1
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Liu X, Peng X, Li H. Escherichia coli Activate Extraintestinal Antibody Response and Provide Anti-Infective Immunity. Int J Mol Sci 2024; 25:7450. [PMID: 39000557 PMCID: PMC11242715 DOI: 10.3390/ijms25137450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The effects of intestinal microflora on extraintestinal immune response by intestinal cytokines and metabolites have been documented, but whether intestinal microbes stimulate serum antibody generation is unknown. Here, serum antibodies against 69 outer membrane proteins of Escherichia coli, a dominant bacterium in the human intestine, are detected in 141 healthy individuals of varying ages. Antibodies against E. coli outer membrane proteins are determined in all serum samples tested, and frequencies of antibodies to five outer membrane proteins (OmpA, OmpX, TsX, HlpA, and FepA) are close to 100%. Serum antibodies against E. coli outer membrane proteins are further validated by Western blot and bacterial pull-down. Moreover, the present study shows that OstA, HlpA, Tsx, NlpB, OmpC, YfcU, and OmpA provide specific immune protection against pathogenic E. coli, while HlpA and OmpA also exhibit cross-protection against Staphylococcus aureus infection. These finding indicate that intestinal E. coli activate extraintestinal antibody responses and provide anti-infective immunity.
Collapse
Affiliation(s)
| | - Xuanxian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou 510275, China;
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
3
|
Bach E, Fitzgerald SF, Williams-MacDonald SE, Mitchell M, Golde WT, Longbottom D, Nisbet AJ, Dinkla A, Sullivan E, Pinapati RS, Tan JC, Joosten LAB, Roest HJ, Østerbye T, Koets AP, Buus S, McNeilly TN. Genome-wide epitope mapping across multiple host species reveals significant diversity in antibody responses to Coxiella burnetii vaccination and infection. Front Immunol 2023; 14:1257722. [PMID: 37954609 PMCID: PMC10637584 DOI: 10.3389/fimmu.2023.1257722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 11/14/2023] Open
Abstract
Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Emil Bach
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Annemieke Dinkla
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Eric Sullivan
- Nimble Therapeutics, Inc., Madison, WI, United States
| | | | - John C. Tan
- Nimble Therapeutics, Inc., Madison, WI, United States
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
- Ministry of Agriculture, Nature and Food Quality, Den Haag, Netherlands
- Department of Infection and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Thomas Østerbye
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ad P. Koets
- Department of Bacteriology, Host-Pathogen Interaction and Diagnostic Development, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Søren Buus
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
4
|
Ren W, Ahmad S, Irudayaraj J. 16S rRNA Monitoring Point-of-Care Magnetic Focus Lateral Flow Sensor. ACS OMEGA 2021; 6:11095-11102. [PMID: 34056264 PMCID: PMC8153928 DOI: 10.1021/acsomega.1c01307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
The detection and profiling of pathogenic bacteria is critical for human health, environmental, and food safety monitoring. Herein, we propose a highly sensitive colorimetric strategy for naked eye screening of 16S ribosomal RNA (16S rRNA) from pathogenic agents relevant to infections, human health, and food safety monitoring with a magnetic focus lateral flow sensor (mLFS) platform. The method developed was demonstrated in model 16S rRNA sequences of the pathogen Escherichia coli O157:H7 to detect as low as 1 fM of targets, exhibiting a sensitivity improved by ∼5 × 105 times compared to the conventional GNP-based colorimetric lateral flow assay used for oligonucleotide testing. Based on the grayscale values, semi-quantitation of up to 1 pM of target sequences was possible in ∼45 min. The methodology could detect the target 16S rRNA from as low as 32 pg/mL of total RNA extracted from pathogens. Specificity was demonstrated with total RNA extracted from E. coli K-12 MG1655, Bacillus subtilis (B. subtilis), and Pseudomonas aeruginosa (P. aeruginosa). No signal was observed from as high as 320 pg/mL of total RNA from the nontarget bacteria. The recognition of target 16S rRNA from 32 pg/mL of total RNA in complex matrices was also demonstrated. The proposed mLFS method was then extended to monitoring B. subtilis and P. aeruginosa. Our approach highlights the possibility of extending this concept to screen specific nucleic acid sequences for the monitoring of infectious pathogens or microbiome implicated in a range of diseases including cancer.
