1
|
Mingo-Casas P, Blázquez AB, Gómez de Cedrón M, San-Félix A, Molina S, Escribano-Romero E, Calvo-Pinilla E, Jiménez de Oya N, Ramírez de Molina A, Saiz JC, Pérez-Pérez MJ, Martín-Acebes MA. Glycolytic shift during West Nile virus infection provides new therapeutic opportunities. J Neuroinflammation 2023; 20:217. [PMID: 37759218 PMCID: PMC10537838 DOI: 10.1186/s12974-023-02899-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.
Collapse
Affiliation(s)
- Patricia Mingo-Casas
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Ana San-Félix
- Instituto de Quimica Medica (IQM), CSIC, 28006, Madrid, Spain
| | - Susana Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain
| | | | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain.
| |
Collapse
|
2
|
Chen N, Bai T, Wang S, Wang H, Wu Y, Liu Y, Zhu Z. New Insights into the Role and Therapeutic Potential of Heat Shock Protein 70 in Bovine Viral Diarrhea Virus Infection. Microorganisms 2023; 11:1473. [PMID: 37374975 DOI: 10.3390/microorganisms11061473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a positive-strand RNA virus of the genus Pestivirus in the Flaviviridae family, is the causative agent of bovine viral diarrhea-mucosal disease (BVD-MD). BVDV's unique virion structure, genome, and replication mechanism in the Flaviviridae family render it a useful alternative model for evaluating the effectiveness of antiviral drugs used against the hepatitis C virus (HCV). As one of the most abundant and typical heat shock proteins, HSP70 plays an important role in viral infection caused by the family Flaviviridae and is considered a logical target of viral regulation in the context of immune escape. However, the mechanism of HSP70 in BVDV infection and the latest insights have not been reported in sufficient detail. In this review, we focus on the role and mechanisms of HSP70 in BVDV-infected animals/cells to further explore the possibility of targeting this protein for antiviral therapy during viral infection.
Collapse
Affiliation(s)
- Nannan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuang Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Huan Wang
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Yue Wu
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Engineering Research Center for Prevention and Control of Cattle Diseases, Daqing 163319, China
| |
Collapse
|
3
|
Chen N, Liu Y, Bai T, Chen J, Zhao Z, Li J, Shao B, Zhang Z, Zhou Y, Wang X, Zhu Z. Quercetin Inhibits Hsp70 Blocking of Bovine Viral Diarrhea Virus Infection and Replication in the Early Stage of Virus Infection. Viruses 2022; 14:v14112365. [PMID: 36366463 PMCID: PMC9692758 DOI: 10.3390/v14112365] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 01/31/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a positive-strand RNA virus of the genus Pestivirus in the Flaviviridae family, is the causative agent of viral diarrheal disease in bovine. BVDV has been used as a surrogate model for the hepatitis C virus (HCV) to evaluate the efficacy of antiviral drugs. The plant flavonol quercetin causes multiple health-promoting effects in humans and animals. It can be made into a variety of additives, and it exerts a variety of immunomodulatory effects with the potential to be used as an antiviral agent. However, quercetin's antiviral effect and mechanism of action on BVDV are still unclear. Therefore, this study was designed to evaluate quercetin's effect on BVDV virus replication in vitro and in vivo and elucidate its mechanism of action. A CCK-8 kit was used to analyze the toxicity of the quercetin to the MDBK cells. Western blot, qRT-PCR, TCID50, and histological analysis were used to determine the mechanism of quercetin's anti-BVDV activity. An oxidative stress kit was used to evaluate the effects of quercetin on ROS, antioxidant enzymes, and MDA indexes. The effect of quercetin on IL-2 and IFN-γ in the serum of mice was determined by using an ELISA kit. The results showed that quercetin inhibits Hsp70, blocks BVDV infection in the early stage of virus infection and inhibits BVDV replication by inhibiting oxidative stress or ERK phosphorylation. In addition, quercetin alleviated the decrease in IFN-γ and IL-2 in the serum of BVDV-infected mice. Quercetin ameliorated BVDV-induced histopathological changes. In summary, this study demonstrated for the first time the role of Hsp70 in BVDV infection and the potential application of quercetin in treating BVDV infection.
Collapse
Affiliation(s)
- Nannan Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| | - Yu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tongtong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jinwei Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhibo Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Baihui Shao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zecai Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- Heilongjiang Provincial Engineering Research Center for Prevention and Control of Cattle Diseases, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence:
| |
Collapse
|
4
|
Aminoacyl-tRNA Synthetase: A Non-Negligible Molecule in RNA Viral Infection. Viruses 2022; 14:v14030613. [PMID: 35337020 PMCID: PMC8955326 DOI: 10.3390/v14030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases such as the ongoing coronavirus disease 2019 (COVID-19) continue to have a huge impact on global health, and the host-virus interaction remains incompletely understood. To address the global threat, in-depth investigations in pathogenesis are essential for interventions in infectious diseases and vaccine development. Interestingly, aminoacyl-transfer RNA (tRNA) synthetases (aaRSs), an ancient enzyme family that was once considered to play housekeeping roles in protein synthesis, are involved in multiple viral infectious diseases. Many aaRSs in eukaryotes present as the components of a cytoplasmic depot system named the multi-synthetase complex (MSC). Upon viral infections, several components of the MSC are released and exert nonenzymatic activities. Host aaRSs can also be utilized to facilitate viral entry and replication. In addition to their intracellular roles, some aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are secreted as active cytokines or function as “molecule communicators” on the cell surface. The interactions between aaRSs and viruses ultimately affect host innate immune responses or facilitate virus invasion. In this review, we summarized the latest advances of the interactions between aaRSs and RNA viruses, with a particular emphasis on the therapeutic potentials of aaRSs in viral infectious diseases.
Collapse
|
5
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
6
|
van Leur SW, Heunis T, Munnur D, Sanyal S. Pathogenesis and virulence of flavivirus infections. Virulence 2021; 12:2814-2838. [PMID: 34696709 PMCID: PMC8632085 DOI: 10.1080/21505594.2021.1996059] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/01/2022] Open
Abstract
The Flavivirus genus consists of >70 members including several that are considered significant human pathogens. Flaviviruses display a broad spectrum of diseases that can be roughly categorised into two phenotypes - systemic disease involving haemorrhage exemplified by dengue and yellow Fever virus, and neurological complications associated with the likes of West Nile and Zika viruses. Attempts to develop vaccines have been variably successful against some. Besides, mosquito-borne flaviviruses can be vertically transmitted in the arthropods, enabling long term persistence and the possibility of re-emergence. Therefore, developing strategies to combat disease is imperative even if vaccines become available. The cellular interactions of flaviviruses with their human hosts are key to establishing the viral lifecycle on the one hand, and activation of host immunity on the other. The latter should ideally eradicate infection, but often leads to immunopathological and neurological consequences. In this review, we use Dengue and Zika viruses to discuss what we have learned about the cellular and molecular determinants of the viral lifecycle and the accompanying immunopathology, while highlighting current knowledge gaps which need to be addressed in future studies.
Collapse
Affiliation(s)
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Deeksha Munnur
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OxfordOX1 3RE, UK
| |
Collapse
|
7
|
Sharma KB, Chhabra S, Aggarwal S, Tripathi A, Banerjee A, Yadav AK, Vrati S, Kalia M. Proteomic landscape of Japanese encephalitis virus-infected fibroblasts. J Gen Virol 2021; 102. [PMID: 34546869 DOI: 10.1099/jgv.0.001657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
8
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
9
|
Ramos CHI, Ayinde KS. Are Hsp90 inhibitors good candidates against Covid-19? Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111407. [PMID: 33176644 DOI: 10.2174/1389203721666201111160925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023]
Abstract
Drug reposition, or repurposing, has become a promising strategy in therapeutics due to its advantages in several aspects of drug therapy. General drug development is expensive and can take more than 10 years to go through the designing, development, and necessary approval steps. However, established drugs have already overcome these steps and thus a potential candidate may be already available decreasing the risks and costs involved. Viruses invade cells, usually provoking biochemical changes, leading to tissue damage, alteration of normal physiological condition in organisms and can even result in death. Inside the cell, the virus finds the machinery necessary for its multiplication, as for instance the protein quality control system, which involves chaperones and Hsps (heat shock proteins) that, in addition to physiological functions, help in the stabilization of viral proteins. Recently, many inhibitors of Hsp90 have been developed as therapeutic strategies against diseases such as the Hsp90 inhibitors used in anticancer therapy. Several shreds of evidence indicate that these inhibitors can also be used as therapeutic strategies against viruses. Therefore, since a drug treatment for COVID-19 is urgently needed, this review aims to discuss the potential use of Hsp90 inhibitors in the treatment of this globally threatening disease.
