1
|
Zhu H, Uno H, Matsuba K, Hamachi I. Profiling Proteins Involved in Peroxynitrite Homeostasis Using ROS/RNS Conditional Proteomics. J Am Chem Soc 2025; 147:7305-7316. [PMID: 39988859 DOI: 10.1021/jacs.4c14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Peroxynitrite (ONOO-), the product of the diffusion-controlled reaction of superoxide (O2•-) with nitric oxide (NO•), plays a crucial role in oxidative and nitrative stress and modulates key physiological processes such as redox signaling. While biological ONOO- is conventionally analyzed using 3-nitrotyrosine antibodies and fluorescent sensors, such probes lack specificity and sensitivity, making high-throughput and comprehensive profiling of ONOO--associated proteins challenging. In this study, we used a conditional proteomics approach to investigate ONOO- homeostasis by identifying its protein neighbors in cells. We developed Peroxynitrite-responsive protein Labeling reagents (Porp-L) and, for the first time, discovered 2,6-dichlorophenol as an ideal moiety that can be selectively and rapidly activated by ONOO- for labeling of proximal proteins. The reaction of Porp-L with ONOO- generated several short-lived reactive intermediates that can modify Tyr, His, and Lys residues on the protein surface. We have demonstrated the Porp-L-based conditional proteomics in immune-stimulated macrophages, which indeed identified proteins known to be involved in the generation and modification of ONOO- and revealed the endoplasmic reticulum (ER) as a ONOO- hot spot. Moreover, we discovered a previously unknown role for Ero1a, an ER-resident protein, in the formation of ONOO-. Overall, Porp-L represent a promising research tool for advancing our understanding of the biological roles of ONOO-.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroaki Uno
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoichi Matsuba
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo 102-0075, Japan
| |
Collapse
|
2
|
Islam MI, Sultana S, Padmanabhan N, Rashid MU, Siddiqui TJ, Coombs KM, Vitiello PF, Karimi-Abdolrezaee S, Eftekharpour E. Thioredoxin-1 protein interactions in neuronal survival and neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167548. [PMID: 39454970 DOI: 10.1016/j.bbadis.2024.167548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Neuronal cell death remains the principal pathophysiologic hallmark of neurodegenerative diseases and the main challenge for treatment strategies. Thioredoxin1 (Trx1) is a major cytoplasmic thiol oxidoreductase protein involved in redox signaling, hence a crucial player in maintaining neuronal health. Trx1 levels are notably reduced in neurodegenerative diseases including Alzheimer's and Parkinson's diseases, however, the impact of this decrease on neuronal physiology remains largely unexplored. This is mainly due to the nature of Trx1 redox regulatory role which is afforded by a rapid electron transfer to its oxidized protein substrates. During this reaction, Trx1 forms a transient bond with the oxidized disulfide bond in the substrate. This is a highly fast reaction which makes the identification of Trx1 substrates a technically challenging task. In this project, we utilized a transgenic mouse model expressing a Flag-tagged mutant form of Trx1 that can form stable disulfide bonds with its substrates, hence allowing identification of the Trx1 target proteins. Autophagy is a vital housekeeping process in neurons that is critical for degradation of damaged proteins under oxidative stress conditions and is interrupted in neurodegenerative diseases. Given Trx1's suggested involvement in autophagy, we aimed to identify potential Trx1 substrates following pharmacologic induction of autophagy in primary cortical neurons. Treatment with rapamycin, an autophagy inducer, significantly reduced neurite outgrowth and caused cytoskeletal alterations. Using immunoprecipitation and mass spectrometry, we have identified 77 Trx1 target proteins associated with a wide range of cellular functions including cytoskeletal organization and neurodegenerative diseases. Focusing on neuronal cytoskeleton organization, we identified a novel interaction between Trx1 and RhoB which was confirmed in genetic models of Trx1 downregulation in primary neuronal cultures and HT22 mouse immortalized hippocampal neurons. The applicability of these findings was also tested against the publicly available proteomic data from Alzheimer's patients. Our study uncovers a novel role for Trx1 in regulating neuronal cytoskeleton organization and provides a mechanistic explanation for its multifaceted role in the physiology and pathology of the nervous system, offering new insights into the molecular mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Shakila Sultana
- Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Nirmala Padmanabhan
- Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | | | - Tabrez J Siddiqui
- Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Kevin M Coombs
- Department of Medical Microbiology, University of Manitoba, Canada
| | - Peter F Vitiello
- Department of Pediatrics, the University of Oklahoma Health Sciences Center, USA
| | | | | |
Collapse
|
3
|
Koudelka A, Buchan GJ, Cechova V, O'Brien JP, Stevenson ER, Uvalle CE, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. J Lipid Res 2025; 66:100705. [PMID: 39566850 PMCID: PMC11729656 DOI: 10.1016/j.jlr.2024.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily lipoxin A4 (LXA4), there are expanding concerns about the reported biological formation, detection, and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. The generation and signaling actions of LXA4 and its primary 15-oxo metabolite were assessed in control, lipopolysaccharide-activated, and arachidonic acid-supplemented RAW264.7 and bone marrow-derived macrophages. Despite the expression of catalytically active enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable in all conditions. Moreover, synthetic LXA4 and the membrane-permeable 15-oxo-LXA4 methyl ester, which rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids and can modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2-regulated expression of anti-inflammatory and repair genes and inhibited NF-κB-regulated pro-inflammatory mediator expression. Synthetic LXA4 showed no impact on these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions of synthetic LXA4. Rather, if present in sufficient concentrations, LXA4 and other mono- and poly-hydroxylated unsaturated fatty acids synthesized by macrophages would be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gregory J Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily R Stevenson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal E Uvalle
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Li Z, Peng H, Huang Y, Lv B, Tang C, Du J, Yang J, Fu L, Jin H. Systematic analysis of the global characteristics and reciprocal effects of S-nitrosylation and S-persulfidation in the human proteome. Free Radic Biol Med 2024; 224:335-345. [PMID: 39218121 DOI: 10.1016/j.freeradbiomed.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gasotransmitter-mediated cysteine post-translational modifications, including S-nitrosylation (SNO) and S-persulfidation (SSH), play crucial roles and interact in various biological processes. However, there has been a delay in appreciating the interactional rules between SNO and SSH. Here, all human S-nitrosylated and S-persulfidated proteomic data were curated, and comprehensive analyses from multiple perspectives, including sequence, structure, function, and exact protein impacts (e.g., up-/down-regulation), were performed. Although these two modifications collectively regulated a wide array of proteins to jointly maintain redox homeostasis, they also exhibited intriguing differences. First, SNO tended to be more accessible and functionally clustered in pathways associated with cell damage repair and other protein modifications, such as phosphorylation and ubiquitination. Second, SSH preferentially targeted cysteines in disulfide bonds and modulated tissue development and immune-related pathways. Finally, regardless of whether SNO and SSH occupied the same position of a given protein, their combined effect tended to be suppressive when acting synergistically; otherwise, SNO likely inhibited while SSH activated the target protein. Indeed, a side-by-side comparison of SNO and SSH shed light on their globally reciprocal effects and provided a reference for further research on gasotransmitter-mediated biological effects.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| |
Collapse
|
5
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
6
|
Han Y, Gao Q, Xu Y, Chen K, Li R, Guo W, Wang S. Cysteine sulfenylation contributes to liver fibrosis via the regulation of EphB2-mediated signaling. Cell Death Dis 2024; 15:602. [PMID: 39164267 PMCID: PMC11335765 DOI: 10.1038/s41419-024-06997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Sulfenylation is a reversible oxidative posttranslational modification (PTM) of proteins on cysteine residues. Despite the dissection of various biological functions of cysteine sulfenylation, its roles in hepatic fibrosis remain elusive. Here, we report that EphB2, a receptor tyrosine kinase previously implicated in liver fibrosis, is regulated by cysteine sulfenylation during the fibrotic progression of liver. Specifically, EphB2 is sulfenylated at the residues of Cys636 and Cys862 in activated hepatic stellate cells (HSCs), leading to the elevation of tyrosine kinase activity and protein stability of EphB2 and stronger interactions with focal adhesion kinase for the activation of downstream mitogen-activated protein kinase signaling. The inhibitions of both EphB2 kinase activity and cysteine sulfenylation by idebenone (IDE), a marketed drug with potent antioxidant activity, can markedly suppress the activation of HSCs and ameliorate hepatic injury in two well-recognized mouse models of liver fibrosis. Collectively, this study reveals cysteine sulfenylation as a new type of PTM for EphB2 and sheds a light on the therapeutic potential of IDE for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yueqing Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yating Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ke Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rongxin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Weiran Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
8
|
Gulati M, Thomas JM, Ennis CL, Hernday AD, Rawat M, Nobile CJ. The bacillithiol pathway is required for biofilm formation in Staphylococcus aureus. Microb Pathog 2024; 191:106657. [PMID: 38649100 DOI: 10.1016/j.micpath.2024.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Jason M Thomas
- Department of Biology, California State University-Fresno, Fresno, CA, USA
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Mamta Rawat
- Department of Biology, California State University-Fresno, Fresno, CA, USA.