Collapse
Affiliation(s)
- Wen Ren
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle
Foundation Hospital, Biomedical Research
Center in Mills Breast Cancer Institute, Urbana, Illinois 61801, United States
- Micro
and Nanotechnology Laboratory, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois (CCIL), University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Silva ÂAO, de Oliveira UD, Vasconcelos LDCM, Foti L, Leony LM, Daltro RT, Leitolis A, Lima FWDM, Krieger MA, Zanchin NIT, Santos FLN. Performance of Treponema pallidum recombinant proteins in the serological diagnosis of syphilis. PLoS One 2020; 15:e0234043. [PMID: 32555593 PMCID: PMC7302711 DOI: 10.1371/journal.pone.0234043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 11/18/2022] Open
Abstract
Syphilis serodiagnosis is challenging because distinct clinical forms of the infection may influence serological performance and discordant results between tests make clinical decisions difficult. Several recombinant Treponema pallidum-proteins have already been tested for syphilis diagnosis and they are critical to achieve high accuracy in serological testing. Our aim was to assess the varied from performance of T. pallidum-recombinant proteins TmpA, TpN17 and TpN47 for syphilis serodiagnosis. The proteins were evaluated using sera of 338 T. pallidum-negative, 173 T. pallidum-positive individuals and 209 sera from individuals infected with unrelated diseases. The diagnostic potential was validated by analysis of ROC curves. In the liquid microarray analyses, the ROC curve varied from 99.0% for TmpA and TpN17 to 100% for TpN47. The sensitivity score yielded values of up to 90% for TpN17, 100% for TpN47 and 80.0% for TmpA. The lowest and highest specificity values were presented by TpN47 (91.9%) and TmpA antigens (100%), respectively. TpN47 showed the highest accuracy score (95.5%) among all the recombinant proteins assayed. For the ELISA, the ROC curve was 97.2%, 91.8% and 81.6% for TpN17, TmpA and TpN47, respectively. TpN17 and TmpA yielded a sensitivity of 69.9%, while TpN47 obtained a value of 53.8%. Specificity was almost 100% for all three proteins. No cross-reaction was observed for TpN17 in the serum samples from non-bacterial infections. Regarding leptospirosis-positive samples, cross-reactivity score was varied from 8.6 to 34.6%. This is most probably due to conservation of the epitopes in these proteins across bacteria. The use of recombinant proteins in immunoassays for syphilis diagnosis was showed provide greater reliability to results of the treponemal assays. Despite the low sensitivity, the proteins showed high diagnostic capacity due to the AUC values found. However, an improvement in sensitivity could be achieved when antigenic mixtures are evaluated.
Collapse
Affiliation(s)
| | | | | | - Leonardo Foti
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz-PR), Curitiba, Paraná, Brazil
| | - Leonardo Maia Leony
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Bahia, Brazil
| | - Ramona Tavares Daltro
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz-BA), Salvador, Bahia, Brazil
| | | | | | - Marco Aurélio Krieger
- Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz-PR), Curitiba, Paraná, Brazil
- Molecular Biology Institute of Paraná, Curitiba, Paraná, Brazil
| | | | | |
Collapse
|
6
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. The use of bacteriophages to control and detect pathogens in the dairy industry. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
| | - Declan Bolton
- Food Research Centre Teagasc Ashtown, Dublin 15 Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
- APC Microbiome Institute, Biosciences Building University College Cork Cork Ireland
| |
Collapse
|
7
|
Hansen IS, Baeten DLP, den Dunnen J. The inflammatory function of human IgA. Cell Mol Life Sci 2018; 76:1041-1055. [PMID: 30498997 PMCID: PMC6513800 DOI: 10.1007/s00018-018-2976-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
The prevailing concept regarding the immunological function of immunoglobulin A (IgA) is that it binds to and neutralizes pathogens to prevent infection at mucosal sites of the body. However, recently, it has become clear that in humans IgA is also able to actively contribute to the initiation of inflammation, both at mucosal and non-mucosal sites. This additional function of IgA is initiated by the formation of immune complexes, which trigger Fc alpha Receptor I (FcαRI) to synergize with various other receptors to amplify inflammatory responses. Recent findings have demonstrated that co-stimulation of FcαRI strongly affects pro-inflammatory cytokine production by various myeloid cells, including different dendritic cell subsets, macrophages, monocytes, and Kupffer cells. FcαRI-induced inflammation plays a crucial role in orchestrating human host defense against pathogens, as well as the generation of tissue-specific immunity. In addition, FcαRI-induced inflammation is suggested to be involved in the pathogenesis of various chronic inflammatory disorders, including inflammatory bowel disease, celiac disease, and rheumatoid arthritis. Combined, IgA-induced inflammation may be used to either promote inflammatory responses, e.g. in the context of cancer therapy, but may also provide new therapeutic targets to counteract chronic inflammation in the context of various chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands. .,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Fulgione A, Cimafonte M, Della Ventura B, Iannaccone M, Ambrosino C, Capuano F, Proroga YTR, Velotta R, Capparelli R. QCM-based immunosensor for rapid detection of Salmonella Typhimurium in food. Sci Rep 2018; 8:16137. [PMID: 30382128 PMCID: PMC6208438 DOI: 10.1038/s41598-018-34285-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
Salmonella Typhimurium is one of the main causes of outbreaks and sporadic cases of human gastroenteritis. At present, the rapid detection of this pathogen is a major goal of biosensing technology applied to food safety. In fact, ISO standardized culture method takes up to ten days to provide a reliable response. In this paper, we describe a relatively simple protocol for detecting Salmonella Typhimurium in chicken meat based on a Quartz-Crystal Microbalance (QCM), which leads to a limit of detection (LOD) less than of 10° CFU/mL and requires a pre-enrichment step lasting only 2 h at 37 °C. The reliability of the proposed immunosensor has been demonstrated through the validation of the experimental results with ISO standardized culture method. The cost-effectiveness of the procedure and the rapidity of the QCM-based biosensor in providing the qualitative response make the analytical method described here suitable for applications in food inspection laboratory and throughout the chain production of food industry.
