1
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S. S. Tofani
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| | - Gerard Clarke
- APC MicrobiomeUniversity College CorkIreland
- Department of Psychiatry & Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| |
Collapse
|
2
|
Minbay M, Khan A, Ghasemi AR, Ingram KK, Ay AA. Sex-specific associations between circadian-related genes and depression in UK Biobank participants highlight links to glucose metabolism, inflammation and neuroplasticity pathways. Psychiatry Res 2024; 337:115948. [PMID: 38788553 DOI: 10.1016/j.psychres.2024.115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Depressive disorders have increased in global prevalence, making improved management of these disorders a public health priority. Prior research has linked circadian clock genes to depression, either through direct interactions with mood-related pathways in the brain or by modulating the phase of circadian rhythms. Using machine learning and statistical techniques, we explored associations between 157,347 SNP variants from 51 circadian-related genes and depression scores from the patient health questionnaire 9 (PHQ-9) in 99,939 UK Biobank participants. Our results highlight multiple pathways linking the circadian system to mood, including metabolic, monoamine, immune, and stress-related pathways. Notably, genes regulating glucose metabolism and inflammation (GSK3B, LEP, RORA, and NOCT) were prominent factors in females, in addition to DELEC1 and USP46, two genes of unknown function. In contrast, FBXL3 and DRD4 emerged as significant risk factors for male depression. We also found epistatic interactions involving RORA, NFIL3, and ZBTB20 as either risk or protective factors for depression, underscoring the importance of transcription factors (ZBTB20, NFIL3) and hormone receptors (RORA) in depression etiology. Understanding the complex, sex-specific links between circadian genes and mood disorders will facilitate the development of therapeutic interventions and enhance the efficacy of multi-target treatments for depression.
Collapse
Affiliation(s)
- Mete Minbay
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Ayub Khan
- Department of Computer Science, Colgate University, Hamilton, NY, USA; Department of Biology, Colgate University, Hamilton, NY, USA
| | - Ali R Ghasemi
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA.
| | - Ahmet A Ay
- Department of Biology, Colgate University, Hamilton, NY, USA
| |
Collapse
|
3
|
Hirayama M, Mure LS, Le HD, Panda S. Neuronal reprogramming of mouse and human fibroblasts using transcription factors involved in suprachiasmatic nucleus development. iScience 2024; 27:109051. [PMID: 38384840 PMCID: PMC10879699 DOI: 10.1016/j.isci.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) is composed of heterogenous populations of neurons that express signaling peptides such as vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP) and regulate circadian rhythms in behavior and physiology. SCN neurons acquire functional and morphological specializations from waves of transcription factors (TFs) that are expressed during neurogenesis. However, the in vitro generation of SCN neurons has never been achieved. Here we supplemented a highly efficient neuronal conversion protocol with TFs that are expressed during SCN neurogenesis, namely Six3, Six6, Dlx2, and Lhx1. Neurons induced from mouse and human fibroblasts predominantly exhibited neuronal properties such as bipolar or multipolar morphologies, GABAergic neurons with expression of VIP. Our study reveals a critical contribution of these TFs to the development of vasoactive intestinal peptide (Vip) expressing neurons in the SCN, suggesting the regenerative potential of neuronal subtypes contained in the SCN for future SCN regeneration and in vitro disease remodeling.
Collapse
Affiliation(s)
- Masatoshi Hirayama
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Ophthalmology, School of Medicine, Keio University, Tokyo, Japan
| | - Ludovic S. Mure
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Hiep D. Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
4
|
Ventresca C, Mohamed W, Russel WA, Ay A, Ingram KK. Machine learning analyses reveal circadian clock features predictive of anxiety among UK biobank participants. Sci Rep 2023; 13:22304. [PMID: 38102312 PMCID: PMC10724169 DOI: 10.1038/s41598-023-49644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Mood disorders, including depression and anxiety, affect almost one-fifth of the world's adult population and are becoming increasingly prevalent. Mutations in circadian clock genes have previously been associated with mood disorders both directly and indirectly through alterations in circadian phase, suggesting that the circadian clock influences multiple molecular pathways involved in mood. By targeting previously identified single nucleotide polymorphisms (SNPs) that have been implicated in anxiety and depressive disorders, we use a combination of statistical and machine learning techniques to investigate associations with the generalized anxiety disorder assessment (GAD-7) scores in a UK Biobank sample of 90,882 individuals. As in previous studies, we observed that females exhibited higher GAD-7 scores than males regardless of genotype. Interestingly, we found no significant effects on anxiety from individual circadian gene variants; only circadian genotypes with multiple SNP variants showed significant associations with anxiety. For both sexes, severe anxiety is associated with a 120-fold increase in odds for individuals with CRY2_AG(rs1083852)/ZBTB20_TT(rs1394593) genotypes and is associated with a near 40-fold reduction in odds for individuals with PER3-A_CG(rs228697)/ZBTB20_TT(rs1394593) genotypes. We also report several sex-specific associations with anxiety. In females, the CRY2/ZBTB20 genotype combination showed a > 200-fold increase in odds of anxiety and PER3/ZBTB20 and CRY1 /PER3-A genotype combinations also appeared as female risk factors. In males, CRY1/PER3-A and PER3-B/ZBTB20 genotype combinations were associated with anxiety risk. Mediation analysis revealed direct associations of CRY2/ZBTB20 variant genotypes with moderate anxiety in females and CRY1/PER3-A variant genotypes with severe anxiety in males. The association of CRY1/PER3-A variant genotypes with severe anxiety in females was partially mediated by extreme evening chronotype. Our results reinforce existing findings that females exhibit stronger anxiety outcomes than males, and provide evidence for circadian gene associations with anxiety, particularly in females. Our analyses only identified significant associations using two-gene combinations, underscoring the importance of combined gene effects on anxiety risk. We describe novel, robust associations between gene combinations involving the ZBTB20 SNP (rs1394593) and risk of anxiety symptoms in a large population sample. Our findings also support previous findings that the ZBTB20 SNP is an important factor in mood disorders, including seasonal affective disorder. Our results suggest that reduced expression of this gene significantly modulates the risk of anxiety symptoms through direct influences on mood-related pathways. Together, these observations provide novel links between the circadian clockwork and anxiety symptoms and identify potential molecular pathways through which clock genes may influence anxiety risk.
Collapse
Affiliation(s)
- Cole Ventresca
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Computer Science, Colgate University, Hamilton, NY, USA
| | - Wael Mohamed
- Department of Computer Science, Colgate University, Hamilton, NY, USA
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | | | - Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY, USA
- Department of Biology, Colgate University, Hamilton, NY, USA
| | - Krista K Ingram
- Department of Biology, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
5
|
Choi SB, Vatan T, Alexander TA, Zhang C, Mitchell SM, Speer CM, Nemes P. Microanalytical Mass Spectrometry with Super-Resolution Microscopy Reveals a Proteome Transition During Development of the Brain's Circadian Pacemaker. Anal Chem 2023; 95:15208-15216. [PMID: 37792996 PMCID: PMC10728713 DOI: 10.1021/acs.analchem.3c01987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
During brain development, neuronal proteomes are regulated in part by changes in spontaneous and sensory-driven activity in immature neural circuits. A longstanding model for studying activity-dependent circuit refinement is the developing mouse visual system where the formation of axonal projections from the eyes to the brain is influenced by spontaneous retinal activity prior to the onset of vision and by visual experience after eye-opening. The precise proteomic changes in retinorecipient targets that occur during this developmental transition are unknown. Here, we developed a microanalytical proteomics pipeline using capillary electrophoresis (CE) electrospray ionization (ESI) mass spectrometry (MS) in the discovery setting to quantify developmental changes in the chief circadian pacemaker, the suprachiasmatic nucleus (SCN), before and after the onset of photoreceptor-dependent visual function. Nesting CE-ESI with trapped ion mobility spectrometry time-of-flight (TOF) mass spectrometry (TimsTOF PRO) doubled the number of identified and quantified proteins compared to the TOF-only control on the same analytical platform. From 10 ng of peptide input, corresponding to <∼0.5% of the total local tissue proteome, technical triplicate analyses identified 1894 proteins and quantified 1066 proteins, including many with important canonical functions in axon guidance, synapse function, glial cell maturation, and extracellular matrix refinement. Label-free quantification revealed differential regulation for 166 proteins over development, with enrichment of axon guidance-associated proteins prior to eye-opening and synapse-associated protein enrichment after eye-opening. Super-resolution imaging of select proteins using STochastic Optical Reconstruction Microscopy (STORM) corroborated the MS results and showed that increased presynaptic protein abundance pre/post eye-opening in the SCN reflects a developmental increase in synapse number, but not presynaptic size or extrasynaptic protein expression. This work marks the first development and systematic application of TimsTOF PRO for CE-ESI-based microproteomics and the first integration of microanalytical CE-ESI TimsTOF PRO with volumetric super-resolution STORM imaging to expand the repertoire of technologies supporting analytical neuroscience.