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
9
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Ramachandran Nair V, Sandeep K, Shanthil M, Dhanya S, Archana A, Vibin M, Divyalakshmi H. Simple and Cost-Effective Quantum Dot Chemodosimeter for Visual Detection of Biothiols in Human Blood Serum. ACS OMEGA 2024; 9:6588-6594. [PMID: 38371793 PMCID: PMC10870302 DOI: 10.1021/acsomega.3c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
An emission "turn-off" chemodosimeter for the naked-eye detection of biothiols using silica-overcoated cadmium selenide quantum dots is developed. Hole scavenging by the thiol group of cysteine, homocysteine, or glutathione on interaction with quantum dots resulted in an instant and permanent emission quenching under physiologically relevant conditions. Also, the emission suppression is so specific that thiols and substituted thiols (methionine and cystine) can easily be distinguished. A pilot experiment for the visual detection of serum thiols in human blood was also conducted. Densitometry analysis proved the potential of this system as a new methodology in clinical chemistry and research laboratories for routine blood and urine analyses using a simple procedure. This method enables one to visually distinguish biothiols and oxidized biothiols, whose ratio plays a crucial role in maintaining "redox thiol status" in the blood.
Collapse
Affiliation(s)
- Vinayakan Ramachandran Nair
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
- Chemical
Sciences and Technology Division, National
Institute for Interdisciplinary Science and Technology (NIIST-CSIR), Thiruvananthapuram 695019, Kerala, India
| | - Kulangara Sandeep
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Madhavan Shanthil
- Department
of Chemistry, Government Victoria College,
Research Center under University of Calicut, Palakkad 678001, Kerala, India
| | - Santhakumar Dhanya
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| | - Aravind Archana
- Department
of Chemistry, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - Muthunayagam Vibin
- Department
of Biochemistry, St. Albert’s College
(Autonomous), Mahatma Gandhi University, Ernakulam 682018, Kerala, India
| | - Hareendran Divyalakshmi
- Department
of Chemistry (Research Center under MG University, Kerala), NSS Hindu College (Nationally Accredited with ‘A’
Grade), Changanacherry 686102, Kerala, India
| |
Collapse
|
11
|
Koudelka A, Buchan GJ, Cechova V, O’Brien JP, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579101. [PMID: 38370667 PMCID: PMC10871244 DOI: 10.1101/2024.02.06.579101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Gregory J. Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - James P. O’Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| |
Collapse
|
12
|
Cadenas-Garrido P, Schonvandt-Alarcos A, Herrera-Quintana L, Vázquez-Lorente H, Santamaría-Quiles A, Ruiz de Francisco J, Moya-Escudero M, Martín-Oliva D, Martín-Guerrero SM, Rodríguez-Santana C, Aragón-Vela J, Plaza-Diaz J. Using Redox Proteomics to Gain New Insights into Neurodegenerative Disease and Protein Modification. Antioxidants (Basel) 2024; 13:127. [PMID: 38275652 PMCID: PMC10812581 DOI: 10.3390/antiox13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Antioxidant defenses in biological systems ensure redox homeostasis, regulating baseline levels of reactive oxygen and nitrogen species (ROS and RNS). Oxidative stress (OS), characterized by a lack of antioxidant defenses or an elevation in ROS and RNS, may cause a modification of biomolecules, ROS being primarily absorbed by proteins. As a result of both genome and environment interactions, proteomics provides complete information about a cell's proteome, which changes continuously. Besides measuring protein expression levels, proteomics can also be used to identify protein modifications, localizations, the effects of added agents, and the interactions between proteins. Several oxidative processes are frequently used to modify proteins post-translationally, including carbonylation, oxidation of amino acid side chains, glycation, or lipid peroxidation, which produces highly reactive alkenals. Reactive alkenals, such as 4-hydroxy-2-nonenal, are added to cysteine (Cys), lysine (Lys), or histidine (His) residues by a Michael addition, and tyrosine (Tyr) residues are nitrated and Cys residues are nitrosylated by a Michael addition. Oxidative and nitrosative stress have been implicated in many neurodegenerative diseases as a result of oxidative damage to the brain, which may be especially vulnerable due to the large consumption of dioxygen. Therefore, the current methods applied for the detection, identification, and quantification in redox proteomics are of great interest. This review describes the main protein modifications classified as chemical reactions. Finally, we discuss the importance of redox proteomics to health and describe the analytical methods used in redox proteomics.
Collapse
Affiliation(s)
- Paula Cadenas-Garrido
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Ailén Schonvandt-Alarcos
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Lourdes Herrera-Quintana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Héctor Vázquez-Lorente
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Alicia Santamaría-Quiles
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Jon Ruiz de Francisco
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - Marina Moya-Escudero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain; (P.C.-G.); (A.S.-A.); (A.S.-Q.); (J.R.d.F.); (M.M.-E.)
| | - David Martín-Oliva
- Department of Cell Biology, Faculty of Science, University of Granada, 18071 Granada, Spain;
| | - Sandra M. Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, UK
| | - César Rodríguez-Santana
- Department of Physiology, Schools of Pharmacy and Medicine, University of Granada, 18071 Granada, Spain; (L.H.-Q.); (H.V.-L.); (C.R.-S.)