Collapse
Affiliation(s)
- Andrea Fulgione
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Martina Cimafonte
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy
| | - Bartolomeo Della Ventura
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy.
| | - Marco Iannaccone
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, 82100, Italy
| | - Federico Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (Naples), 80055, Italy
| | - Yolande Thérèse Rose Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (Naples), 80055, Italy
| | - Raffaele Velotta
- Department of Physics "Ettore Pancini", University of Naples "Federico II", Naples, 80126, Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples "Federico II", Portici (Naples), 80055, Italy.
| |
Collapse
|
9
|
Technologies for Proteome-Wide Discovery of Extracellular Host-Pathogen Interactions. J Immunol Res 2017; 2017:2197615. [PMID: 28321417 PMCID: PMC5340944 DOI: 10.1155/2017/2197615] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Pathogens have evolved unique mechanisms to breach the cell surface barrier and manipulate the host immune response to establish a productive infection. Proteins exposed to the extracellular environment, both cell surface-expressed receptors and secreted proteins, are essential targets for initial invasion and play key roles in pathogen recognition and subsequent immunoregulatory processes. The identification of the host and pathogen extracellular molecules and their interaction networks is fundamental to understanding tissue tropism and pathogenesis and to inform the development of therapeutic strategies. Nevertheless, the characterization of the proteins that function in the host-pathogen interface has been challenging, largely due to the technical challenges associated with detection of extracellular protein interactions. This review discusses available technologies for the high throughput study of extracellular protein interactions between pathogens and their hosts, with a focus on mammalian viruses and bacteria. Emerging work illustrates a rich landscape for extracellular host-pathogen interaction and points towards the evolution of multifunctional pathogen-encoded proteins. Further development and application of technologies for genome-wide identification of extracellular protein interactions will be important in deciphering functional host-pathogen interaction networks, laying the foundation for development of novel therapeutics.
Collapse
|
10
|
Keasey SL, Natesan M, Pugh C, Kamata T, Wuchty S, Ulrich RG. Cell-free Determination of Binary Complexes That Comprise Extended Protein-Protein Interaction Networks of Yersinia pestis. Mol Cell Proteomics 2016; 15:3220-3232. [PMID: 27489291 DOI: 10.1074/mcp.m116.059337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
Binary protein interactions form the basic building blocks of molecular networks and dynamic assemblies that control all cellular functions of bacteria. Although these protein interactions are a potential source of targets for the development of new antibiotics, few high-confidence data sets are available for the large proteomes of most pathogenic bacteria. We used a library of recombinant proteins from the plague bacterium Yersinia pestis to probe planar microarrays of immobilized proteins that represented ∼85% (3552 proteins) of the bacterial proteome, resulting in >77,000 experimentally determined binary interactions. Moderate (KD ∼μm) to high-affinity (KD ∼nm) interactions were characterized for >1600 binary complexes by surface plasmon resonance imaging of microarrayed proteins. Core binary interactions that were in common with other gram-negative bacteria were identified from the results of both microarray methods. Clustering of proteins within the interaction network by function revealed statistically enriched complexes and pathways involved in replication, biosynthesis, virulence, metabolism, and other diverse biological processes. The interaction pathways included many proteins with no previously known function. Further, a large assembly of proteins linked to transcription and translation were contained within highly interconnected subregions of the network. The two-tiered microarray approach used here is an innovative method for detecting binary interactions, and the resulting data will serve as a critical resource for the analysis of protein interaction networks that function within an important human pathogen.