Collapse
Affiliation(s)
- Sam B. Choi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tarlan Vatan
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | | | - Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | | | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
6
|
Yu C, Huang Z, Xu Y, Zhang B, Li Y. Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis. Sci Rep 2023; 13:5253. [PMID: 37002260 PMCID: PMC10066325 DOI: 10.1038/s41598-023-32277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs. In crustaceans, miRNAs might be involved in the regulation of circadian rhythms. Many physiological functions of crustaceans including immunity and hormone secretion exhibit circadian rhythms, but it remains unclear whether specific miRNAs contribute to the alteration of crustacean physiological processes under circadian rhythms. This study investigated the mechanisms of miRNA regulation of circadian rhythms in the Chinese mitten crab (Eriocheir sinensis), one of China's most important aquaculture species. We obtained eyestalks from crab specimens at four time points (6:00; 12:00; 18:00; 24:00) during a 24-h period. We identified 725 mature miRNAs, with 23 known miRNAs differentially expressed depending on the time of day. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the putative target genes for differentially expressed miRNAs were significantly enriched in the immune response and endocrine-related pathways. Numerous putative target genes are involved in the circadian-related pathways and enriched on circadian-control genes. These results suggest that the expression of miRNAs regulates some specific physiological functions in E. sinensis under circadian cycles. We also profiled various putative target genes enriched under the circadian-related pathway. This study performed miRNA expression in the eyestalks of E. sinensis during a 24-h daily cycle, providing insights into the molecular mechanism underlying crustacean circadian rhythms and suggesting miRNAs' role in studying crustacean physiology should not be overlooked.
Collapse
Affiliation(s)
- Changyue Yu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiwei Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
8
|
Mousavi S, Qiu H, Heinis FI, Abid MSR, Andrews MT, Checco JW. Short-Term Administration of Common Anesthetics Does Not Dramatically Change the Endogenous Peptide Profile in the Rat Pituitary. ACS Chem Neurosci 2022; 13:2888-2896. [PMID: 36126283 PMCID: PMC9547841 DOI: 10.1021/acschemneuro.2c00359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cell-cell signaling peptides (e.g., peptide hormones, neuropeptides) are among the largest class of cellular transmitters and regulate a variety of physiological processes. To identify and quantify the relative abundances of cell-cell signaling peptides in different physiological states, liquid chromatography-mass spectrometry-based peptidomics workflows are commonly utilized on freshly dissected tissues. In such animal experiments, the administration of general anesthetics is an important step for many research projects. However, acute anesthetic administration may rapidly change the measured abundance of transmitter molecules and metabolites, especially in the brain and endocrine system, which would confound experimental results. The aim of this study was to evaluate the effect of short-term (<5 min) anesthetic administration on the measured abundance of cell-cell signaling peptides, as evaluated by a typical peptidomics workflow. To accomplish this goal, we compared endogenous peptide abundances in the rat pituitary following administration of 5% isoflurane, 200 mg/kg sodium pentobarbital, or no anesthetic administration. Label-free peptidomics analysis demonstrated that acute use of isoflurane changed the levels of a small number of peptides, primarily degradation products of the hormone somatotropin, but did not influence the levels of most other peptide hormones. Acute use of sodium pentobarbital had negligible impact on the relative abundance of all measured peptides. Overall, our results suggest that anesthetics used in pituitary peptidomics studies do not dramatically confound observed results.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Frazer I. Heinis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Md Shadman Ridwan Abid
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
9
|
Chan-Andersen PC, Romanova EV, Rubakhin SS, Sweedler JV. Profiling 26,000 Aplysia californica neurons by single cell mass spectrometry reveals neuronal populations with distinct neuropeptide profiles. J Biol Chem 2022; 298:102254. [PMID: 35835221 PMCID: PMC9396074 DOI: 10.1016/j.jbc.2022.102254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Neuropeptides are a chemically diverse class of cell-to-cell signaling molecules that are widely expressed throughout the central nervous system, often in a cell-specific manner. While cell-to-cell differences in neuropeptides is expected, it is often unclear how exactly neuropeptide expression varies among neurons. Here we created a microscopy-guided, high-throughput single cell matrix-assisted laser desorption/ionization mass spectrometry approach to investigate the neuropeptide heterogeneity of individual neurons in the central nervous system of the neurobiological model Aplysia californica, the California sea hare. In all, we analyzed more than 26,000 neurons from 18 animals and assigned 866 peptides from 66 prohormones by mass matching against an in silico peptide library generated from known Aplysia prohormones retrieved from the UniProt database. Louvain-Jaccard (LJ) clustering of mass spectra from individual neurons revealed 40 unique neuronal populations, or LJ clusters, each with a distinct neuropeptide profile. Prohormones and their related peptides were generally found in single cells from ganglia consistent with the prohormones' previously known ganglion localizations. Several LJ clusters also revealed the cellular colocalization of behaviorally related prohormones, such as an LJ cluster exhibiting achatin and neuropeptide Y, which are involved in feeding, and another cluster characterized by urotensin II, small cardiac peptide, sensorin A, and FRFa, which have shown activity in the feeding network or are present in the feeding musculature. This mass spectrometry-based approach enables the robust categorization of large cell populations based on single cell neuropeptide content and is readily adaptable to the study of a range of animals and tissue types.
Collapse
Affiliation(s)
- Peter C Chan-Andersen
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
10
|
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022; 10:biomedicines10040877. [PMID: 35453627 PMCID: PMC9031102 DOI: 10.3390/biomedicines10040877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Migraine is often accompanied by exacerbated sensitivity to stimuli and pain associated with alternative splicing of genes in signaling pathways. Complementary analyses of alternative splicing of neuropeptide prohormone and receptor genes involved in cell–cell communication in the trigeminal ganglia and nucleus accumbens regions of mice presenting nitroglycerin-elicited hypersensitivity and control mice were conducted. De novo sequence assembly detected 540 isoforms from 168 neuropeptide prohormone and receptor genes. A zero-inflated negative binomial model that accommodates for potential excess of zero isoform counts enabled the detection of 27, 202, and 12 differentially expressed isoforms associated with hypersensitivity, regions, and the interaction between hypersensitivity and regions, respectively. Skipped exons and alternative 3′ splice sites were the most frequent splicing events detected in the genes studied. Significant differential splicing associated with hypersensitivity was identified in CALCA and VGF neuropeptide prohormone genes and ADCYAP1R1, CRHR2, and IGF1R neuropeptide receptor genes. The prevalent region effect on differential isoform levels (202 isoforms) and alternative splicing (82 events) were consistent with the distinct splicing known to differentiate central nervous structures. Our findings highlight the changes in alternative splicing in neuropeptide prohormone and receptor genes associated with hypersensitivity to pain and the necessity to target isoform profiles for enhanced understanding and treatment of associated disorders such as migraine.