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, 18016 Granada, Spain
| | - Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Julio Plaza-Diaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Li Z, Huang Y, Lv B, Du J, Yang J, Fu L, Jin H. Gasotransmitter-Mediated Cysteinome Oxidative Posttranslational Modifications: Formation, Biological Effects, and Detection. Antioxid Redox Signal 2024; 40:145-167. [PMID: 37548538 DOI: 10.1089/ars.2023.0407] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: Gasotransmitters, including nitric oxide (NO), hydrogen sulfide (H2S) and sulfur dioxide (SO2), participate in various cellular processes via corresponding oxidative posttranslational modifications (oxiPTMs) of specific cysteines. Recent Advances: Accumulating evidence has clarified the mechanisms underlying the formation of oxiPTMs derived from gasotransmitters and their biological functions in multiple signal pathways. Because of the specific existence and functional importance, determining the sites of oxiPTMs in cysteine is crucial in biology. Recent advances in the development of selective probes, together with upgraded mass spectrometry (MS)-based proteomics, have enabled the quantitative analysis of cysteinome. To date, several cysteine residues have been identified as gasotransmitter targets. Critical Issues: To clearly understand the underlying mechanisms for gasotransmitter-mediated biological processes, it is important to identify modified targets. In this review, we summarize the chemical formation and biological effects of gasotransmitter-dependent oxiPTMs and highlight the state-of-the-art detection methods. Future Directions: Future studies in this field should aim to develop the next generation of probes for in situ labeling to improve spatial resolution and determine the dynamic change of oxiPTMs, which can lay the foundation for research on the molecular mechanisms and clinical translation of gasotransmitters. Antioxid. Redox Signal. 40, 145-167.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
15
|
Castillo-Villanueva A, Reyes-Vivas H, Oria-Hernández J. Comparison of cysteine content in whole proteomes across the three domains of life. PLoS One 2023; 18:e0294268. [PMID: 37956129 PMCID: PMC10642813 DOI: 10.1371/journal.pone.0294268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
An empirical observation suggests that Giardia lamblia proteins have larger cysteine content than their counterparts in other organisms. As this parasite lacks conventional antioxidant stress systems, it is generally accepted that high cysteine content helps G. lamblia cope with oxygen toxicity, a strategy apparently shared by other organisms. Here, we question whether the high cysteine content in some organisms is genuine or just a simple assumption based on singular observations. To this end, we analyzed the cysteine content in 78 proteomes of organisms spanning the three domains of life. The results indicate that the cysteine content in eukaryota is approximately double that in archaea and bacteria, with G. lamblia among the highest. Atypical cysteine contents were found in a few organisms correlating with specific environmental conditions, supporting the evolutionary amino acid-level selection of amino acid composition.
Collapse
Affiliation(s)
- Adriana Castillo-Villanueva
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| | - Horacio Reyes-Vivas
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud Ciudad de México, Ciudad de México, México
| |
Collapse
|
16
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
17
|
Gao Q, Grzyb K, Gamon LF, Ogilby PR, Pędziński T, Davies MJ. The structure of model and peptide disulfides markedly affects their reactivity and products formed with singlet oxygen. Free Radic Biol Med 2023; 207:320-329. [PMID: 37633403 DOI: 10.1016/j.freeradbiomed.2023.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Disulfide bonds are critical structural elements in proteins and stabilize folded structures. Modification of these linkages is associated with a loss of structure and function. Previous studies have reported large variations in the rate of disulfide oxidation by hypohalous acids, due to stabilization of reaction intermediates. In this study we hypothesized that considerable variation (and hence selective oxidation) would occur with singlet oxygen (1O2), a key intermediate in photo-oxidation reactions. The kinetics of disulfide-mediated 1O2 removal were monitored using the time-resolved 1270 nm phosphorescence of 1O2. Stern-Volmer plots of these data showed a large variation (∼103) in the quenching rate constants kq (from 2 × 107 for α-lipoic acid to 3.6 × 104 M-1s-1 for cystamine). The time course of disulfide loss and product formation (determined by LC-MS) support a role for 1O2, with mono- and di-oxygenated products detected. Elevated levels of these latter species were generated in D2O- compared to H2O buffers, which is consistent with solvent effects on the 1O2 lifetime. These data are interpreted in terms of the intermediacy of a zwitterion [-S+(OO-)-S-], which either isomerizes to a thiosulfonate [-S(O)2-S-] or reacts with another parent molecule to give two thiosulfinates [-S(O)-S-]. The variation in quenching rates and product formation are ascribed to zwitterion stabilization by neighboring, or remote, lone pairs of electrons. These data suggest that some disulfides, including some present within or attached to proteins (e.g., α-lipoic acid), may be selectively modified, and undergo subsequent cleavage, with adverse effects on protein structure and function.
Collapse
Affiliation(s)
- Qing Gao
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Katarzyna Grzyb
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, DK-8000, Aarhus, Denmark
| | - Tomasz Pędziński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614, Poznań, Poland
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
18
|
Li X, Gluth A, Zhang T, Qian WJ. Thiol redox proteomics: Characterization of thiol-based post-translational modifications. Proteomics 2023; 23:e2200194. [PMID: 37248656 PMCID: PMC10764013 DOI: 10.1002/pmic.202200194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.
Collapse
Affiliation(s)
- Xiaolu Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Austin Gluth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354
| |
Collapse
|
19
|
Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Ordulu Z, Weiss-Sadan T, Possemato AP, Harry S, Takahashi M, Yang TY, Richter M, Patel H, Smith AE, Carlin AD, Hubertus de Groot AF, Wolf K, Shi L, Wei TY, Dürr BR, Chen NJ, Vornbäumen T, Wichmann NO, Mahamdeh MS, Pooladanda V, Matoba Y, Kumar S, Kim E, Bouberhan S, Oliva E, Rueda BR, Soberman RJ, Bardeesy N, Liau BB, Lawrence M, Stokes MP, Beausoleil SA, Bar-Peled L. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell 2023; 186:2361-2379.e25. [PMID: 37192619 PMCID: PMC10225361 DOI: 10.1016/j.cell.2023.04.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Multiple anticancer drugs have been proposed to cause cell death, in part, by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs, exactly how the resultant ROS function and are sensed is poorly understood. It remains unclear which proteins the ROS modify and their roles in drug sensitivity/resistance. To answer these questions, we examined 11 anticancer drugs with an integrated proteogenomic approach identifying not only many unique targets but also shared ones-including ribosomal components, suggesting common mechanisms by which drugs regulate translation. We focus on CHK1 that we find is a nuclear H2O2 sensor that launches a cellular program to dampen ROS. CHK1 phosphorylates the mitochondrial DNA-binding protein SSBP1 to prevent its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS-sensing pathway-required to resolve nuclear H2O2 accumulation and mediate resistance to platinum-based agents in ovarian cancers.
Collapse
Affiliation(s)
- Junbing Zhang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Jacqueline Berner
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Harrison B Chong
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jiafeng Fang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Zehra Ordulu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Tommy Weiss-Sadan
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Stefan Harry
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mariko Takahashi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Tzu-Yi Yang
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Marianne Richter
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Himani Patel
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Abby E Smith
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander D Carlin
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Konstantin Wolf
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Ting-Yu Wei
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Benedikt R Dürr
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas J Chen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Tristan Vornbäumen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nina O Wichmann
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Mohammed S Mahamdeh
- Division of Cardiology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Venkatesh Pooladanda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Yusuke Matoba
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Shaan Kumar
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Eugene Kim
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Sara Bouberhan
- Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA; Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | - Roy J Soberman
- Division of Nephrology, Harvard Medical School, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Michael Lawrence
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | - Liron Bar-Peled
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Jurado-Flores A, Gotor C, Romero LC. Proteome Dynamics of Persulfidation in Leaf Tissue under Light/Dark Conditions and Carbon Deprivation. Antioxidants (Basel) 2023; 12:antiox12040789. [PMID: 37107163 PMCID: PMC10135009 DOI: 10.3390/antiox12040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Hydrogen sulfide (H2S) acts as a signaling molecule in plants, bacteria, and mammals, regulating various physiological and pathological processes. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. This research aimed to study the regulation of protein persulfidation. We used a label-free quantitative approach to measure the protein persulfidation profile in leaves under different growth conditions such as light regimen and carbon deprivation. The proteomic analysis identified a total of 4599 differentially persulfidated proteins, of which 1115 were differentially persulfidated between light and dark conditions. The 544 proteins that were more persulfidated in the dark were analyzed, and showed significant enrichment in functions and pathways related to protein folding and processing in the endoplasmic reticulum. Under light conditions, the persulfidation profile changed, and the number of differentially persulfidated proteins increased up to 913, with the proteasome and ubiquitin-dependent and ubiquitin-independent catabolic processes being the most-affected biological processes. Under carbon starvation conditions, a cluster of 1405 proteins was affected by a reduction in their persulfidation, being involved in metabolic processes that provide primary metabolites to essential energy pathways and including enzymes involved in sulfur assimilation and sulfide production.
