1
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
2
|
Xu L, Hanigan MD, Lin X, Li X, Li M, Liu W, Hu Z, Hou Q, Wang Y, Wang Z. Interactions of amino acids and hormones regulate the balance between growth and milk protein synthesis in lactating rats fed diets differing in protein content. J Anim Sci 2021; 99:6124561. [PMID: 33515450 DOI: 10.1093/jas/skab031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/27/2021] [Indexed: 11/14/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I), growth hormone (GH), and prolactin (PRL) play important roles in milk protein synthesis, and their plasma concentrations were reported to be affected by dietary protein intake. To investigate the relationship between circulating amino acid (AA) and concentrations of these hormones, 18 Wistar rats aged 14 wk were assigned to a low (LP; 9% protein), standard (SP; 21% protein), or high-protein (HP; 35% protein) diet from parturition through day 15 of lactation. Plasma, liver, pituitary gland, skeletal muscle, and mammary gland samples were collected at the end of treatment. Circulating and hepatic IGF-I concentrations increased linearly with elevated dietary protein concentrations (P < 0.0001). Rats receiving the HP diet had higher circulating GH (P < 0.01) and pituitary PRL concentrations (P < 0.0001) but lower pituitary GH concentration (P < 0.0001) relative to those in rats receiving the LP and SP diets. Pearson correlation test performed on composed data across treatments showed that several circulating AAs were correlated with circulating and tissue concentrations of IGF-I, GH, and PRL. Multiple linear regression analyses identified Leu, Gln, Ala, Gly, and Arg as the main AAs associated with hormone responses (R2 = 0.37 ~ 0.80; P < 0.05). Rats fed the LP and HP diets had greater Igf1 and Ghr gene expression in skeletal muscle than those fed the SP diets (P < 0.01). However, LP treatment decreased Prlr mRNA abundance in mammary glands as compared with the SP and HP treatments (P < 0.05). The HP diets increased AA transporter expression (P < 0.01) but decreased mammalian target of rapamycin (P < 0.05) and 70 kDa ribosomal protein S6 kinase 1 (P < 0.01) phosphorylation in mammary glands as compared with the LP and SP diets. The results of the present study suggested that several circulating AAs mediated the effects of dietary protein supply on concentrations of IGF-I, GH, and PRL, which in turn altered the metabolism status in peripheral tissues including the lactating mammary glands.
Collapse
Affiliation(s)
- Lianbin Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Mark D Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Xueyan Lin
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xiuli Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengmeng Li
- Department of Dairy Science, Virginia Tech, Blacksburg, VA
| | - Wei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Qiuling Hou
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yun Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhonghua Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
3
|
Pigs receiving daily tailored diets using precision-feeding techniques have different threonine requirements than pigs fed in conventional phase-feeding systems. J Anim Sci Biotechnol 2019; 10:16. [PMID: 30834113 PMCID: PMC6385469 DOI: 10.1186/s40104-019-0328-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Background There is large variation in amino acids requirements among pigs, hence feeding pigs individually with daily tailored diets or in groups with a single feed may require different levels of nutrients. Thus, the response to different threonine levels (70%, 85%, 100%, 115%, and 130% of the ideal threonine:lysine protein ratio of 0.65) was studied in growing pigs raised in a conventional group phase-feeding (GPF) system or fed individually using individual precision-feeding (IPF) techniques. In a 21-day trial, 110 barrows (25 ± 0.80 kg body weight) were housed in the same room and fed using electronic feeders. Five pigs per treatment were slaughtered at the end of the trial. Results Threonine intake increased linearly for the IPF and GPF pigs (P < 0.05). Lysine intake was similar across the treatments. Average daily gain, gain:feed ratio, and protein deposition were affected linearly by threonine level (P < 0.05) in both feeding systems. Protein deposition in the GPF pigs was maximized at 150 g/d and a 0.65 threonine:lysine ratio, whereas protein deposition increased linearly in the IPF pigs. Plasma Met and serine levels were 11 and 7% higher, respectively, in the IPF pigs than in the GPF pigs (P < 0.05). Dietary threonine increased (P < 0.05) threonine concentration in the longissimus dorsi in a quadratic manner in the IPF pigs, whereas there was no effect in the GPF pigs. Longissimus dorsi collagen decreased as dietary threonine increased in the IPF and GPF pigs (P < 0.10). Carcass muscle crude protein was 2% higher in the GPF pigs than in the IPF pigs (P < 0.05). Conclusions Individual pigs are able to modulate growth and the composition of growth according to threonine intake. The average amino acid ratio value that is currently used for GPF cannot be used for IPF.