Collapse
Affiliation(s)
- Sarah L Keasey
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702; §Biological Sciences Department, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohan Natesan
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Christine Pugh
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Teddy Kamata
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Stefan Wuchty
- ¶National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert G Ulrich
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| |
Collapse
|
11
|
Bhardwaj N, Bhardwaj SK, Mehta J, Mohanta GC, Deep A. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Anal Biochem 2016; 505:18-25. [DOI: 10.1016/j.ab.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
12
|
Liu S, Zhang H, Dai J, Hu S, Pino I, Eichinger DJ, Lyu H, Zhu H. Characterization of monoclonal antibody's binding kinetics using oblique-incidence reflectivity difference approach. MAbs 2015; 7:110-9. [PMID: 25530170 PMCID: PMC4622085 DOI: 10.4161/19420862.2014.985919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) against human proteins are the primary protein capture reagents for basic research, diagnosis, and molecular therapeutics. The 2 most important attributes of mAbs used in all of these applications are their specificity and avidity. While specificity of a mAb raised against a human protein can be readily defined based on its binding profile on a human proteome microarray, it has been a challenge to determine avidity values for mAbs in a high-throughput and cost-effective fashion. To undertake this challenge, we employed the oblique-incidence reflectivity difference (OIRD) platform to characterize mAbs in a protein microarray format. We first systematically determined the Kon and Koff values of 50 mAbs measured with the OIRD method and deduced the avidity values. Second, we established a multiplexed approach that simultaneously measured avidity values of a mixture of 9 mono-specific mAbs that do not cross-react to the antigens. Third, we demonstrated that avidity values of a group of mAbs could be sequentially determined using a flow-cell device. Finally, we implemented a sequential competition assay that allowed us to bin multiple mAbs that recognize the same antigens. Our study demonstrated that OIRD offers a high-throughput and cost-effective platform for characterization of the binding kinetics of mAbs.
Collapse
Affiliation(s)
- Shuang Liu
- a Institute of Physics; Chinese Academy of Sciences ; Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Glaros TG, Blancett CD, Bell TM, Natesan M, Ulrich RG. Serum biomarkers of Burkholderia mallei infection elucidated by proteomic imaging of skin and lung abscesses. Clin Proteomics 2015; 12:7. [PMID: 26034464 PMCID: PMC4450996 DOI: 10.1186/s12014-015-9079-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022] Open
Abstract
Background The bacterium Burkholderia mallei is the etiological agent of glanders, a highly contagious, often fatal zoonotic infectious disease that is also a biodefense concern. Clinical laboratory assays that analyze blood or other biological fluids are the highest priority because these specimens can be collected with minimal risk to the patient. However, progress in developing sensitive assays for monitoring B. mallei infection is hampered by a shortage of useful biomarkers. Results Reasoning that there should be a strong correlation between the proteomes of infected tissues and circulating serum, we employed imaging mass spectrometry (IMS) of thin-sectioned tissues from Chlorocebus aethiops (African green) monkeys infected with B. mallei to localize host and pathogen proteins that were associated with abscesses. Using laser-capture microdissection of specific regions identified by IMS and histology within the tissue sections, a more extensive proteomic analysis was performed by a technique that combined the physical separation capabilities of liquid chromatography (LC) with the sensitive mass analysis capabilities of mass spectrometry (LC-MS/MS). By examining standard formalin-fixed, paraffin-embedded tissue sections, this strategy resulted in the identification of several proteins that were associated with lung and skin abscesses, including the host protein calprotectin and the pathogen protein GroEL. Elevated levels of calprotectin detected by ELISA and antibody responses to GroEL, measured by a microarray of the bacterial proteome, were subsequently detected in the sera of C. aethiops, Macaca mulatta, and Macaca fascicularis primates infected with B. mallei. Conclusions Our results demonstrate that a combination of multidimensional MS analysis of traditional histology specimens with high-content protein microarrays can be used to discover lead pairs of host-pathogen biomarkers of infection that are identifiable in biological fluids. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9079-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trevor G Glaros
- Molecular and Translational Sciences, USAMRIID, Frederick, 21702 MD USA
| | - Candace D Blancett
- Pathology, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, 21702 MD USA
| | - Todd M Bell
- Pathology, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, 21702 MD USA
| | - Mohan Natesan
- Molecular and Translational Sciences, USAMRIID, Frederick, 21702 MD USA
| | - Robert G Ulrich
- Molecular and Translational Sciences, USAMRIID, Frederick, 21702 MD USA
| |
Collapse
|
14
|
Peptide based diagnostics: Are random-sequence peptides more useful than tiling proteome sequences? J Immunol Methods 2015; 417:10-21. [DOI: 10.1016/j.jim.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/08/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022]
|
15
|
Vogelpoel LTC, Hansen IS, Visser MW, Nagelkerke SQ, Kuijpers TW, Kapsenberg ML, de Jong EC, den Dunnen J. FcγRIIa cross-talk with TLRs, IL-1R, and IFNγR selectively modulates cytokine production in human myeloid cells. Immunobiology 2014; 220:193-9. [PMID: 25108563 DOI: 10.1016/j.imbio.2014.07.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 01/05/2023]