Collapse
Affiliation(s)
- Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| | - Kehinde S Ayinde
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| |
Collapse
|
10
|
Milewska A, Ner‐Kluza J, Dabrowska A, Bodzon‐Kulakowska A, Pyrc K, Suder P. MASS SPECTROMETRY IN VIROLOGICAL SCIENCES. MASS SPECTROMETRY REVIEWS 2020; 39:499-522. [PMID: 31876329 PMCID: PMC7228374 DOI: 10.1002/mas.21617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/15/2019] [Indexed: 05/24/2023]
Abstract
Virology, as a branch of the life sciences, discovered mass spectrometry (MS) to be the pivotal tool around two decades ago. The technique unveiled the complex network of interactions between the living world of pro- and eukaryotes and viruses, which delivered "a piece of bad news wrapped in protein" as defined by Peter Medawar, Nobel Prize Laureate, in 1960. However, MS is constantly evolving, and novel approaches allow for a better understanding of interactions in this micro- and nanoworld. Currently, we can investigate the interplay between the virus and the cell by analyzing proteomes, interactomes, virus-cell interactions, and search for the compounds that build viral structures. In addition, by using MS, it is possible to look at the cell from the broader perspective and determine the role of viral infection on the scale of the organism, for example, monitoring the crosstalk between infected tissues and the immune system. In such a way, MS became one of the major tools for the modern virology, allowing us to see the infection in the context of the whole cell or the organism. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Joanna Ner‐Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Agnieszka Dabrowska
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
- Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730‐387KrakowPoland
| | - Anna Bodzon‐Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| | - Krzysztof Pyrc
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakowPoland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and CeramicsAGH University of Science and TechnologyMickiewicza 30 Ave.30‐059KrakowPoland
| |
Collapse
|
11
|
Besson B, Basset J, Gatellier S, Chabrolles H, Chaze T, Hourdel V, Matondo M, Pardigon N, Choumet V. Comparison of a human neuronal model proteome upon Japanese encephalitis or West Nile Virus infection and potential role of mosquito saliva in neuropathogenesis. PLoS One 2020; 15:e0232585. [PMID: 32374750 PMCID: PMC7202638 DOI: 10.1371/journal.pone.0232585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/18/2020] [Indexed: 12/31/2022] Open
Abstract
Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.
Collapse
Affiliation(s)
- Benoit Besson
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Justine Basset
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Sandrine Gatellier
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Hélène Chabrolles
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Véronique Hourdel
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR CNRS, Paris, France
| | - Nathalie Pardigon
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
| | - Valérie Choumet
- Institut Pasteur, Environment and Infectious Risks Unit, Arbovirus Group, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Chasing Intracellular Zika Virus Using Proteomics. Viruses 2019; 11:v11090878. [PMID: 31546825 PMCID: PMC6783930 DOI: 10.3390/v11090878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are the most medically relevant group of arboviruses causing a wide range of diseases in humans and are associated with high mortality and morbidity, as such posing a major health concern. Viruses belonging to this family can be endemic (e.g., dengue virus), but can also cause fulminant outbreaks (e.g., West Nile virus, Japanese encephalitis virus and Zika virus). Intense research efforts in the past decades uncovered shared fundamental strategies used by flaviviruses to successfully replicate in their respective hosts. However, the distinct features contributing to the specific host and tissue tropism as well as the pathological outcomes unique to each individual flavivirus are still largely elusive. The profound footprint of individual viruses on their respective hosts can be investigated using novel technologies in the field of proteomics that have rapidly developed over the last decade. An unprecedented sensitivity and throughput of mass spectrometers, combined with the development of new sample preparation and bioinformatics analysis methods, have made the systematic investigation of virus-host interactions possible. Furthermore, the ability to assess dynamic alterations in protein abundances, protein turnover rates and post-translational modifications occurring in infected cells now offer the unique possibility to unravel complex viral perturbations induced in the infected host. In this review, we discuss the most recent contributions of mass spectrometry-based proteomic approaches in flavivirus biology with a special focus on Zika virus, and their basic and translational potential and implications in understanding and characterizing host responses to arboviral infections.
Collapse
|
13
|
Tong M, Yi L, Sun N, Cheng Y, Cao Z, Wang J, Li S, Lin P, Sun Y, Cheng S. Quantitative Analysis of Cellular Proteome Alterations in CDV-Infected Mink Lung Epithelial Cells. Front Microbiol 2017; 8:2564. [PMID: 29312244 PMCID: PMC5743685 DOI: 10.3389/fmicb.2017.02564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Canine distemper virus (CDV), a paramyxovirus, causes a severe highly contagious lethal disease in carnivores, such as mink. Mink lung epithelial cells (Mv.1.Lu cells) are sensitive to CDV infection and are homologous to the natural host system of mink. The current study analyzed the response of Mv.1.Lu cells to CDV infection by iTRAQ combined with LC-MS/MS. In total, 151 and 369 differentially expressed proteins (DEPs) were markedly up-regulated or down-regulated, respectively. Thirteen DEPs were validated via real-time RT-PCR or western blot analysis. Network and KEGG pathway analyses revealed several regulated proteins associated with the NF-κB signaling pathway. Further validation was performed by western blot analysis and immunofluorescence assay, which demonstrated that different CDV strains induced NF-κB P65 phosphorylation and nuclear translocation. Moreover, the results provided interesting information that some identified DEPs possibly associated with the pathogenesis and the immune response upon CDV infection. This study is the first overview of the responses to CDV infection in Mv.1.Lu cells, and the findings will help to analyze further aspects of the molecular mechanisms involved in viral pathogenesis and the immune responses upon CDV infection.