Collapse
|
4
|
Sabino M, Capomaccio S, Cappelli K, Verini-Supplizi A, Bomba L, Ajmone-Marsan P, Cobellis G, Olivieri O, Pieramati C, Trabalza-Marinucci M. Oregano dietary supplementation modifies the liver transcriptome profile in broilers: RNASeq analysis. Res Vet Sci 2017; 117:85-91. [PMID: 29197252 DOI: 10.1016/j.rvsc.2017.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/20/2022]
Abstract
Intensive farming of broilers involves stressful conditions that reduce animal welfare and performance. New dietary strategies to improve performance and meat quality include the administration of plant extracts. Oregano (Origanum vulgare L.) is known for its antimicrobial, anti-fungal, insecticidal and antioxidant properties. However, studies on diet supplementation with oregano are mainly focused on the evaluation of animal performance, while partial information is available on transcriptomics and nutrigenomics and, in particular, Next Generation Sequencing (NGS) is not widely applied. In this study we tested the effect of an oregano aqueous extract supplemented diet on gene expression in broiler chickens. Whole liver transcriptome of 10 birds fed with a supplemented diet versus 10 controls was analyzed using the RNA-Seq technique. One hundred and twenty-nine genes were differentially expressed with an absolute log fold change >1. The analysis reveals a massive down-regulation of genes involved in fatty acid metabolism and insulin signaling pathways in broilers fed with the oregano aqueous extract supplementation. Down-regulated genes could be associated to chicken lean line, suggesting the potential beneficial effect of oregano supplementation in reducing both abdominal and visceral fat deposition. Down-regulation of insulin signaling pathway related genes suggest that dietary oregano supplementation might be an option in obesity and diabetes conditions.
Collapse
Affiliation(s)
- Marcella Sabino
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Andrea Verini-Supplizi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy.
| | - Lorenzo Bomba
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paolo Ajmone-Marsan
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Gabriella Cobellis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Oliviero Olivieri
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Camillo Pieramati
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| | - Massimo Trabalza-Marinucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo, 4, 06126 Perugia, Italy
| |
Collapse
|
5
|
Osorio JS, Vailati-Riboni M, Palladino A, Luo J, Loor JJ. Application of nutrigenomics in small ruminants: Lactation, growth, and beyond. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
O'Sullivan JM, Doynova MD, Antony J, Pichlmuller F, Horsfield JA. Insights from space: potential role of diet in the spatial organization of chromosomes. Nutrients 2014; 6:5724-39. [PMID: 25514390 PMCID: PMC4276994 DOI: 10.3390/nu6125724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023] Open
Abstract
We can now sequence and identify genome wide epigenetic patterns and perform a variety of "genomic experiments" within relatively short periods of time-ranging from days to weeks. Yet, despite these technological advances, we have a poor understanding of the inter-relationships between epigenetics, genome structure-function, and nutrition. Perhaps this limitation lies, in part, in our propensity to study epigenetics in terms of the linear arrangement of elements and genes. Here we propose that a more complete understanding of how nutrition impacts on epigenetics and cellular development resides within the inter-relationships between DNA and histone modification patterns and genome function, in the context of spatial organization of chromatin and the epigenome.
Collapse
Affiliation(s)
- Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Private Bag 92019 AMC, Auckland 1142, New Zealand.
| | - Malina D Doynova
- The Liggins Institute, The University of Auckland, Private Bag 92019 AMC, Auckland 1142, New Zealand.
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin 9054, New Zealand.
| | - Florian Pichlmuller
- The Liggins Institute, The University of Auckland, Private Bag 92019 AMC, Auckland 1142, New Zealand.
