1
|
Chauhan DS, Vashisht P, Bebartta RP, Thakur D, Chaudhary V. Jerusalem artichoke: A comprehensive review of nutritional composition, health benefits and emerging trends in food applications. Compr Rev Food Sci Food Saf 2025; 24:e70114. [PMID: 39865639 DOI: 10.1111/1541-4337.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/28/2025]
Abstract
The Jerusalem artichoke (JA), a plantrelated to sunflowers and native to North America, has long been valued for its versatility, especially during periods of food scarcity. This resilient crop serves multiple purposes, functioning as a vegetable, medicinal herb, grazing crop, and even a biofuel source. In recent years, interest in JA has grown, largely due to its high nutritional profile and associated health benefits. This review explores JA's nutritional composition, the benefits of its consumption, and its botanical and agricultural characteristics. Additionally, the various applications of JA in the food industry are discussed, including its use in dairy products, snacks, baked goods, beverages, and functional foods. This review also examines the processing techniques involved in harvesting JA, extracting its valuable components, and incorporating it into food products. Notably, JA is a rich source of fiber and minerals, and incorporating it into food products not only enhances their nutritional value but also improves fermentation processes, lowers the glycemic index, and enhances sensory properties, all while reducing production costs. However, several challenges remain in JA production. These include optimizing growing conditions, addressing high labor costs, developing suitable machinery, determining the ideal harvesting time, increasing pest resistance, identifying suitable packaging materials, and developing sustainable production strategies. These challenges require further research to fully unlock JA's potential as a valuable crop.
Collapse
Affiliation(s)
- Divya Singh Chauhan
- Department of Food Technology, Raja Balwant Singh Engineering Campus, Agra, Uttar Pradesh, India
| | | | - Ram Prasad Bebartta
- Department of Food Engineering and Bio-Process Technology, Asian Institute of Technology, Pathum Thani, Thailand
| | - Dhruv Thakur
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Vandana Chaudhary
- Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
2
|
Rajeswariammal N, Palaniappan S. Antibacterial, Antifungal, Antioxidant and Phytochemical Studies on Extracts of <i>Justicia beddomei</i> (C. B. Clarke) Bennet. JOURNAL OF NATURAL REMEDIES 2024:1773-1783. [DOI: 10.18311/jnr/2024/43855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 01/05/2025]
Abstract
Background: Justicia beddomei (C.B. Clarke) Bennet, is an important ingredient in “Vasa”, a key medication in Ayurveda. There are only a few research studies of J. beddomei. Objectives: The goal of the current investigation is to perform a qualitative and quantitative screening for phytochemicals, and characterizing the antibacterial, antifungal, and antioxidant properties of successive solvent extracts of J. beddomei. Methodology: Phytochemical screening, total phenolic, alkaloid and flavonoid contents were determined using standard methods. The antioxidant activity of plant extracts was determined by DPPH and ABTS scavenging assays. The antimicrobial activity of the plant extracts was determined by agar well diffusion method. Results and Discussion: The qualitative phytochemical screening results demonstrated that each extract (water, petroleum ether, chloroform, and ethyl acetate) was mainly constituted of phenols, flavonoids, and alkaloids. The greatest concentrations of phenolic (70.21 ± 0.4086 μg gallic acid equivalent/mg extract), flavonoids (23.36 ± 0.3007 μg quercetin equivalent/mg extract) and alkaloids (74.56 ± 0.5052 μg atropine equivalent/mg extract) were found in the ethanol extract. The extracts of water, petroleum ether, and chloroform of J. beddomei showed moderate inhibitory activity against Staphylococcus aureus (MTCC 87) at 1000 μg. None of the extracts exhibited any inhibitory effects on Pseudomonas aeruginosa (MTCC 741) up to 1000 μg. The ethyl acetate and water extract of J. beddomei exhibited antifungal activity against Candida albicans (MTCC 227) at 1000 μg. According to the antioxidant studies, the aqueous extract had the highest scavenging activity for ABTS (IC50 373.83 μg/ml) and DPPH (IC50 368.90 μg/ml). Conclusion: J. beddomei possesses various secondary metabolites with antibacterial, antifungal, and antioxidant properties.
Collapse
|
3
|
Zeinali N, Mahmoudzadeh V, Anarjani A, Ebrahimnejad M, Yousefi B, Valizadeh A. Thymoquinone Increases the Sensitivity of SW-480 Colon Cancer Cells to 5-Fluorouracil. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6231095. [PMID: 39015603 PMCID: PMC11251801 DOI: 10.1155/2024/6231095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024]
Abstract
Background: Studies have concentrated on the therapeutic potential of thymoquinone (TQ), a natural polyphenol, in diverse malignancies, such as colorectal cancer. Nevertheless, the precise mechanisms of TQ-mediated anticancer properties are not yet fully elucidated. Objective: The present study has been designed to scrutinize the impact of TQ on 5-fluorouracil (5-FU)-mediated apoptosis in SW-480 cells. Materials and Methods: SW-480 cells were treated with TQ, 5-FU, and a combination of TQ + 5-FU. MTT assay was employed to assess cell viability. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to evaluate apoptotic markers comprising Bcl-2, Bax, and caspase-9 expression levels. The γ-H2AX protein expression was assessed by western blotting, and Annexin V flow cytometry was implemented to determine the apoptosis rate. Results: 5-FU significantly reversed the cell proliferation in a dose-dependent circumstance. The concurrent administration of TQ and 5-FU led to a substantial inhibition of cell growth in comparison to single treatments (p < 0.05). TQ also facilitated apoptosis via upregulating Bax and caspase-9 proapoptotic markers and suppressing antiapoptotic mediators, like Bcl-2. In addition, TQ augmented 5-FU-induced apoptosis in SW-480 cells. 5-FU, combined with TQ, increased the protein expression of γ-H2AX in SW-480 cells compared with groups treated with TQ and 5-FU alone. Conclusion: The present study's findings unveil the significance of TQ as a potential therapeutic substance in colorectal cancer, particularly through enhancing 5-FU-induced apoptosis.
Collapse
Affiliation(s)
- Nima Zeinali
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Mahmoudzadeh
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Anarjani
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ebrahimnejad
- Molecular Medicine Research CenterTabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory MedicineFaculty of MedicineTabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Valizadeh
- Student Research CommitteeTabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Hilal B, Khan MM, Fariduddin Q. Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108674. [PMID: 38705044 DOI: 10.1016/j.plaphy.2024.108674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
Plants produce a diverse range of secondary metabolites that serve as defense compounds against a wide range of biotic and abiotic stresses. In addition, their potential curative attributes in addressing various human diseases render them valuable in the development of pharmaceutical drugs. Different secondary metabolites including phenolics, terpenes, and alkaloids have been investigated for their antioxidant and therapeutic potential. A vast number of studies evaluated the specific compounds that possess crucial medicinal properties (such as antioxidative, anti-inflammatory, anticancerous, and antibacterial), their mechanisms of action, and potential applications in pharmacology and medicine. Therefore, an attempt has been made to characterize the secondary metabolites studied in medicinal plants, a brief overview of their biosynthetic pathways and mechanisms of action along with their signaling pathways by which they regulate various oxidative stress-related diseases in humans. Additionally, the biotechnological approaches employed to enhance their production have also been discussed. The outcome of the present review will lead to the development of novel and effective phytomedicines in the treatment of various ailments.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | | | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Ndungu NN, Kegode TM, Kurgat JK, Baleba SB, Cheseto X, Turner S, Tasse Taboue GC, Kasina J, Subramanian S, Nganso BT. Bio-functional properties and phytochemical composition of selected Apis mellifera honey from Africa. Heliyon 2024; 10:e30839. [PMID: 38778936 PMCID: PMC11109849 DOI: 10.1016/j.heliyon.2024.e30839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Globally, the demand for natural remedies such as honey to manage ailments has increased. Yet, the health benefits and chemical composition of African honeys are not well understood. Therefore, this study aimed to characterise the bio-functional properties and the phytochemical composition of 18 Apis mellifera honeys from Kenya, Uganda, and Cameroon in comparison to the popular and commercially available Manuka 5+ honey from New Zealand. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH-RSA) was used to determine the antioxidant property, whilst the agar well diffusion and broth dilution (Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) assays were used to determine antimicrobial property. Further, colorimetric methods were used for phytochemical analysis. Our results showed that honeys collected from Rift Valley region of Kenya (e.g. Poi, Salabani and Mbechot) and Western region of Cameron (e.g. Bangoulap) had the highest antioxidant (DPPH RSA of 41.52-43.81%) and antimicrobial (MIC (3.125-6.25% w/v) and MBC (6.25-12.5% w/v)) activities. Additionally, the total flavonoid (770-970 mg QE/100 g), phenol (944.79-1047.53 mg GAE/100 g), terpenoid (239.78-320.89 mg LE/100 g) and alkaloid (119.40-266.57 mg CE/100 g) contents reached the highest levels in these bioactive African honeys, which significantly and positively correlated with their bio-functional properties. The functional and phytochemical composition of these bioactive African honeys were similar to or higher than those of the Manuka 5+ honey. Furthermore, gas chromatography-mass spectrometry analysis of African honeys revealed 10 most prominent volatile organic compounds that contribute to their geographical distinction: triacontane, heptacosane, (Z)-9-tricosene, tetracosane, 6-propyl-2,3-dihydropyran-2,4-dione, octacosane, 1,2,4-trimethylcyclohexane, 1,3-bis(1,1-dimethylethyl) benzene, 2-methylheptane and phytol. Overall, our findings suggest that some of the tested African honeys are natural sources of antimicrobial and antioxidant therapies that can be exploited upon further research and commercialized as high value honey.