Collapse
Affiliation(s)
- Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Correspondence:
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Gray ALH, Sawaya MR, Acharyya D, Lou J, Edington EM, Best MD, Prosser RA, Eisenberg DS, Do TD. Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices. Protein Sci 2022; 31:716-727. [PMID: 34954854 PMCID: PMC8862425 DOI: 10.1002/pro.4268] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022]
Abstract
Atomic structures of amyloid oligomers that capture the neurodegenerative disease pathology are essential to understand disease-state causes and finding cures. Here we investigate the G6W mutation of the cytotoxic, hexameric amyloid model KV11. The mutation results into an asymmetric dodecamer composed of a pair of 30° twisted antiparallel β-sheets. The complete break between adjacent β-strands is unprecedented among amyloid fibril crystal structures and supports that our structure is an oligomer. The poor shape complementarity between mated sheets reveals an interior channel for binding lipids, suggesting that the toxicity may be due to a perturbation of lipid transport rather than a direct disruption of membrane integrity. Viability assays on mouse suprachiasmatic nucleus, anterior hypothalamus, and cerebral cortex demonstrated selective regional vulnerability consistent with Alzheimer's disease. Neuropeptides released from the brain slices may provide clues to how G6W initiates cellular injury.
Collapse
Affiliation(s)
- Amber L. H. Gray
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Michael R. Sawaya
- HHMIUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Energy Institute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Debalina Acharyya
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jinchao Lou
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | - Michael D. Best
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Rebecca A. Prosser
- Department of Biochemistry & Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - David S. Eisenberg
- HHMIUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Energy Institute for Genomics and ProteomicsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Thanh D. Do
- Department of ChemistryUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
12
|
Yussif BM, Checco JW. Evaluation of endogenous peptide stereochemistry using liquid chromatography-mass spectrometry-based spiking experiments. Methods Enzymol 2022; 663:205-234. [DOI: 10.1016/bs.mie.2021.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Wu Y, Qiu J, Chen S, Chen X, Zhang J, Zhuang J, Liu S, Yang M, Zhou P, Chen H, Ge J, Yu K, Zhuang J. Crx Is Posttranscriptionally Regulated by Light Stimulation in Postnatal Rat Retina. Front Cell Dev Biol 2020; 8:174. [PMID: 32318566 PMCID: PMC7154164 DOI: 10.3389/fcell.2020.00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Cone rod homeobox (Crx) plays a key role at the center of a regulatory network that coordinates many pathways in the retina. Its abnormal expression induces retinal disorders. However, the underlying regulatory mechanism of Crx expression is not well defined. Here, we present data that show that the levels of Crx mRNA were inconsistent with that of Crx protein in primary retinal neurocytes cultured in light conditions. Crx protein levels were significantly higher (2.56-fold) in cells cultured in the dark than in cells cultured in light, whereas Crx mRNA was not changed in either type of cell. Moreover, the expression of Crx protein showed a significant light intensity-dependent decrease. Consistently, Crx downstream genes rhodopsin and arrestin also decreased in retinal neurocytes upon light exposure. Furthermore, Crx promoter activity assay performed in primary retinal neurocytes further indicated that light exposure and darkness did not affect its inducibility. In addition, the inconsistency between Crx mRNA and protein expression after light exposure was not observed in 661w cells transfected with plasmid pcDNA3.1-Crx, suggesting that the inconsistency between Crx mRNA and protein induced by light was specific to the endogenous Crx. More importantly, this observation was confirmed in vivo in postnatal day 15 (P15) retinas but not in adult retinas, further implicating that the posttranscriptional regulation mechanism may be involved in Crx expression in the developing retina. Therefore, our study sheds light on the mechanism of Crx expression in postnatal rat retina.
Collapse
Affiliation(s)
- Yihui Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuilian Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiejie Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Sian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Meng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haoting Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Mauvoisin D, Gachon F. Proteomics in Circadian Biology. J Mol Biol 2019; 432:3565-3577. [PMID: 31843517 DOI: 10.1016/j.jmb.2019.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
The circadian clock is an endogenous molecular timekeeping system that allows organisms to adjust their physiology and behavior to the time of day in an anticipatory fashion. In different organisms, the circadian clock coordinates physiology and metabolism through regulation of gene expression at the transcriptional and post-transcriptional levels. Until now, circadian gene expression studies have mostly focused primarily on transcriptomics approaches. This type of analyses revealed that many protein-encoding genes show circadian expression in a tissue-specific manner. During the last three decades, a long way has been traveled since the pioneering work on dinoflagellates, and new advances in mass spectrometry offered new perspectives in the characterization of the circadian dynamics of the proteome. Altogether, these efforts highlighted that rhythmic protein oscillation is driven equally by gene transcription, post-transcriptional and post-translational regulations. The determination of the role of the circadian clock in these three levels of regulation appears to be the next major challenge in the field.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- L'institut Du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
15
|
Anapindi KDB, Yang N, Romanova EV, Rubakhin SS, Tipton A, Dripps I, Sheets Z, Sweedler JV, Pradhan AA. PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models. Mol Cell Proteomics 2019; 18:2447-2458. [PMID: 31649062 PMCID: PMC6885698 DOI: 10.1074/mcp.ra119.001767] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic use of opioids can produce opioid-induced hyperalgesia (OIH), and when used to treat migraine, these drugs can result in increased pain and headache chronicity. We hypothesized that overlapping mechanisms between OIH and chronic migraine occur through neuropeptide dysregulation. Using label-free, non-biased liquid chromatography-mass spectrometry to identify and measure changes in more than 1500 neuropeptides under these two conditions, we observed only 16 neuropeptides that were altered between the two conditions. The known pro-migraine molecule, calcitonin-gene related peptide, was among seven peptides associated with chronic migraine, with several pain-processing neuropeptides among the nine other peptides affected in OIH. Further, composite peptide complements Pituitary adenylate cyclase-activating polypeptide (PACAP), Vasoactive intestinal peptide (VIP) and Secretogranin (SCG) showed significant changes in both chronic migraine and OIH. In a follow-up pharmacological study, we confirmed the role of PACAP in models of these two disorders, validating the effectiveness of our peptidomic approach, and identifying PACAP as a mechanistic link between chronic migraine and OIH. Data are available via ProteomeXchange with identifier PXD013362.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Alycia Tipton
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Zoie Sheets
- Department of Psychiatry, University of Illinois at Chicago, 60612
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 61801; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 60612.
| |
Collapse
|
16
|
Gao J, Yang N, Lewis FA, Yau P, Collins JJ, Sweedler JV, Newmark PA. A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biol 2019; 17:e3000485. [PMID: 31622335 PMCID: PMC6797223 DOI: 10.1371/journal.pbio.3000485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Schistosomes are parasitic flatworms that infect over 200 million people, causing the neglected tropical disease, schistosomiasis. A single drug, praziquantel, is used to treat schistosome infection. Limitations in mass drug administration programs and the emergence of schistosomiasis in nontropical areas indicate the need for new strategies to prevent infection. It has been known for several decades that rotifers colonizing the schistosome's snail intermediate host produce a water-soluble factor that paralyzes cercariae, the life cycle stage infecting humans. In spite of its potential for preventing infection, the nature of this factor has remained obscure. Here, we report the purification and chemical characterization of Schistosome Paralysis Factor (SPF), a novel tetracyclic alkaloid produced by the rotifer Rotaria rotatoria. We show that this compound paralyzes schistosome cercariae and prevents infection and does so more effectively than analogous compounds. This molecule provides new directions for understanding cercariae motility and new strategies for preventing schistosome infection.