Collapse
Affiliation(s)
- Mingwei Tong
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zhigang Cao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shuang Li
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peng Lin
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yaru Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
14
|
Jean Beltran PM, Federspiel JD, Sheng X, Cristea IM. Proteomics and integrative omic approaches for understanding host-pathogen interactions and infectious diseases. Mol Syst Biol 2017; 13:922. [PMID: 28348067 PMCID: PMC5371729 DOI: 10.15252/msb.20167062] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organisms are constantly exposed to microbial pathogens in their environments. When a pathogen meets its host, a series of intricate intracellular interactions shape the outcome of the infection. The understanding of these host–pathogen interactions is crucial for the development of treatments and preventive measures against infectious diseases. Over the past decade, proteomic approaches have become prime contributors to the discovery and understanding of host–pathogen interactions that represent anti‐ and pro‐pathogenic cellular responses. Here, we review these proteomic methods and their application to studying viral and bacterial intracellular pathogens. We examine approaches for defining spatial and temporal host–pathogen protein interactions upon infection of a host cell. Further expanding the understanding of proteome organization during an infection, we discuss methods that characterize the regulation of host and pathogen proteomes through alterations in protein abundance, localization, and post‐translational modifications. Finally, we highlight bioinformatic tools available for analyzing such proteomic datasets, as well as novel strategies for integrating proteomics with other omic tools, such as genomics, transcriptomics, and metabolomics, to obtain a systems‐level understanding of infectious diseases.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
15
|
Biron D, Nedelkov D, Missé D, Holzmuller P. Proteomics and Host–Pathogen Interactions. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2017. [PMCID: PMC7149668 DOI: 10.1016/b978-0-12-799942-5.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Sztuba-Solinska J, Diaz L, Kumar MR, Kolb G, Wiley MR, Jozwick L, Kuhn JH, Palacios G, Radoshitzky SR, J Le Grice SF, Johnson RF. A small stem-loop structure of the Ebola virus trailer is essential for replication and interacts with heat-shock protein A8. Nucleic Acids Res 2016; 44:9831-9846. [PMID: 27651462 PMCID: PMC5175359 DOI: 10.1093/nar/gkw825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) is a single-stranded negative-sense RNA virus belonging to the Filoviridae family. The leader and trailer non-coding regions of the EBOV genome likely regulate its transcription, replication, and progeny genome packaging. We investigated the cis-acting RNA signals involved in RNA–RNA and RNA–protein interactions that regulate replication of eGFP-encoding EBOV minigenomic RNA and identified heat shock cognate protein family A (HSC70) member 8 (HSPA8) as an EBOV trailer-interacting host protein. Mutational analysis of the trailer HSPA8 binding motif revealed that this interaction is essential for EBOV minigenome replication. Selective 2′-hydroxyl acylation analyzed by primer extension analysis of the secondary structure of the EBOV minigenomic RNA indicates formation of a small stem-loop composed of the HSPA8 motif, a 3′ stem-loop (nucleotides 1868–1890) that is similar to a previously identified structure in the replicative intermediate (RI) RNA and a panhandle domain involving a trailer-to-leader interaction. Results of minigenome assays and an EBOV reverse genetic system rescue support a role for both the panhandle domain and HSPA8 motif 1 in virus replication.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- RT Biochemistry Section, Basic Research Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Larissa Diaz
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Mia R Kumar
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gaëlle Kolb
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Michael R Wiley
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Lucas Jozwick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- RT Biochemistry Section, Basic Research Laboratory, National Cancer Institute-Frederick, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Disease, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Oxford KL, Wendler JP, McDermott JE, White III RA, Powell JD, Jacobs JM, Adkins JN, Waters KM. The landscape of viral proteomics and its potential to impact human health. Expert Rev Proteomics 2016; 13:579-91. [DOI: 10.1080/14789450.2016.1184091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Kuzmenko YV, Starodubova ES, Karganova GG, Timofeev AV, Karpov VL. Nonstructural protein 1 of tick-borne encephalitis virus activates the expression of immunoproteasome subunits. Mol Biol 2016. [DOI: 10.1134/s0026893316020126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Duriez E, Armengaud J, Fenaille F, Ezan E. Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:183-199. [PMID: 26956386 DOI: 10.1002/jms.3747] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/14/2015] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
In the current context of international conflicts and localized terrorist actions, there is unfortunately a permanent threat of attacks with unconventional warfare agents. Among these, biological agents such as toxins, microorganisms, and viruses deserve particular attention owing to their ease of production and dissemination. Mass spectrometry (MS)-based techniques for the detection and quantification of biological agents have a decisive role to play for countermeasures in a scenario of biological attacks. The application of MS to every field of both organic and macromolecular species has in recent years been revolutionized by the development of soft ionization techniques (MALDI and ESI), and by the continuous development of MS technologies (high resolution, accurate mass HR/AM instruments, novel analyzers, hybrid configurations). New possibilities have emerged for exquisite specific and sensitive detection of biological warfare agents. MS-based strategies for clinical application can now address a wide range of analytical questions mainly including issues related to the complexity of biological samples and their available volume. Multiplexed toxin detection, discovery of new markers through omics approaches, and identification of untargeted microbiological or of novel molecular targets are examples of applications. In this paper, we will present these technological advances along with the novel perspectives offered by omics approaches to clinical detection and follow-up.
Collapse
Affiliation(s)
| | - Jean Armengaud
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunologie, 30207, Bagnols sur-Cèze, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191, Gif-sur-Yvette cedex, France
| | - Eric Ezan
- CEA, Programme Transversal Technologies pour la Santé, 91191, Gif sur Yvette, France
| |
Collapse
|
20
|
Grabowski JM, Perera R, Roumani AM, Hedrick VE, Inerowicz HD, Hill CA, Kuhn RJ. Changes in the Proteome of Langat-Infected Ixodes scapularis ISE6 Cells: Metabolic Pathways Associated with Flavivirus Infection. PLoS Negl Trop Dis 2016; 10:e0004180. [PMID: 26859745 PMCID: PMC4747643 DOI: 10.1371/journal.pntd.0004180] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Background Ticks (Family Ixodidae) transmit a variety of disease causing agents to humans and animals. The tick-borne flaviviruses (TBFs; family Flaviviridae) are a complex of viruses, many of which cause encephalitis and hemorrhagic fever, and represent global threats to human health and biosecurity. Pathogenesis has been well studied in human and animal disease models. Equivalent analyses of tick-flavivirus interactions are limited and represent an area of study that could reveal novel approaches for TBF control. Methodology/Principal Findings High resolution LC-MS/MS was used to analyze the proteome of Ixodes scapularis (Lyme disease tick) embryonic ISE6 cells following infection with Langat virus (LGTV) and identify proteins associated with viral infection and replication. Maximal LGTV infection of cells and determination of peak release of infectious virus, was observed at 36 hours post infection (hpi). Proteins were extracted from ISE6 cells treated with LGTV and non-infectious (UV inactivated) LGTV at 36 hpi and analyzed by mass spectrometry. The Omics Discovery Pipeline (ODP) identified thousands of MS peaks. Protein homology searches against the I. scapularis IscaW1 genome assembly identified a total of 486 proteins that were subsequently assigned to putative functional pathways using searches against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. 266 proteins were differentially expressed following LGTV infection relative to non-infected (mock) cells. Of these, 68 proteins exhibited increased expression and 198 proteins had decreased expression. The majority of the former were classified in the KEGG pathways: “translation”, “amino acid metabolism”, and “protein folding/sorting/degradation”. Finally, Trichostatin A and Oligomycin A increased and decreased LGTV replication in vitro in ISE6 cells, respectively. Conclusions/Significance Proteomic analyses revealed ISE6 proteins that were differentially expressed at the peak of LGTV replication. Proteins with increased expression following infection were associated with cellular metabolic pathways and glutaminolysis. In vitro assays using small molecules implicate malate dehydrogenase (MDH2), the citrate cycle, cellular acetylation, and electron transport chain processes in viral replication. Proteins were identified that may be required for TBF infection of ISE6 cells. These proteins are candidates for functional studies and targets for the development of transmission-blocking vaccines and drugs. High-throughput proteomics offers an approach to evaluate changes in cell protein levels following arboviral infection. Research to understand the molecular basis of human-flavivirus interactions has advanced significantly over the past decade, but comparatively little is known regarding interactions between ticks and tick-borne flaviviruses (TBFs). Here, we employed a proteomics approach using an I. scapularis ISE6 cell line infected with the TBF Langat virus (LGTV) to identify proteins and biochemical pathways affected by viral infection. An LC-MS/MS approach was used to identify proteins that were subsequently assigned to putative cellular pathways based on orthology to proteins in the KEGG database. Biochemical pathways common among arthropods in response to infection with flavivirus and possibly unique to tick-flavivirus interactions, were identified. In vitro cellular assays using small molecules suggest the involvement of the ISE6 proteins, malate dehydrogenase (MDH2), and mitochondria in viral replication. These analyses provide a basis for further studies to identify tick proteins associated with viral replication that could be targeted to disrupt TBF transmission.
