1
|
Ma L, Yu F, He D, Guo L, Yang Y, Li W, Zhang T. Role of circadian clock in the chronoefficacy and chronotoxicity of clopidogrel. Br J Pharmacol 2023; 180:2973-2988. [PMID: 37403641 DOI: 10.1111/bph.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The role of circadian locomotor output cycles kaput (CLOCK) in regulating drug chronoefficacy and chronotoxicity remains elusive. Here, we aimed to uncover the impact of CLOCK and dosing time on clopidogrel efficacy and toxicity. EXPERIMENTAL APPROACH The antiplatelet effect, toxicity and pharmacokinetics experiments were conducted with Clock-/- mice and wild-type mice, after gavage administration of clopidogrel at different circadian time points. The expression levels of drug-metabolizing enzymes were determined by quantitative polymerase chain reaction (qPCR) and western blotting. Transcriptional gene regulation was investigated using luciferase reporter and chromatin immunoprecipitation assays. KEY RESULTS The antiplatelet effect and toxicity of clopidogrel in wild-type mice showed a dosing time-dependent variation. Clock ablation reduced the antiplatelet effect of clopidogrel, but increased clopidogrel-induced hepatotoxicity, with attenuated rhythms of clopidogrel active metabolite (Clop-AM) and clopidogrel, respectively. We found that Clock regulated the diurnal variation of Clop-AM formation by modulating the rhythmic expression of CYP1A2 and CYP3A1, and altered clopidogrel chronopharmacokinetics by regulation of CES1D expression. Mechanistic studies revealed that CLOCK activated Cyp1a2 and Ces1d transcription by directly binding to the enhancer box (E-box) elements in their promoters, and promoted Cyp3a11 transcription through enhancing the transactivation activity of albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). CONCLUSIONS AND IMPLICATIONS CLOCK regulates the diurnal rhythmicity in clopidogrel efficacy and toxicity through regulation of CYP1A2, CYP3A11 and CES1D expression. These findings may contribute to optimizing dosing schedules for clopidogrel and may deepen understanding of the circadian clock and chronopharmacology.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di He
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Yang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wangchun Li
- The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Papagerakis S, Said R, Ketabat F, Mahmood R, Pundir M, Lobanova L, Guenther G, Pannone G, Lavender K, McAlpin BR, Moreau A, Chen X, Papagerakis P. When the clock ticks wrong with COVID-19. Clin Transl Med 2022; 12:e949. [PMID: 36394205 PMCID: PMC9670202 DOI: 10.1002/ctm2.949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Otolaryngology – Head and Neck Surgery, Medical SchoolThe University of MichiganAnn ArborMichiganUSA
| | - Raed Said
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Anatomy, Physiology and Pharmacology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Surgery, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Greg Guenther
- Laboratory of Oral, Head and Neck Cancer – Personalized Diagnostics and Therapeutics, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental MedicineUniversity of FoggiaFoggiaItaly
| | - Kerry Lavender
- Department of Biochemistry, Microbiology and Immunology, College of MedicineUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Blake R. McAlpin
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal DiseasesCentre Hospitalier Universitaire (CHU) Sainte‐Justine Research CenterMontrealQuebecCanada,Department of Stomatology, Faculty of Dentistry and Department of Biochemistry and Molecular Medicine, Faculty of MedicineUniversité de MontréalMontrealQuebecCanada
| | - Xiongbiao Chen
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Department of Mechanical Engineering, School of EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | - Petros Papagerakis
- Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonSaskatchewanCanada,Laboratory of Precision Oral Health and Chronobiology, College of DentistryUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
4
|
Chen M, Xiao Y, Zhang F, Du J, Zhang L, Li Y, Lu D, Wang Z, Wu B. Tangeretin prevents cognitive deficit in delirium through activating RORα/γ-E4BP4 axis in mice. Biochem Pharmacol 2022; 205:115286. [PMID: 36216079 DOI: 10.1016/j.bcp.2022.115286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022]
Abstract
Delirium is a common and serious neuropsychiatric syndrome characterized with acute cognitive and attentional deficits, however, the effective therapies are lacking. Here, using mouse models of delirium, we investigated the effects of tangeretin (TAN, a natural flavonoid) on cognitive impairment by assessing object preference with novel object recognition (NOR) test and spontaneous alternation with Y maze test. We found that TAN, as a RORα/γ agonist, prevented cognitive decline in delirious mice as evidenced by a normal novel object preference and increased spontaneous alternation. This was accompanied by decreased expression of ERK1/2, TNFα and IL-1β as well as diminished microglial activation in delirious mice. The protective effect of TAN on delirium was mainly attributed to increased hippocampal E4BP4 expression (a known target of RORs and a regulator of cognition in delirium through modulating the ERK1/2 cascade and microglial activation) via activation of RORα/γ. In addition, TAN treatment modulated the expression of RORα/γ target genes (such as E4bp4 and Bmal1) and inhibited the expression of TNFα and IL-1β in lipopolysaccharide (LPS)-stimulated cells, supporting a beneficial effect of TAN on delirium. In conclusion, TAN is identified as a RORα/γ agonist which promotes E4BP4 expression to prevent cognitive decline in delirious mice. Our findings may have implications for drug development of TAN for prevention and treatment of various diseases associated with cognitive deficiency.