Collapse
Affiliation(s)
- Jiarong Gao
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ning Yang
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Fred A. Lewis
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Peter Yau
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James J. Collins
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
17
|
Porcu A, Gonzalez R, McCarthy MJ. Pharmacological Manipulation of the Circadian Clock: A Possible Approach to the Management of Bipolar Disorder. CNS Drugs 2019; 33:981-999. [PMID: 31625128 DOI: 10.1007/s40263-019-00673-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bipolar disorder (BD) is a mood disorder with genetic and neurobiological underpinnings, characterized primarily by recurrent episodes of mania and depression, with notable disruptions in rhythmic behaviors such as sleep, energy, appetite and attention. The chronobiological links to BD are further supported by the effectiveness of various treatment modalities such as bright light, circadian phase advance, and mood-stabilizing drugs such as lithium that have effects on the circadian clock. Over the past 30 years, the neurobiology of the circadian clock has been exquisitely described and there now exists a detailed knowledge of key signaling pathways, neurotransmitters and signaling mechanisms that regulate various dimensions of circadian clock function. With this new wealth of information, it is becoming increasingly plausible that new drugs for BD could be made by targeting molecular elements of the circadian clock. However, circadian rhythms are multidimensional and complex, involving unique, time-dependent factors that are not typically considered in drug development. We review the organization of the circadian clock in the central nervous system and briefly summarize data implicating the circadian clock in BD. We then consider some of the unique aspects of the circadian clock as a drug target in BD, discuss key methodological considerations and evaluate some of the candidate clock pathways and systems that could serve as potential targets for novel mood stabilizers. We expect this work will serve as a roadmap to facilitate the development of compounds acting on the circadian clock for the treatment of BD.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Robert Gonzalez
- Department of Psychiatry, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033-0850, USA
| | - Michael J McCarthy
- Department of Psychiatry and Center for Circadian Biology, University of California San Diego, La Jolla, CA, 92093, USA. .,Psychiatry Service, VA San Diego Healthcare System, 3350 La Jolla Village Dr MC116A, San Diego, CA, 92161, USA.
| |
Collapse
|
18
|
Mauvoisin D. Circadian rhythms and proteomics: It's all about posttranslational modifications! WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1450. [PMID: 31034157 DOI: 10.1002/wsbm.1450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The circadian clock is a molecular endogenous timekeeping system and allows organisms to adjust their physiology and behavior to the geophysical time. Organized hierarchically, the master clock in the suprachiasmatic nuclei, coordinates peripheral clocks, via direct, or indirect signals. In peripheral organs, such as the liver, the circadian clock coordinates gene expression, notably metabolic gene expression, from transcriptional to posttranslational level. The metabolism in return feeds back on the molecular circadian clock via posttranslational-based mechanisms. During the last two decades, circadian gene expression studies have mostly been relying primarily on genomics or transcriptomics approaches and transcriptome analyses of multiple organs/tissues have revealed that the majority of protein-coding genes display circadian rhythms in a tissue specific manner. More recently, new advances in mass spectrometry offered circadian proteomics new perspectives, that is, the possibilities of performing large scale proteomic studies at cellular and subcellular levels, but also at the posttranslational modification level. With important implications in metabolic health, cell signaling has been shown to be highly relevant to circadian rhythms. Moreover, comprehensive characterization studies of posttranslational modifications are emerging and as a result, cell signaling processes are expected to be more deeply characterized and understood in the coming years with the use of proteomics. This review summarizes the work studying diurnally rhythmic or circadian gene expression performed at the protein level. Based on the knowledge brought by circadian proteomics studies, this review will also discuss the role of posttranslational modification events as an important link between the molecular circadian clock and metabolic regulation. This article is categorized under: Laboratory Methods and Technologies > Proteomics Methods Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Signaling.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Yang N, Anapindi KDB, Romanova EV, Rubakhin SS, Sweedler JV. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 2018; 142:4476-4485. [PMID: 29098220 DOI: 10.1039/c7an01358b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Measurement, identification, and quantitation of endogenous peptides in tissue samples by mass spectrometry (MS) contribute to our understanding of the complex molecular mechanisms of numerous biological phenomena. For accurate results, it is essential to arrest the postmortem degradation of ubiquitous proteins in samples prior to performing peptidomic measurements. Doing so ensures that the detection of endogenous peptides, typically present at relatively low levels of abundance, is not overwhelmed by protein degradation products. Heat stabilization has been shown to inactivate the enzymes in tissue samples and minimize the presence of protein degradation products in the subsequent peptide extracts. However, the efficacy of different heat treatments to preserve the integrity of full-length endogenous peptides has not been well documented; prior peptidomic studies of heat stabilization methods have not distinguished between the full-length (mature) and numerous truncated (possible artifacts of sampling) forms of endogenous peptides. We show that thermal sample treatment via rapid conductive heat transfer is effective for detection of mature endogenous peptides in fresh and frozen rodent brain tissues. Freshly isolated tissue processing with the commercial Stabilizor T1 heat stabilization system resulted in the confident identification of 65% more full-length mature neuropeptides compared to widely used sample treatment in a hot water bath. This finding was validated by a follow-up quantitative multiple reaction monitoring MS analysis of select neuropeptides. The rapid conductive heating in partial vacuum provided by the Stabilizor T1 effectively reduces protein degradation and decreases the chemical complexity of the sample, as assessed by determining total protein content. This system enabled the detection, identification, and quantitation of neuropeptides related to 22 prohormones expressed in individual rat hypothalami and suprachiasmatic nuclei.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
| | | | | | | | | |
Collapse
|
20
|
Buijink MR, van Weeghel M, Gülersönmez MC, Harms AC, Rohling JHT, Meijer JH, Hankemeier T, Michel S. The influence of neuronal electrical activity on the mammalian central clock metabolome. Metabolomics 2018; 14:122. [PMID: 30830420 PMCID: PMC6153692 DOI: 10.1007/s11306-018-1423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Most organisms display circadian rhythms in physiology and behaviour. In mammals, these rhythms are orchestrated by the suprachiasmatic nucleus (SCN). Recently, several metabolites have emerged as important regulators of circadian timekeeping. Metabolomics approaches have aided in identifying some key metabolites in circadian processes in peripheral tissue, but methods to routinely measure metabolites in small brain areas are currently lacking. OBJECTIVE The aim of the study was to establish a reliable method for metabolite quantifications in the central circadian clock and relate them to different states of neuronal excitability. METHODS We developed a method to collect and process small brain tissue samples (0.2 mm3), suitable for liquid chromatography-mass spectrometry. Metabolites were analysed in the SCN and one of its main hypothalamic targets, the paraventricular nucleus (PVN). Tissue samples were taken at peak (midday) and trough (midnight) of the endogenous rhythm in SCN electrical activity. Additionally, neuronal activity was altered pharmacologically. RESULTS We found a minor effect of day/night fluctuations in electrical activity or silencing activity during the day. In contrast, increasing electrical activity during the night significantly upregulated many metabolites in SCN and PVN. CONCLUSION Our method has shown to produce reliable and physiologically relevant metabolite data from small brain samples. Inducing electrical activity at night mimics the effect of a light pulses in the SCN, producing phase shifts of the circadian rhythm. The upregulation of metabolites could have a functional role in this process, since they are not solely products of physiological states, they are significant parts of cellular signalling pathways.
Collapse
Affiliation(s)
- M Renate Buijink
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Michel van Weeghel
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - M Can Gülersönmez
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Amy C Harms
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jos H T Rohling
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
21
|
Atkins N, Ren S, Hatcher N, Burgoon PW, Mitchell JW, Sweedler JV, Gillette MU. Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock. ACS Chem Neurosci 2018; 9:2001-2008. [PMID: 29901982 DOI: 10.1021/acschemneuro.8b00089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
Collapse
|
22
|
Monroe EB, Annangudi SP, Wadhams AA, Richmond TA, Yang N, Southey BR, Romanova EV, Schoofs L, Baggerman G, Sweedler JV. Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:923-934. [PMID: 29667164 PMCID: PMC5943159 DOI: 10.1007/s13361-018-1898-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 05/08/2023]
Abstract
Neuropeptides are essential cell-to-cell signaling messengers and serve important regulatory roles in animals. Although remarkable progress has been made in peptide identification across the Metazoa, for some phyla such as Echinodermata, limited neuropeptides are known and even fewer have been verified on the protein level. We employed peptidomic approaches using bioinformatics and mass spectrometry (MS) to experimentally confirm 23 prohormones and to characterize a new prohormone in nervous system tissue from Strongylocentrotus purpuratus, the purple sea urchin. Ninety-three distinct peptides from known and novel prohormones were detected with MS from extracts of the radial nerves, many of which are reported or experimentally confirmed here for the first time, representing a large-scale study of neuropeptides from the phylum Echinodermata. Many of the identified peptides and their precursor proteins have low homology to known prohormones from other species/phyla and are unique to the sea urchin. By pairing bioinformatics with MS, the capacity to characterize novel peptides and annotate prohormone genes is enhanced. Graphical Abstract.