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, P.O. Box 913, Dunedin 9054, New Zealand.
| |
Collapse
|
7
|
Seidl SE, Santiago JA, Bilyk H, Potashkin JA. The emerging role of nutrition in Parkinson's disease. Front Aging Neurosci 2014; 6:36. [PMID: 24639650 PMCID: PMC3945400 DOI: 10.3389/fnagi.2014.00036] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/20/2014] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in ageing individuals. It is now clear that genetic susceptibility and environmental factors play a role in disease etiology and progression. Because environmental factors are involved with the majority of the cases of PD, it is important to understand the role nutrition plays in both neuroprotection and neurodegeneration. Recent epidemiological studies have revealed the promise of some nutrients in reducing the risk of PD. In contrast, other nutrients may be involved with the etiology of neurodegeneration or exacerbate disease progression. This review summarizes the studies that have addressed these issues and describes in detail the nutrients and their putative mechanisms of action in PD.
Collapse
Affiliation(s)
- Stacey E Seidl
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Hope Bilyk
- The Nutrition Department, The College of Health Professions, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| |
Collapse
|
8
|
Noël M, Loseto LL, Helbing CC, Veldhoen N, Dangerfield NJ, Ross PS. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2942-2951. [PMID: 24490950 DOI: 10.1021/es403217r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p < 0.001 for 2008 and 2009; r(2) = 0.43, p = 0.049 for 2010) transcripts were positively correlated with polychlorinated biphenyls (PCBs), the dominant POP in beluga. Principal Components Analysis distinguished between these two toxicology genes and 11 other genes primarily involved in growth, metabolism, and development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.
Collapse
Affiliation(s)
- Marie Noël
- School of Earth and Ocean Sciences, University of Victoria , Victoria, British Columbia V8W 2Y2, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Johnson ZP, Lowe J, Michopoulos V, Moore CJ, Wilson ME, Toufexis D. Oestradiol differentially influences feeding behaviour depending on diet composition in female rhesus monkeys. J Neuroendocrinol 2013; 25:729-41. [PMID: 23714578 PMCID: PMC4427903 DOI: 10.1111/jne.12054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 12/18/2022]
Abstract
In females, cyclical changes in the ovarian hormone oestradiol are known to modulate feeding behaviour. However, what is less clear is how these behavioural effects of oestradiol are modified by the macronutrient content of a diet. In the present study, we report data showing that oestradiol treatment results in both significantly smaller meals and a reduced total calorie intake in ovariectomised, socially-housed female rhesus macaques when only chow diet is available. Conversely, during a choice dietary condition where both palatable and chow options are available, oestradiol treatment had no observable, attenuating effect on calorie intake. During this choice dietary phase, all animals consumed more of the palatable diet than chow diet; however, oestradiol treatment appeared to further increase preference for the palatable diet. Finally, oestradiol treatment increased snacking behaviour (i.e. the consumption of calories outside of empirically defined meals), regardless of diet condition. These findings illustrate how oestradiol differentially influences feeding behaviour depending on the dietary environment and provides a framework in which we can begin to examine the mechanisms underlying these observed changes.
Collapse
Affiliation(s)
- Z P Johnson
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Dauncey MJ. Genomic and epigenomic insights into nutrition and brain disorders. Nutrients 2013; 5:887-914. [PMID: 23503168 PMCID: PMC3705325 DOI: 10.3390/nu5030887] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/28/2013] [Accepted: 03/08/2013] [Indexed: 12/22/2022] Open
Abstract
Considerable evidence links many neuropsychiatric, neurodevelopmental and neurodegenerative disorders with multiple complex interactions between genetics and environmental factors such as nutrition. Mental health problems, autism, eating disorders, Alzheimer's disease, schizophrenia, Parkinson's disease and brain tumours are related to individual variability in numerous protein-coding and non-coding regions of the genome. However, genotype does not necessarily determine neurological phenotype because the epigenome modulates gene expression in response to endogenous and exogenous regulators, throughout the life-cycle. Studies using both genome-wide analysis of multiple genes and comprehensive analysis of specific genes are providing new insights into genetic and epigenetic mechanisms underlying nutrition and neuroscience. This review provides a critical evaluation of the following related areas: (1) recent advances in genomic and epigenomic technologies, and their relevance to brain disorders; (2) the emerging role of non-coding RNAs as key regulators of transcription, epigenetic processes and gene silencing; (3) novel approaches to nutrition, epigenetics and neuroscience; (4) gene-environment interactions, especially in the serotonergic system, as a paradigm of the multiple signalling pathways affected in neuropsychiatric and neurological disorders. Current and future advances in these four areas should contribute significantly to the prevention, amelioration and treatment of multiple devastating brain disorders.