Abstract
Myeloid antigen-presenting cells (APCs) tailor immune responses to the pathogen involved through the production of specific pro- and anti-inflammatory cytokines. It is becoming increasingly clear that the ultimate cytokine profile produced by myeloid APCs crucially depends on interaction between multiple pathogen recognizing receptors. In this respect, we recently identified an important role for cross-talk between Fc gamma receptor IIa (FcγRIIa) and Toll-like receptors (TLRs) in human dendritic cells (DCs), which induces anti-bacterial immunity through the selective induction of TNFα and Th17-promoting cytokines. Here, we show that FcγRIIa-TLR cross-talk is not restricted to DCs, but is a common feature of various human myeloid APC subsets including monocytes and macrophages. Interestingly, FcγRIIa-TLR cross-talk in monocytes resulted in the induction of a cytokine profile distinct from that in DCs and macrophages, indicating that FcγRIIa stimulation induces cell-type and tissue specific responses. Surprisingly, we show that the FCGR2A H131R single nucleotide polymorphism (SNP), which is known to greatly affect FcγRIIa-mediated uptake of IgG2-opsonized bacteria, did not affect FcγRIIa-dependent cytokine production, indicating that these processes are differently regulated. In addition, we demonstrate that FcγRIIa selectively synergized with TLRs, IL-1R, and IFNγR, but did not affect cytokine production induced by other receptors such as C-type lectin receptor Dectin-1. Taken together, these data demonstrate that FcγRIIa-dependent modulation of cytokine production is more widespread than previously considered, and indicate that cross-talk of FcγRIIa with various receptors and in multiple cell types contributes to the induction of pathogen and tissue-specific immunity.
Collapse
Affiliation(s)
- Lisa T C Vogelpoel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivo S Hansen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marijke W Visser
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martien L Kapsenberg
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
17
|
Protein arrays as tool for studies at the host-pathogen interface. J Proteomics 2013; 94:387-400. [PMID: 24140974 DOI: 10.1016/j.jprot.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/06/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
Abstract
Pathogens and parasites encode a wide spectrum of multifunctional proteins interacting to and modifying proteins in host cells. However, the current lack of a reliable method to unveil the protein-protein interactions (PPI) at the host-pathogen interface is retarding our understanding of many important pathogenic processes. Thus, the identification of proteins involved in host-pathogen interactions is important for the elucidation of virulence determinants, mechanisms of infection, host susceptibility and/or disease resistance. In this sense, proteomic technologies have experienced major improvements in recent years and protein arrays are a powerful and modern method for studying PPI in a high-throughput format. This review focuses on these techniques analyzing the state-of-the-art of proteomic technologies and their possibilities to diagnose and explore host-pathogen interactions. Major technical advancements, applications and protocol concerns are presented, so readers can appreciate the immense progress achieved and the current technical options available for studying the host-pathogen interface. Finally, future uses of this kind of array-based proteomic tools in the fight against infectious and parasitic diseases are discussed.
Collapse
|
18
|
Varga JJ, Vigil A, DeShazer D, Waag DM, Felgner P, Goldberg JB. Distinct human antibody response to the biological warfare agent Burkholderia mallei. Virulence 2012; 3:510-4. [PMID: 23076276 DOI: 10.4161/viru.22056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.
Collapse
Affiliation(s)
- John J Varga
- University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins. J Bacteriol 2012; 194:6074-87. [PMID: 22961849 DOI: 10.1128/jb.01119-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.
Collapse
|
20
|
Abstract
With plague being not only a subject of interest for historians, but still a disease of public health concern in several countries, mainly in Africa, there were hopes that analyses of the Yersinia pestis genomes would put an end to this deadly epidemic pathogen. Genomics revealed that Y. pestis isolates evolved from Yersinia pseudotuberculosis in Central Asia some millennia ago, after the acquisition of two Y. pestis-specific plasmids balanced genomic reduction parallel with the expansion of insertion sequences, illustrating the modern concept that, except for the acquisition of plasmid-borne toxin-encoding genes, the increased virulence of Y. pestis resulted from gene loss rather than gene acquisition. The telluric persistence of Y. pestis reminds us of this close relationship, and matters in terms of plague epidemiology. Whereas biotype Orientalis isolates spread worldwide, the Antiqua and Medievalis isolates showed more limited expansion. In addition to animal ectoparasites, human ectoparasites such as the body louse may have participated in this expansion and in devastating historical epidemics. The recent analysis of a Black Death genome indicated that it was more closely related to the Orientalis branch than to the Medievalis branch. Modern Y. pestis isolates grossly exhibit the same gene content, but still undergo micro-evolution in geographically limited areas by differing in the genome architecture, owing to inversions near insertion sequences and the stabilization of the YpfPhi prophage in Orientalis biotype isolates. Genomics have provided several new molecular tools for the genotyping and phylogeographical tracing of isolates and description of plague foci. However, genomics and post-genomics approaches have not yet provided new tools for the prevention, diagnosis and management of plague patients and the plague epidemics still raging in some sub-Saharan countries.