Collapse
Affiliation(s)
- Jeffrey M. Grabowski
- Department of Entomology, College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
- Markey Center for Structural Biology, Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Rushika Perera
- Markey Center for Structural Biology, Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Ali M. Roumani
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Victoria E. Hedrick
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Halina D. Inerowicz
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
| | - Catherine A. Hill
- Department of Entomology, College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Alam SB, Rochon D. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection. J Virol 2015; 90:3302-17. [PMID: 26719261 PMCID: PMC4794660 DOI: 10.1128/jvi.02833-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/16/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| |
Collapse
|
22
|
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, Růžek D, Grubhoffer L, de la Fuente J, Fazakerley JK, Bell-Sakyi L. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors 2015; 8:599. [PMID: 26582129 PMCID: PMC4652421 DOI: 10.1186/s13071-015-1210-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ixodid ticks are important vectors of a wide variety of viral, bacterial and protozoan pathogens of medical and veterinary importance. Although several studies have elucidated tick responses to bacteria, little is known about the tick response to viruses. To gain insight into the response of tick cells to flavivirus infection, the transcriptomes and proteomes of two Ixodes spp cell lines infected with the flavivirus tick-borne encephalitis virus (TBEV) were analysed. METHODS RNA and proteins were isolated from the Ixodes scapularis-derived cell line IDE8 and the Ixodes ricinus-derived cell line IRE/CTVM19, mock-infected or infected with TBEV, on day 2 post-infection (p.i.) when virus production was increasing, and on day 6 p.i. when virus production was decreasing. RNA-Seq and mass spectrometric technologies were used to identify changes in abundance of, respectively, transcripts and proteins. Functional analyses were conducted on selected transcripts using RNA interference (RNAi) for gene knockdown in tick cells infected with the closely-related but less pathogenic flavivirus Langat virus (LGTV). RESULTS Differential expression analysis using DESeq resulted in totals of 43 and 83 statistically significantly differentially-expressed transcripts in IDE8 and IRE/CTVM19 cells, respectively. Mass spectrometry detected 76 and 129 statistically significantly differentially-represented proteins in IDE8 and IRE/CTVM19 cells, respectively. Differentially-expressed transcripts and differentially-represented proteins included some that may be involved in innate immune and cell stress responses. Knockdown of the heat-shock proteins HSP90, HSP70 and gp96, the complement-associated protein Factor H and the protease trypsin resulted in increased LGTV replication and production in at least one tick cell line, indicating a possible antiviral role for these proteins. Knockdown of RNAi-associated proteins Argonaute and Dicer, which were included as positive controls, also resulted in increased LGTV replication and production in both cell lines, confirming their role in the antiviral RNAi pathway. CONCLUSIONS This systems biology approach identified several molecules that may be involved in the tick cell innate immune response against flaviviruses and highlighted that ticks, in common with other invertebrate species, have other antiviral responses in addition to RNAi.
Collapse
Affiliation(s)
- Sabine Weisheit
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, 0377, Norway.
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - Marina Popara
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Julia Loecherbach
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
| | - Daniel Růžek
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
- Veterinary Research Institute, Hudcova 70, Brno, 62100, Czech Republic.
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia and Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branisovska 31, České Budějovice (Budweis), 37005, Czech Republic.
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - John K Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, EH25 9RG, UK.
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK.
| | | |
Collapse
|
23
|
Zhang H, Sun J, Ye J, Ashraf U, Chen Z, Zhu B, He W, Xu Q, Wei Y, Chen H, Fu ZF, Liu R, Cao S. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response. J Proteome Res 2015; 14:5157-68. [DOI: 10.1021/acs.jproteome.5b00424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhen F. Fu
- Department
of Pathology, University of Georgia, Athens, Georgia 30602, United States
| | | | | |
Collapse
|
24
|
Li HY, Zhang LK, Zhu XJ, Shang J, Chen X, Zhu Y, Guo L. Analysis of EV71 infection progression using triple-SILAC-based proteomics approach. Proteomics 2015; 15:3629-43. [PMID: 26306425 DOI: 10.1002/pmic.201500180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 11/09/2022]
Abstract
Enterovirus 71 (EV71), a member of Picornaviridae, causes severe neurological and systemic illness in children. To better understand the virus-host cell interactions, we performed a triple-SILAC-based quantitative proteomics study monitoring host cell proteome changes after EV71 infection. Based on the quantitative data for more than 4100 proteins, ∼17% of the proteins were found as significantly changed (p<0.01) at either 8 or 20 hours post infection. Five biological processes and seven protein classes showed significant differences. Functional screening of nine regulated proteins discovered the regulatory role of CHCH2, a mitochondrial protein known as a transcriptional activator for cytochrome c oxidase, in EV71 replication. Further studies showed that CHCH2 served as a negative regulator of innate immune responses. All MS data have been deposited in the ProteomeXchange with identifier PXD002483 (http://proteomecentral.proteomexchange.org/dataset/PXD002483).
Collapse
Affiliation(s)
- Hao-Yu Li
- State Key Laboratory of Virology, Wuhan University, Wuhan, P. R. China.,College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Lei-Ke Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiu-Juan Zhu
- State Key Laboratory of Virology, Wuhan University, Wuhan, P. R. China.,College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Jun Shang
- State Key Laboratory of Virology, Wuhan University, Wuhan, P. R. China.,College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan, P. R. China
| | - Ying Zhu
- State Key Laboratory of Virology, Wuhan University, Wuhan, P. R. China.,College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Lin Guo
- State Key Laboratory of Virology, Wuhan University, Wuhan, P. R. China.,College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
25
|
Zhang C, Kang K, Ning P, Peng Y, Lin Z, Cui H, Cao Z, Wang J, Zhang Y. Heat shock protein 70 is associated with CSFV NS5A protein and enhances viral RNA replication. Virology 2015; 482:9-18. [PMID: 25827528 DOI: 10.1016/j.virol.2015.02.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling via to its ability to interact with various cellular proteins. Here, HSP70/NS5A complex formation is confirmed by coimmunoprecipitation and GST-pulldown studies. Additionally, the N-terminal amino acids (29-240) of NS5A were identified as the interaction region through in vivo deletion analyses, and confocal microscopy showed that NS5A and HSP70 colocalized in the cytoplasm. Overexpression of HSP70 via the eukaryotic expression plasmid pDsRED N1 or lentivirus significantly promoted viral RNA synthesis. Whereas the knockdown of HSP70 by lentivirus-mediated shRNA or inhibition by quercetin markedly decreased the viral load. These data suggest that HSP70 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of HSP70 protein functions may be beneficial for developing new strategies to treat CSFV infection.
Collapse
Affiliation(s)
- Chengcheng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yangxin Peng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Hongjie Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Cao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
26
|
High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. J Proteomics 2015; 120:126-41. [PMID: 25782748 PMCID: PMC7102674 DOI: 10.1016/j.jprot.2015.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/14/2015] [Accepted: 03/04/2015] [Indexed: 01/14/2023]
Abstract
Global re-emergence of Chikungunya virus (CHIKV) has renewed the interest in its cellular pathogenesis. We subjected CHIKV-infected Human Embryo Kidney cells (HEK293), a widely used cell-based system for CHIKV infection studies, to a high throughput expression proteomics analysis by Liquid Chromatography–tandem mass spectrometry. A total of 1047 differentially expressed proteins were identified in infected cells, consistently in three biological replicates. Proteins involved in transcription, translation, apoptosis and stress response were the major ones among the 209 proteins that had significant up-regulation. In the set of 45 down-regulated proteins, those involved in carbohydrate and lipid metabolism predominated. A STRING network analysis revealed tight interaction of proteins within the apoptosis, stress response and protein synthesis pathways. We short-listed a common set of 30 proteins that can be implicated in cellular pathology of CHIKV infection by comparing our results and results of earlier CHIKV proteomics studies. Modulation of eight proteins selected from this set was re-confirmed at transcript level. One among them, Nucleophosmin, a nuclear chaperone, showed temporal modulation and cytoplasmic aggregation upon CHIKV infection in double immunofluorescence staining and confocal microscopy. The short-listed cellular proteins will be potential candidates for targeted study of the molecular interactions of CHIKV with host cells. Biological significance Chikungunya remained as a neglected tropical disease till its re-emergence in 2005 in the La RéUnion islands and subsequently, in India and many parts of South East Asia. These and the epidemics that followed in subsequent years ran an explosive course leading to extreme morbidity and attributed mortality to this originally benign virus infection. Apart from classical symptoms of acute fever and debilitating polyarthralgia lasting for several weeks, a number of complications were documented. These included aphthous-like ulcers and vesiculo-bullous eruptions on the skin, hepatic involvement, central nervous system complications such as encephalopathy and encephalitis, and transplacental transmission. The disease has recently spread to the Americas with its initial documentation in the Caribbean islands. The Asian genotype of this positive-stranded RNA virus of the Alphavirus genus has been attributed in these outbreaks. However, the disease ran a similar course as the one caused by the East, Central and South African (ECSA) genotype in the other parts of the world. Studies have documented a number of mutations in the re-emerging strains of the virus that enhances mosquito adaptability and modulates virus infectivity. This might support the occurrence of fiery outbreaks in the absence of herd immunity in affected population. Several research groups work to understand the pathogenesis of chikungunya and the mechanisms of complications using cellular and animal models. A few proteomics approaches have been employed earlier to understand the protein level changes in the infected cells. Our present study, which couples a high throughput proteomic analysis and a comparative review of these earlier studies, identifies a few critical molecules as hypothetical candidates that might be important in this infection and for future study. High throughput expression proteomics analysis in HEK293 cells Identified four major cellular pathways affected in Chikungunya virus infection Short-listed 30 key proteins modulated by a comparative review Confirmed modulation of Nucleophosmin and other selected proteins upon infection
Collapse
|
27
|
Chiu HC, Hannemann H, Heesom KJ, Matthews DA, Davidson AD. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One 2014; 9:e93305. [PMID: 24671231 PMCID: PMC3966871 DOI: 10.1371/journal.pone.0093305] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/01/2014] [Indexed: 01/18/2023] Open
Abstract
Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.