Collapse
Affiliation(s)
- Nelly N. Ndungu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Timothy M. Kegode
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Justus K. Kurgat
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Steve B.S. Baleba
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - S. Turner
- Malaika Honey Company, Kampala, Uganda
| | | | - J.M. Kasina
- Apiculture and Beneficial Insects Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 32-30403, Marigat, Kenya
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Beatrice T. Nganso
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
6
|
Chaudhry GES, Zeenia, Sharifi-Rad J, Calina D. Hispidulin: a promising anticancer agent and mechanistic breakthrough for targeted cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1919-1934. [PMID: 37594522 DOI: 10.1007/s00210-023-02645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Cancer is a complex disease characterized by dysregulated cell growth and division, posing significant challenges for effective treatment. Hispidulin, a flavonoid compound, has shown promising biological effects, particularly in the field of anticancer research. The main objective of this study is to investigate the anticancer properties of hispidulin and gain insight into its mechanistic targets in cancer cells. A comprehensive literature review was conducted to collect data on the anticancer effects of hispidulin. In vitro and in vivo studies were analyzed to identify the molecular targets and underlying mechanisms through which hispidulin exerts its anticancer activities. Hispidulin has shown significant effects on various aspects of cancer, including cell growth, proliferation, cell cycle regulation, angiogenesis, metastasis, and apoptosis. It has been observed to target both extrinsic and intrinsic apoptotic pathways, regulate cell cycle arrest, and modulate cancer progression pathways. The existing literature highlights the potential of hispidulin as a potent anticancer agent. Hispidulin exhibits promising potential as a therapeutic agent for cancer treatment. Its ability to induce apoptosis and modulate key molecular targets involved in cancer progression makes it a valuable candidate for further investigation. Additional pharmacological studies are needed to fully understand the specific targets and signaling pathways influenced by hispidulin in different types of cancer. Further research will contribute to the successful translation of hispidulin into clinical settings, allowing its utilization in conventional and advanced cancer therapies with improved therapeutic outcomes and reduced side effects.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Zeenia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
7
|
Kaffash M, Tolou-Shikhzadeh-Yazdi S, Soleimani S, Hoseinpoor S, Saberi MR, Chamani J. Spectroscopy and molecular simulation on the interaction of Nano-Kaempferol prepared by oil-in-water with two carrier proteins: An investigation of protein-protein interaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123815. [PMID: 38154302 DOI: 10.1016/j.saa.2023.123815] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
In this work, the interaction of human serum albumin (HSA) and human holo-transferrin (HTF) with the prepared Nano-Kaempferol (Nano-KMP) through oil-in-water procedure was investigated in the form of binary and ternary systems by the utilization of different spectroscopy techniques along with molecular simulation and cancer cell experiments. According to fluorescence spectroscopy outcomes, Nano-KMP is capable of quenching both proteins as binary systems by a static mechanism, while in the form of (HSA-HTF) Nano-KMP as the ternary system, an unlinear Stern-Volmer plot was elucidated with the occurrence of both dynamic and static fluorescence quenching mechanisms in the binding interaction. In addition, the two acquired Ksv values in the ternary system signified the existence of two sets of binding sites with two different interaction behaviors. The binding constant values of HSA-Nano KMP, HTF-Nano-KMP, and (HSA-HTF) Nano-KMP complexes formation were (2.54 ± 0.03) × 104, (2.15 ± 0.02) × 104 and (1.43 ± 0.04) × 104M-1at the first set of binding sites and (4.68 ± 0.05) × 104 M-1 at the second set of binding sites, respectively. The data of thermodynamic parameters confirmed the major roles of hydrogen binding and van der Waals forces in the formation of HSA-Nano KMP and HTF-Nano KMP complexes. The thermodynamic parameter values of (HSA-HTF) Nano KMP revealed the dominance of hydrogen binding and van der Waals forces in the first set of binding sites and hydrophobic forces for the second set of binding sites. Resonance light scattering (RLS) analysis displayed the existence of a different interaction behavior for HSA-HTF complex in the presence of Nano-KMP as the ternary system. Moreover, circular dichroism (CD) technique affirmed the conformational changes of the secondary structure of proteins as binary and ternary systems. Molecular docking and molecular dynamics simulations (for 100 ns) were performed to investigate the mechanism of KMP binding to HSA, HTF, and HSA-HTF. Next to observing a concentration and time-dependent cytotoxicity, the down regulation of PI3K/AkT/mTOR pathway resulted in cell cycle arrest in SW480 cells.
Collapse
Affiliation(s)
- Maryam Kaffash
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Samane Soleimani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeideh Hoseinpoor
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
8
|
Yuan J, Wang Z, Dong J, Gao M, Yang F, Sun H. Effect of resveratrol on SH-SY5Y cells studied by atomic force microscopy. Micron 2024; 177:103577. [PMID: 38141333 DOI: 10.1016/j.micron.2023.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/25/2023]
Abstract
In this paper, the effects of resveratrol on the viability, morphology, biomechanics and bioelectricity of SH-SY5Y cells were studied by atomic force microscopy. MTT assay showed that resveratrol had a dose effect on SH-SY5Y cells, and its activity was related to drug concentration and drug action time. With the increase of resveratrol concentration or the extension of action time, the activity of SH-SY5Y cells decreased obviously. Atomic force microscope (AFM) was employed to quantitatively analyze the physical changes of cells. AFM study shows that resveratrol can transform SH-SY5Y cells from spindle to sphere, and increase the cell height and decrease the cell adhesion. Also, the elastic modulus increases under the action of low concentration of resveratrol decreases under the action of high concentration of resveratrol, and the electric signal decreases. This study reveals the impact of resveratrol on SH-SY5Y cells from the biological and biophysical perspectives, which is helpful for a more comprehensive understanding of the interaction mechanism between resveratrol and SH-SY5Y cells. These techniques have potential applications in evaluating the effects of chemical substances on cells and screening targeted drugs.
Collapse
Affiliation(s)
- Jiayao Yuan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China; JR3CN & IRAC, University of Bedfordshire, Luton, UK.
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Hao Sun
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China; Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
9
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
10
|
Kumar M, Kaur S, Kaur S. c-Jun N-terminal Kinase (JNK), p38, and Caspases: Promising Therapeutic
Targets for the Regulation of Apoptosis in Cancer Cells by Phytochemicals. CURRENT CANCER THERAPY REVIEWS 2024; 20:200-211. [DOI: 10.2174/1573394719666230817094831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/29/2023] [Accepted: 06/21/2023] [Indexed: 01/04/2025]
Abstract
Abstract:
Carcinogenesis is a process in which uncontrolled cell proliferation forms preneoplastic
nodules which precede the appearance of cancer. In normal cells, growth and proliferation are regulated
by certain growth and hormonal stimulation, while mutational alterations in these signals render
the cells independent and resistant to these signals. In cancer, the critical homeostatic balance between
cell growth and apoptosis is lost and the cells continue to survive beyond their normal life
span. The activation of c-Jun N-terminal kinase (JNK), p38 and caspases are involved in potential
proapoptotic signaling pathways. JNK, p38 MAPK pathway and caspases play a crucial role in the
control of apoptosis in response to stress. The most recent and up-to-date literature was evaluated in
this study, which describes the role of JNK, p38 MAPK pathway and caspases as therapeutic target in
cancer. Chemotherapy uses drugs that are cytotoxic to highly proliferating tumor cells but also kills
the non-tumor rapidly proliferating cells in the hair, skin and gastrointestinal tract epithelium, thereby
accounting the side effects of these types of treatments. Recently, chemopreventive modalities derived
from phytoconstituents present in plants provide a broad-spectrum strategy to overcome the
incidence of cancer. Non-toxic, safe and affordable bioavailabilities of chemopreventive agents provide
credence support in the field of cancer research compared to conventional therapies that cause
serious consequences. Chemoprevention envisages the basic mechanisms like modulating the activity
of xenobiotic-metabolizing enzymes, induction of apoptosis, immune system activation, suppressing
angiogenesis and the formation of metastasis, antioxidant and anti-inflammatory properties. The present
review highlighted the role of phytoconstituents derived from food, vegetables and medicinal
plants in the induction of apoptosis in cancer cells, which in turn is mediated by the activation of
JNK, p38 MAPK pathways, and caspases.