Collapse
Affiliation(s)
- Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
21
|
Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Sahin ZO, Weiss-Sadan T, Possemato AP, Harry S, Takahashi M, Yang TY, Richter M, Patel H, Smith AE, Carlin AD, Hubertus de Groot AF, Wolf K, Shi L, Wei TY, Dürr BR, Chen NJ, Vornbäumen T, Wichmann NO, Pooladanda V, Matoba Y, Kumar S, Kim E, Bouberhan S, Olivia E, Rueda B, Bardeesy N, Liau B, Lawrence M, Stokes MP, Beausoleil SA, Bar-Peled L. Identification of chemotherapy targets reveals a nucleus-to-mitochondria ROS sensing pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532189. [PMID: 36945474 PMCID: PMC10028958 DOI: 10.1101/2023.03.11.532189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Multiple chemotherapies are proposed to cause cell death in part by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs exactly how the resultant ROS function and are sensed is poorly understood. In particular, it's unclear which proteins the ROS modify and their roles in chemotherapy sensitivity/resistance. To answer these questions, we examined 11 chemotherapies with an integrated proteogenomic approach identifying many unique targets for these drugs but also shared ones including ribosomal components, suggesting one mechanism by which chemotherapies regulate translation. We focus on CHK1 which we find is a nuclear H 2 O 2 sensor that promotes an anti-ROS cellular program. CHK1 acts by phosphorylating the mitochondrial-DNA binding protein SSBP1, preventing its mitochondrial localization, which in turn decreases nuclear H 2 O 2 . Our results reveal a druggable nucleus-to-mitochondria ROS sensing pathway required to resolve nuclear H 2 O 2 accumulation, which mediates resistance to platinum-based chemotherapies in ovarian cancers.
Collapse
|
22
|
Liu JP, Cen SY, Xue Z, Wang TX, Gao Y, Zheng J, Zhang C, Hu J, Nie S, Xiong Y, Guan KL, Yuan HX. A Class of Disulfide Compounds Suppresses Ferroptosis by Stabilizing GPX4. ACS Chem Biol 2022; 17:3389-3406. [PMID: 36446024 DOI: 10.1021/acschembio.2c00445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation and has been implicated in multiple pathological conditions. Glutathione peroxidase 4 (GPX4) plays an essential role in inhibiting ferroptosis by eliminating lipid peroxide using glutathione (GSH) as a reductant. In this study, we found Ellman's reagent DTNB and a series of disulfide compounds, including disulfiram (DSF), an FDA-approved drug, which protect cells from erastin-induced ferroptosis. Mechanistically, DTNB or DSF is conjugated to multiple cysteine residues in GPX4 and disrupts GPX4 interaction with HSC70, an adaptor protein for chaperone mediated autophagy, thus preventing GPX4 degradation induced by erastin. In addition, DSF ameliorates concanavalin A induced acute liver injury by suppressing ferroptosis in a mouse model. Our work reveals a novel regulatory mechanism for GPX4 protein stability control. We also discover disulfide compounds as a new class of ferroptosis inhibitors and suggest therapeutic repurposing of DSF in treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Jin-Pin Liu
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Si-Yu Cen
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Zian Xue
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Tian-Xiang Wang
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Yun Gao
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Jia Zheng
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing400016, China
| | - Cheng Zhang
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China
| | - Junchi Hu
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing400016, China
| | - Shenyou Nie
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing400016, China
| | - Yue Xiong
- Cullgen Inc., 12671 High Bluff Drive, San Diego, California92130, United States
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California92093, United States
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai, Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences and the School of Pharmacy, Fudan University, Shanghai200032, China.,Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
23
|
Zhang T, Day NJ, Gaffrey M, Weitz KK, Attah K, Mimche PN, Paine R, Qian WJ, Helms MN. Regulation of hyperoxia-induced neonatal lung injury via post-translational cysteine redox modifications. Redox Biol 2022; 55:102405. [PMID: 35872399 PMCID: PMC9307955 DOI: 10.1016/j.redox.2022.102405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Preterm infants and patients with lung disease often have excess fluid in the lungs and are frequently treated with oxygen, however long-term exposure to hyperoxia results in irreversible lung injury. Although the adverse effects of hyperoxia are mediated by reactive oxygen species, the full extent of the impact of hyperoxia on redox-dependent regulation in the lung is unclear. In this study, neonatal mice overexpressing the beta-subunit of the epithelial sodium channel (β-ENaC) encoded by Scnn1b and their wild type (WT; C57Bl6) littermates were utilized to study the pathogenesis of high fraction inspired oxygen (FiO2)-induced lung injury. Results showed that O2-induced lung injury in transgenic Scnn1b mice is attenuated following chronic O2 exposure. To test the hypothesis that reversible cysteine-redox-modifications of proteins play an important role in O2-induced lung injury, we performed proteome-wide profiling of protein S-glutathionylation (SSG) in both WT and Scnn1b overexpressing mice maintained at 21% O2 (normoxia) or FiO2 85% (hyperoxia) from birth to 11-15 days postnatal. Over 7700 unique Cys sites with SSG modifications were identified and quantified, covering more than 3000 proteins in the lung. In both mouse models, hyperoxia resulted in a significant alteration of the SSG levels of Cys sites belonging to a diverse range of proteins. In addition, substantial SSG changes were observed in the Scnn1b overexpressing mice exposed to hyperoxia, suggesting that ENaC plays a critically important role in cellular regulation. Hyperoxia-induced SSG changes were further supported by the results observed for thiol total oxidation, the overall level of reversible oxidation on protein cysteine residues. Differential analyses reveal that Scnn1b overexpression may protect against hyperoxia-induced lung injury via modulation of specific processes such as cell adhesion, blood coagulation, and proteolysis. This study provides a landscape view of protein oxidation in the lung and highlights the importance of redox regulation in O2-induced lung injury.
Collapse
Affiliation(s)
- Tong Zhang
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nicholas J Day
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew Gaffrey
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karl K Weitz
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kwame Attah
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Patrice N Mimche
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Molecular Medicine Program, Salt Lake City, UT, USA
| | - Robert Paine
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wei-Jun Qian
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - My N Helms
- Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Walsh BJC, Costa SS, Edmonds KA, Trinidad JC, Issoglio FM, Brito JA, Giedroc DP. Metabolic and Structural Insights into Hydrogen Sulfide Mis-Regulation in Enterococcus faecalis. Antioxidants (Basel) 2022; 11:1607. [PMID: 36009332 PMCID: PMC9405070 DOI: 10.3390/antiox11081607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is implicated as a cytoprotective agent that bacteria employ in response to host-induced stressors, such as oxidative stress and antibiotics. The physiological benefits often attributed to H2S, however, are likely a result of downstream, more oxidized forms of sulfur, collectively termed reactive sulfur species (RSS) and including the organic persulfide (RSSH). Here, we investigated the metabolic response of the commensal gut microorganism Enterococcus faecalis to exogenous Na2S as a proxy for H2S/RSS toxicity. We found that exogenous sulfide increases protein abundance for enzymes responsible for the biosynthesis of coenzyme A (CoA). Proteome S-sulfuration (persulfidation), a posttranslational modification implicated in H2S signal transduction, is also widespread in this organism and is significantly elevated by exogenous sulfide in CstR, the RSS sensor, coenzyme A persulfide (CoASSH) reductase (CoAPR) and enzymes associated with de novo fatty acid biosynthesis and acetyl-CoA synthesis. Exogenous sulfide significantly impacts the speciation of fatty acids as well as cellular concentrations of acetyl-CoA, suggesting that protein persulfidation may impact flux through these pathways. Indeed, CoASSH is an inhibitor of E. faecalis phosphotransacetylase (Pta), suggesting that an important metabolic consequence of increased levels of H2S/RSS may be over-persulfidation of this key metabolite, which, in turn, inhibits CoA and acyl-CoA-utilizing enzymes. Our 2.05 Å crystallographic structure of CoA-bound CoAPR provides new structural insights into CoASSH clearance in E. faecalis.