Collapse
Affiliation(s)
- Han-Chen Chiu
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Holger Hannemann
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - David A. Matthews
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine Faculty of Medical and Veterinary Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Clarke P, Leser JS, Bowen RA, Tyler KL. Virus-induced transcriptional changes in the brain include the differential expression of genes associated with interferon, apoptosis, interleukin 17 receptor A, and glutamate signaling as well as flavivirus-specific upregulation of tRNA synthetases. mBio 2014; 5:e00902-14. [PMID: 24618253 PMCID: PMC3952157 DOI: 10.1128/mbio.00902-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses, particularly Japanese encephalitis virus (JEV) and West Nile virus (WNV), are important causes of virus-induced central nervous system (CNS) disease in humans. We used microarray analysis to identify cellular genes that are differentially regulated following infection of the brain with JEV (P3) or WNV (New York 99). Gene expression data for these flaviviruses were compared to those obtained following infection of the brain with reovirus (type 3 Dearing), an unrelated neurotropic virus. We found that a large number of genes were up-regulated by all three viruses (using the criteria of a change of >2-fold and a P value of <0.001), including genes associated with interferon signaling, the immune system, inflammation, and cell death/survival signaling. In addition, genes associated with glutamate signaling were down-regulated in infections with all three viruses (criteria, a >2-fold change and a P value of <0.001). These genes may serve as broad-spectrum therapeutic targets for virus-induced CNS disease. A distinct set of genes were up-regulated following flavivirus infection but not following infection with reovirus. These genes were associated with tRNA charging and may serve as therapeutic targets for flavivirus-induced CNS disease. IMPORTANCE Viral infections of the central nervous system (CNS) are an important cause of morbidity and mortality. Treatment options for virus-induced CNS disease are limited, and for many clinically important neurotropic viruses, no specific therapy of proven benefit is currently available. We performed microarray analysis to identify genes that are differentially regulated in the brain following virus infection in order to identify pathways that might provide novel therapeutic targets for virus-induced CNS disease. Although several studies have described gene expression changes following virus infection of the brain, this report is the first to directly compare large-scale gene expression data from different viruses. We identified genes that are differentially regulated in infection of the brain with viruses from different families and those which appear to be specific to flavivirus infections.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Smith Leser
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Richard A. Bowen
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | | |
Collapse
|
29
|
Fraisier C, Koraka P, Belghazi M, Bakli M, Granjeaud S, Pophillat M, Lim SM, Osterhaus A, Martina B, Camoin L, Almeras L. Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One 2014; 9:e91397. [PMID: 24618821 PMCID: PMC3949995 DOI: 10.1371/journal.pone.0091397] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/10/2014] [Indexed: 01/13/2023] Open
Abstract
Recent outbreaks of Chikungunya virus (CHIKV) infection have been characterized by an increasing number of severe cases with atypical manifestations including neurological complications. In parallel, the risk map of CHIKV outbreaks has expanded because of improved vector competence. These features make CHIKV infection a major public health concern that requires a better understanding of the underlying physiopathological processes for the development of antiviral strategies to protect individuals from severe disease. To decipher the mechanisms of CHIKV infection in the nervous system, a kinetic analysis on the host proteome modifications in the brain of CHIKV-infected mice sampled before and after the onset of clinical symptoms was performed. The combination of 2D-DIGE and iTRAQ proteomic approaches, followed by mass spectrometry protein identification revealed 177 significantly differentially expressed proteins. This kinetic analysis revealed a dramatic down-regulation of proteins before the appearance of the clinical symptoms followed by the increased expression of most of these proteins in the acute symptomatic phase. Bioinformatic analyses of the protein datasets enabled the identification of the major biological processes that were altered during the time course of CHIKV infection, such as integrin signaling and cytoskeleton dynamics, endosome machinery and receptor recycling related to virus transport and synapse function, regulation of gene expression, and the ubiquitin-proteasome pathway. These results reveal the putative mechanisms associated with severe CHIKV infection-mediated neurological disease and highlight the potential markers or targets that can be used to develop diagnostic and/or antiviral tools.
Collapse
Affiliation(s)
- Christophe Fraisier
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Penelope Koraka
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Université, CNRS, CRN2M UMR 7286, Marseille, France
| | - Mahfoud Bakli
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Samuel Granjeaud
- CRCM, Marseille Protéomique, Inserm, U1068, Marseille, France
- Aix-Marseille Université, UM 105, Marseille, France
| | - Matthieu Pophillat
- CRCM, Marseille Protéomique, Inserm, U1068, Marseille, France
- Aix-Marseille Université, UM 105, Marseille, France
| | - Stephanie M. Lim
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Albert Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Byron Martina
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Luc Camoin
- CRCM, Marseille Protéomique, Inserm, U1068, Marseille, France
- Aix-Marseille Université, UM 105, Marseille, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- Unité de recherche en biologie et épidémiologie parasitaires (URBEP), Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
- * E-mail:
| |
Collapse
|
30
|
Modulation of neuronal proteome profile in response to Japanese encephalitis virus infection. PLoS One 2014; 9:e90211. [PMID: 24599148 PMCID: PMC3943924 DOI: 10.1371/journal.pone.0090211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/29/2014] [Indexed: 11/19/2022] Open
Abstract
In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.
Collapse
|
31
|
Fraisier C, Rodrigues R, Vu Hai V, Belghazi M, Bourdon S, Paranhos-Baccala G, Camoin L, Almeras L, Peyrefitte CN. Hepatocyte pathway alterations in response to in vitro Crimean Congo hemorrhagic fever virus infection. Virus Res 2014; 179:187-203. [DOI: 10.1016/j.virusres.2013.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
32
|
Altered protein networks and cellular pathways in severe west nile disease in mice. PLoS One 2013; 8:e68318. [PMID: 23874584 PMCID: PMC3707916 DOI: 10.1371/journal.pone.0068318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/28/2013] [Indexed: 01/25/2023] Open
Abstract
Background The recent West Nile virus (WNV) outbreaks in developed countries, including Europe and the United States, have been associated with significantly higher neuropathology incidence and mortality rate than previously documented. The changing epidemiology, the constant risk of (re-)emergence of more virulent WNV strains, and the lack of effective human antiviral therapy or vaccines makes understanding the pathogenesis of severe disease a priority. Thus, to gain insight into the pathophysiological processes in severe WNV infection, a kinetic analysis of protein expression profiles in the brain of WNV-infected mice was conducted using samples prior to and after the onset of clinical symptoms. Methodology/Principal Findings To this end, 2D-DIGE and gel-free iTRAQ labeling approaches were combined, followed by protein identification by mass spectrometry. Using these quantitative proteomic approaches, a set of 148 proteins with modified abundance was identified. The bioinformatics analysis (Ingenuity Pathway Analysis) of each protein dataset originating from the different time-point comparisons revealed that four major functions were altered during the course of WNV-infection in mouse brain tissue: i) modification of cytoskeleton maintenance associated with virus circulation; ii) deregulation of the protein ubiquitination pathway; iii) modulation of the inflammatory response; and iv) alteration of neurological development and neuronal cell death. The differential regulation of selected host protein candidates as being representative of these biological processes were validated by western blotting using an original fluorescence-based method. Conclusion/Significance This study provides novel insights into the in vivo kinetic host reactions against WNV infection and the pathophysiologic processes involved, according to clinical symptoms. This work offers useful clues for anti-viral research and further evaluation of early biomarkers for the diagnosis and prevention of severe neurological disease caused by WNV.