Collapse
Affiliation(s)
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev
University, Amritsar- 143005, Punjab, India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev
University, Amritsar- 143005, Punjab, India
| |
Collapse
|
11
|
Lin FX, Pan QL, Gu HY, Zeng FJ, Lu ZJ. The Role of Resveratrol on Spinal Cord Injury: from Bench to Bedside. Mol Neurobiol 2024; 61:104-119. [PMID: 37584822 DOI: 10.1007/s12035-023-03558-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Spinal cord injury (SCI) is a severe and disabling injury of the central nervous system, with complex pathological mechanisms leading to sensory and motor dysfunction. Pathological processes, such as oxidative stress, inflammatory response, apoptosis, and glial scarring are important factors that aggravate SCI. Therefore, the inhibition of these pathological processes may contribute to the treatment of SCI. Currently, the pathogenesis of SCI remains under investigation as SCI treatment has not progressed considerably. Resveratrol, a natural polyphenol with anti-inflammatory and antioxidant properties, is considered a potential therapeutic drug for various diseases and plays a beneficial role in nerve damage. Preclinical studies have confirmed that signaling pathways are closely related to the pathological processes in SCI, and resveratrol is believed to exert therapeutic effects in SCI by activating the related signaling pathways. Based on current research on the pathways of resveratrol and its role in SCI, resveratrol may be a potentially effective treatment for SCI. This review summarizes the role of resveratrol in promoting the recovery of nerve function by regulating oxidative stress, inflammation, apoptosis, and glial scar formation in SCI through various mechanisms and pathways, as well as the deficiency of resveratrol in SCI research and the current and anticipated research trends of resveratrol. In addition, this review provides a background for further studies on the molecular mechanisms of SCI and the development of potential therapeutic agents. This information could also help clinicians understand the known mechanisms of action of resveratrol and provide better treatment options for patients with SCI.
Collapse
Affiliation(s)
- Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Fang-Jun Zeng
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
12
|
Zhao H, Yao L, Zhao J, Zhang M, Wang LA, Lv J, Zhang J. Chemical Compounds, Bioactivities, and Potential Applications of the Mushroom Species of Genus Suillus (Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38421694 DOI: 10.1615/intjmedmushrooms.2023051919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The genus Suillus, also known as "Song mo," falls under the order Boletales and consists of various higher fungi. It establishes mycorrhizae primarily with pine trees and has a good taste and medicinal values. Herein, we reviewed the chemical compounds present in the genus Suillus, including polysaccharides, steroids, phenols, polyprenyl phenol derivatives, fatty acids, organic acids, and amino acids, and their reported bioactivities and potential applications. This review aims to promote the utilization of the resources belonging to the genus Suillus and serves as a theoretical basis for their future studies and clinical applications.
Collapse
Affiliation(s)
- Hanyu Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Lan Yao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang 050081, People's Republic of China
| | - Jian Zhao
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Moxin Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Li-An Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jinxiu Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, P.R. China
| |
Collapse
|
13
|
Chen R, Wang Z, Liu W, Ding Y, Zhang Q, Wang S. Side Lighting of Red, Blue and Green Spectral Combinations Altered the Growth, Yield and Quality of Lettuce ( Lactuca sativa L. cv. "Yidali") in Plant Factory. PLANTS (BASEL, SWITZERLAND) 2023; 12:4147. [PMID: 38140474 PMCID: PMC10747435 DOI: 10.3390/plants12244147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
A plant factory with artificial lighting (PFAL) usually uses top lighting for cultivation. The light from the upper part of the canopy cannot penetrate the entire lettuce canopy, however, resulting in uneven vertical spatial light in the canopy, and accelerating the senescence of both the bottom and side leaves of the plant canopy. Therefore, in this study, the performance of lettuce in hydroponics was investigated upon supplemental side lighting with different spectral LEDs in a PFAL. A set of short-term side lighting treatments, including no side lamps (CK), red (R), blue (B), red + blue (RB), and red + blue + green (RGB) LED lamps (150 μmol·m-2·s-1, respectively), was employed for an additional 2 h per day after normal top lighting for 6 days before harvest. The results showed that the lettuce canopy was relatively loose and had a large crown size under side lighting compared with CK. Side lighting, irrespective of spectral qualities, significantly increased the fresh weight, and the R, B, RB, and RGB treatments increased the shoot fresh weight of lettuce plants by 34%, 19%, 31%, and 34%, and increased the fresh weight of leaf layer 2 by 50%, 17%, 44%, and 48%, respectively. The side lighting of different spectral qualities had a significant impact on the nutritional quality of the first row of lettuce at the edge of the top lighting illuminated area. Treatment B significantly promoted the chlorophyll content of leaf layer 3; the soluble sugar contents from leaf layer 1, 2, and 3; the starch contents in leaf layers 2 and 3; and the content of phenolics in the leaf layers 3; and significantly reduced the nitrate content in leaf layers 2 and 3. RGB significantly increased soluble sugar content by 91%, and the starch content in leaf layer 1, as well as the leaf chlorophyll and flavonoid content of leaf layer 3, while R had opposite effect completely. RB significantly increased the leaf chlorophyll content of leaf layer 3 and the nitrate content in leaf layer 1, but the overall effect was lower than that of RGB. In summary, side lighting of any type could effectively improve lettuce yield, solve the problem of inconsistent lettuce plant size caused by the edge effect of top lighting, and affect the nutritional quality of lettuce. B and RGB performed best. There was spatial response diversity of lettuce plants to side lighting spectral qualities.
Collapse
Affiliation(s)
- Ren Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
| | - Zhenwei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
| | - Wenke Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Lab of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuteng Ding
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
| | - Qishuan Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
| | - Shurong Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China; (R.C.); (Z.W.); (Y.D.); (Q.Z.)
| |
Collapse
|
14
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
15
|
Adamczuk N, Ośko J, Grembecka M, Konieczyński P, Migas P, Orzeł A, Baj-Wójtowicz B, Krauze-Baranowska M. Evaluation of the Content of Micro- and Macroelements in Raspberries Depending on the Species, Cultivar Variety, and Geographical Environment. Nutrients 2023; 15:3782. [PMID: 37686814 PMCID: PMC10490165 DOI: 10.3390/nu15173782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The study aimed to analyse the macro- and micro-nutrient content in fruits of Rubus species (R. idaeus, R. occidentalis, R. chamaemorus, and R. chingii) and their varieties or hybrids from different regions. Flame atomic absorption spectrometry with deuterium background correction was used to measure concentrations of nine essential elements (K, Mg, Ca, Na, Mn, Fe, Cr, Zn, and Cu) and two heavy metals (Pb, Cd). Chemometric analysis compared the elemental profiles. Results confirmed raspberries as a rich source of macroelements (K, Mg) and microelements (Zn, Cu, Mn, Cr). The 'Bristol' cultivar consistently had the highest Fe content regardless of origin. Cr presence was observed in black raspberries for the first time. Previously observed relationships like K-Na antagonism and Cr/Zn, Fe/Zn synergism were found in raspberry fruits. Factor and cluster analyses demonstrated species and geographical diversity among Polish raspberry samples and clear separation of R. chingii from China. Raspberry fruits, due to the rich complex of polyphenols, are classified as superfoods, and the content of bioelements determined in them guarantees coverage of the daily requirement for macro- and microelements (RDA depending on the element: 5.6-204% for R. idaeus, 8.8-469, 4% for R. occidentalis, and 1.4-67.2% for R. chamaemorus), finally confirming this opinion.
Collapse
Affiliation(s)
- Natalia Adamczuk
- Department of Pharmacognosy with Medicinal Plant Garden, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (N.A.); (P.M.)
| | - Justyna Ośko
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.O.); (M.G.)
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.O.); (M.G.)
| | - Paweł Konieczyński
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| | - Piotr Migas
- Department of Pharmacognosy with Medicinal Plant Garden, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (N.A.); (P.M.)
| | - Agnieszka Orzeł
- Niwa Berry Breeding Company, Brzezna 1, 33-386 Podegrodzie, Poland;
| | | | - Mirosława Krauze-Baranowska
- Department of Pharmacognosy with Medicinal Plant Garden, Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (N.A.); (P.M.)
| |
Collapse
|
16
|
Jiang H, Ni J, Hu L, Xiang Z, Zeng J, Shi J, Chen Q, Li W. Resveratrol May Reduce the Degree of Periodontitis by Regulating ERK Pathway in Gingival-Derived MSCs. Int J Mol Sci 2023; 24:11294. [PMID: 37511053 PMCID: PMC10378998 DOI: 10.3390/ijms241411294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Gingival-derived mesenchymal stem cells (GMSCs) have strong self-renewal, multilineage differentiation, and immunomodulatory properties and are expected to be applied in anti-inflammatory and tissue regeneration. However, achieving the goal of using endogenous stem cells to treat diseases and even regenerate tissues remains a challenge. Resveratrol is a natural compound with multiple biological activities that can regulate stem cell immunomodulation when acting on them. This study found that resveratrol can reduce inflammation in human gingival tissue and upregulate the stemness of GMSCs in human gingiva. In cell experiments, it was found that resveratrol can reduce the expression of TLR4, TNFα, and NFκB and activate ERK/Wnt crosstalk, thereby alleviating inflammation, promoting the proliferation and osteogenic differentiation ability of GMSCs, and enhancing their immunomodulation. These results provide a new theoretical basis for the application of resveratrol to activate endogenous stem cells in the treatment of diseases in the future.