Collapse
Affiliation(s)
- Brenna J. C. Walsh
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Sofia Soares Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | | - Federico M. Issoglio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET and Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - José A. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405-7003, USA
| |
Collapse
|
25
|
Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol 2022; 35:1690-1700. [PMID: 35948068 PMCID: PMC9580020 DOI: 10.1021/acs.chemrestox.2c00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cellular homeostasis is continuously challenged by damage
from
reactive oxygen species (ROS) and numerous reactive electrophiles.
Human cells contain various protective systems that are upregulated
in response to protein damage by electrophilic or oxidative stress.
In addition to the NRF2-mediated antioxidant response, ROS and reactive
electrophiles also activate HSF1 and HIF1 that control heat shock
response and hypoxia response, respectively. Here, we review chemical
and biological mechanisms of activation of these three transcription
factors by ROS/reactive toxicants and the roles of their gene expression
programs in antioxidant protection. We also discuss how NRF2, HSF1,
and HIF1 responses establish multilayered cellular defenses consisting
of largely nonoverlapping programs, which mitigates limitations of
each response. Some innate immunity links in these stress responses
help eliminate damaged cells, whereas others suppress deleterious
inflammation in normal tissues but inhibit immunosurveillance of cancer
cells in tumors.
Collapse
Affiliation(s)
- Anna M Cyran
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
26
|
Ning Q, Li J. DLF-Sul: a multi-module deep learning framework for prediction of S-sulfinylation sites in proteins. Brief Bioinform 2022; 23:6658856. [PMID: 35945138 DOI: 10.1093/bib/bbac323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Protein S-sulfinylation is an important posttranslational modification that regulates a variety of cell and protein functions. This modification has been linked to signal transduction, redox homeostasis and neuronal transmission in studies. Therefore, identification of S-sulfinylation sites is crucial to understanding its structure and function, which is critical in cell biology and human diseases. In this study, we propose a multi-module deep learning framework named DLF-Sul for identification of S-sulfinylation sites in proteins. First, three types of features are extracted including binary encoding, BLOSUM62 and amino acid index. Then, sequential features are further extracted based on these three types of features using bidirectional long short-term memory network. Next, multi-head self-attention mechanism is utilized to filter the effective attribute information, and residual connection helps to reduce information loss. Furthermore, convolutional neural network is employed to extract local deep features information. Finally, fully connected layers acts as classifier that map samples to corresponding label. Performance metrics on independent test set, including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under curve, reach 91.80%, 92.36%, 92.08%, 0.8416 and 96.40%, respectively. The results show that DLF-Sul is an effective tool for predicting S-sulfinylation sites. The source code is available on the website https://github.com/ningq669/DLF-Sul.
Collapse
Affiliation(s)
- Qiao Ning
- Information Science and Technology College, Dalian Maritime University, Dalian 116026, China
| | - Jinmou Li
- Information Science and Technology College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
27
|
Guillaubez JV, Pitrat D, Bretonnière Y, Lemoine J, Girod M. Relative quantification of sulfenic acids in plasma proteins using differential labelling and mass spectrometry coupled with 473 nm photo-dissociation analysis: A multiplexed approach applied to an Alzheimer's disease cohort. Talanta 2022; 250:123745. [PMID: 35870285 DOI: 10.1016/j.talanta.2022.123745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Cysteine (Cys) is subject to a variety of reversible post-translational modifications such as formation of sulfenic acid (Cys-SOH). If this modification is often involved in normal biological activities, it can also be the result of oxidative damage. Indeed, oxidative stress yields abnormal cysteine oxidations that affect protein function and structure and can lead to neurodegenerative diseases. In a context of population ageing, validation of novel biomarkers for detection of neurodegenerative diseases is important. However, Cys-SOH proteins investigation in large human cohorts is challenging due to their low abundance and lability under endogenous conditions. To improve the detection specificity towards the oxidized protein subpopulation, we developed a method that makes use of a mass spectrometer coupled with visible laser induced dissociation (LID) to add a stringent optical specificity to the mass selectivity. Since peptides do not naturally absorb in the visible range, this approach relies on the proper chemical derivatization of Cys-SOH with a chromophore functionalized with a cyclohexanedione. To compensate for the significant variability in total protein expression within the samples and any experimental bias, a normalizing strategy using free thiol (Cys-SH) cysteine peptides derivatized with a maleimide chromophore as internal references was used. Thanks to the differential tagging, oxidative ratios were then obtained for 69 Cys-containing peptides from 19 proteins tracked by parallel reaction monitoring (PRM) LID, in a cohort of 49 human plasma samples from Alzheimer disease (AD) patients. A statistical analysis indicated that, for the proteins monitored, the Cys oxidative ratio does not correlate with the diagnosis of AD. Nevertheless, the PRM-LID method allows the unbiased, sensitive and robust relative quantification of Cys oxidation within cohorts of samples.
Collapse
Affiliation(s)
- Jean-Valery Guillaubez
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France
| | - Delphine Pitrat
- Laboratoire de Chimie ENS Lyon, UMR, 5582, ENS Lyon CNRS et Université Lyon 1, France
| | - Yann Bretonnière
- Laboratoire de Chimie ENS Lyon, UMR, 5582, ENS Lyon CNRS et Université Lyon 1, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France
| | - Marion Girod
- Institut des Sciences Analytiques, UMR, 5280, Université Lyon 1, CNRS, Villeurbanne, France.
| |
Collapse
|
28
|
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, Muñoz-Vargas MA, Palma JM. Thiol-based Oxidative Posttranslational Modifications (OxiPTMs) of Plant Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:889-900. [PMID: 35323963 PMCID: PMC9282725 DOI: 10.1093/pcp/pcac036] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 06/01/2023]
Abstract
The thiol group of cysteine (Cys) residues, often present in the active center of the protein, is of particular importance to protein function, which is significantly determined by the redox state of a protein's environment. Our knowledge of different thiol-based oxidative posttranslational modifications (oxiPTMs), which compete for specific protein thiol groups, has increased over the last 10 years. The principal oxiPTMs include S-sulfenylation, S-glutathionylation, S-nitrosation, persulfidation, S-cyanylation and S-acylation. The role of each oxiPTM depends on the redox cellular state, which in turn depends on cellular homeostasis under either optimal or stressful conditions. Under such conditions, the metabolism of molecules such as glutathione, NADPH (reduced nicotinamide adenine dinucleotide phosphate), nitric oxide, hydrogen sulfide and hydrogen peroxide can be altered, exacerbated and, consequently, outside the cell's control. This review provides a broad overview of these oxiPTMs under physiological and unfavorable conditions, which can regulate the function of target proteins.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Salvador González-Gordo
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - Marta Rodríguez-Ruiz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - María A Muñoz-Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| | - José M Palma
- Department of Biochemistry, Cell and Molecular Biology of Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín (Spanish National Research Council, CSIC), C/ Professor Albareda, 1, Granada 18008, Spain
| |
Collapse
|
29
|
Jiang S, Fuentes-Lemus E, Davies MJ. Oxidant-mediated modification and cross-linking of beta-2-microglobulin. Free Radic Biol Med 2022; 187:59-71. [PMID: 35609861 DOI: 10.1016/j.freeradbiomed.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Beta-2-microglobulin (B2M) is synthesized by all nucleated cells and forms part of the major histocompatibility complex (MHC) class-1 present on cell surfaces, which presents peptide fragments to cytotoxic CD8+ T-lymphocytes, or by association with CD1, antigenic lipids to natural killer T-cells. Knockout of B2M results in loss of these functions and severe combined immunodeficiency. Plasma levels of this protein are low in healthy serum, but are elevated up to 50-fold in some pathologies including chronic kidney disease and multiple myeloma, where it has both diagnostic and prognostic value. High levels of the protein are associated with amyloid formation, with such deposits containing significant levels of modified or truncated protein. In the current study we examine the chemical and structural changes induced of B2M generated by both inflammatory oxidants (HOCl and ONOOH), and photo-oxidation (1O2) which is linked with immunosuppression. Oxidation results in oligomer formation, with this occurring most readily with HOCl and 1O2, and a loss of native protein conformation. LC-MS analysis provided evidence for nitrated (from ONOOH), chlorinated (from HOCl) and oxidized residues (all oxidants) with damage detected at Tyr, Trp, and Met residues, together with cleavage of the disulfide (cystine) bond. An intermolecular di-tyrosine crosslink is also formed between Tyr10 and Tyr63. The pattern of these modifications is oxidant specific, with ONOOH inducing a greater range of modifications than HOCl. Comparison of the sites of modification with regions identified as amyloidogenic indicate significant co-localization, consistent with the hypothesis that oxidation may contribute, and predispose B2M, to amyloid formation.