Collapse
|
33
|
Arpaci T, Ugurluer G, Akbas T, Arpaci RB, Serin M. Imaging of the skeletal muscle metastases. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2013. [PMID: 23280019 PMCID: PMC7163697 DOI: 10.1002/ddr.21049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Copyright 2011 Wiley-Liss, Inc., A Wiley CompanyThis article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency. Omics technologies include genomics, transcriptomics, proteomics, metabolomics, and immunomics. These technologies have been used in vaccine research, which can be summarized using the term “vaccinomics.” These omics technologies combined with advanced bioinformatics analysis form the core of “systems vaccinology.” Omics technologies provide powerful methods in vaccine target identification. The genomics‐based reverse vaccinology starts with predicting vaccine protein candidates through in silico bioinformatics analysis of genome sequences. The VIOLIN Vaxign vaccine design program (http://www.violinet.org/vaxign) is the first web‐based vaccine target prediction software based on the reverse vaccinology strategy. Systematic transcriptomics and proteomics analyses facilitate rational vaccine target identification by detesting genome‐wide gene expression profiles. Immunomics is the study of the set of antigens recognized by host immune systems and has also been used for efficient vaccine target prediction. With the large amount of omics data available, it is necessary to integrate various vaccine data using ontologies, including the Gene Ontology (GO) and Vaccine Ontology (VO), for more efficient vaccine target prediction and assessment. All these omics technologies combined with advanced bioinformatics analysis methods for a systems biology‐based vaccine target prediction strategy. This article reviews the various omics technologies and how they can be used in vaccine target identification.
Collapse
Affiliation(s)
- T Arpaci
- Department of Radiology, Acibadem Adana Hospital, Adana, Turkey.
| | | | | | | | | |
Collapse
|
34
|
Zhang LK, Chai F, Li HY, Xiao G, Guo L. Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 2013; 12:2666-78. [PMID: 23647205 DOI: 10.1021/pr400011k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Japanese encephalitis virus (JEV) enters host cells via receptor-mediated endocytosis and replicates in the cytoplasm of infected cells. To study virus-host cell interactions, we performed a SILAC-based quantitative proteomics study of JEV-infected HeLa cells using a subcellular fractionation strategy. We identified 158 host proteins as differentially regulated by JEV (defined as exhibiting a greater than 1.5-fold change in protein abundance upon JEV infection). The mass spectrometry quantitation data for selected proteins were validated by Western blot and immunofluorescence confocal microscopy. Bioinformatics analyses were used to generate JEV-regulated host response networks consisting of regulated proteins, which included 35 proteins that were newly added based on the results of this study. The JEV infection-induced host response was found to be coordinated primarily through the immune response process, the ubiquitin-proteasome system (UPS), the intracellular membrane system, and lipid metabolism-related proteins. Protein functional studies of selected host proteins using RNA interference-based techniques were carried out in HeLa cells infected with an attenuated or a highly virulent strain of JEV. We demonstrated that the knockdown of interferon-induced transmembrane protein 3 (IFITM3), Ran-binding protein 2 (RANBP2), sterile alpha motif domain-containing protein 9 (SAMD9) and vesicle-associated membrane protein 8 (VAMP8) significantly increased JEV replication. The results presented here not only promote a better understanding of the host response to JEV infection but also highlight multiple potential targets for the development of antiviral agents.
Collapse
Affiliation(s)
- Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
35
|
Differential proteome analysis of chikungunya virus infection on host cells. PLoS One 2013; 8:e61444. [PMID: 23593481 PMCID: PMC3622599 DOI: 10.1371/journal.pone.0061444] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. Methodology and Principal Findings The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE). Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP) and cell cycle regulation. Conclusion/Significance This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1) regulation (in favour of virus survival, replication and transmission). While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.
Collapse
|
36
|
Scagnolari C, Caputo B, Trombetti S, Cacciotti G, Soldà A, Spano L, Villari P, Della Torre A, Nowotny N, Antonelli G. Usutu virus growth in human cell lines: induction of and sensitivity to type I and III interferons. J Gen Virol 2012; 94:789-795. [PMID: 23255619 DOI: 10.1099/vir.0.046433-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of Usutu virus (USUV) pathogenesis are largely unknown. The aim of this study was to evaluate the sensitivity of USUV to interferon (IFN) and the capacity of USUV to stimulate IFN production. Initial experiments were conducted to characterize the susceptibility of human cell lines to USUV infection and to evaluate the single-growth cycle replication curve of USUV. Results indicate that USUV is able to infect a variety of human cell lines, completing the replication cycle in Hep-2 and Vero cells within 48 h. Pre-treatment of cells with types I and III IFNs significantly inhibited the replication of USUV. However, the inhibitory effects of IFNs were considerably less if IFN was added after viral infection had been initiated. Also, USUV weakly induced types I and III IFNs.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| | - Beniamino Caputo
- Parasitology Unit, Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simona Trombetti
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| | - Giulia Cacciotti
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| | - Annalisa Soldà
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| | - Lucia Spano
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| | - Paolo Villari
- Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Viale Regina Elena 324, 00185 Rome, Italy
| | - Alessandra Della Torre
- Parasitology Unit, Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Norbert Nowotny
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Al-Khod, Muscat 123, Oman.,Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, 'Sapienza' University of Rome, Viale di Porta Tiburtina 28, 00185, Rome, Italy
| |
Collapse
|
37
|
Zheng J, Tan BH, Sugrue R, Tang K. Current approaches on viral infection: proteomics and functional validations. Front Microbiol 2012; 3:393. [PMID: 23162545 PMCID: PMC3499792 DOI: 10.3389/fmicb.2012.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022] Open
Abstract
Viruses could manipulate cellular machinery to ensure their continuous survival and thus become parasites of living organisms. Delineation of sophisticated host responses upon virus infection is a challenging task. It lies in identifying the repertoire of host factors actively involved in the viral infectious cycle and characterizing host responses qualitatively and quantitatively during viral pathogenesis. Mass spectrometry based proteomics could be used to efficiently study pathogen-host interactions and virus-hijacked cellular signaling pathways. Moreover, direct host and viral responses upon infection could be further investigated by activity-based functional validation studies. These approaches involve drug inhibition of secretory pathway, immunofluorescence staining, dominant negative mutant of protein target, real-time PCR, small interfering siRNA-mediated knockdown, and molecular cloning studies. In this way, functional validation could gain novel insights into the high-content proteomic dataset in an unbiased and comprehensive way.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Sciences, Nanyang Technological University Singapore
| | | | | | | |
Collapse
|
38
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
39
|
A small-molecule inhibitor of deubiquitinating enzyme USP14 inhibits Dengue virus replication. Virus Res 2012; 165:103-6. [PMID: 22306365 DOI: 10.1016/j.virusres.2012.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a key player in maintaining cellular protein homeostasis and is associated with various human diseases, including neurodegenerative disorders, cancer, and infectious diseases. Viruses from several families reprogram the UPS to make the cellular environment conducive to viral replication, and inhibition of the UPS interferes with viral propagation. Here we show that IU1, a small-molecule inhibitor of the proteasome-associated deubiquitinating enzyme USP14, inhibits replication of several flaviviruses. IU1 has been shown to enhance proteasome activity, an effect that may underlie its influence on flavivirus propagation. Inhibition of dengue virus replication was more pronounced than other flaviviruses used in the study. These results open new targets for therapeutic intervention against viruses from multiple families.