Collapse
|
11
|
Qin B, Dawson HD, Schoene NW, Polansky MM, Anderson RA. Cinnamon polyphenols regulate multiple metabolic pathways involved in insulin signaling and intestinal lipoprotein metabolism of small intestinal enterocytes. Nutrition 2012; 28:1172-9. [DOI: 10.1016/j.nut.2012.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/19/2022]
|
12
|
Abstract
Molecular mechanisms underlying brain structure and function are affected by nutrition throughout the life cycle, with profound implications for health and disease. Responses to nutrition are in turn influenced by individual differences in multiple target genes. Recent advances in genomics and epigenomics are increasing understanding of mechanisms by which nutrition and genes interact. This review starts with a short account of current knowledge on nutrition-gene interactions, focusing on the significance of epigenetics to nutritional regulation of gene expression, and the roles of SNP and copy number variants (CNV) in determining individual responses to nutrition. A critical assessment is then provided of recent advances in nutrition-gene interactions, and especially energy status, in three related areas: (i) mental health and well-being, (ii) mental disorders and schizophrenia, (iii) neurological (neurodevelopmental and neurodegenerative) disorders and Alzheimer's disease. Optimal energy status, including physical activity, has a positive role in mental health. By contrast, sub-optimal energy status, including undernutrition and overnutrition, is implicated in many disorders of mental health and neurology. These actions are mediated by changes in energy metabolism and multiple signalling molecules, e.g. brain-derived neurotrophic factor (BDNF). They often involve epigenetic mechanisms, including DNA methylation and histone modifications. Recent advances show that many brain disorders result from a sophisticated network of interactions between numerous environmental and genetic factors. Personal, social and economic costs of sub-optimal brain health are immense. Future advances in understanding the complex interactions between nutrition, genes and the brain should help to reduce these costs and enhance quality of life.
Collapse
|
13
|
Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutr Res Rev 2011; 24:155-75. [DOI: 10.1017/s0954422411000047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The weaning transition is characterised by morphological, histological and microbial changes, often leading to weaning-associated disorders. These intestinal changes can partly be ascribed to the lack of luminal nutrition arising from the reduced feed intake common in pigs after weaning. It is increasingly becoming clear that changes in the supply with enteral nutrients may have major impacts on intestinal gene expression. Furthermore, the major dietary constituents, i.e. carbohydrates, fatty acids and amino acids, participate in the regulation of intestinal gene expression. However, nutrients may also escape digestion by mammalian enzymes in the upper gastrointestinal tract. These nutrients can be used by the microflora, resulting in the production of bacterial metabolites, for example, SCFA, which may affect intestinal gene expression indirectly. The present review provides an insight on possible effects of reduced feed intake on intestinal gene expression, as it may occur post-weaning. Detailed knowledge on effects of reduced feed intake on intestinal gene expression may help to understand weaning-associated intestinal dysfunctions and diseases. Examples are given of intestinal genes which may be altered in their expression due to supply with specific nutrients. In that way, gene expression could be modulated by dietary means, thereby acting as a potential therapeutic tool. This could be achieved, for example, by influencing genes coding for digestive or absorptive proteins, thus optimising digestive function and metabolism, but also with regard to immune response, or by influencing proliferative processes, thereby enhancing mucosal repair. This would be of special interest when designing a diet to overcome weaning-associated problems.