Collapse
Affiliation(s)
- Eric B Monroe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suresh P Annangudi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andinet A Wadhams
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Timothy A Richmond
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ning Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Unit, KU Leuven, 3000, Leuven, Belgium
| | - Geert Baggerman
- ProMeta Interfacultary Center for Proteomics and Metabolomics, KU Leuven, 3000, Leuven, Belgium
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
23
|
Yang N, Anapindi KDB, Rubakhin SS, Wei P, Yu Q, Li L, Kenny PJ, Sweedler JV. Neuropeptidomics of the Rat Habenular Nuclei. J Proteome Res 2018. [PMID: 29518334 DOI: 10.1021/acs.jproteome.7b00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conserved across vertebrates, the habenular nuclei are a pair of small symmetrical structures in the epithalamus. The nuclei functionally link the forebrain and midbrain by receiving input from and projecting to several brain regions. Each habenular nucleus comprises two major asymmetrical subnuclei, the medial and lateral habenula. These subnuclei are associated with different physiological processes and disorders, such as depression, nicotine addiction, and encoding aversive stimuli or omitting expected rewarding stimuli. Elucidating the functions of the habenular nuclei at the molecular level requires knowledge of their neuropeptide complement. In this work, three mass spectrometry (MS) techniques-liquid chromatography (LC) coupled to Orbitrap tandem MS (MS/MS), LC coupled to Fourier transform (FT)-ion cyclotron resonance (ICR) MS/MS, and matrix-assisted laser desorption/ionization (MALDI) FT-ICR MS-were used to uncover the neuropeptide profiles of the rodent medial and lateral habenula. With the assistance of tissue stabilization and bioinformatics, a total of 262 and 177 neuropeptides produced from 27 and 20 prohormones were detected and identified from the medial and lateral habenula regions, respectively. Among these neuropeptides, 136 were exclusively found in the medial habenula, and 51 were exclusively expressed in the lateral habenula. Additionally, novel sites of sulfation, a rare post-translational modification, on the secretogranin I prohormone are identified. The results demonstrate that these two small brain nuclei have a rich and differentiated peptide repertoire, with this information enabling a range of follow-up studies.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Pingli Wei
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Qing Yu
- School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lingjun Li
- Chemistry Department , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,School of Pharmacy , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paul J Kenny
- Department of Pharmacology & Systems Therapeutics , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
24
|
Anapindi KDB, Romanova EV, Southey BR, Sweedler JV. Peptide identifications and false discovery rates using different mass spectrometry platforms. Talanta 2018; 182:456-463. [PMID: 29501178 DOI: 10.1016/j.talanta.2018.01.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/28/2018] [Indexed: 12/29/2022]
Abstract
Characterization of endogenous neuropeptides produced from post-translational proteolytic processing of precursor proteins is a demanding task. A variety of complex prohormone processing steps generate molecular diversity from neuropeptide prohormones, making in silico neuropeptide discovery difficult. In addition, the wide range of endogenous peptide concentrations as well as significant peptide complexity further challenge the structural characterization of neuropeptides. Liquid chromatography-mass spectrometry (MS), performed in conjunction with bioinformatics, allows for high-throughput characterization of peptides. Mass analyzers and molecular dissociation techniques render specific characteristics to the acquired data and thus, influence the analysis of the MS data using bioinformatic algorithms for follow-up peptide identification. Here we evaluated the efficacy of several distinct peptidomic workflows using two mass spectrometers, the Thermo Orbitrap Fusion Tribrid and Bruker Impact HD UHR-QqTOF, for confident peptide discovery and characterization. We compared the results in several categories, including the numbers of identified peptides, full-length mature neuropeptides among all identifications, and precursor proteins mapped by the identified peptides. We also characterized the peptide false discovery rate (FDR) based on the occurrence of amidation, a known post-translational modification (PTM) that has been shown to require the presence of a C-terminal glycine. Thus, amidation events without a preceding glycine were considered false-positive amidation assignments. We compared the FDR calculated by the search engine used here to the minimum FDR estimated via false amidation assignments. The search engine severely underestimated the rate of false PTM assignments among the identified peptides, regardless of the specific MS platform used.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana 61801, IL, USA.
| |
Collapse
|
25
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
26
|
Lai B, Zou J, Lin Z, Qu Z, Song A, Xu Y, Gao X. Haploinsufficiency of hnRNP U Changes Activity Pattern and Metabolic Rhythms. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:173-183. [PMID: 29128567 DOI: 10.1016/j.ajpath.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/26/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022]
Abstract
The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip. Loss of one copy of the Hnrnpu gene resulted in fragmented locomotor activities and disrupted metabolic rhythms. Hnrnpu+/- mice were more active than wild-type mice in the daytime but more inactive at night. These phenotypes were partially rescued by microinfusion of Avp and Vip into free-moving animals. In addition, hnRNP U modulated Avp and Vip via directly binding to their promoters together with brain and muscle Arnt-like protein-1/circadian locomotor output cycles kaput heterodimers. Our work identifies hnRNP U as a novel regulator of the circadian pacemaker and provides new insights into the mechanism of rhythm output.
Collapse
Affiliation(s)
- Beibei Lai
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Jianghuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Zhipeng Qu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China
| | - Ying Xu
- Medical College of Soochou University, Suzhou, China.
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Collaborative Innovation Center of Genetics and Development, Nanjing University, Nanjing, China.
| |
Collapse
|
27
|
Abstract
Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network. Thirst has long been thought of as a negative homeostatic feedback response to increases in blood solute concentration or decreases in blood volume. However, emerging evidence suggests a clear role for thirst as a feedforward adaptive anticipatory response that precedes physiological challenges. These anticipatory responses are promoted by rises in core body temperature, food intake (prandial) and signals from the circadian clock. Feedforward signals are also important mediators of satiety, inhibiting thirst well before the physiological state is restored by fluid ingestion. In this Review, we discuss the importance of thirst for body fluid balance and outline our current understanding of the neural mechanisms that underlie the various types of homeostatic and anticipatory thirst.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| |
Collapse
|
28
|
Yu Q, Canales A, Glover MS, Das R, Shi X, Liu Y, Keller MP, Attie AD, Li L. Targeted Mass Spectrometry Approach Enabled Discovery of O-Glycosylated Insulin and Related Signaling Peptides in Mouse and Human Pancreatic Islets. Anal Chem 2017; 89:9184-9191. [PMID: 28726377 PMCID: PMC6314835 DOI: 10.1021/acs.analchem.7b01926] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O-Linked glycosylation often involves the covalent attachment of sugar moieties to the hydroxyl group of serine or threonine on proteins/peptides. Despite growing interest in glycoproteins, little attention has been directed to glycosylated signaling peptides, largely due to lack of enabling analytical tools. Here we explore the occurrence of naturally O-linked glycosylation on the signaling peptides extracted from mouse and human pancreatic islets using mass spectrometry (MS). A novel targeted MS-based method is developed to increase the likelihood of capturing these modified signaling peptides and to provide improved sequence coverage and accurate glycosite localization, enabling the first large-scale discovery of O-glycosylation on signaling peptides. Several glycosylated signaling peptides with multiple glycoforms are identified, including the first report of glycosylated insulin-B chain and insulin-C peptide and BigLEN. This discovery may reveal potential novel functions as glycosylation could influence their conformation and biostability. Given the importance of insulin and its related peptide hormones and previous studies of glycosylated insulin analogues, this natural glycosylation may provide important insights into diabetes research and therapeutic treatments.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Alejandra Canales
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Matthew S. Glover
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Rahul Das
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Xudong Shi
- Department of Surgery, Wisconsin Institute for Medical Research, Madison, Wisconsin 53705, United States
| | - Yang Liu
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Mark P. Keller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Abruzzi KC, Zadina A, Luo W, Wiyanto E, Rahman R, Guo F, Shafer O, Rosbash M. RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genet 2017; 13:e1006613. [PMID: 28182648 PMCID: PMC5325595 DOI: 10.1371/journal.pgen.1006613] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/24/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts “around the clock” from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons. Organisms ranging from bacteria to humans contain circadian clocks. They keep internal time and also integrate environmental cues such as light to provide external time information for entrainment. In the fruit fly Drosophila melanogaster, ~150 brain neurons contain the circadian machinery and are critical for controlling behavior. Several subgroups of these clock neurons have been identified by their anatomical locations and specific functions. Our work aims to profile these neurons and to characterize their molecular contents: what to they contain and how do they differ? To this end, we have purified 3 important subgroups of clock neurons and identified their expressed genes at different times of day. Some are expressed at all times, whereas others are “cycling,” i.e., expressed more strongly at a particular time of day like the morning. Interestingly, each circadian subgroup is quite different. The data provide hints about what functions each group of neurons carries out and how they may work together to keep time. In addition, even a non-circadian group of neurons has cycling genes and has implications for the extent to which all cells have or do not have a functional circadian clock.