Collapse
|
40
|
Zheng J, Sugrue RJ, Tang K. Mass spectrometry based proteomic studies on viruses and hosts--a review. Anal Chim Acta 2011; 702:149-59. [PMID: 21839192 PMCID: PMC7094357 DOI: 10.1016/j.aca.2011.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023]
Abstract
In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied using this approach. As more virus and host genomes are being sequenced, MS-based proteomics is becoming an indispensable tool for virology. In this paper, we provide a brief review of the current technologies and their applications in studying selected viruses and hosts.
Collapse
Affiliation(s)
- Jie Zheng
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Richard J. Sugrue
- Division of Molecular and Cell Biology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kai Tang
- Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
41
|
Blais DR, Nasheri N, McKay CS, Legault MC, Pezacki JP. Activity-based protein profiling of host-virus interactions. Trends Biotechnol 2011; 30:89-99. [PMID: 21944551 PMCID: PMC7114118 DOI: 10.1016/j.tibtech.2011.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 02/08/2023]
Abstract
Virologists have benefited from large-scale profiling methods to discover new host–virus interactions and to learn about the mechanisms of pathogenesis. One such technique, referred to as activity-based protein profiling (ABPP), uses active site-directed probes to monitor the functional state of enzymes, taking into account post-translational interactions and modifications. ABPP gives insight into the catalytic activity of enzyme families that does not necessarily correlate with protein abundance. ABPP has been used to investigate several viruses and their interactions with their hosts. Differential enzymatic activity induced by viruses has been monitored using ABPP. In this review, we present recent advances and trends involving the use of ABPP methods in understanding host–virus interactions and in identifying novel targets for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- David R. Blais
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Neda Nasheri
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Craig S. McKay
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| | - Marc C.B. Legault
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
42
|
Torrentino-Madamet M, Almeras L, Travaillé C, Sinou V, Pophillat M, Belghazi M, Fourquet P, Jammes Y, Parzy D. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure. Res Rep Trop Med 2011; 2:109-119. [PMID: 30881184 DOI: 10.2147/rrtm.s23127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a "branched respiratory chain." This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM), showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure. DESIGN A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed. RESULTS After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins, some were particularly involved in energetic metabolism. And the combinatory effect of SHAM/hyperoxia seems deleterious for the growth of P. falciparum. CONCLUSION Our results indicated that SHAM appears to activate glycolysis and decrease stress defense systems. These data provide a better understanding of parasite biology.
Collapse
Affiliation(s)
| | - Lionel Almeras
- Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo)
| | - Christelle Travaillé
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Véronique Sinou
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| | - Matthieu Pophillat
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Maya Belghazi
- Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord
| | - Patrick Fourquet
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée
| | - Yves Jammes
- UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, France
| | - Daniel Parzy
- UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo),
| |
Collapse
|
43
|
Fontaine A, Bourdon S, Belghazi M, Pophillat M, Fourquet P, Granjeaud S, Torrentino-Madamet M, Rogier C, Fusai T, Almeras L. Plasmodium falciparum infection-induced changes in erythrocyte membrane proteins. Parasitol Res 2011; 110:545-56. [PMID: 21744020 DOI: 10.1007/s00436-011-2521-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023]
Abstract
Over the past decade, advances in proteomic and mass spectrometry techniques and the sequencing of the Plasmodium falciparum genome have led to an increasing number of studies regarding the parasite proteome. However, these studies have focused principally on parasite protein expression, neglecting parasite-induced variations in the host proteome. Here, we investigated P. falciparum-induced modifications of the infected red blood cell (iRBC) membrane proteome, taking into account both host and parasite proteome alterations. Furthermore, we also determined if some protein changes were associated with genotypically distinct P. falciparum strains. Comparison of host membrane proteomes between iRBCs and uninfected red blood cells using fluorescence-based proteomic approaches, such as 2D difference gel electrophoresis revealed that more than 100 protein spots were highly up-represented (fold change increase greater than five) following P. falciparum infection for both strains (i.e. RP8 and Institut Pasteur Pregnancy Associated Malaria). The majority of spots identified by mass spectrometry corresponded to Homo sapiens proteins. However, infection-induced changes in host proteins did not appear to affect molecules located at the outer surface of the plasma membrane. The under-representation of parasite proteins could not be attributed to deficient parasite protein expression. Thus, this study describes for the first time that considerable host protein modifications were detected following P. falciparum infection at the erythrocyte membrane level. Further analysis of infection-induced host protein modifications will improve our knowledge of malaria pathogenesis.
Collapse
Affiliation(s)
- Albin Fontaine
- Unité de Parasitologie, Institut de Recherche Biomédicale des Armées (IRBA), antenne Marseille, IFR48, Allée du Médecin colonel Eugène Jamot, Parc du Pharo, BP 60 109, 13262, Marseille Cedex 07, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bagnoli F, Baudner B, Mishra RPN, Bartolini E, Fiaschi L, Mariotti P, Nardi-Dei V, Boucher P, Rappuoli R. Designing the next generation of vaccines for global public health. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:545-66. [PMID: 21682594 DOI: 10.1089/omi.2010.0127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccine research and development are experiencing a renaissance of interest from the global scientific community. There are four major reasons for this: (1) the lack of efficacious treatment for many devastating infections; (2) the emergence of multidrug resistant bacteria; (3) the need for improving the safety of the more traditional licensed vaccines; and finally, (4) the great promise for innovative vaccine design and research with convergence of omics sciences, such as genomics, proteomics, immunomics, and vaccinology. Our first project based on omics was initiated in 2000 and was termed reverse vaccinology. At that time, antigen identification was mainly based on bioinformatic analysis of a singular genome. Since then, omics-guided approaches have been applied to its full potential in several proof-of-concept studies in the industry, with the first reverse vaccinology-derived vaccine now in late stage clinical trials and several vaccines developed by omics in preclinical studies. In the meantime, vaccine discovery and development has been further improved with the support of proteomics, functional genomics, comparative genomics, structural biology, and most recently vaccinomics. We illustrate in this review how omics biotechnologies and integrative biology are expected to accelerate the identification of vaccine candidates against difficult pathogens for which traditional vaccine development has thus far been failing, and how research will provide safer vaccines and improved formulations for immunocompromised patients in the near future. Finally, we present a discussion to situate omics-guided rational vaccine design in the broader context of global public health and how it can benefit citizens in both developed and developing countries.
Collapse
|
45
|
Fontaine A, Pascual A, Diouf I, Bakkali N, Bourdon S, Fusai T, Rogier C, Almeras L. Mosquito salivary gland protein preservation in the field for immunological and biochemical analysis. Parasit Vectors 2011; 4:33. [PMID: 21385450 PMCID: PMC3068118 DOI: 10.1186/1756-3305-4-33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/08/2011] [Indexed: 12/17/2022] Open
Abstract
Mosquito salivary proteins are involved in several biological processes that facilitate their blood feeding and have also been reported to elicit an IgG response in vertebrates. A growing number of studies have focused on this immunological response for its potential use as a biological marker of exposure to arthropod bites. As mosquito saliva collection is extremely laborious and inefficient, most research groups prefer to work on mosquito salivary glands (SGs). Thus, SG protein integrity is a critical factor in obtaining meaningful data from immunological and biochemical analysis. Current methodologies rely on an immediate freezing of SGs after their collection. However, the maintenance of samples in a frozen environment can be hard to achieve in field conditions. In this study, SG proteins from two mosquito species (Aedes aegypti and Anopheles gambiae s.s.) stored in different media for 5 days at either +4°C or room temperature (RT) were evaluated at the quantitative (i.e., ELISA) and qualitative (i.e., SDS-PAGE and immunoblotting) levels. Our results indicated that PBS medium supplemented with an anti-protease cocktail seems to be the best buffer to preserve SG antigens for 5 days at +4°C for ELISA analysis. Conversely, cell-lysis buffer (Urea-Thiourea-CHAPS-Tris) was best at preventing protein degradation both at +4°C and RT for further qualitative analysis. These convenient storage methods provide an alternative to freezing and are expected to be applicable to other biological samples collected in the field.