Collapse
Affiliation(s)
- Shuwen Jiang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
30
|
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson NG, Milne GL, Nyström T, Poulsen HE, Radi R, Van Remmen H, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022; 4:651-662. [PMID: 35760871 PMCID: PMC9711940 DOI: 10.1038/s42255-022-00591-z] [Citation(s) in RCA: 620] [Impact Index Per Article: 206.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/19/2022] [Indexed: 01/14/2023]
Abstract
Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vsevolod Belousov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russian Federation
| | | | - Kelvin J A Davies
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Dick
- German Cancer Research Center, DKFZ-ZMBH Alliance and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Henry J Forman
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Yvonne Janssen-Heininger
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- University of Vermont, Burlington, VT, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Rafael Radi
- Universidad de la República, Montevideo, Uruguay
| | | | | | - Paul J Thornalley
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shinya Toyokuni
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Huiyong Yin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Barry Halliwell
- Department of Biochemistry and Life Sciences Institute Neurobiogy Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Bailey DM, Culcasi M, Filipponi T, Brugniaux JV, Stacey BS, Marley CJ, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Jáuregui CM, Villena M, Villafuerte F, Rockenbauer A, Pietri S, Scherrer U, Sartori C. EPR spectroscopic evidence of iron-catalysed free radical formation in chronic mountain sickness: Dietary causes and vascular consequences. Free Radic Biol Med 2022; 184:99-113. [PMID: 35398201 DOI: 10.1016/j.freeradbiomed.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK.
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Teresa Filipponi
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Julien V Brugniaux
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK; HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Rodrigo Soria
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - David Cerny
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | | | | | | | | | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, 1117, Budapest, Hungary
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Urs Scherrer
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland; Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Claudio Sartori
- Department of Internal Medicine, University Hospital, UNIL-Lausanne, Switzerland
| |
Collapse
|
32
|
Bogatyrenko TN, Kandalintseva NV, Sashenkova TE, Allayarova UY, Mishchenko DV. Hydrophilic sulfur-containing antioxidant sodium 3-(3-tert-butyl-4-hydroxyphenyl)propylthiosulfate as a modulator of the activity of antitumor cytostatics and their combinations with a NO donor. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Hwang S, Iram S, Jin J, Choi I, Kim J. Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1. BMB Rep 2022. [PMID: 34743784 PMCID: PMC8972134 DOI: 10.5483/bmbrep.2022.55.3.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity.
Collapse
Affiliation(s)
- Sungwon Hwang
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Juno Jin
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
34
|
|
35
|
Tuncay A, Noble A, Guille M, Cobley JN. RedoxiFluor: A microplate technique to quantify target-specific protein thiol redox state in relative percentage and molar terms. Free Radic Biol Med 2022; 181:118-129. [PMID: 35131446 PMCID: PMC8904371 DOI: 10.1016/j.freeradbiomed.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Unravelling how reactive oxygen species regulate fundamental biological processes is hampered by the lack of an accessible microplate technique to quantify target-specific protein thiol redox state in percentages and moles. To meet this unmet need, we present RedoxiFluor. RedoxiFluor uses two spectrally distinct thiol-reactive fluorescent conjugated reporters, a capture antibody, detector antibody and a standard curve to quantify target-specific protein thiol redox state in relative percentage and molar terms. RedoxiFluor can operate in global mode to assess the redox state of the bulk thiol proteome and can simultaneously assess the redox state of multiple targets in array mode. Extensive proof-of-principle experiments robustly validate the assay principle and the value of each RedoxiFluor mode in diverse biological contexts. In particular, array mode RedoxiFluor shows that the response of redox-regulated phosphatases to lipopolysaccharide (LPS) differs in human monocytes. Specifically, LPS increased PP2A-, SHP1-, PTP1B-, and CD45-specific reversible thiol oxidation without changing the redox state of calcineurin, PTEN, and SHP2. The relative percentage and molar terms are interpretationally useful and define the most complete and extensive microplate redox analysis achieved to date. RedoxiFluor is a new antibody technology with the power to quantify relative target-specific protein thiol redox state in percentages and moles relative to the bulk thiol proteome and selected other targets in a widely accessible, simple and easily implementable microplate format.
Collapse
Affiliation(s)
- Ahmet Tuncay
- Redox Biology Group, UHI, Inverness, IV2 3JH, UK
| | - Anna Noble
- European Xenopus Resource Centre, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Matthew Guille
- European Xenopus Resource Centre, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | | |
Collapse
|
36
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
37
|
|
38
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
39
|
Kalous KS, Wynia-Smith SL, Smith BC. Sirtuin Oxidative Post-translational Modifications. Front Physiol 2021; 12:763417. [PMID: 34899389 PMCID: PMC8652059 DOI: 10.3389/fphys.2021.763417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Increased sirtuin deacylase activity is correlated with increased lifespan and healthspan in eukaryotes. Conversely, decreased sirtuin deacylase activity is correlated with increased susceptibility to aging-related diseases. However, the mechanisms leading to decreased sirtuin activity during aging are poorly understood. Recent work has shown that oxidative post-translational modification by reactive oxygen (ROS) or nitrogen (RNS) species results in inhibition of sirtuin deacylase activity through cysteine nitrosation, glutathionylation, sulfenylation, and sulfhydration as well as tyrosine nitration. The prevalence of ROS/RNS (e.g., nitric oxide, S-nitrosoglutathione, hydrogen peroxide, oxidized glutathione, and peroxynitrite) is increased during inflammation and as a result of electron transport chain dysfunction. With age, cellular production of ROS/RNS increases; thus, cellular oxidants may serve as a causal link between loss of sirtuin activity and aging-related disease development. Therefore, the prevention of inhibitory oxidative modification may represent a novel means to increase sirtuin activity during aging. In this review, we explore the role of cellular oxidants in inhibiting individual sirtuin human isoform deacylase activity and clarify the relevance of ROS/RNS as regulatory molecules of sirtuin deacylase activity in the context of health and disease.
Collapse
Affiliation(s)
- Kelsey S Kalous
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
40
|
Salovska B, Kondelova A, Pimkova K, Liblova Z, Pribyl M, Fabrik I, Bartek J, Vajrychova M, Hodny Z. Peroxiredoxin 6 protects irradiated cells from oxidative stress and shapes their senescence-associated cytokine landscape. Redox Biol 2021; 49:102212. [PMID: 34923300 PMCID: PMC8688892 DOI: 10.1016/j.redox.2021.102212] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy. SILAC-iodoTMT is a powerful tool to quantify redox imbalance in IRIS. Senescence in hTERT-RPE-1 cells is not accompanied by bulk cysteine oxidation. Antioxidant proteins are upregulated in senescent hTERT-RPE-1 cells. PRDX6 silencing affects redox homeostasis and viability of senescent cells. PRDX6 silencing alters secretome of senescent RPE-1 cells and suppresses IL-6.