Collapse
Affiliation(s)
- M Drancourt
- URMITE UMR CNRS 6236 IRD 98, IFR48, Méditerranée Infection, Aix-Marseille-Université, Marseille, France.
| |
Collapse
|
21
|
IgG opsonization of bacteria promotes Th17 responses via synergy between TLRs and FcγRIIa in human dendritic cells. Blood 2012; 120:112-21. [PMID: 22649103 DOI: 10.1182/blood-2011-12-399931] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are essential in inducing adaptive immune responses against bacteria by expressing cytokines that skew T-cell responses toward protective Th17 cells. Although it is widely recognized that induction of these cytokines by DCs involves activation of multiple receptors, it is still incompletely characterized which combination of receptors specifically skews Th17-cell responses. Here we have identified a novel role for FcγRIIa in promoting human Th17 cells. Activation of DCs by bacteria opsonized by serum IgG strongly promoted Th17 responses, which was FcγRIIa-dependent and coincided with enhanced production of selected cytokines by DCs, including Th17-promoting IL-1β and IL-23. Notably, FcγRIIa stimulation on DCs did not induce cytokine production when stimulated individually, but selectively amplified cytokine responses through synergy with TLR2, 4, or 5. Importantly, this synergy is mediated at 2 different levels. First, TLR-FcγRIIa costimulation strongly increased transcription of pro-IL-1β and IL-23p19. Second, FcγRIIa triggering induced activation of caspase-1, which cleaves pro-IL-1β into its bioactive form and thereby enhanced IL-1β secretion. Taken together, these data identified cross-talk between TLRs and FcγRIIa as a novel mechanism by which DCs promote protective effector Th17-cell responses against bacteria.
Collapse
|
22
|
Jeong JS, Jiang L, Albino E, Marrero J, Rho HS, Hu J, Hu S, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco ZA, Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke JD, Yap WY, Pino I, Eichinger DJ, Zhu H, Blackshaw S. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics 2012; 11:O111.016253. [PMID: 22307071 PMCID: PMC3433917 DOI: 10.1074/mcp.o111.016253] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To broaden the range of tools available for proteomic research, we generated a library of 16,368 unique full-length human ORFs that are expressible as N-terminal GST-His6 fusion proteins. Following expression in yeast, these proteins were then individually purified and used to construct a human proteome microarray. To demonstrate the usefulness of this reagent, we developed a streamlined strategy for the production of monospecific monoclonal antibodies that used immunization with live human cells and microarray-based analysis of antibody specificity as its central components. We showed that microarray-based analysis of antibody specificity can be performed efficiently using a two-dimensional pooling strategy. We also demonstrated that our immunization and selection strategies result in a large fraction of monospecific monoclonal antibodies that are both immunoblot and immunoprecipitation grade. Our data indicate that the pipeline provides a robust platform for the generation of monoclonal antibodies of exceptional specificity.
Collapse
Affiliation(s)
- Jun Seop Jeong
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vigil A, Chen C, Jain A, Nakajima-Sasaki R, Jasinskas A, Pablo J, Hendrix LR, Samuel JE, Felgner PL. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. Mol Cell Proteomics 2011; 10:M110.006304. [PMID: 21817167 DOI: 10.1074/mcp.m110.006304] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.
Collapse
Affiliation(s)
- Adam Vigil
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li B, Tan Y, Guo J, Cui B, Wang Z, Wang H, Zhou L, Guo Z, Zhu Z, Du Z, Yang R. Use of protein microarray to identify gene expression changes ofYersinia pestisat different temperatures. Can J Microbiol 2011; 57:287-94. [DOI: 10.1139/w11-007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Yersinia pestis is a bacterium that is transmitted between fleas, which have a body temperature of 26 °C, and mammalian hosts, which have a body temperature of 37 °C. To adapt to the temperature shift, phenotype variations, including virulence, occur. In this study, an antigen microarray including 218 proteins of Y. pestis was used to evaluate antibody responses in a pooled plague serum that was unadsorbed, adsorbed by Y. pestis cultivated at 26 °C, or adsorbed by Y. pestis cultivated at 26 and 37 °C to identify protein expression changes during the temperature shift. We identified 12 proteins as being expressed at 37 °C but not at 26 °C, or expressed at significantly higher levels at 37 °C than at 26 °C. The antibodies against 7 proteins in the serum adsorbed by Y. pestis cultivated at 26 and 37 °C remained positive, suggesting that they were not expressed on the surface of Y. pestis in LB broth in vitro or specifically expressed in vivo. This study proved that protein microarray and antibody profiling comprise a promising technique for monitoring gene expression at the protein level and for better understanding pathogenicity, to find new vaccine targets against plague.