Collapse
Affiliation(s)
- Katharine C. Abruzzi
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Abigail Zadina
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Weifei Luo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Evelyn Wiyanto
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Reazur Rahman
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Fang Guo
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Orie Shafer
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics,Department of Biology, Brandeis University, Waltham, United States of America
- * E-mail:
| |
Collapse
|
30
|
Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms. Front Endocrinol (Lausanne) 2017; 8:42. [PMID: 28337174 PMCID: PMC5340782 DOI: 10.3389/fendo.2017.00042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 12/29/2022] Open
Abstract
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases.
Collapse
Affiliation(s)
- Florian Atger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Mauvoisin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- *Correspondence: Frédéric Gachon,
| |
Collapse
|
31
|
Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio : In search for neuropeptides. J Proteomics 2017; 150:290-296. [DOI: 10.1016/j.jprot.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
|
32
|
Qu Z, Zhang H, Huang M, Shi G, Liu Z, Xie P, Li H, Wang W, Xu G, Zhang Y, Yang L, Huang G, Takahashi JS, Zhang WJ, Xu Y. Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. eLife 2016; 5:e17171. [PMID: 27657167 PMCID: PMC5033604 DOI: 10.7554/elife.17171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Many animals display morning and evening bimodal activities in the day/night cycle. However, little is known regarding the potential components involved in the regulation of bimodal behavioral rhythms in mammals. Here, we identified that the zinc finger protein gene Zbtb20 plays a crucial role in the regulation of bimodal activities in mice. Depletion of Zbtb20 in nerve system resulted in the loss of early evening activity, but the increase of morning activity. We found that Zbtb20-deficient mice exhibited a pronounced decrease in the expression of Prokr2 and resembled phenotypes of Prok2 and Prokr2-knockout mice. Injection of adeno-associated virus-double-floxed Prokr2 in suprachiasmatic nucleus could partly restore evening activity in Nestin-Cre; Zbtb20fl/fl (NS-ZB20KO) mice. Furthermore, loss of Zbtb20 in Foxg1 loci, but intact in the suprachiasmatic nucleus, was not responsible for the unimodal activity of NS-ZB20KO mice. Our study provides evidence that ZBTB20-mediated PROKR2 signaling is critical for the evening behavioral rhythms.
Collapse
Affiliation(s)
- Zhipeng Qu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Moli Huang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guangsen Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Pancheng Xie
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Hui Li
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Wei Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yang Zhang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Ling Yang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| | - Guocun Huang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, China
| | - Ying Xu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, China
| |
Collapse
|
33
|
Lee JE. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genomics Inform 2016; 14:12-9. [PMID: 27103886 PMCID: PMC4838524 DOI: 10.5808/gi.2016.14.1.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
34
|
Ray S, Reddy AB. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioessays 2016; 38:394-405. [PMID: 26866932 PMCID: PMC4817226 DOI: 10.1002/bies.201500056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep‐wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of autonomous redox oscillations in cells has expanded our view of the clockwork beyond conventional transcription/translation feedback loop models, which have been dominant since the first circadian period mutants were identified in fruit fly. Consequently, non‐transcriptional timekeeping mechanisms have been proposed, and the antioxidant peroxiredoxin proteins have been identified as conserved markers for 24‐hour rhythms. Here, we review recent advances in our understanding of interdependencies amongst circadian rhythms, sleep homeostasis, redox cycles, and other cellular metabolic networks. We speculate that systems‐level investigations implementing integrated multi‐omics approaches could provide novel mechanistic insights into the connectivity between daily cycles and metabolic systems.
Collapse
Affiliation(s)
- Sandipan Ray
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Akhilesh B Reddy
- Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, National Institutes of Health Biomedical Research Centre, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
35
|
Tillmaand EG, Yang N, Kindt CAC, Romanova EV, Rubakhin SS, Sweedler JV. Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2051-2061. [PMID: 26392278 PMCID: PMC4655166 DOI: 10.1007/s13361-015-1256-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 06/01/2023]
Abstract
The dorsal root ganglion (DRG) and its anatomically and functionally associated spinal nerve and ventral and dorsal roots are important components of the peripheral sensory-motor system in mammals. The cells within these structures use a number of peptides as intercellular signaling molecules. We performed a variety of mass spectrometry (MS)-based characterizations of peptides contained within and secreted from these structures, and from isolated and cultured DRG cells. Liquid chromatography-Fourier transform MS was utilized in DRG and nerve peptidome analysis. In total, 2724 peptides from 296 proteins were identified in tissue extracts. Neuropeptides are among those detected, including calcitonin gene-related peptide I, little SAAS, and known hemoglobin-derived peptides. Solid phase extraction combined with direct matrix-assisted laser desorption/ionization time-of-flight MS was employed to investigate the secretome of these structures. A number of peptides were detected in the releasate from semi-intact preparations of DRGs and associated nerves, including neurofilament- and myelin basic protein-related peptides. A smaller set of analytes was observed in releasates from cultured DRG neurons. The peptide signals observed in the releasates have been mass-matched to those characterized and identified in homogenates of entire DRGs and associated nerves. This data aids our understanding of the chemical composition of the mammalian peripheral sensory-motor system, which is involved in key physiological functions such as nociception, thermoreception, itch sensation, and proprioception.
Collapse
Affiliation(s)
- Emily G Tillmaand
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Callie A C Kindt
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Yu X, Khani A, Ye X, Petruzziello F, Gao H, Zhang X, Rainer G. High-Efficiency Recognition and Identification of Disulfide Bonded Peptides in Rat Neuropeptidome Using Targeted Electron Transfer Dissociation Tandem Mass Spectrometry. Anal Chem 2015; 87:11646-51. [PMID: 26531061 DOI: 10.1021/ac504872z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The main goal of the present study is to develop a method to recognize and identify endogenous intrachain disulfide bonded peptide, which are rarely sequenced in current peptidomics studies. In order to achieve highly efficient detection of these peptides in a neuropeptidome analysis, we alkylated the peptides, mined the raw mass spectrometry data, and then recognized the candidates of untreated disulfide bonded peptides from unalkylated peptide extracts. After removing more than 90% features, targeted electron transfer dissociation fragmentation was performed for detecting and fragmenting disulfide bonded peptides, and even most of them were present in low abundance in the original sample. Diverse endogenous disulfide bonded peptides were then detected and sequenced, opening up new perspectives for comprehensively understanding the response of a neuropeptidome.