Collapse
Affiliation(s)
- Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jia Ni
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zichao Xiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou 310000, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| |
Collapse
|
17
|
Rosiak N, Cielecka-Piontek J, Skibiński R, Lewandowska K, Bednarski W, Zalewski P. Do Rutin and Quercetin Retain Their Structure and Radical Scavenging Activity after Exposure to Radiation? Molecules 2023; 28:molecules28062713. [PMID: 36985686 PMCID: PMC10053567 DOI: 10.3390/molecules28062713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The influence of ionizing radiation on the physicochemical properties of quercetin and rutin in the solid state was studied. Quercetin and rutin were irradiated with the standard recommended radiation dose (25 kGy) according to EN 522 standard. The samples were irradiated by electron beam radiation. EPR studies indicate the formation of a small number of free radicals due to irradiation. Moreover, some radicals recombined with the mean lifetime of 1200 and 93 h, and a stable radical concentration reached only 0.29 and 0.90 ppm for quercetin and rutin, respectively. The performed spectroscopic study (FT-IR) confirmed the radiostability of the flavonoids tested. Chromatographic tests (HPLC, HPLC-MS) showed that irradiation of quercetin and rutin with a 25 kGy dose did not change the physicochemical properties of the tested compounds. Degradation products were not observed. The antioxidant activities were determined by the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) free radical scavenging activity assay, ABTS Radical Scavenging Assay (ABTS), Ferric Reducing Antioxidant Power Assay (FRAP), Cupric Ion Reducing Antioxidant Capacity Assay (CUPRAC). The conducted research confirmed that exposure to ionizing radiation does not change the chemical structure of tested flavonoids and their antioxidant properties.
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kornelia Lewandowska
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Correspondence: ; Tel.: +48-(61)-854-67-10
| |
Collapse
|
18
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
19
|
Wongwaiwech D, Kamchonemenukool S, Ho CT, Li S, Majai N, Rungrat T, Sujipuli K, Pan MH, Weerawatanakorn M. Bioactives from Crude Rice Bran Oils Extracted Using Green Technology. Molecules 2023; 28:molecules28062457. [PMID: 36985429 PMCID: PMC10057060 DOI: 10.3390/molecules28062457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Crude rice bran oils from different rice cultivars and extraction methods bear different contents of nutraceuticals. The health benefits of lowering cholesterol activity of rice bran oil being confirmed by many reports are partly attributed to non-nutrient nutraceuticals, especially γ-oryzanol, phytosterols, and policosanols. As the world has been facing the global warming crisis, green extraction technology is gaining attention from many sectors. The current study aims to compare the nutraceutical composition with respect to γ-oryzanol, phytosterol, and policosanol content as well as the antioxidant properties of crude rice bran oils extracted from white and red rice bran using three green technologies, comparing with conventional hexane extraction. The data show that the traditional solvent extraction gave the highest oil yield percentage (26%), but it was not significantly different from subcritical liquefied dimethyl ether extraction (24.6%). Subcritical liquefied dimethyl ether extraction gave higher oil yield than supercritical CO2 extraction (15.5–16.2%). The crude rice bran oil extracted using subcritical liquefied dimethyl ether extraction produced the highest total phenolic contents and antioxidant activities. The highest γ-oryzanol content of the crude rice bran oil was found in oil extracted by conventional cold press (1370.43 mg/100 g). The γ-oryzanol content of the oil obtained via subcritical liquefied dimethyl ether extraction was high (1213.64 mg/100 g) compared with supercritical CO2 extraction. The red rice bran yielded the crude rice bran oil with the highest total phytosterol content compared with the white bran, and the oil from red rice bran extracted with subcritical liquefied dimethyl ether generated the highest total phytosterol content (1784.17 mg/100 g). The highest policosanol content (274.40 mg/100 g) was also found in oil obtained via subcritical liquefied dimethyl ether extraction.
Collapse
Affiliation(s)
- Donporn Wongwaiwech
- Department of Agro-Industry, Rajamangala University of Technology Lanna Tak, 41/1 Moo 7, Mai Ngam, Mueang, Tak 63000, Thailand
| | - Sudthida Kamchonemenukool
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Shiming Li
- Department of Food Science, College of Life Sciences, Huanggang Normal University, Huanggang 438000, China
| | - Nutthaporn Majai
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Tepsuda Rungrat
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Kawee Sujipuli
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Monthana Weerawatanakorn
- Department of Agro-Industry, Naresuan University, 99 Moo 9, Tha Pho, Mueang, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-0629514194
| |
Collapse
|
20
|
Prakash J. Secondary Metabolites From Plants for Cardiovascular Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:155-171. [DOI: 10.4018/978-1-6684-6737-4.ch010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One of the leading causes of mortality worldwide is cardiac vascular disease. According to the WHO report, CVDs affect 17.9 million people each year and will affect 22.2 million people by 2030. The plants include flavonoids, polyphenols, plant Sulphur compounds, and terpenoids, which are all active phytochemicals. Recent research has revealed that flavonoids are substances with strong biological effects that may help prevent chronic illnesses including cardiovascular disease. The prevention of low-density lipoprotein oxidation, which encourages vasodilatation, is a common flavonoid mode of action. Due to the rising frequency of CVD, numerous plants have been identified to contain a number of physiologically active chemicals with known biological effects; however, proper CVD preventive and treatment approaches are still needed. This study aims to emphasize the cardiovascular risk factors, in addition to explaining the processes through which naturally occurring bioactive chemicals exhibit their cardiovascular preventive effects.
Collapse
Affiliation(s)
- Jose Prakash
- B.S. Abdur Rahman Crescent Insititute of Science and Technology, India
| |
Collapse
|
21
|
Mohammed DM, Elsayed N, Abou Baker DH, Ahmed KA, Sabry BA. Bioactivity and antidiabetic properties of Malva parviflora L. leaves extract and its nano-formulation in streptozotocin-induced diabetic rats. Heliyon 2022; 8:e12027. [PMID: 36531617 PMCID: PMC9747597 DOI: 10.1016/j.heliyon.2022.e12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a drastic health problem resulting from an endocrine disorder. M. parviflora L. might represent an antioxidant-rich food source and thus applies to pharmaceutical and therapeutic applications in oxidative stress-related degenerative diseases. In the current work, we assessed the antidiabetic activity of M. parviflora L. leaves extract and its nano-formulation in rats. M. parviflora L. bioactivity was evaluated by both antioxidant and antimicrobial assays. The nano-formulation characteristics (Mass, TEM, and Zeta potential) were evaluated. Twenty-four male Sprague-Dawley rats were administered streptozotocin (STZ) intraperitoneally for only one dose (35 mg/kg body weight). All of the nutritional and biochemical parameters were statistically analyzed. The results showed that M. parviflora L. is rich in phenolics and flavonoids with high antioxidant action. The antifungal activity of the extract was evident, especially with Fusarium culmorum and aspergillus flavus. The extract and its nano-formulation have shown antidiabetic properties when tested on diabetic rats as they improved all the biochemical parameters; decreased glucose level in serum, increased insulin production, marked improvement in lipid profile, liver and kidney functions, and that was more proved with the histopathological examinations. Conclusively, M. parviflora L. extract and its nano-formulation could attenuate or effectively help in controlling diabetes through its therapeutic properties exhibited by the action of the plant antioxidant components.
Collapse
Affiliation(s)
- Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nesren Elsayed
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Kawkab A. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Bassem A. Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
22
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
23
|
Cellular Uptake of Epigallocatechin Gallate in Comparison to Its Major Oxidation Products and Their Antioxidant Capacity In Vitro. Antioxidants (Basel) 2022; 11:antiox11091746. [PMID: 36139820 PMCID: PMC9495782 DOI: 10.3390/antiox11091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Depletion of reactive oxygen species and reduction of oxidative stress have been identified as key parameters in the prevention of cellular aging. In previous in vitro studies, the tea catechin epigallocatechin gallate (EGCG) was found to have both pro- and antioxidant properties, disregarding the low stability under cell culture conditions. Besides hydrogen peroxide, theasinensin dimers amongst other oxidation products are formed. Exact quantities, cellular uptake and antioxidant capacities of these dimeric oxidation products remain unknown. Via high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS), formation kinetics and cellular uptake of EGCG and its major oxidation products are quantified. The antioxidant capacity is determined on a cellular level using a modified dichlorofluorescein (DCF) approach. As a first result, oxidation product quantities of up to 21 µM each are measured after incubation of 50 µM EGCG. While EGCG is taken up equimolarly, its major oxidation products are accumulated in hepatocarcinoma HepG2 cells at millimolar concentrations, especially theasinensin A (TSA). Lastly, the oxidation products show higher antioxidant properties than the monomer EGCG. In correlation with cellular uptake, TSA displays the highest capacity of all tested analytes. The findings reveal the strong influence of EGCG oxidation products on its bioactivity in vitro.
Collapse
|
24
|
Li N, Girard AL. Impact of pH and temperature on whey protein-proanthocyanidin interactions and foaming properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Sinclair J, Stainton P, Dillon S, Taylor PJ, Richardson C, Bottoms L, Hobbs SJ, Shadwell G, Liles N, Allan R. The efficacy of a tart cherry drink for the treatment of patellofemoral pain in recreationally active individuals: a placebo randomized control trial. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00973-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose
This study aimed to explore the efficacy of U.S. Montmorency tart cherry in treating recreationally active individuals with patellofemoral pain.
