract
The assembly of ribosomal subunits in eukaryotes is a complex, multistep process so far mostly studied in yeast. In S. cerevisiae, more than 200 factors including ribosomal proteins and trans-acting factors are required for the ordered assembly of 40S and 60S ribosomal subunits. To date, only few human homologs of these yeast ribosome synthesis factors have been characterized. Here, we used a systematic RNA interference (RNAi) approach to analyze the contribution of 464 candidate factors to ribosomal subunit biogenesis in human cells. The screen was based on visual readouts, using inducible, fluorescent ribosomal proteins as reporters. By performing computer-based image analysis utilizing supervised machine-learning techniques, we obtained evidence for a functional link of 153 human proteins to ribosome synthesis. Our data show that core features of ribosome assembly are conserved from yeast to human, but differences exist for instance with respect to 60S subunit export. Unexpectedly, our RNAi screen uncovered a requirement for the export receptor Exportin 5 (Exp5) in nuclear export of 60S subunits in human cells. We show that Exp5, like the known 60S exportin Crm1, binds to pre-60S particles in a RanGTP-dependent manner. Interference with either Exp5 or Crm1 function blocks 60S export in both human cells and frog oocytes, whereas 40S export is compromised only upon inhibition of Crm1. Thus, 60S subunit export is dependent on at least two RanGTP-binding exportins in vertebrate cells.
Collapse
Affiliation(s)
- Thomas Wild
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Peter Horvath
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Emanuel Wyler
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Barbara Widmann
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Lukas Badertscher
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Molecular Life Science Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Karol Kozak
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gabor Csucs
- Light Microscopy Center, RISC, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Elsebet Lund
- University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ulrike Kutay
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Jones DM, Domingues P, Targett-Adams P, McLauchlan J. Comparison of U2OS and Huh-7 cells for identifying host factors that affect hepatitis C virus RNA replication. J Gen Virol 2010; 91:2238-48. [PMID: 20505011 DOI: 10.1099/vir.0.022210-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Host cell factors are critical to all stages of the hepatitis C virus (HCV) life cycle. While many cellular proteins that regulate HCV genome synthesis have been identified, the mechanisms engaged in this process are incompletely understood. To identify novel cellular proteins involved in HCV RNA replication, we screened a library of small interfering RNAs (siRNAs) targeting 299 cellular factors, which principally function in RNA interactions. For the screen, a robust system was established using two cell lines (derived from Huh-7 and U2OS cells) that replicated tricistronic subgenomic replicons (SGRs). We found that the U2OS cell line gave lower levels of intracellular HCV RNA replication compared with Huh-7 cells and was more readily transfected by siRNAs. Consequently, increased gene silencing and greater effects on HCV replication were observed in the U2OS cell line. Thus, U2OS cells provided a suitable and more sensitive alternative to Huh-7 cells for siRNA studies on HCV RNA replication. From the screen, several cellular proteins that enhanced and suppressed HCV RNA replication were identified. One of the genes found to downregulate viral RNA synthesis, ISG15, is expressed in response to alpha interferon and may therefore partly contribute to the clearance of virus from infected individuals. A second gene that inhibited HCV RNA levels was the 5'-3' exoRNase XRN1, which suggested a role for cellular RNA degradation pathways in modulating the abundance of viral genomes. Therefore, this study provides an important framework for future detailed analyses of these and other cellular proteins.
Collapse
|
30
|
Eby KG, Rosenbluth JM, Mays DJ, Marshall CB, Barton CE, Sinha S, Johnson KN, Tang L, Pietenpol JA. ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy. Mol Cancer 2010; 9:95. [PMID: 20429933 PMCID: PMC2873442 DOI: 10.1186/1476-4598-9-95] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 04/29/2010] [Indexed: 01/28/2023] Open
Abstract
Background Autophagy is characterized by the sequestration of cytoplasm and organelles into multimembrane vesicles and subsequent degradation by the cell's lysosomal system. It is linked to many physiological functions in human cells including stress response, protein degradation, organelle turnover, caspase-independent cell death and tumor suppression. Malignant transformation is frequently associated with deregulation of autophagy and several tumor suppressors can modulate autophagic processes. The tumor suppressor p53 can induce autophagy after metabolic or genotoxic stress through transcriptionally-dependent and -independent mechanisms. In this study we expand on the former mechanism by functionally characterizing a p53 family target gene, ISG20L1 under conditions of genotoxic stress. Results We identified a p53 target gene, ISG20L1, and show that transcription of the gene can be regulated by all three p53 family members (p53, p63, and p73). We generated an antibody to ISG20L1 and found that it localizes to the nucleolar and perinucleolar regions of the nucleus and its protein levels increase in a p53- and p73-dependent manner after various forms of genotoxic stress. When ectopically expressed in epithelial cancer-derived cell lines, ISG20L1 expression decreased clonogenic survival without a concomitant elevation in apoptosis and this effect was partially rescued in cells that were ATG5 deficient. Knockdown of ISG20L1 did not alter 5-FU induced apoptosis as assessed by PARP and caspase-3 cleavage, sub-G1 content, and DNA laddering. Thus, we investigated the role of ISG20L1 in autophagy, a process commonly associated with type II cell death, and found that ISG20L1 knockdown decreased levels of autophagic vacuoles and LC3-II after genotoxic stress as assessed by electron microscopy, biochemical, and immunohistochemical measurements of LC3-II. Conclusions Our identification of ISG20L1 as a p53 family target and discovery that modulation of this target can regulate autophagic processes further strengthens the connection between p53 signaling and autophagy. Given the keen interest in targeting autophagy as an anticancer therapeutic approach in tumor cells that are defective in apoptosis, investigation of genes and signaling pathways involved in cell death associated with autophagy is critical.
Collapse
Affiliation(s)
- Kathryn G Eby
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009; 4:e7147. [PMID: 19779612 PMCID: PMC2744998 DOI: 10.1371/journal.pone.0007147] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/05/2009] [Indexed: 12/21/2022] Open
Abstract
Protein synthesis is a fundamental cell process and ribosomes - particularly through the ribosomal RNA that display ribozyme activity - are the main effectors of this process. Ribosome biogenesis is a very complex process involving transcriptional as well as many post-transcriptional steps to produce functional ribosomes. It is now well demonstrated that ribosome production is enhanced in cancer cells and that ribosome biogenesis plays a crucial role in tumor progression. However, at present there is an important lack of data to determine whether the entire process of ribosome biogenesis and ribosome assembly is modified during tumor progression and what could be the potential impact on the dysregulation of translational control that is observed in cancer cells. In breast cancer cells displaying enhanced aggressivity, both in vitro and in vivo, we have analyzed the major steps of ribosome biogenesis and the translational capacity of the resulting ribosome. We show that increased tumorigenicity was associated with modifications of nucleolar morphology and profound quantitative and qualitative alterations in ribosomal biogenesis and function. Specifically cells with enhanced tumor aggressivity displayed increased synthesis of 45S pre-rRNA, with activation of an alternative preRNA synthetic pathway containing a 43S precursor and enhanced post-transcriptional methylation of specifc sites located in the 28S rRNA. While the global translational activity was not modified, IRES-initiated translation, notably that of p53 mRNA, was less efficient and the control of translational fidelity was importantly reduced in cells with increased aggressivity. These results suggest that acquisition of enhanced tumor aggressivity can be associated with profound qualitative alterations in ribosomal control, leading to reduced quality control of translation in cancer cells
Collapse
|