Collapse
|
14
|
Abstract
Nutrition can affect the brain throughout the life cycle, with profound implications for mental health and degenerative disease. Many aspects of nutrition, from entire diets to specific nutrients, affect brain structure and function. The present short review focuses on recent insights into the role of nutrition in cognition and mental health and is divided into four main sections. First, the importance of nutritional balance and nutrient interactions to brain health are considered by reference to the Mediterranean diet, energy balance, fatty acids and trace elements. Many factors modulate the effects of nutrition on brain health and inconsistencies between studies can be explained in part by differences in early environment and genetic variability. Thus, these two factors are considered in the second and third parts of the present review. Finally, recent findings on mechanisms underlying the actions of nutrition on the brain are considered. These mechanisms involve changes in neurotrophic factors, neural pathways and brain plasticity. Advances in understanding the critical role of nutrition in brain health will help to fulfil the potential of nutrition to optimise brain function, prevent dysfunction and treat disease.
Collapse
|
15
|
Ellis-Hutchings RG, Cherr GN, Hanna LA, Keen CL. The effects of marginal maternal vitamin A status on penta-brominated diphenyl ether mixture-induced alterations in maternal and conceptal vitamin A and fetal development in the Sprague Dawley rat. ACTA ACUST UNITED AC 2009; 86:48-57. [DOI: 10.1002/bdrb.20181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Boucheron C, Alfos S, Enderlin V, Husson M, Pallet V, Jaffard R, Higueret P. Age-related effects of ethanol consumption on triiodothyronine and retinoic acid nuclear receptors, neurogranin and neuromodulin expression levels in mouse brain. Neurobiol Aging 2006; 27:1326-34. [PMID: 16115698 DOI: 10.1016/j.neurobiolaging.2005.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 06/10/2005] [Accepted: 07/17/2005] [Indexed: 12/14/2022]
Abstract
The effects of ethanol consumption and ageing were investigated on the expression levels of retinoic acid (RA) and triiodothyronine (T3) nuclear receptors (RAR, RXR and TR) and of associated target genes involved in synaptic plasticity, neurogranin (RC3) and neuromodulin (GAP-43) in mice brain. For this purpose, C57BL/6 adult and aged mice were subjected to 5-month ethanol consumption and the mRNA expression of RAR, RXR, TR, RC3 and GAP-43 was measured using a real-time RT-PCR method. GAP-43 and RC3 protein levels also were measured by Western blot. Results showed that 12% ethanol consumption in adult mice (11 months) induced an increase in RARbeta, RXRbetagamma and TRalphabeta mRNA level in the brain with only an increase in RC3 expression. The same ethanol consumption in aged mice (22 months) reversed the age-related hypo-expression in brain RARbeta, TRalphabeta and target genes RC3 and GAP-43. Compared with our previous behavioral data showing that ethanol is able to partially suppress a selective age-related cognitive deficit, these results suggest that the ethanol-induced increase in RA and T3 nuclear receptors expression could be one of the mechanisms involved in the normalization of synaptic plasticity-associated gene expression altered in aging brain.
Collapse
Affiliation(s)
- Catherine Boucheron
- Unité de Nutrition et Signalisation Cellulaire, EA MENRT; USC INRA, ISTAB, Université Bordeaux 1, 33405 Talence Cedex, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 2006; 124:758-87. [PMID: 16600411 DOI: 10.1016/j.jbiotec.2006.02.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/22/2005] [Accepted: 02/17/2006] [Indexed: 01/21/2023]
Abstract
While traditional nutrition research has dealt with providing nutrients to nourish populations, it nowadays focuses on improving health of individuals through diet. Modern nutritional research is aiming at health promotion and disease prevention and on performance improvement. As a consequence of these ambitious objectives, the disciplines "nutrigenetics" and "nutrigenomics" have evolved. Nutrigenetics asks the question how individual genetic disposition, manifesting as single nucleotide polymorphisms, copy-number polymorphisms and epigenetic phenomena, affects susceptibility to diet. Nutrigenomics addresses the inverse relationship, that is how diet influences gene transcription, protein expression and metabolism. A major methodological challenge and first pre-requisite of nutrigenomics is integrating genomics (gene analysis), transcriptomics (gene expression analysis), proteomics (protein expression analysis) and metabonomics (metabolite profiling) to define a "healthy" phenotype. The long-term deliverable of nutrigenomics is personalised nutrition for maintenance of individual health and prevention of disease. Transcriptomics serves to put proteomic and metabolomic markers into a larger biological perspective and is suitable for a first "round of discovery" in regulatory networks. Metabonomics is a diagnostic tool for metabolic classification of individuals. The great asset of this platform is the quantitative, non-invasive analysis of easily accessible human body fluids like urine, blood and saliva. This feature also holds true to some extent for proteomics, with the constraint that proteomics is more complex in terms of absolute number, chemical properties and dynamic range of compounds present. Apart from addressing the most complex "-ome", proteomics represents the only platform that delivers not only markers for disposition and efficacy but also targets of intervention. The Omics disciplines applied in the context of nutrition and health have the potential to deliver biomarkers for health and comfort, reveal early indicators for disease disposition, assist in differentiating dietary responders from non-responders, and, last but not least, discover bioactive, beneficial food components. This paper reviews the state-of-the-art of the three Omics platforms, discusses their implication in nutrigenomics and elaborates on applications in nutrition and health such as digestive health, allergy, diabetes and obesity, nutritional intervention and nutrient bioavailability. Proteomic developments, applications and potential in the field of nutrition have been specifically addressed in another review issued by our group.