Collapse
Affiliation(s)
- Barbora Salovska
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandra Kondelova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Pimkova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic
| | - Zuzana Liblova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslav Pribyl
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Marie Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
41
|
Fatty acid nitroalkene reversal of established lung fibrosis. Redox Biol 2021; 50:102226. [PMID: 35150970 PMCID: PMC8844680 DOI: 10.1016/j.redox.2021.102226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis occurs in response to dysregulated metabolism, pro-inflammatory signaling and tissue repair reactions. For example, lungs exposed to environmental toxins, cancer therapies, chronic inflammation and other stimuli manifest a phenotypic shift to activated myofibroblasts and progressive and often irreversible lung tissue scarring. There are no therapies that stop or reverse fibrosis. The 2 FDA-approved anti-fibrotic drugs at best only slow the progression of fibrosis in humans. The present study was designed to test whether a small molecule electrophilic nitroalkene, nitro-oleic acid (NO2-OA), could reverse established pulmonary fibrosis induced by the intratracheal administration of bleomycin in C57BL/6 mice. After 14 d of bleomycin-induced fibrosis development in vivo, lungs were removed, sectioned and precision-cut lung slices (PCLS) from control and bleomycin-treated mice were cultured ex vivo for 4 d with either vehicle or NO2-OA (5 μM). Biochemical and morphological analyses showed that over a 4 d time frame, NO2-OA significantly inhibited pro-inflammatory mediator and growth factor expression and reversed key indices of fibrosis (hydroxyproline, collagen 1A1 and 3A1, fibronectin-1). Quantitative image analysis of PCLS immunohistology reinforced these observations, revealing that NO2-OA suppressed additional hallmarks of the fibrotic response, including alveolar epithelial cell loss, myofibroblast differentiation and proliferation, collagen and α-smooth muscle actin expression. NO2-OA also accelerated collagen degradation by resident macrophages. These effects occurred in the absence of the recognized NO2-OA modulation of circulating and migrating immune cell activation. Thus, small molecule nitroalkenes may be useful agents for reversing pathogenic fibrosis of lung and other organs. Small molecule electrophiles, pleiotropic anti-inflammatory and anti-fibrotic drugs. NO2-OA inhibits activated myofibroblasts, induces dedifferentiation to fibroblasts. NO2-OA activates extracellular matrix degradation by macrophages. NO2-OA promotes proliferation of alveolar type 1 and 2 epithelial cells. NO2-OA reverses established lung fibrosis in murine lung slices.
Collapse
|
42
|
Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis. Free Radic Biol Med 2021; 176:366-377. [PMID: 34619326 DOI: 10.1016/j.freeradbiomed.2021.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/02/2023]
Abstract
Oxidation and reduction of protein cysteinyl thiols serve as molecular switches, which is considered the most central mechanism for redox regulation of biological processes, altering protein structure, biochemical activity, subcellular localization, and binding affinity. Redox proteomics allows global identification of redox-modified cysteine (Cys) sites and quantification of their reversible oxidation/reduction responses, serving as a hypothesis-generating platform to stimulate redox biology mechanistic research. Here, we developed Simultaneous Protein Expression and Redox (SPEAR) analysis, a new redox-proteomics approach based on differential labeling of reversibly oxidized and reduced cysteines with light and heavy isotopic forms of commercially available isotopically-labeled N-ethylmaleimide (NEM). The presented method does not require enrichment for labeled peptides, thus enabling simultaneous quantification of Cys reversible oxidation state and protein abundance. Using SPEAR, we were able to quantify the in-vivo reversible oxidation state of thousands of cysteines across the Arabidopsis proteome under steady-state and oxidative stress conditions. Functional assignment of the identified redox-sensitive proteins demonstrated the widespread effect of oxidative conditions on various cellular functions and highlighted the enrichment of chloroplastic proteins. SPEAR provides a simple, straightforward, and cost-effective means of studying redox proteome dynamics. The presented data provide a global quantitative view of the reversible oxidation of well-known redox-regulated active sites and many novel redox-sensitive sites whose role in plant acclimation to stress conditions remains to be further explored.
Collapse
Affiliation(s)
- Shani Doron
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Gabashvili
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel.
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610000, Israel.
| |
Collapse
|
43
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
44
|
p53 Forms Redox-Dependent Protein-Protein Interactions through Cysteine 277. Antioxidants (Basel) 2021; 10:antiox10101578. [PMID: 34679713 PMCID: PMC8533633 DOI: 10.3390/antiox10101578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023] Open
Abstract
Reversible cysteine oxidation plays an essential role in redox signaling by reversibly altering protein structure and function. Cysteine oxidation may lead to intra- and intermolecular disulfide formation, and the latter can drastically stabilize protein–protein interactions in a more oxidizing milieu. The activity of the tumor suppressor p53 is regulated at multiple levels, including various post-translational modification (PTM) and protein–protein interactions. In the past few decades, p53 has been shown to be a redox-sensitive protein, and undergoes reversible cysteine oxidation both in vitro and in vivo. It is not clear, however, whether p53 also forms intermolecular disulfides with interacting proteins and whether these redox-dependent interactions contribute to the regulation of p53. In the present study, by combining (co-)immunoprecipitation, quantitative mass spectrometry and Western blot we found that p53 forms disulfide-dependent interactions with several proteins under oxidizing conditions. Cysteine 277 is required for most of the disulfide-dependent interactions of p53, including those with 14-3-3θ and 53BP1. These interaction partners may play a role in fine-tuning p53 activity under oxidizing conditions.
Collapse
|
45
|
Noble A, Guille M, Cobley JN. ALISA: A microplate assay to measure protein thiol redox state. Free Radic Biol Med 2021; 174:272-280. [PMID: 34418513 DOI: 10.1016/j.freeradbiomed.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Measuring protein thiol redox state is central to understanding redox signalling in health and disease. The lack of a microplate assay to measure target specific protein thiol redox state rate-limits progress on accessibility grounds: redox proteomics is inaccessible to most. Developing a microplate assay is important for accelerating discovery by widening access to protein thiol redox biology. Beyond accessibility, enabling high throughput time- and cost-efficient microplate analysis is important. To meet the pressing need for a microplate assay to measure protein thiol redox state, we present the Antibody-Linked Oxi-State Assay (ALISA). ALISA uses a covalently bound capture antibody to bind a thiol-reactive fluorescent conjugated maleimide (F-MAL) decorated target. The capture antibody-target complex is labelled with an amine-reactive fluorescent N-hydroxysuccinimide ester (F-NHS) to report total protein. The covalent bonds that immobilise the capture antibody to the epoxy group functionalised microplate enable one to selectively elute the target. Target specific redox state is ratiometrically calculated as: F-MAL (i.e., reversible thiol oxidation)/F-NHS (i.e., total protein). After validating the assay principle (i.e., increased target specific reversible thiol oxidation increases the ratio), we used ALISA to determine whether fertilisation-a fundamental biological process-changes Akt, a serine/threonine protein kinase, specific reversible thiol oxidation. Fertilisation significantly decreases Akt specific reversible thiol oxidation in Xenopus laevis 2-cell zygotes compared to unfertilised eggs. ALISA is an accessible microplate assay to advance knowledge of protein thiol redox biology in health and disease.