Collapse
Affiliation(s)
- A Fontaine
- Unité de Recherche en Biologie et Épidémiologie Parasitaires-UMR6236-IFR48, Antenne Marseille de l'Institut de Recherche Biomédicale des Armées, Le Pharo, BP 60109, 13 262 Marseille Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Adamczyk-Poplawska M, Markowicz S, Jagusztyn-Krynicka EK. Proteomics for development of vaccine. J Proteomics 2011; 74:2596-616. [PMID: 21310271 DOI: 10.1016/j.jprot.2011.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 12/20/2022]
Abstract
The success of genome projects has provided us with a vast amount of information on genes of many pathogenic species and has raised hopes for rapid progress in combating infectious diseases, both by construction of new effective vaccines and by creating a new generation of therapeutic drugs. Proteomics, a strategy complementary to the genomic-based approach, when combined with immunomics (looking for immunogenic proteins) and vaccinomics (characterization of host response to immunization), delivers valuable information on pathogen-host cell interaction. It also speeds the identification and detailed characterization of new antigens, which are potential candidates for vaccine development. This review begins with an overview of the global status of vaccinology based on WHO data. The main part of this review describes the impact of proteomic strategies on advancements in constructing effective antibacterial, antiviral and anticancer vaccines. Diverse aspects of disease mechanisms and disease preventions have been investigated by proteomics.
Collapse
Affiliation(s)
- Monika Adamczyk-Poplawska
- Department of Virology, Institute of Microbiology, Biology Faculty, Warsaw University, Warsaw, Poland
| | | | | |
Collapse
|
47
|
Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology 2011; 411:374-82. [PMID: 21295323 DOI: 10.1016/j.virol.2010.12.061] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/31/2010] [Indexed: 11/23/2022]
Abstract
Many plus-strand (+)RNA viruses co-opt protein chaperones from the host cell to assist the synthesis, localization and folding of abundant viral proteins, to regulate viral replication via activation of replication proteins and to interfere with host antiviral responses. The most frequently subverted host chaperones are heat shock protein 70 (Hsp70), Hsp90 and the J-domain co-chaperones. The various roles of these host chaperones in RNA virus replication are presented to illustrate the astonishing repertoire of host chaperone functions that are subverted by RNA viruses. This review also discusses the emerging roles of cyclophilins, which are peptidyl-prolyl isomerases with chaperone functions, in replication of selected (+)RNA viruses.
Collapse
|
48
|
Torrentino-Madamet M, Alméras L, Desplans J, Le Priol Y, Belghazi M, Pophillat M, Fourquet P, Jammes Y, Parzy D. Global response of Plasmodium falciparum to hyperoxia: a combined transcriptomic and proteomic approach. Malar J 2011; 10:4. [PMID: 21223545 PMCID: PMC3030542 DOI: 10.1186/1475-2875-10-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Over its life cycle, the Plasmodium falciparum parasite is exposed to different environmental conditions, particularly to variations in O2 pressure. For example, the parasite circulates in human venous blood at 5% O2 pressure and in arterial blood, particularly in the lungs, at 13% O2 pressure. Moreover, the parasite is exposed to 21% O2 levels in the salivary glands of mosquitoes. Methods To study the metabolic adaptation of P. falciparum to different oxygen pressures during the intraerythrocytic cycle, a combined approach using transcriptomic and proteomic techniques was undertaken. Results Even though hyperoxia lengthens the parasitic cycle, significant transcriptional changes were detected in hyperoxic conditions in the late-ring stage. Using PS 6.0™ software (Ariadne Genomics) for microarray analysis, this study demonstrate up-expression of genes involved in antioxidant systems and down-expression of genes involved in the digestive vacuole metabolism and the glycolysis in favour of mitochondrial respiration. Proteomic analysis revealed increased levels of heat shock proteins, and decreased levels of glycolytic enzymes. Some of this regulation reflected post-transcriptional modifications during the hyperoxia response. Conclusions These results seem to indicate that hyperoxia activates antioxidant defence systems in parasites to preserve the integrity of its cellular structures. Moreover, environmental constraints seem to induce an energetic metabolism adaptation of P. falciparum. This study provides a better understanding of the adaptive capabilities of P. falciparum to environmental changes and may lead to the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Marylin Torrentino-Madamet
- UMR-MD3 (Université de la Méditerranée), Antenne IRBA de Marseille (IMTSSA, Le Pharo), Allée du Médecin Colonel Eugène Jamot, BP 60109, 13262 Marseille cedex 07, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 2010; 84:10888-906. [PMID: 20702633 DOI: 10.1128/jvi.00431-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because they are obligate intracellular parasites, all viruses are exclusively and intimately dependent upon host cells for replication. Viruses, in turn, induce profound changes within cells, including apoptosis, morphological changes, and activation of signaling pathways. Many of these alterations have been analyzed by gene arrays, which measure the cellular "transcriptome." Until recently, it has not been possible to extend comparable types of studies to globally examine all the host cellular proteins, which are the actual effector molecules. We have used stable isotope labeling by amino acids in cell culture (SILAC), combined with high-throughput two-dimensional (2-D) high-performance liquid chromatography (HPLC)/mass spectrometry, to determine quantitative differences in host proteins after infection of human lung A549 cells with human influenza virus A/PR/8/34 (H1N1) for 24 h. Of the 4,689 identified and measured cytosolic protein pairs, 127 were significantly upregulated at >95% confidence, 153 were significantly downregulated at >95% confidence, and a total of 87 proteins were upregulated or downregulated more than 5-fold at >99% confidence. Gene ontology and pathway analyses indicated differentially regulated proteins and included those involved in host cell immunity and antigen presentation, cell adhesion, metabolism, protein function, signal transduction, and transcription pathways.
Collapse
|
50
|
Zhao Y, Ben H, Qu S, Zhou X, Yan L, Xu B, Zhou S, Lou Q, Ye R, Zhou T, Yang P, Qu D. Proteomic analysis of primary duck hepatocytes infected with duck hepatitis B virus. Proteome Sci 2010; 8:28. [PMID: 20529248 PMCID: PMC2904733 DOI: 10.1186/1477-5956-8-28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 06/07/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a major cause of liver infection in human. Because of the lack of an appropriate cell culture system for supporting HBV infection efficiently, the cellular and molecular mechanisms of hepadnavirus infection remain incompletely understood. Duck heptatitis B virus (DHBV) can naturally infect primary duck hepatocytes (PDHs) that provide valuable model systems for studying hepadnavirus infection in vitro. In this report, we explored global changes in cellular protein expression in DHBV infected PDHs by two-dimension gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS). RESULTS The effects of hepadnavirus infection on hepatocytes were investigated in DHBV infected PDHs by the 2-DE analysis. Proteomic profile of PDHs infected with DHBV were analyzed at 24, 72 and 120 h post-infection by comparing with uninfected PDHs, and 75 differentially expressed protein spots were revealed by 2-DE analysis. Among the selected protein spots, 51 spots were identified corresponding to 42 proteins by MS/MS analysis; most of them were matched to orthologous proteins of Gallus gallus, Anas platyrhynchos or other avian species, including alpha-enolase, lamin A, aconitase 2, cofilin-2 and annexin A2, etc. The down-regulated expression of beta-actin and annexin A2 was confirmed by Western blot analysis, and potential roles of some differentially expressed proteins in the virus-infected cells have been discussed. CONCLUSIONS Differentially expressed proteins of DHBV infected PDHs revealed by 2-DE, are involved in carbohydrate metabolism, amino acid metabolism, stress responses and cytoskeleton processes etc, providing the insight to understanding of interactions between hepadnavirus and hepatocytes and molecular mechanisms of hepadnavirus pathogenesis.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Haijing Ben
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Su Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinwen Zhou
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liang Yan
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bin Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuangcheng Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qiang Lou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianlun Zhou
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Pengyuan Yang
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|