Collapse
Affiliation(s)
- Martin Kussmann
- Bioanalytical Science Department, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
18
|
Ferguson LR. Nutrigenomics: integrating genomic approaches into nutrition research. Mol Diagn Ther 2006; 10:101-8. [PMID: 16669608 DOI: 10.1007/bf03256449] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been suggested that the supermarket of today will be the pharmacy of tomorrow. Such statements have been derived from recognition of our increasing ability to optimize nutrition, and maintain a state of good health through longer periods of life. The new field of nutrigenomics, which focuses on the interaction between bioactive dietary components and the genome, recognizes that current nutritional guidelines may be ideal for only a relatively small proportion of the population. There is good evidence that nutrition has significant influences on the expression of genes, and, likewise, genetic variation can have a significant effect on food intake, metabolic response to food, individual nutrient requirements, food safety, and the efficacy of disease-protective dietary factors. For example, a significant number of human studies in various areas are increasing the evidence for interactions between single nucleotide polymorphisms (SNPs) in various genes and the metabolic response to diet, including the risk of obesity. Many of the same genetic polymorphisms and dietary patterns that influence obesity or cardiovascular disease also affect cancer, since overweight individuals are at increased risk of cancer development. The control of food intake is profoundly affected by polymorphisms either in genes encoding taste receptors or in genes encoding a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Total dietary intake, and the satiety value of various foods, will profoundly influence the effects of these genes. Identifying key SNPs that are likely to influence the health of an individual provides an approach to understanding and, ultimately, to optimizing nutrition at the population or individual level. Traditional methods for identification of SNPs may involve consideration of individual variants, using methodologies such as restriction fragment length polymorphisms or quantitative real-time PCR assays. New developments allow identification of up to 500,000 SNPs in an individual, and with increasingly lowered pricings these developments may explode the population-level potential for dietary optimization based on nutrigenomic approaches.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- Discipline of Nutrition/Auckland Cancer Society Research Centre (ACSRC), School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, College of Agriculture, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
20
|
de Moura EG, Passos MCF. Neonatal programming of body weight regulation and energetic metabolism. Biosci Rep 2006; 25:251-69. [PMID: 16283556 DOI: 10.1007/s10540-005-2888-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Programming is an epigenetic phenomena by which nutritional, hormonal, physical psychological and other stressful events acting in a critical period of life, such as gestation and lactation, modifies in a prolonged way certain physiological functions. This process was preserved by natural selection as an important adaptive tool for survival of organisms living in nutritional impaired areas. So, malnutrition during gestation and lactation turns on different genes that provide the organism with a thrifty phenotype. In the case of an abundant supply of nutrients after this period, those organisms that were adapted to a low metabolic waste and higher energy utilization will be in a higher risk of developing metabolic diseases, such as obesity, hyperlipidemia, diabetes mellitus and hypertension. The kind of malnutrition, duration and intensity are important for the type of programming obtained. We discuss some of the hormonal and metabolic changes that occur in gestation or lactation, when malnutrition is applied to the mothers and their offspring. Some of these changes, such as an increase of maternal triiodothyronine (T(3)), leptin and glucocorticoids (GC) and decrease in prolactin are by itself potential programming factors. Most of these hormones can be transfer through the milk that has other important macronutrients composition changes in malnourished dams. We discuss the programming effects of some of these hormones upon body weight and composition, leptin, thyroid and adrenal functions, and their effects on liver, muscle and adipose tissue metabolism and the consequences on thermogenesis.