Methods
Twenty-four recreationally active participants with patellofemoral pain were randomly separated into either placebo (males N = 8, females N = 4, age = 43.30 ± 7.86 yrs, mass = 72.10 ± 17.89 kg, stature = 171.16 ± 10.17, BMI = 24.31 ± 3.75 kg/m2, symptom duration = 30.18 ± 10.90) or Montmorency tart cherry (males N = 9, females N = 3, age = 41.75 ± 7.52 yrs, mass = 76.96 ± 16.64 kg, stature = 173.05 ± 7.63, BMI = 25.53 ± 4.03 kg/m2, symptom duration = 29.73 ± 11.88) groups. Both groups ingested 60 mL of either Montmorency tart cherry concentrate or taste matched placebo daily for 6 weeks. Measures of self-reported pain (KOOS-PF), psychological wellbeing (COOP WONCA), and sleep quality (PSQI) alongside blood biomarkers (C-reactive protein, uric acid, TNF alpha, creatinine, and total antioxidant capacity) and knee biomechanics were quantified at baseline and 6 weeks. Differences between groups were examined using linear mixed-effects models.
Results
There was 1 withdrawal in the cherry and 0 in the placebo group and no adverse events were noted in either condition. The placebo condition exhibited significant improvements (baseline = 67.90 ± 16.18 & 6 weeks = 78.04 ± 14.83) in KOOS-PF scores compared to the tart cherry group (baseline = 67.28 ± 12.55& 6 weeks = 67.55 ± 20.61). No other statistically significant observations were observed.
Conclusion
Tart cherry supplementation as specifically ingested in the current investigation does not appear to be effective in mediating improvements in patellofemoral pain symptoms in recreationally active individuals.
Collapse
|
27
|
da Silva RC, Fagundes RR, Faber KN, Campos ÉG. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado ( Bactris setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells. Nutr Cancer 2022; 74:3723-3734. [PMID: 35703849 DOI: 10.1080/01635581.2022.2086704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is one of the most common types of cancer. Bioactive natural compounds can act in cancer chemoprevention as tumor growth inhibitors. Tucum-do-cerrado (Bactris setosa Mart.) is a Brazilian fruit that contains several phenolic compounds. This study investigated the effect of tucum aqueous extract in Caco-2 cells in comparison to primary human intestinal organoids and fibroblasts. Cells were exposed to 0.5 and 1 mg/ml of tucum aqueous extract for 24 h. ROS production, mRNA levels for SOD1 and SOD2, CAT, GPX1, NFE2L2, HIF1A and NOS2 were evaluated in Caco-2 cells exposed to tucum extract. Cell viability of Caco-2 cells was decreased upon tucum extract exposure. Mitochondrial ROS levels increased in Caco-2 cells exposed to tucum extract. The mRNA levels of SOD1, SOD2, CAT, GPX, NFE2L2 and HIF1A were downregulated in Caco-2 cells exposed to tucum extract, while NOS2 mRNA levels remained unchanged. Protein levels of SOD2, CAT and NRF2 remained unchanged in Caco-2 cells treated with tucum extract, indicating that catalase and SOD2 cellular functions may be unaffected by the tucum extract at 24 h, of exposure. Aqueous extract of tucum-do-cerrado may induce cellular toxicity in a cancer cell-specific manner, possibly through increased mitochondrial ROS production and gene expression regulation.
Collapse
Affiliation(s)
- Renata Cristina da Silva
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.,Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Raphael Rosa Fagundes
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Élida Geralda Campos
- Programa de Pós-Graduação em Nutrição Humana, Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|
28
|
Liu F, Peng Y, Qiao Y, Huang Y, Song F, Zhang M, Song F. Consumption of flavonoids and risk of hormone-related cancers: a systematic review and meta-analysis of observational studies. Nutr J 2022; 21:27. [PMID: 35545772 PMCID: PMC9092883 DOI: 10.1186/s12937-022-00778-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Flavonoids seem to have hormone-like and anti-hormone properties so that the consumption of flavonoids may have potential effects on hormone-related cancers (HRCs), but the findings have been inconsistent so far. This meta-analysis was aimed to explore the association between flavonoids intake and HRCs risk among observational studies. METHODS Qualified articles, published on PubMed, EMBASE, and China National Knowledge Infrastructure (CNKI) from January 1999 to March 2022 and focused on relationships between flavonoids (total, subclass of and individual flavonoids) and HRCs (breast, ovarian, endometrial, thyroid, prostate and testicular cancer), were retrieved for pooled analysis. Random effects models were performed to calculate the pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Funnel plots and Begg's/Egger's test were used to evaluate the publication bias. Subgroup analyses and sensitivity analyses were conducted to explore the origins of heterogeneity. RESULTS All included studies were rated as medium or high quality. Higher consumption of flavonols (OR = 0.85, 95% CI: 0.76-0.94), flavones (OR = 0.85, 95% CI: 0.77-0.95) and isoflavones (OR = 0.87, 95% CI: 0.82-0.92) was associated with a decreased risk of women-specific cancers (breast, ovarian and endometrial cancer), while the higher intake of total flavonoids was linked to a significantly elevated risk of prostate cancer (OR = 1.11, 95% CI: 1.02-1.21). A little evidence implied that thyroid cancer risk was augmented with the higher intake of flavones (OR = 1.24, 95% CI: 1.03-1.50) and flavanones (OR = 1.31, 95% CI: 1.09-1.57). CONCLUSIONS The present study suggests evidence that intake of total flavonoids, flavonols, flavones, flavanones, flavan-3-ols and isoflavones would be associated with a lower or higher risk of HRCs, which perhaps provides guidance for diet guidelines to a certain extent. TRIAL REGISTRATION This protocol has been registered on PROSPERO with registration number CRD42020200720 .
Collapse
Affiliation(s)
- Fubin Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Peng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yating Qiao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, Guangdong, China.
| | - Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
29
|
Oyeleke MB, Owoyele BV. Saponins and flavonoids from Bacopa floribunda plant extract exhibit antioxidant and anti-inflammatory effects on amyloid beta 1-42-induced Alzheimer's disease in BALB/c mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114997. [PMID: 35033624 DOI: 10.1016/j.jep.2022.114997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bacopa floribunda (BF), a locally available plant has been employed traditionally as memory enhancer in Southwestern, Nigeria. It has been utilized in traditional and Ayurvedic medicine as brain tonic for enhancing memory, anti-aging and forestalling series of psychological disorders. However, there is a dearth of scientific information on the mechanism(s) of action of important phytochemicals from BF extract on dementia. AIM OF THE STUDY Alzheimer's disease, the commonest form of dementia has been postulated to triple by 2050 as a result of increase in life expectancy. This study therefore assessed and compared the possible mechanism(s) of action of flavonoids and saponins from BF on Amyloid beta (Aβ1-42)-induced dementia in male BALB/c mice. MATERIALS AND METHODS Eighty (80) healthy BALB/c mice divided into 10 groups (n = 8) were given a single bilateral ICV injection of Aβ1-42 or normal saline. Graded doses of Saponins and flavonoids (50, 100 and 200 mg/kg) were used as treatment for 21 days. Hippocampal homogenates were assayed for the levels of antioxidants, oxidative stress and neuroinflammatory markers. In vitro antioxidant activity of flavonoids and saponins were equally assessed using standard procedures. The extent of microglial activation was quantified through immunohistochemistry procedure. RESULTS Aβ1-42 successfully caused a spike in hippocampal levels of MDA, IL1β, TNF-α including MPO levels and invariably decreased antioxidant activities. Likewise an increase in reactive microglia (microgliosis) was observed. However, crude saponins and flavonoids from BF were able to suppress microgliosis, oxidative stress and neuroinflammation induced by Aβ1- 42 and were observed to be more effective at higher doses of saponins (100 mg/kg and 200 mg/kg) and flavonoid (100 mg/kg). CONCLUSIONS Phytochemicals from BF efficiently exhibited dose dependent alleviation of some symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Mosunmola Busayo Oyeleke
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine and Health Sciences, Afe Babalola University, P.M.B, 5454, Ado-Ekiti, Nigeria; Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| | - Bamidele Victor Owoyele
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| |
Collapse
|
30
|
Cheng Q, Liu QQ, Li K, Chang CH, Lu CA. Assessing Dietary Pesticide Intake and Potential Health Effects: The Application of Global Metabolomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4086-4091. [PMID: 35320672 DOI: 10.1021/acs.jafc.1c08050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scientific information is not yet available to provide insight into how individual metabolome might be affected by the presence of pesticides in regular diets. This study aimed to evaluate the perturbation of metabolomic pathways in children who switched their diets from conventional foods to mostly organic foods for five consecutive days. We selected 46 child-matched spot urine samples with distinct differences of urinary pesticide metabolite levels between the conventional and organic eating days and then analyzed those urine samples on three analytical platforms to perform global metabolomics analysis. We found statistically significant perturbations of metabolic pathways relevant to inflammation, oxidative stress, and the demands of xenobiotic detoxification when children switched their conventional diets to mostly organic foods. The outcomes of this study allow us to extend the current understanding beyond organophosphate pesticides' acute toxicity of cholinesterase inhibition to the perturbation of metabolic pathways at dietary intake levels.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaiye Li
- College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
| | - Chi-Hsuan Chang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
31
|
El Sheikha AF. Nutritional Profile and Health Benefits of Ganoderma lucidum "Lingzhi, Reishi, or Mannentake" as Functional Foods: Current Scenario and Future Perspectives. Foods 2022; 11:1030. [PMID: 35407117 PMCID: PMC8998036 DOI: 10.3390/foods11071030] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum has a long history of medicinal uses in the Far East countries of more than 2000 years due to its healing properties. Recently, G. lucidum has come under scientific scrutiny to evaluate its content of bioactive components that affect human physiology, and has been exploited for potent components in the pharmacology, nutraceuticals, and cosmetics industries. For instance, evidence is accumulating on the potential of this mushroom species as a promising antiviral medicine for treating many viral diseases, such as dengue virus, enterovirus 71, and recently coronavirus disease of 2019 (COVID-19). Still, more research studies on the biotherapeutic components of G. lucidum are needed to ensure the safety and efficiency of G. lucidum and promote the development of commercial functional foods. This paper provides an extensive overview of the nutraceutical value of Ganoderma lucidum and the development of commercial functional food. Moreover, the geo-origin tracing strategies of this mushroom and its products are discussed, a highly important parameter to ensure product quality and safety. The discussed features will open new avenues and reveal more secrets to widely utilizing this mushroom in many industrial fields; i.e., pharmaceutical and nutritional ones, which will positively reflect the global economy.