Collapse
Affiliation(s)
- Bei Li
- Taihe Hospital, Hubei Medical University, Shiyan, Hubei Province 442000, China
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingyu Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Baizhong Cui
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Zuyun Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Hu Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, Qinghai Province 811602, China
| | - Lei Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhaobiao Guo
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ziwen Zhu
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
25
|
Antibody recognition of the dengue virus proteome and implications for development of vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:523-32. [PMID: 21270280 DOI: 10.1128/cvi.00016-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dengue is a mosquito-borne infection caused by four distinct serotypes of dengue virus, each appearing cyclically in the tropics and subtropics along the equator. Although vaccines are currently under development, none are available to the general population. One of the main impediments to the successful advancement of these vaccines is the lack of well-defined immune correlates of protection. Here, we describe a protein microarray approach for measuring antibody responses to the complete viral proteome comprised of the structural (capsid, membrane, and envelope) and nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) components of all four dengue virus serotypes (1 to 4). We examined rhesus macaques vaccinated with tetravalent vaccines consisting of live-attenuated virus (LAV) or purified inactivated virus (PIV), followed by boosting with LAV and challenging with wild-type dengue virus. We detected temporal increases in antibodies against envelope proteins in response to either vaccine, while only the PIV/LAV vaccination strategy resulted in anticapsid antibodies. In contrast to results from vaccination, naïve macaques challenged with wild-type viruses of each serotype demonstrated a balanced response to nonstructural and structural components, including responses against the membrane protein. Our results demonstrate discriminating details concerning the nature of antibody responses to dengue virus at the proteomic level and suggest the usefulness of this information for vaccine development.
Collapse
|
26
|
Keasey S, Pugh C, Tikhonov A, Chen G, Schweitzer B, Nalca A, Ulrich RG. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination. PLoS One 2010; 5:e15547. [PMID: 21209900 PMCID: PMC3012712 DOI: 10.1371/journal.pone.0015547] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/11/2010] [Indexed: 01/31/2023] Open
Abstract
Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92-95% (166-192 proteins) of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins) of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome.
Collapse
Affiliation(s)
- Sarah Keasey
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Christine Pugh
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | | | - Gengxin Chen
- Life Technologies, Carlsbad, California, United States of America
| | - Barry Schweitzer
- Life Technologies, Carlsbad, California, United States of America
| | - Aysegul Nalca
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Robert G. Ulrich
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| |
Collapse
|
27
|
Bavaro SL, Kanduc D. Pentapeptide commonality between Corynebacterium diphtheriae toxin and the Homo sapiens proteome. Immunotherapy 2010; 3:49-58. [PMID: 21174557 DOI: 10.2217/imt.10.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cross-reactivity may affect diagnostic tests and cause harmful autoimmune reactions following immunotherapy. To predict potential cross-reactivity and search for safe immunotherapeutic approaches, we analyzed sequence identity between microbial antigens and the human proteome. Using diphtheria toxin (DT) as a model, we examined its patterns of identity with human proteins at the pentapeptide level. DT shares 503 pentapeptides with the human proteome, while only 31 pentapeptides are unique to the toxin. DT pentapeptide identity involves multiple/repeated matches in human proteins (a total of 4966 occurrences). Human proteins containing bacterial peptide matches include antigens linked to fundamental cellular functions, such as cell cycle control, proliferation, development and differentiation. The data presented in this article offer a rational basis for designing peptide-based vaccines that specifically target DT and thus eliminate the potential risk of cross-reactivity with human proteins. More generally, this study proposes a methodological approach for avoiding cross-reactivity in immune reactions.
Collapse
Affiliation(s)
- Simona Lucia Bavaro
- Department of Biochemistry & Molecular Biology, University of Bari, Bari 70126, Italy
| | | |
Collapse
|
28
|
Protein microarrays and biomarkers of infectious disease. Int J Mol Sci 2010; 11:5165-83. [PMID: 21614200 PMCID: PMC3100839 DOI: 10.3390/ijms11125165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 01/11/2023] Open
Abstract
Protein microarrays are powerful tools that are widely used in systems biology research. For infectious diseases, proteome microarrays assembled from proteins of pathogens will play an increasingly important role in discovery of diagnostic markers, vaccines, and therapeutics. Distinct formats of protein microarrays have been developed for different applications, including abundance-based and function-based methods. Depending on the application, design issues should be considered, such as the need for multiplexing and label or label free detection methods. New developments, challenges, and future demands in infectious disease research will impact the application of protein microarrays for discovery and validation of biomarkers.