Collapse
Affiliation(s)
- Anna Noble
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | - Matthew Guille
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | | |
Collapse
|
46
|
Azzam P, Francis M, Youssef T, Mroueh M, Daher AA, Eid AA, Fornoni A, Marples B, Zeidan YH. Crosstalk Between SMPDL3b and NADPH Oxidases Mediates Radiation-Induced Damage of Renal Podocytes. Front Med (Lausanne) 2021; 8:732528. [PMID: 34660640 PMCID: PMC8511442 DOI: 10.3389/fmed.2021.732528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells. Hereby, we investigated the interplay between SMPDL3b and oxidative stress in mediating radiation injury in podocytes. We demonstrated that the overexpression of SMPDL3b in cultured podocytes (OE) reduced superoxide anion generation and NADPH oxidase activity compared to wild-type cells (WT) post-irradiation. Furthermore, OE podocytes showed downregulated levels of NOX1 and NOX4 after RT. On the other hand, treatment with the NOX inhibitor GKT improved WTs' survival post-RT and restored SMPDL3b to basal levels. in vivo, the administration of GKT restored glomerular morphology and decreased proteinuria in 26-weeks irradiated mice. Taken together, these results suggest a novel role for NOX-derived reactive oxygen species (ROS) upstream of SMPDL3b in modulating the response of renal podocytes to radiation.
Collapse
Affiliation(s)
- Patrick Azzam
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marina Francis
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tarek Youssef
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Manal Mroueh
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alaa Abou Daher
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, NY, United States
| | - Youssef H. Zeidan
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
- Baptist Health, Lynn Cancer Institute, Boca Raton, FL, United States
| |
Collapse
|
47
|
Giese J, Eirich J, Post F, Schwarzländer M, Finkemeier I. Mass Spectrometry-Based Quantitative Cysteine Redox Proteome Profiling of Isolated Mitochondria Using Differential iodoTMT Labeling. Methods Mol Biol 2021; 2363:215-234. [PMID: 34545496 DOI: 10.1007/978-1-0716-1653-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Mitochondria are central hubs of redox biochemistry in the cell. An important role of mitochondrial carbon metabolism is to oxidize respiratory substrates and to pass the electrons down the mitochondrial electron transport chain to reduce oxygen and to drive oxidative phosphorylation. During respiration, reactive oxygen species are produced as a side reaction, some of which in turn oxidize cysteine thiols in proteins. Hence, the redox status of cysteine-containing mitochondrial proteins has to be controlled by the mitochondrial glutathione and thioredoxin systems, which draw electrons from metabolically derived NADPH. The redox status of mitochondrial cysteines can undergo fast transitions depending on the metabolic status of the cell, as for instance at early seed germination. Here, we describe a state-of-the-art method to quantify redox state of protein cysteines in isolated Arabidopsis seedling mitochondria of controlled metabolic and respiratory state by MS2-based redox proteomics using the isobaric thiol labeling reagent Iodoacetyl Tandem Mass Tag™ (iodoTMT). The procedure is also applicable to isolated mitochondria of other plant and nonplant systems.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Frederik Post
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
48
|
Hamitouche F, Gaillard JC, Schmitt P, Armengaud J, Duport C, Dedieu L. Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC Genomics 2021; 22:648. [PMID: 34493209 PMCID: PMC8425097 DOI: 10.1186/s12864-021-07962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bacillus cereus is a notorious foodborne pathogen, which can grow under anoxic conditions. Anoxic growth is supported by endogenous redox metabolism, for which the thiol redox proteome serves as an interface. Here, we studied the cysteine (Cys) proteome dynamics of B. cereus ATCC 14579 cells grown under fermentative anoxic conditions. We used a quantitative thiol trapping method combined with proteomics profiling. Results In total, we identified 153 reactive Cys residues in 117 proteins participating in various cellular processes and metabolic pathways, including translation, carbohydrate metabolism, and stress response. Of these reactive Cys, 72 were detected as reduced Cys. The B. cereus Cys proteome evolved during growth both in terms of the number of reduced Cys and the Cys-containing proteins identified, reflecting its growth-phase-dependence. Interestingly, the reduced status of the B. cereus thiol proteome increased during growth, concomitantly to the decrease of extracellular oxidoreduction potential. Conclusions Taken together, our data show that the B. cereus Cys proteome during unstressed fermentative anaerobic growth is a dynamic entity and provide an important foundation for future redox proteomic studies in B. cereus and other organisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07962-y.
Collapse
Affiliation(s)
- Fella Hamitouche
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Philippe Schmitt
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France
| | - Luc Dedieu
- Avignon Université, INRAE, UMR SQPOV, Site Agroparc, F-84914, Avignon Cedex 9, France.
| |
Collapse
|
49
|
Cross-Talk between Oxidative Stress and m 6A RNA Methylation in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6545728. [PMID: 34484567 PMCID: PMC8416400 DOI: 10.1155/2021/6545728] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/03/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a state of imbalance between oxidation and antioxidation. Excessive ROS levels are an important factor in tumor development. Damage stimulation and excessive activation of oncogenes cause elevated ROS production in cancer, accompanied by an increase in the antioxidant capacity to retain redox homeostasis in tumor cells at an increased level. Although moderate concentrations of ROS produced in cancer cells contribute to maintaining cell survival and cancer progression, massive ROS accumulation can exert toxicity, leading to cancer cell death. RNA modification is a posttranscriptional control mechanism that regulates gene expression and RNA metabolism, and m6A RNA methylation is the most common type of RNA modification in eukaryotes. m6A modifications can modulate cellular ROS levels through different mechanisms. It is worth noting that ROS signaling also plays a regulatory role in m6A modifications. In this review, we concluded the effects of m6A modification and oxidative stress on tumor biological functions. In particular, we discuss the interplay between oxidative stress and m6A modifications.
Collapse
|
50
|
Scrivner O, Kumar MR, Sorokolet K, Wong A, Kebaara B, Farmer PJ. Characterization of Endogenous and Extruded H 2S and Small Oxoacids of Sulfur (SOS) in Cell Cultures. ACS Chem Biol 2021; 16:1413-1424. [PMID: 34374506 DOI: 10.1021/acschembio.1c00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This report characterizes and quantifies endogenous hydrogen sulfide (H2S) and small oxoacids of sulfur (SOS = HOSH, HOSOH) in a panel of cell lines including human cancer (A375 melanoma cells, HeLa cervical cells) and noncancer (HEK293 embryonic kidney cells), as well as E. coli DH5α and S. cerevisiae S288C. The methodology used is a translation of well-studied nucleophilic and electrophilic traps for cysteine and oxidized cysteines residues to target small molecular weight sulfur species; mass spectrometric analysis allows for species quantification. The observed intracellular concentrations of H2S and SOS vary in different cell types, from nanomolar to femtomolar, typically with H2S > HOSOH > HOSH. We propose the term sulfome, a subset of the metabolome, describing the nonproteinaceous metabolites of H2S; the sulfomic index is as a measure of the S-oxide redox status, which gives a profile of endogenous sulfur at different oxidation states. An important observation is that H2S and SOS were found to be continuously extruded into surrounding media against a concentration gradient, implying an active efflux process. Small molecule inhibition of several H2S generating enzymes suggest that SOS are not derived solely from H2S oxidation. Even after successful inhibition of H2S production, cells maintain constant efflux and repopulate H2S and SOS over time. This work proves that these small sulfur oxoacids are generated in cells of all types, and their efflux implies that they play a role in cell signaling and possibly other vascular physiology attributed to H2S.
Collapse
Affiliation(s)
- Ottis Scrivner
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Murugaeson R. Kumar
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Kristina Sorokolet
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Angelo Wong
- Department of Biology, Baylor University, Waco, Texas 76898, United States
| | - Bessie Kebaara
- Department of Biology, Baylor University, Waco, Texas 76898, United States
| | - Patrick J. Farmer
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|