Collapse
Affiliation(s)
- Xi Yu
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian, China
| | - Abbas Khani
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| | - Xueting Ye
- Shenyang Pharmaceutical University , Wenhua Road 103, Shenyang, China
| | - Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| | - Huiyuan Gao
- Shenyang Pharmaceutical University , Wenhua Road 103, Shenyang, China
| | - Xiaozhe Zhang
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457, Dalian, China
| | - Gregor Rainer
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg , Chemin de Musee 5, Fribourg, CH-1700, Switzerland
| |
Collapse
|
37
|
Schmidlin T, Boender AJ, Frese CK, Heck AJR, Adan RAH, Altelaar AFM. Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Anal Chem 2015; 87:9966-73. [DOI: 10.1021/acs.analchem.5b03334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Arjen J. Boender
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christian K. Frese
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
38
|
Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M. Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 2015; 85:1086-102. [PMID: 25741729 DOI: 10.1016/j.neuron.2015.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 02/04/2023]
Abstract
Circadian behavior in mammals is orchestrated by neurons within the suprachiasmatic nucleus (SCN), yet the neuronal population necessary for the generation of timekeeping remains unknown. We show that a subset of SCN neurons expressing the neuropeptide neuromedin S (NMS) plays an essential role in the generation of daily rhythms in behavior. We demonstrate that lengthening period within Nms neurons is sufficient to lengthen period of the SCN and behavioral circadian rhythms. Conversely, mice without a functional molecular clock within Nms neurons lack synchronous molecular oscillations and coherent behavioral daily rhythms. Interestingly, we found that mice lacking Nms and its closely related paralog, Nmu, do not lose in vivo circadian rhythms. However, blocking vesicular transmission from Nms neurons with intact cell-autonomous clocks disrupts the timing mechanisms of the SCN, revealing that Nms neurons define a subpopulation of pacemakers that control SCN network synchrony and in vivo circadian rhythms through intercellular synaptic transmission.
Collapse
Affiliation(s)
- Ivan T Lee
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Alexander S Chang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Manabu Manandhar
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yongli Shan
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Junmei Fan
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Mariko Izumo
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Yuichi Ikeda
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Toshiyuki Motoike
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shelley Dixon
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeffrey E Seinfeld
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan.
| | - Masashi Yanagisawa
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
39
|
Lin LL, Huang HC, Juan HF. Circadian systems biology in Metazoa. Brief Bioinform 2015; 16:1008-24. [PMID: 25758249 DOI: 10.1093/bib/bbv006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Indexed: 12/30/2022] Open
Abstract
Systems biology, which can be defined as integrative biology, comprises multistage processes that can be used to understand components of complex biological systems of living organisms and provides hierarchical information to decoding life. Using systems biology approaches such as genomics, transcriptomics and proteomics, it is now possible to delineate more complicated interactions between circadian control systems and diseases. The circadian rhythm is a multiscale phenomenon existing within the body that influences numerous physiological activities such as changes in gene expression, protein turnover, metabolism and human behavior. In this review, we describe the relationships between the circadian control system and its related genes or proteins, and circadian rhythm disorders in systems biology studies. To maintain and modulate circadian oscillation, cells possess elaborative feedback loops composed of circadian core proteins that regulate the expression of other genes through their transcriptional activities. The disruption of these rhythms has been reported to be associated with diseases such as arrhythmia, obesity, insulin resistance, carcinogenesis and disruptions in natural oscillations in the control of cell growth. This review demonstrates that lifestyle is considered as a fundamental factor that modifies circadian rhythm, and the development of dysfunctions and diseases could be regulated by an underlying expression network with multiple circadian-associated signals.
Collapse
|
40
|
Kunst M, Tso MCF, Ghosh DD, Herzog ED, Nitabach MN. Rhythmic control of activity and sleep by class B1 GPCRs. Crit Rev Biochem Mol Biol 2014; 50:18-30. [PMID: 25410535 DOI: 10.3109/10409238.2014.985815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.
Collapse
Affiliation(s)
- Michael Kunst
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, CT , USA and
| | | | | | | | | |
Collapse
|
41
|
Iyer R, Wang TA, Gillette MU. Circadian gating of neuronal functionality: a basis for iterative metaplasticity. Front Syst Neurosci 2014; 8:164. [PMID: 25285070 PMCID: PMC4168688 DOI: 10.3389/fnsys.2014.00164] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023] Open
Abstract
Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in neuronal state, leading to circadian plasticity. The SCN's endogenous ~24-h time-generator comprises a dynamic series of functional states, which gate plastic responses. This restricts light-induced alteration in SCN state-dynamics and outputs to the nighttime. Endogenously generated circadian oscillators coordinate the cyclic states of excitability and intracellular signaling molecules that prime SCN receptivity to plasticity signals, generating nightly windows of susceptibility. We propose that this constitutes a paradigm of ~24-h iterative metaplasticity, the repeated, patterned occurrence of susceptibility to induction of neuronal plasticity. We detail effectors permissive for the cyclic susceptibility to plasticity. We consider similarities of intracellular and membrane mechanisms underlying plasticity in SCN circadian plasticity and in hippocampal long-term potentiation (LTP). The emerging prominence of the hippocampal circadian clock points to iterative metaplasticity in that tissue as well. Exploring these links holds great promise for understanding circadian shaping of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Rajashekar Iyer
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Tongfei A Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Martha U Gillette
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign Urbana, IL, USA ; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
42
|
Chatterji B, Dickhut C, Mielke S, Krüger J, Just I, Glage S, Meier M, Wedekind D, Pich A. MALDI imaging mass spectrometry to investigate endogenous peptides in an animal model of Usher's disease. Proteomics 2014; 14:1674-87. [DOI: 10.1002/pmic.201300558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/28/2014] [Accepted: 05/15/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Bijon Chatterji
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| | - Clarissa Dickhut
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| | - Svenja Mielke
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| | - Jonas Krüger
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| | - Ingo Just
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| | - Silke Glage
- Institute of Laboratory Animal Science; Hannover Medical School; Hannover Germany
| | - Martin Meier
- Institute of Laboratory Animal Science; Hannover Medical School; Hannover Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science; Hannover Medical School; Hannover Germany
| | - Andreas Pich
- Institute of Toxicology; Hannover Medical School; Hannover Germany
| |
Collapse
|
43
|
Smith CR, Batruch I, Bauça JM, Kosanam H, Ridley J, Bernardini MQ, Leung F, Diamandis EP, Kulasingam V. Deciphering the peptidome of urine from ovarian cancer patients and healthy controls. Clin Proteomics 2014; 11:23. [PMID: 24982608 PMCID: PMC4065538 DOI: 10.1186/1559-0275-11-23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/17/2014] [Indexed: 01/05/2023] Open
Abstract
Background Ovarian cancer (OvCa) is the most lethal gynecological malignancy. The emergence of high-throughput technologies, such as mass spectrometry, has allowed for a paradigm shift in the way we search for novel biomarkers. Urine-based peptidomic profiling is a novel approach that may result in the discovery of noninvasive biomarkers for diagnosing patients with OvCa. In this study, the peptidome of urine from 6 ovarian cancer patients and 6 healthy controls was deciphered. Results Urine samples underwent ultrafiltration and the filtrate was subjected to solid phase extraction, followed by fractionation using strong cation exchange chromatography. These fractions were analyzed using an Orbitrap mass spectrometer. Over 4600 unique endogenous urine peptides arising from 713 proteins were catalogued, representing the largest urine peptidome reported to date. Each specimen was processed in triplicate and reproducibility at the protein (69-76%) and peptide (58-63%) levels were noted. More importantly, over 3100 unique peptides were detected solely in OvCa specimens. One such promising biomarker was leucine-rich alpha-2-glycoprotein (LRG1), where multiple peptides were found in all urines from OvCa patients, but only one peptide was found in one healthy control urine sample. Conclusions Mining the urine peptidome may yield highly promising novel OvCa biomarkers.