Collapse
Affiliation(s)
- Egberto Gaspar de Moura
- Dept. Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil.
| | | |
Collapse
|
21
|
Kaput J, Klein KG, Reyes EJ, Kibbe WA, Cooney CA, Jovanovic B, Visek WJ, Wolff GL. Identification of genes contributing to the obese yellow Avy phenotype: caloric restriction, genotype, diet x genotype interactions. Physiol Genomics 2004; 18:316-24. [PMID: 15306695 DOI: 10.1152/physiolgenomics.00065.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incidence and severity of obesity and type 2 diabetes are increasing in Western societies. The progression of obesity to type 2 diabetes is gradual with overlapping symptoms of insulin resistance, hyperinsulinemia, hyperglycemia, dyslipidemias, ion imbalance, and inflammation; this complex syndrome has been called diabesity. We describe here comparisons of gene expression in livers of A/a (agouti) vs. A(vy)/A (obese yellow) segregants (i.e., littermates) from BALB/cStCrlfC3H/Nctr x VYWffC3Hf/Nctr-A(vy)/a matings in response to 70% and 100% of ad libitum caloric intakes of a reproducible diet. Twenty-eight (28) genes regulated by diet, genotype, or diet x genotype interactions mapped to diabesity quantitative trait loci. A subset of the identified genes is linked to abnormal physiological signs observed in obesity and diabetes.
Collapse
Affiliation(s)
- Jim Kaput
- University of California at Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
The interface between the nutritional environment and cellular/genetic processes is being referred to as “nutrigenomics.” Nutrigenomics seeks to provide a molecular genetic understanding for how common dietary chemicals (i.e., nutrition) affect health by altering the expression and/or structure of an individual’s genetic makeup. The fundamental concepts of the field are that the progression from a healthy phenotype to a chronic disease phenotype must occur by changes in gene expression or by differences in activities of proteins and enzymes and that dietary chemicals directly or indirectly regulate the expression of genomic information. We present a conceptual basis and specific examples for this new branch of genomic research that focuses on the tenets of nutritional genomics: 1) common dietary chemicals act on the human genome, either directly or indirectly, to alter gene expression or structure; 2) under certain circumstances and in some individuals, diet can be a serious risk factor for a number of diseases; 3) some diet-regulated genes (and their normal, common variants) are likely to play a role in the onset, incidence, progression, and/or severity of chronic diseases; 4) the degree to which diet influences the balance between healthy and disease states may depend on an individual’s genetic makeup; and 5) dietary intervention based on knowledge of nutritional requirement, nutritional status, and genotype (i.e., “individualized nutrition”) can be used to prevent, mitigate, or cure chronic disease.
Collapse
Affiliation(s)
- Jim Kaput
- Laboratory for High Performance Computing and Informatics, Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
24
|
Eggen A, Hocquette JF. Genomic approaches to economic trait loci and tissue expression profiling: application to muscle biochemistry and beef quality. Meat Sci 2004; 66:1-9. [DOI: 10.1016/s0309-1740(03)00020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/02/2002] [Indexed: 11/26/2022]
|
25
|
Abstract
Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D(3) has important ramifications for the developing brain.