Collapse
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China;
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private, Ottawa, ON K1N 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom 32511, Egypt
| |
Collapse
|
32
|
In-silico drug-likeness analysis, ADME properties, and molecular docking studies of cyanidin-3-arabinoside, pelargonidin-3-glucoside, and peonidin-3-arabinoside as natural anticancer compounds against acting receptor-like kinase 5 receptor. Anticancer Drugs 2022; 33:517-522. [PMID: 35324525 DOI: 10.1097/cad.0000000000001297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aim of the study was in-silico drug-likeness analysis, absorption, distribution, metabolism, and excretion (ADME) properties, and molecular docking studies of anthocyanins as natural anticancer compounds against acting receptor-like kinase 5 (ALK5) receptor. Transforming growth factor-β (TGF-β) plays an essential role in various cellular processes. Increased expression of TGF-β and its receptor TGFβR-I (i.e. ALK5) have been associated with poor prognosis in cancer patients. METHODS The drug-likeness activity of anthocyanins was performed using SwissADME tool. Molecular docking studies were carried out by using the Autodock Vina 1.5.6 tool. RESULTS The results revealed that cyanidin-3-arabinoside (C3A), pelargonidin-3-glucoside (P3G), and peonidin-3-arabinoside (P3A) were able to use both Lipinski's rule of five and Ghose variations. The binding energies of C3A, P3G, and P3A against ALK5 were found as -8.0, -8.3, and -8.4 kcal mol-1, respectively. CONCLUSION These selected anthocyanins have shown higher binding energies than known inhibitors to the ALK5 receptor. Further in-vitro and in-vivo studies were strongly recommended to clarify the whole mechanism.
Collapse
|
33
|
Durazzo A, Lucarini M. Editorial: Databases and Nutrition. Front Nutr 2022; 9:853600. [PMID: 35369092 PMCID: PMC8971543 DOI: 10.3389/fnut.2022.853600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
|
34
|
Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Sagar NA, Pareek S, Benkeblia N, Xiao J. Onion (
Allium cepa
L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Noureddine Benkeblia
- Department of Life Sciences/The Biotechnology Centre The University of the West Indies Kingston Jamaica
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
36
|
Sudiono J, Salfabila S. Effect of tamarillo (Cyphomandra betacea Sendtn.) seed ethanol extract on HSC-3 tongue cancer cells. SCIENTIFIC DENTAL JOURNAL 2022. [DOI: 10.4103/sdj.sdj_24_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Liu JZ, Zhang CC, Fu YJ, Cui Q. Comparative analysis of phytochemical profile, antioxidant and anti-inflammatory activity from Hibiscus manihot L. flower. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Arslan AKK, Paşayeva L, Tugay O. Cytotoxic evaluation and LC-MS/MS analysis of aerial parts of Eryngium kotschyi Boiss. grown in Turkey. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
40
|
Alfke J, Kampermann U, Kalinina S, Esselen M. Isolation and structural elucidation of dimeric epigallocatechin-3-gallate autoxidation products and their antioxidant capacity. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03846-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractDietary polyphenols like epigallocatechin-3-gallate (EGCG)—which represents the most abundant flavan-3-ol in green tea—are subject of several studies regarding their bioactivity and health-related properties. On many occasions, cell culture or in vitro experiments form the basis of published data. Although the stability of these compounds is observed to be low, many reported effects are directly related to the parent compounds whereas the impact of EGCG degradation and autoxidation products is not yet understood and merely studied. EGCG autoxidation products like its dimers theasinensin A and D, “P2” and oolongtheanin are yet to be characterized in the same extent as their parental polyphenol. However, to investigate the bioactivity of autoxidation products—which would minimize the discrepancy between in vitro and in vivo data—isolation and structure elucidation techniques are urgently needed. In this study, a new protocol to acquire the dimers theasinensin A and D as well as oolongtheanin is depicted, including a variety of spectroscopic and quadrupole time-of-flight high-resolution mass spectrometric (qTOF-HRMS) data to characterize and assign these isolates. Through nuclear magnetic resonance (NMR) spectroscopy, polarimetry, and especially circular dichroism (CD) spectroscopy after enzymatic hydrolysis the complementary atropisomeric stereochemistry of the isolated theasinensins is illuminated and elucidated. Lastly, a direct comparison between the isolated EGCG autoxidation products and the monomer itself is carried out regarding their antioxidant properties featuring Trolox equivalent antioxidant capacity (TEAC) values. These findings help to characterize these products regarding their cellular effects and—which is of special interest in the flavonoid group—their redox properties.
Collapse
|
41
|
De Matteis V, Cascione M, Rizzello L, Manno DE, Di Guglielmo C, Rinaldi R. Synergistic Effect Induced by Gold Nanoparticles with Polyphenols Shell during Thermal Therapy: Macrophage Inflammatory Response and Cancer Cell Death Assessment. Cancers (Basel) 2021; 13:3610. [PMID: 34298823 PMCID: PMC8303381 DOI: 10.3390/cancers13143610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. METHODS Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. RESULTS Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. CONCLUSIONS Au NP@polyphenols may be powerful agents in cancer treatment.
Collapse
Affiliation(s)
- Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Loris Rizzello
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via G. Balzaretti 9, 20133 Milan, Italy;
- National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain;
| | - Daniela Erminia Manno
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| | - Claudia Di Guglielmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain;
| | - Rosaria Rinaldi
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (M.C.); (D.E.M.); (R.R.)
| |
Collapse
|
42
|
Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Appl Environ Microbiol 2021; 87:e0063121. [PMID: 33990307 DOI: 10.1128/aem.00631-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the antibacterial activity of caffeic acid (CA), which is a natural polyphenol, combined with UV-A light against the representative foodborne bacteria Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes. Data regarding the inactivation of these bacteria and its dependence on CA concentration, light wavelength, and light dose were obtained. E. coli O157:H7 and Salmonella Typhimurium were reduced to the detection limit when treated with 3 mM CA and UV-A for 3 J/cm2 and 4 J/cm2, respectively, and 5 J/cm2 treatment induced 3.10 log reduction in L. monocytogenes. To investigate the mechanism for inactivation of Salmonella Typhimurium and L. monocytogenes, measurement of polyphenol uptake, membrane damage assessment, enzymatic activity assay, and transmission electron microscopy (TEM) were conducted. It was revealed that CA was significantly (P < 0.05) absorbed by bacterial cells, and UV-A light allowed a higher uptake of CA for both pathogens. Additionally, CA plus UV-A treatment induced significant (P < 0.05) cell membrane damage. In the enzymatic activity assay, the activities of both pathogens were reduced by CA, and a greater reduction occurred by use of CA plus UV-A. Moreover, transmission electron microscopy (TEM) images indicated that CA plus UV-A treatment notably destroyed the intercellular structure. In addition, antibacterial activity was also observed in commercial apple juice, which showed results similar to those obtained from phosphate-buffered saline (PBS), resulting in a significant (P < 0.05) reduction for all three pathogens without any changes in color parameters (L*, a*, and b*), total phenolic compounds, and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity. IMPORTANCE Photodynamic inactivation (PDI), which involves photoactivation of a photosensitizer (PS), is an emerging field of study, as it effectively reduces various kinds of microorganisms. Although there are several PSs that have been used for PDI, there is a need to find naturally occurring PSs for safer application in the food industry. Caffeic acid, a natural polyphenol found in most fruits and vegetables, has recently been studied for its potential to act as a novel photosensitizer. However, no studies have been conducted regarding its antibacterial activity depending on treatment conditions and its antibacterial mechanism. In this study, we closely examined the effectiveness of caffeic acid in combination with UV-A light for inactivating representative foodborne bacteria in liquid medium. Therefore, the results of this research are expected to be utilized as basic data for future application of caffeic acid in PDI, especially when controlling pathogens in liquid food processing.