Collapse
Affiliation(s)
- Christopher R Smith
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ihor Batruch
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Josep Miquel Bauça
- Servei d'Anàlisis Clíniques, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Hari Kosanam
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Julia Ridley
- Department of Psychosocial Oncology and Palliative Care, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada ; Division of Palliative Care, Department of Community and Palliative Medicine, University of Toronto, Toronto, ON, Canada
| | - Marcus Q Bernardini
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Felix Leung
- Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| | - Eleftherios P Diamandis
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Samuel Lunenfeld Research Institute, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| | - Vathany Kulasingam
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada ; Department of Laboratory Medicine and Pathobiology, University of Toronto, 200 Elizabeth Street, Room 3 EB 362A, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
44
|
Zhang X, Petruzziello F, Rainer G. Extending the scope of neuropeptidomics in the mammalian brain. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 2014; 130:199-214. [DOI: 10.1111/jnc.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Su
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Karl Sköld
- Research and Development; Denator AB; Uppsala Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| | - Tomas Hökfelt
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - Kim Kultima
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
- Department of Medical Sciences; Cancer Pharmacology and Computational Medicine; Uppsala University; Uppsala Sweden
| |
Collapse
|
46
|
Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, Rupp AC, Qian J, Wong GW, Herzog ED, Hattar S, Blackshaw S. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep 2014; 7:609-22. [PMID: 24767996 PMCID: PMC4254772 DOI: 10.1016/j.celrep.2014.03.060] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/23/2014] [Accepted: 03/21/2014] [Indexed: 12/27/2022] Open
Abstract
Vertebrate circadian rhythms are organized by the hypothalamic suprachiasmatic nucleus (SCN). Despite its physiological importance, SCN development is poorly understood. Here, we show that Lim homeodomain transcription factor 1 (Lhx1) is essential for terminal differentiation and function of the SCN. Deletion of Lhx1 in the developing SCN results in loss of SCN-enriched neuropeptides involved in synchronization and coupling to downstream oscillators, among other aspects of circadian function. Intact, albeit damped, clock gene expression rhythms persist in Lhx1-deficient SCN; however, circadian activity rhythms are highly disorganized and susceptible to surprising changes in period, phase, and consolidation following neuropeptide infusion. Our results identify a factor required for SCN terminal differentiation. In addition, our in vivo study of combinatorial SCN neuropeptide disruption uncovered synergies among SCN-enriched neuropeptides in regulating normal circadian function. These animals provide a platform for studying the central oscillator's role in physiology and cognition.
Collapse
Affiliation(s)
- Joseph L Bedont
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tara A LeGates
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily A Slat
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hong Wang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jianfei Hu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Samer Hattar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
47
|
Maki AE, Morris KA, Catherman K, Chen X, Hatcher NG, Gold PE, Sweedler JV. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacol Res Perspect 2014; 2:e00037. [PMID: 24855564 PMCID: PMC4024393 DOI: 10.1002/prp2.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus.
Collapse
Affiliation(s)
- Agatha E Maki
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kenneth A Morris
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Kasia Catherman
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Xian Chen
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Nathan G Hatcher
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Paul E Gold
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| | - Jonathan V Sweedler
- Beckman Institute (A.E.M., K.C., X.C., N.G.H., J.V.S.), Neuroscience Program (A.E.M., K.A.M., J.V.S.), and Department of Chemistry (K.C., X.C., N.G.H., J.V.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Biology, Syracuse University, Syracuse, New York (P.E.G.)
| |
Collapse
|
48
|
Southey BR, Lee JE, Zamdborg L, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV. Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal Chem 2013; 86:443-52. [PMID: 24313826 PMCID: PMC3886391 DOI: 10.1021/ac4023378] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Mammalian
circadian rhythm is maintained by the suprachiasmatic nucleus (SCN)
via an intricate set of neuropeptides and other signaling molecules.
In this work, peptidomic analyses from two times of day were examined
to characterize variation in SCN peptides using three different label-free
quantitation approaches: spectral count, spectra index and SIEVE.
Of the 448 identified peptides, 207 peptides were analyzed by two
label-free methods, spectral count and spectral index. There were
24 peptides with significant (adjusted p-value <
0.01) differential peptide abundances between daytime and nighttime,
including multiple peptides derived from secretogranin II, cocaine
and amphetamine regulated transcript, and proprotein convertase subtilisin/kexin
type 1 inhibitor. Interestingly, more peptides were analyzable and
had significantly different abundances between the two time points
using the spectral count and spectral index methods than with a prior
analysis using the SIEVE method with the same data. The results of
this study reveal the importance of using the appropriate data analysis
approaches for label-free relative quantitation of peptides. The detection
of significant changes in so rich a set of neuropeptides reflects
the dynamic nature of the SCN and the number of influences such as
feeding behavior on circadian rhythm. Using spectral count and spectral
index, peptide level changes are correlated to time of day, suggesting
their key role in circadian function.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, ‡Department of Chemistry, §Institute for Genomic Biology, ∥Neuroscience Program, ⊥Department of Cell and Developmental Biology, and ¶Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jia C, Lietz CB, Ye H, Hui L, Yu Q, Yoo S, Li L. A multi-scale strategy for discovery of novel endogenous neuropeptides in the crustacean nervous system. J Proteomics 2013; 91:1-12. [PMID: 23806756 DOI: 10.1016/j.jprot.2013.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/26/2013] [Accepted: 06/16/2013] [Indexed: 12/18/2022]
Abstract
UNLABELLED The conventional mass spectrometry (MS)-based strategy is often inadequate for the comprehensive characterization of various size neuropeptides without the assistance of genomic information. This study evaluated sequence coverage of different size neuropeptides in two crustacean species, blue crab Callinectes sapidus and Jonah crab Cancer borealis using conventional MS methodologies and revealed limitations to mid- and large-size peptide analysis. Herein we attempt to establish a multi-scale strategy for simultaneous and confident sequence elucidation of various sizes of peptides in the crustacean nervous system. Nine novel neuropeptides spanning a wide range of molecular weights (0.9-8.2kDa) were fully sequenced from a major neuroendocrine organ, the sinus gland of the spiny lobster Panulirus interruptus. These novel neuropeptides included seven allatostatin (A- and B-type) peptides, one crustacean hyperglycemic hormone precursor-related peptide, and one crustacean hyperglycemic hormone. Highly accurate multi-scale characterization of a collection of varied size neuropeptides was achieved by integrating traditional data-dependent tandem MS, improved bottom-up sequencing, multiple fragmentation technique-enabled top-down sequencing, chemical derivatization, and in silico homology search. Collectively, the ability to characterize a neuropeptidome with vastly differing molecule sizes from a neural tissue extract could find great utility in unraveling complex signaling peptide mixtures employed by other biological systems. BIOLOGICAL SIGNIFICANCE Mass spectrometry (MS)-based neuropeptidomics aims to completely characterize the neuropeptides in a target organism as an important first step toward a better understanding of the structure and function of these complex signaling molecules. Although liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with data-dependent acquisition is a powerful tool in peptidomic research, it often lacks the capability for de novo sequencing of mid-size and large peptides due to inefficient fragmentation of peptides larger than 4kDa. This study describes a multi-scale strategy for complete and confident sequence elucidation of various sizes of neuropeptides in the crustacean nervous system. The aim is to fill a technical gap where the conventional strategy is inefficient for comprehensive characterization of a complex neuropeptidome without assistance of genomic information. Nine novel neuropeptides in a wide range of molecular weights (0.9-8.2kDa) were fully sequenced from a major neuroendocrine organ of the spiny lobster, P. interruptus. The resulting molecular information extracted from such multi-scale peptidomic analysis will greatly accelerate functional studies of these novel neuropeptides.
Collapse
Affiliation(s)
- Chenxi Jia
- School of Pharmacy, University of Wisconsin-Madison, WI, USA; Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Frese CK, Boender AJ, Mohammed S, Heck AJR, Adan RAH, Altelaar AFM. Profiling of diet-induced neuropeptide changes in rat brain by quantitative mass spectrometry. Anal Chem 2013; 85:4594-604. [PMID: 23581470 DOI: 10.1021/ac400232y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuropeptides are intercellular signal transmitters that play key roles in modulation of many behavioral and physiological processes. Neuropeptide signaling in several nuclei in the hypothalamus contributes to the control of food intake. Additionally, food intake regulation involves neuropeptide signaling in the reward circuitry in the striatum. Here, we analyze neuropeptides extracted from hypothalamus and striatum from rats in four differentially treated dietary groups including a high-fat/high-sucrose diet, mimicking diet-induced obesity. We employ high-resolution tandem mass spectrometry using higher-energy collision dissociation and electron transfer dissociation fragmentation for sensitive identification of more than 1700 unique endogenous peptides, including virtually all key neuropeptides known to be involved in food intake regulation. Label-free quantification of differential neuropeptide expression revealed comparable upregulation of orexigenic and anorexigenic neuropeptides in rats that were fed on a high-fat/high-sucrose diet.
Collapse
Affiliation(s)
- Christian K Frese
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|