Collapse
Affiliation(s)
- D Eyles
- Queensland Centre for Schizophrenia Research, Wolston Park Hospital, Brisbane, Queensland 4076, Australia.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
|
28
|
Ogunkolade BW, Boucher BJ, Prahl JM, Bustin SA, Burrin JM, Noonan K, North BV, Mannan N, McDermott MF, DeLuca HF, Hitman GA. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretory capacity, and VDR genotype in Bangladeshi Asians. Diabetes 2002; 51:2294-300. [PMID: 12086963 DOI: 10.2337/diabetes.51.7.2294] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Associations have been reported between vitamin D receptor (VDR) gene polymorphisms, type 1 diabetes, insulin secretion, and the insulin resistance syndrome. As VDR polymorphisms have no known functional significance, these findings may implicate a variant of the VDR gene or a locus in linkage disequilibrium with the VDR. We have examined VDR mRNA and VDR protein levels in relation to VDR polymorphisms (41 Bangladeshi subjects) and analyzed insulin secretory capacity (143 Bangladeshi subjects), allowing for other known determinants. Peripheral blood mononuclear cells (PBMCs) from subjects who had been genotyped for BsmI, ApaI, TaqI, and FokI VDR restriction fragment length polymorphisms were used for both total VDR mRNA quantitation (using TaqMan) and measurement of VDR protein levels (using a specific micro-immunoassay). Stepwise multiple regression analyses were used (to P < 0.05) to analyze the data. For the insulin secretion index, the best-fit model (n = 143, P < 0.0001) gave age (P = 0.002), TaqI (P < 0.0001), and BMI (P = 0.001) as independent determinants; with the inclusion of VDR mRNA and VDR protein levels, VDR mRNA was the sole independent determinant (n = 41, P = 0.024). However, the best-fit model for VDR mRNA (P = 0.004) gave FokI (P = 0.044) and TaqI (P = 0.04) genotypes and insulin secretory capacity (P = 0.042) as independent determinants. For VDR protein levels, the best-fit model (P = 0.006) gave TaqI genotype (P = 0.005) and circulating 1,25-dihydroxyvitamin-D levels (P = 0.03) as independent determinants. In conclusion, these studies confirm an association between VDR polymorphisms and insulin secretory capacity and demonstrate the VDR genotype to be a significant determinant of VDR mRNA and VDR protein levels in PBMCs, providing functional support to previously described genetic associations with the VDR gene. Furthermore, VDR expression has been shown to be a determinant of insulin secretory capacity.
Collapse
Affiliation(s)
- Babatunji-William Ogunkolade
- Department of Diabetes and Metabolic Medicine, Barts and the London Queen Mary's School of Medicine and Dentistry, University of London, Royal London Hospital, Whitechapel, London E1 1BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
White P, Burton KA, Fowden AL, Dauncey MJ. Developmental expression analysis of thyroid hormone receptor isoforms reveals new insights into their essential functions in cardiac and skeletal muscles. FASEB J 2001; 15:1367-76. [PMID: 11387234 DOI: 10.1096/fj.00-0725com] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nuclear thyroid hormone (TH) receptors (TR) play a critical role in mediating the diverse actions of TH in development, differentiation, and metabolism of most tissues, but the role of TR isoforms in muscle development and function is unclear. Therefore, we have undertaken a comprehensive expression analysis of TRalpha 1, TRbeta 1, TRbeta 2 (TH binding), and TRalpha 2 (non-TH binding) in functionally distinct porcine muscles during prenatal and postnatal development. Use of a novel and highly sensitive RNase protection assay revealed striking muscle-specific developmental profiles of all four TR isoform mRNAs in cardiac, longissimus, soleus, rhomboideus, and diaphragm. Distribution of TR isoforms varied markedly between muscles; TRalpha expression was considerably greater than TRbeta and there were significant differences in the ratios TRalpha 1:TRalpha 2, and TRbeta 1:TRbeta 2. Together with immunohistochemistry of myosin heavy chain isoforms and data on myogenesis and maturation of the TH axis, these findings provide new evidence that highlights central roles for 1) TRalpha isoforms in fetal myogenesis, 2) the ratio TRalpha 1:TRalpha 2 in determining cardiac and skeletal muscle phenotype and function; 3) TRbeta in maintaining a basal level of cellular response to TH throughout development and a specific maturational function around birth. These findings suggest that events disrupting normal developmental profiles of TR isoforms may impair optimal function of cardiac and skeletal muscles.
Collapse
Affiliation(s)
- P White
- Developmental Genetics Programme, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | |
Collapse
|