Collapse
|
29
|
Peng J, Yang J, Jin Q. Research progress in Shigella in the postgenomic era. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1284-90. [DOI: 10.1007/s11427-010-4089-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 12/20/2009] [Indexed: 01/01/2023]
|
30
|
Burbelo PD, Ching KH, Bush ER, Han BL, Iadarola MJ. Antibody-profiling technologies for studying humoral responses to infectious agents. Expert Rev Vaccines 2010; 9:567-78. [PMID: 20518713 PMCID: PMC3417761 DOI: 10.1586/erv.10.50] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Analyses of humoral responses against different infectious agents are critical for infectious disease diagnostics, understanding pathogenic mechanisms, and the development and monitoring of vaccines. While ELISAs are often used to measure antibody responses to one or several targets, new antibody-profiling technologies, such as protein microarrays, can now evaluate antibody responses to hundreds, or even thousands, of recombinant antigens at one time. These large-scale studies have uncovered new antigenic targets, provided new insights into vaccine research and yielded an overview of immunoreactivity against almost the entire proteome of certain pathogens. However, solid-phase antigen arrays also have drawbacks that limit the type of information obtained, including suboptimal detection of conformational epitopes, high backgrounds due to impure antigens and a narrow dynamic range of detection. We have developed a solution-phase antibody-profiling technology, luciferase immunoprecipitation systems (LIPS), which harnesses light-emitting recombinant antigen fusion proteins to quantitatively measure patient antibody titers. Owing to the highly linear light output of the luciferase reporter, some antibodies can be detected without serum dilution in a dynamic range of detection often spanning seven orders of magnitude. When LIPS is applied iteratively with multiple target antigens, a high-definition antibody profile is obtained. Here, we discuss the application of these different antibody-profiling technologies and their associated limitations with particular emphasis on protein microarrays. We also describe LIPS in detail and discuss several clinically relevant uses of the technology. Together, these new technologies offer new tools for understanding humoral responses to known and emerging infectious agents.
Collapse
Affiliation(s)
- Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Building 49, Room 1C20, 49 Convent Drive, Bethesda, MD 20892-4410, USA.
| | | | | | | | | |
Collapse
|
31
|
Wang X, Shi L, Tao Q, Bao H, Wu J, Cai D, Wang F, Zhao Y, Tian G, Li Y, Qao C, Chen H. A protein chip designed to differentiate visually antibodies in chickens which were infected by four different viruses. J Virol Methods 2010; 167:119-24. [DOI: 10.1016/j.jviromet.2010.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 01/09/2023]
|
32
|
Vigil A, Davies DH, Felgner PL. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol 2010; 5:241-51. [PMID: 20143947 DOI: 10.2217/fmb.09.127] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major component of the adaptive immune response to infection is the generation of protective and long-lasting humoral immunity. Traditional approaches to understanding the host's humoral immune response are unable to provide an integrated understanding of the antibody repertoire generated in response to infection. By studying multiple antigenic responses in parallel, we can learn more about the breadth and dynamics of the antibody response to infection. Measurement of antibody production following vaccination is also a gauge for efficacy, as generation of antibodies can protect from future infections and limit disease. Protein microarrays are well suited to identify, quantify and compare individual antigenic responses following exposure to infectious agents. This technology can be applied to the development of improved serodiagnostic tests, discovery of subunit vaccine antigen candidates, epidemiologic research and vaccine development, as well as providing novel insights into infectious disease and the immune system. In this review, we will discuss the use of protein microarrays as a powerful tool to define the humoral immune response to bacteria and viruses.
Collapse
Affiliation(s)
- Adam Vigil
- University of California Irvine, Department of Medicine, Division of Infectious Diseases, 3501 Hewitt Hall, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
33
|
Prechl J, Papp K, Erdei A. Antigen microarrays: descriptive chemistry or functional immunomics? Trends Immunol 2010; 31:133-7. [DOI: 10.1016/j.it.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/19/2023]
|
34
|
Genome-wide study of Pseudomonas aeruginosa outer membrane protein immunogenicity using self-assembling protein microarrays. Infect Immun 2009; 77:4877-86. [PMID: 19737893 DOI: 10.1128/iai.00698-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is responsible for potentially life-threatening infections in individuals with compromised defense mechanisms and those with cystic fibrosis. P. aeruginosa infection is notable for the appearance of a humoral response to some known antigens, such as flagellin C, elastase, alkaline protease, and others. Although a number of immunogenic proteins are known, no effective vaccine has been approved yet. Here, we report a comprehensive study of all 262 outer membrane and exported P. aeruginosa PAO1 proteins by a modified protein microarray methodology called the nucleic acid-programmable protein array. From this study, it was possible to identify 12 proteins that trigger an adaptive immune response in cystic fibrosis and acutely infected patients, providing valuable information about which bacterial proteins are actually recognized by the immune system in vivo during the natural course of infection. The differential detections of these proteins in patients and controls proved to be statistically significant (P<0.01). The study provides a list of potential candidates for the improvement of serological diagnostics and the development of vaccines.
Collapse
|