Collapse
|
43
|
A Review on Antidiabetic Activity of Centaurea spp.: A New Approach for Developing Herbal Remedies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5587938. [PMID: 34285703 PMCID: PMC8275385 DOI: 10.1155/2021/5587938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/19/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
Objective Diabetes mellitus (DM) is a long-life metabolic disorder, characterized by high blood glucose levels. The hyperglycemic condition generally leads to irreversible nerve injury and vascular damage. Among different types of diabetes, type 2 is more common and has spread all over the world. Although various therapeutic approaches have been developed to control type 2 DM, regulating blood glucose levels has still remained a controversial challenge for patients. Also, most prescription drugs cause different side effects, such as gastrointestinal disorders. Thus, developing novel and efficient antidiabetic agents possessing fewer adverse effects is in high demand. Method The literature was comprehensively surveyed via search engines such as Google Scholar, PubMed, and Scopus using appropriate keywords. Results Medicinal plants, both extracts and isolated active components, have played a significant role in controlling the blood glucose levels. Good-to-excellent results documented in the literature have made them a precious origin for developing and designing drugs and supplements against DM. Centaurea spp. have been traditionally used for controlling high blood glucose levels. Also, the antidiabetic properties of different species of Centaurea have been confirmed in recent studies through in vitro assays as well as in vivo experiments. Conclusion Potent results encouraged us to review their efficacy to open a new horizon for development of herbal antidiabetic agents.
Collapse
|
44
|
Yue XF, Jing SS, Ni XF, Zhang KK, Fang YL, Zhang ZW, Ju YL. Anthocyanin and Phenolic Acids Contents Influence the Color Stability and Antioxidant Capacity of Wine Treated With Mannoprotein. Front Nutr 2021; 8:691784. [PMID: 34222310 PMCID: PMC8249586 DOI: 10.3389/fnut.2021.691784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/23/2023] Open
Abstract
Wine is consumed by humans worldwide, but the functional components are lost and the color changes during its production. Here, we studied the effects of mannoprotein (MP) addition (0, 0.1, and 0.3 g/L) upon crushing and storage. We measured anthocyanins, phenolic acids profiles, color characteristics, and antioxidant activities of wine. The results showed that the addition of MP before fermentation significantly increased the total phenolic content (TPC), total anthocyanin content, total tannin content (TTC), total flavonoid content, and total flavanol content in wine, whereas the addition of MP during storage had the opposite effect. The addition of MP before alcohol fermentation significantly increased the amount of individual anthocyanins and individual phenolic acids, maintained the color, and increased the antioxidant capacity of wine. In addition, the addition of 0.3 g/L MP during storage increased the content of individual phenolic acids and TPC of wine. However, the addition of 0.1 g/L MP during storage significantly reduced the TPC, TAC, TTC, and individual anthocyanin content (except for malvidin-3-glucoside and malvidin-3-acetly-glucoside); meanwhile, the treatment attenuated the color stability and antioxidant capacity of wine. The results demonstrated that the addition of MP before alcohol fermentation could increase the functional components and improve the color stability and antioxidant capacity of wine.
Collapse
Affiliation(s)
- Xiao-Feng Yue
- College of Enology, Northwest A&F University, Xianyang, China
| | - Si-Si Jing
- College of Enology, Northwest A&F University, Xianyang, China
| | - Xiao-Fan Ni
- College of Enology, Northwest A&F University, Xianyang, China
| | - Ke-Kun Zhang
- College of Enology, Northwest A&F University, Xianyang, China
| | - Yu-Lin Fang
- College of Enology, Northwest A&F University, Xianyang, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China.,Heyang Viti-Viniculture Station, Northwest A&F University, Xianyang, China
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Xianyang, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang, China.,Heyang Viti-Viniculture Station, Northwest A&F University, Xianyang, China
| | - Yan-Lun Ju
- College of Enology, Northwest A&F University, Xianyang, China
| |
Collapse
|
45
|
Pirman T, Rezar V, Vrecl M, Salobir J, Levart A. Effect of Olive Leaves or Marigold Petal Extract on Oxidative Stress, Gut Fermentative Activity, and Mucosa Morphology in Broiler Chickens Fed a Diet Rich in n-3 Polyunsaturated Fats. J Poult Sci 2021; 58:119-130. [PMID: 33927566 PMCID: PMC8076619 DOI: 10.2141/jpsa.0200026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
An experiment in broilers was conducted to investigate the effect of olive (Olea europea) leaves and marigold (Calendula officinalis) petal extract supplementation on oxidative stress, characteristics of intestinal contents, and on the morphology of the small intestine. Oxidative stress was induced by a n-3 polyunsaturated fatty acids rich diet. 1-day-old male broiler chickens, Ross 308, were housed in a deep litter system. After the first 21 days, animals were randomly divided into three groups of 16 animals in two replicates and fed, until slaughter on day 39, a diet that contained 7% linseed oil. Control diet (Cont) remained unsupplemented, while both experimental diets were supplemented with olive leaves (OliveEx) or marigold petal (MarigEx) extracts. Oxidative stress was evaluated in blood and liver by measuring markers of lipid peroxidation (malondialdehyde (MDA), isoprostanes), rate of DNA damage in lymphocytes and in blood (comet assay, 8-hydroxy-2'deoxyguanosine (8-OHdG)), and activity of antioxidant and liver enzymes in blood. In different parts of the intestine, levels of short chain fatty acids (SCFA), and viscosity of intestinal contents were measured, and the health of the gastrointestinal tract was assessed using histological measurements. OliveEx significantly (p<0.05) decreased the MDA and 8-OHdG concentration in plasma, and the level of ethanoic acid in small intestinal contents and total SCFA in caecum, indicating improved oxidative status and increased microbial activity in the intestine. MarigEx significantly (p<0.05) decreased the rate of lymphocyte DNA damage and the crypt depth in duodenum, indicating potentially beneficial effects on the immune system and the health of the small intestine. In conclusion, dietary OliveEx and MarigEx supplementation improved some markers of oxidative stress and intestinal health. However, positive effects could be more pronounced in more unfavorable environmental conditions or in cases of diseases, but further studies are needed.
Collapse
Affiliation(s)
- Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Vida Rezar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Milka Vrecl
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Janez Salobir
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| | - Alenka Levart
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia
| |
Collapse
|
46
|
Sun Y, He L, Wang W, Wang T, Hua W, Li T, Wang L, Gao T, Chen F, Tang L. Polyphenols from Penthorum chinense Pursh. Attenuates high glucose-induced vascular inflammation through directly interacting with Keap1 protein. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113617. [PMID: 33307053 DOI: 10.1016/j.jep.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh is used for promoting diuresis and alleviating "heat"-associated disorders, which were considered to be related to diabetic in Traditional Chinese Medicine (TCM). AIMS OF THIS STUDY Here, we aimed to evaluate the ability and underlying mechanism of the ethyl acetate fraction of Penthorum chinense Pursh stems (PSE) to inhibit vascular inflammation in high glucose (HG)-induced human umbilical vein endothelial cells (HUVEC cells). MATERIALS AND METHODS HUVEC cells were pre-treated with PSE following HG treatment. The cell viability, mitochondrial membrane potential (MMP), lactate dehydrogenase (LDH) levels, reactive oxygen species (ROS) generation were analyzed. Inflammatory, and antioxidant,-related proteins were analyzed using western blotting. Molecular docking and drug affinity targeting experiments (DARTS) were utilized to analyze and verify the binding of the Keap1 protein and polyphenols of PSE. RESULTS HG can significantly increase the activity of lactic dehydrogenase (LDH), destroy the mitochondrial membrane potential (MMP), and promote the generation of reactive oxygen species (ROS), while PSE treatment reversed these changes. Mechanistically, PSE inhibited NF-κB and inflammatory cytokines activation induced by HG through activating the expression of Nrf2 and its downstream antioxidant proteins Heme oxygenase-1 (HO-1), NAD (P)H Quinone Dehydrogenase 1 (NQO1), Glutamate cysteine ligase catalytic subunit (GCLC), Glutamate-cysteine ligase modifier (GCLM). Further study indicated that PSE activated Nrf2 antioxidant pathway mainly by the binding of primary polyphenols from PSE and the Keap1 protein. CONCLUSION Taken together, the present data highlight the health benefits of polyphenols from Penthorum chinense Pursh. regarding diabetes, proving it to be an important source of health care products. Besides, binding of the Keap1 protein may be an effective strategy to activate Nrf2 antioxidant pathway and prevent diabetes.
Collapse
Affiliation(s)
- Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wang Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Taoyu Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Li Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Tingyan Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China.
| |
Collapse
|
47
|
Ravi S, Sreedharan R, Raghi KR, Manoj Kumar TK, Naseema K. Linear-nonlinear optical and quantum chemical studies on Quinolinium 3,5-dinitrobenzoate: A novel third order non-linear optical material for optoelectronic applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119304. [PMID: 33360567 DOI: 10.1016/j.saa.2020.119304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
An organic non-linear optical (NLO) crystal of Quinolinium 3,5-dinitrobenzoate (DNBAQ) was synthesized and good quality single crystals of DNBAQ were grown by conventional slow evaporation solution growth technique. Single crystal XRD was utilized to confirm the formation of the charge transfer complex. The crystalline property and the presence of required functional groups was verified employing Powder XRD and FTIR spectral analysis. UV-Vis-NIR and Fluorescence study was performed to determine the optical transmittance and the emission property of the grown crystal. The thermal, mechanical and surface damage threshold stability of the complex was analysed using thermal studies, Vicker's micro hardness studies and Laser damage threshold measurement. The solid state parameter of electronic polarizability of DNBAQ compound was computed through dielectric studies. The non-linear optical characterizations like Kurtz Perry powder technique and Z-Scan technique ensures the non-linear optical activity of the compound. The frequency conversion efficiency of the grown crystal was estimated to be 70% that of the standard Potassium Dihydrogen Phosphate (KDP). Z-Scan analysis confirms the suitability of the grown crystal for optical limiting and switching applications. Quantum chemical studies were adopted on the optimized geometry of DNBAQ molecule using Density Functional Theory (DFT). Frontier Molecular Orbital (FMO) analysis and Molecular Electrostatic Potential (MEP) analysis were performed. The non-linear optical behaviour of the complex was established by evaluating dipole moment, polarizability and hyperpolarizability features. All the above results confirm the resourceful candidature of DNBAQ material for optoelectronic and photonic applications.
Collapse
Affiliation(s)
- Sarath Ravi
- School of Pure and Applied Physics, Payyanur Campus, Kannur University, 670327 Kerala, India
| | - Rakhi Sreedharan
- School of Pure and Applied Physics, Payyanur Campus, Kannur University, 670327 Kerala, India
| | - K R Raghi
- School of Chemical Sciences, Payyanur Campus, Kannur University, 670327 Kerala, India; Indian Institute of Information Technology and Management, Trivandrum 695581, Kerala, India
| | - T K Manoj Kumar
- School of Chemical Sciences, Payyanur Campus, Kannur University, 670327 Kerala, India; Indian Institute of Information Technology and Management, Trivandrum 695581, Kerala, India
| | - K Naseema
- Department of Physics, Nehru Arts and Science College, Kanhangad 671314, Kerala, India.
| |
Collapse
|
48
|
Flavonoids-Macromolecules Interactions in Human Diseases with Focus on Alzheimer, Atherosclerosis and Cancer. Antioxidants (Basel) 2021; 10:antiox10030423. [PMID: 33802084 PMCID: PMC7999194 DOI: 10.3390/antiox10030423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids, a class of polyphenols, consumed daily in our diet, are associated with a reduced risk for oxidative stress (OS)-related chronic diseases, such as cardiovascular disease, neurodegenerative diseases, cancer, and inflammation. The involvement of flavonoids with OS-related chronic diseases have been traditionally attributed to their antioxidant activity. However, evidence from recent studies indicate that flavonoids' beneficial impact may be assigned to their interaction with cellular macromolecules, rather than exerting a direct antioxidant effect. This review provides an overview of the recent evolving research on interactions between the flavonoids and lipoproteins, proteins, chromatin, DNA, and cell-signaling molecules that are involved in the OS-related chronic diseases; it focuses on the mechanisms by which flavonoids attenuate the development of the aforementioned chronic diseases via direct and indirect effects on gene expression and cellular functions. The current review summarizes data from the literature and from our recent research and then compares specific flavonoids' interactions with their targets, focusing on flavonoid structure-activity relationships. In addition, the various methods of evaluating flavonoid-protein and flavonoid-DNA interactions are presented. Our aim is to shed light on flavonoids action in the body, beyond their well-established, direct antioxidant activity, and to provide insights into the mechanisms by which these small molecules, consumed daily, influence cellular functions.
Collapse
|
49
|
Kumar A, Kaur S, Pandit K, Kaur V, Thakur S, Kaur S. Onosma bracteata Wall. induces G 0/G 1 arrest and apoptosis in MG-63 human osteosarcoma cells via ROS generation and AKT/GSK3β/cyclin E pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14983-15004. [PMID: 33222070 DOI: 10.1007/s11356-020-11466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Onosma bracteata Wall. (Boraginaceae), commonly known as "gaozaban" is a highly valuable medicinal herb, useful in the treatment of body swellings, abdominal pain, eye-related problems, fever, and urinary calculi. The present study was performed to investigate the antioxidant properties of extract/fractions, viz. ethanol (Obeth) extract, hexane (Obhex) fraction, chloroform (Obcl) fraction, ethyl acetate (Obea) fraction, butanol (Obbu) fraction, and aqueous (Obaq) fraction isolated from O. bracteata. Obea fraction showed stronger free radical quenching ability in various antioxidant assays, as compared to the other fractions. Obea fraction with effective free radical-scavenging properties was further evaluated for the antiproliferative activity against human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay. Obea fraction showed strong cytotoxicity with GI50 value of 88.56, 101.61, and 112.7 μg/ml towards MG-63, IMR-32, and A549 cells respectively. Mechanistic studies revealed that Obea fraction in osteosarcoma MG-63 cells increased reactive oxygen species (ROS) level and reduced mitochondrial membrane potential. In the presence of Obea, the cells were found to be arrested in the G0/G1 phase in a dose-dependent manner which is also confirmed by the enhancement in the early apoptotic cell population in flow cytometer analysis. Western blotting demonstrated the decrease in expression of p-NFκB, COX-2, p-Akt, and Bcl-xL, whereas upregulation was observed in the expression of GSK-3β, p53, caspase-3, and caspase-9 proteins. RT-qPCR studies revealed downregulation of Bcl-2, cyclin E, CDK2, and mortalin gene expression and upregulation in the expression of p53 genes. The antioxidant and cytotoxic potential of Obea was attributed to the presence of catechin, kaempferol, onosmin A, and epicatechin, as revealed by HPLC analysis. This is the first report regarding the antiproliferative potential of O. bracteata against osteosarcoma.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sandeep Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kritika Pandit
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Varinder Kaur
- Indigenous Education and Research Centre, James Cook University, Australia, Townsville, Douglas Campus, Douglas, QLD, 4811, Australia
| | - Sharad Thakur
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
50
|
Dejanovic GM, Asllanaj E, Gamba M, Raguindin PF, Itodo OA, Minder B, Bussler W, Metzger B, Muka T, Glisic M, Kern H. Phytochemical characterization of turnip greens (Brassica rapa ssp. rapa): A systematic review. PLoS One 2021; 16:e0247032. [PMID: 33596258 PMCID: PMC7888597 DOI: 10.1371/journal.pone.0247032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/31/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The Turnip (Brassica rapa L. ssp. rapa) is a leaf and root vegetable grown and consumed worldwide. The consumption of Turnip has been associated with beneficial effects on human health due to their phytochemicals that may control a variety of physiological functions, including antioxidant activity, enzyme regulation, and apoptotic control and the cell cycle. The current systematic review of the literature aims to evaluate both the profile and quantity of phytochemicals commonly found in Turnip greens and to provide perspectives for further investigation. Methods This review was conducted following the PRISMA guidelines. Four bibliographic databases (PubMed, Embase, Web-of-Science and Cochrane Central Register of Controlled Trials) were searched to identify published studies until April 8th, 2020 (date last searched) without data and language restriction. Studies were included if they used samples of Turnip greens (the leaves), and evaluated its phytochemical content. Two reviewers independently evaluated the titles and abstracts according to the selection criteria. For each potentially eligible study, two reviewers assessed the full-texts and independently extracted the data using a predesigned data extraction form. Results Based on the search strategy 5,077 potentially relevant citations were identified and full texts of 37 studies were evaluated, among which 18 studies were eligible to be included in the current review. The majority of included studies were focused on identification of glucosinolates and isothiocyanates (n = 14, 82%), four studies focused on organic acids, and five studies reported phenolic component profile in Turnip greens. Among included studies nine studies (50%) provided information on phytochemical’s content. We found 129 phytochemicals (19 glucosinolates, 33 glucosinolate-breakdown products, 10 organic acids and 59 polyphenolic compounds) reported in Turnip greens. Flavonoids were mainly present as quercetin, kaempferol and isorhamnetin derivatives; while aliphatic forms were the predominant glucosinolate (gluconapin was the most common across five studies, followed by glucobrassicanapin). In general, the phytochemical content varied among the leaves, tops and Turnip roots. Conclusions Emerging evidence suggests the Turnip as a substantial source of diverse bioactive compounds. However, detailed investigation on the pure compounds derived from Turnip green, their bioavailability, transport and metabolism after consumption is further needed. Additional studies on their biological activity are crucial to develop dietary recommendations on the effective dosage and dietary recommendation of Turnip greens for nutrition and health.
Collapse
Affiliation(s)
- Gordana M. Dejanovic
- Faculty of Medicine, Department of Ophthalmology, University of Novi Sad, Novi Sad, Serbia
| | - Eralda Asllanaj
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Magda Gamba
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Peter Francis Raguindin
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Oche Adam Itodo
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Swiss Paraplegic Research, Nottwil, Switzerland
| | - Beatrice Minder
- Public Health & Primary Care Library, University Library of Bern, University of Bern, Bern, Switzerland
| | - Weston Bussler
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, United States of America
| | - Brandon Metzger
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, United States of America
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Marija Glisic
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Swiss Paraplegic Research, Nottwil, Switzerland
- * E-mail:
| | - Hua Kern
- Nutrition Innovation Center, Standard Process Inc., Kannapolis, NC, United States of America
| |
Collapse
|