Collapse
Affiliation(s)
- Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xiao
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fugui Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhao Du
- School of Medicine, Jinan University, Guangzhou, China
| | - Li Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, China; Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Wang X, Rao J, Tan Z, Xun T, Zhao J, Yang X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in hepatocytes. Front Pharmacol 2022; 13:1043836. [PMID: 36353494 PMCID: PMC9637984 DOI: 10.3389/fphar.2022.1043836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/11/2023] Open
Abstract
Cytochrome P450 (CYP450) enzymes are membrane-bound blood proteins that are vital to drug detoxification, cell metabolism, and homeostasis. CYP450s belonging to CYP families 1-3 are responsible for nearly 80% of oxidative metabolism and complete elimination of approximately 50% of all common clinical drugs in humans liver hepatocytes. CYP450s can affect the body's response to drugs by altering the reaction, safety, bioavailability, and toxicity. They can also regulate metabolic organs and the body's local action sites to produce drug resistance through altered drug metabolism. Genetic polymorphisms in the CYP gene alone do not explain ethnic and individual differences in drug efficacy in the context of complex diseases. The purpose of this review is to summarize the impact of new inflammatory-response signaling pathways on the activity and expression of CYP drug-metabolizing enzymes. Included is a summary of recent studies that have identified drugs with the potential to regulate drug-metabolizing enzyme activity. Our goal is to inspire the development of clinical drug treatment processes that consider the impact of the inflammatory environment on drug treatment, as well as provide research targets for those studying drug metabolism.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zhiyi Tan
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
6
|
Skrlec I, Talapko J. Hepatitis B and circadian rhythm of the liver. World J Gastroenterol 2022; 28:3282-3296. [PMID: 36158265 PMCID: PMC9346465 DOI: 10.3748/wjg.v28.i27.3282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm in humans is determined by the central clock located in the hypothalamus's suprachiasmatic nucleus, and it synchronizes the peripheral clocks in other tissues. Circadian clock genes and clock-controlled genes exist in almost all cell types. They have an essential role in many physiological processes, including lipid metabolism in the liver, regulation of the immune system, and the severity of infections. In addition, circadian rhythm genes can stimulate the immune response of host cells to virus infection. Hepatitis B virus (HBV) infection is the leading cause of liver disease and liver cancer globally. HBV infection depends on the host cell, and hepatocyte circadian rhythm genes are associated with HBV replication, survival, and spread. The core circadian rhythm proteins, REV-ERB and brain and muscle ARNTL-like protein 1, have a crucial role in HBV replication in hepatocytes. In addition to influencing the virus's life cycle, the circadian rhythm also affects the pharmacokinetics and efficacy of antiviral vaccines. Therefore, it is vital to apply antiviral therapy at the appropriate time of day to reduce toxicity and improve the effectiveness of antiviral treatment. For these reasons, understanding the role of the circadian rhythm in the regulation of HBV infection and host responses to the virus provides us with a new perspective of the interplay of the circadian rhythm and anti-HBV therapy. Therefore, this review emphasizes the importance of the circadian rhythm in HBV infection and the optimization of antiviral treatment based on the circadian rhythm-dependent immune response.
Collapse
Affiliation(s)
- Ivana Skrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Jasminka Talapko
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Osijek 31000, Croatia
| |
Collapse
|
7
|
Circadian Clock Genes Act as Diagnostic and Prognostic Biomarkers of Glioma: Clinic Implications for Chronotherapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9774879. [PMID: 35832846 PMCID: PMC9273445 DOI: 10.1155/2022/9774879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Gliomas are the most common primary intracranial tumors and closely related to circadian clock. Due to the high mortality and morbidity of gliomas, exploring novel diagnostic and early prognostic markers is necessary. Circadian clock genes (CCGs) play important roles in regulating the daily oscillation of biological processes and the development of tumor. Therefore, we explored the influences that the oscillations of circadian clock genes (CCGs) on diagnosis and prognosis of gliomas using bioinformatics. In this work, we systematically analyzed the rhythmic expression of CCGs in brain and found that some CCGs had strong rhythmic expression; the expression levels were significantly different between day and night. Four CCGs (ARNTL, NPAS2, CRY2, and DBP) with rhythmic expression were not only identified as differentially expressed genes but also had significant independent prognostic ability in the overall survival of glioma patients and were highly correlated with glioma prognosis in COX analysis. Besides, we found that CCG-based predictive model demonstrated higher predictive accuracy than that of the traditional grade-based model; this new prediction model can greatly improve the accuracy of glioma prognosis. Importantly, based on the four CCGs’ circadian oscillations, we revealed that patients sampled at night had higher predictive ability. This may help detect glioma as early as possible, leading to early cancer intervention. In addition, we explored the mechanism of CCGs affecting the prognosis of glioma. CCGs regulated the cell cycle, DNA damage, Wnt, mTOR, and MAPK signaling pathways. In addition, it also affects prognosis through gene coexpression and immune infiltration. Importantly, ARNTL can rhythmically modulated the cellular sensitivity to clinic drugs, temozolomide. The optimal point of temozolomide administration should be when ARNTL expression is highest, that is, the effect is better at night. In summary, our study provided a basis for optimizing clinical dosing regimens and chronotherapy for glioma. The four key CCGs can serve as potential diagnostic and prognostic biomarkers for glioma patients, and ARNTL also has obvious advantages in the direction of glioma chronotherapy.
Collapse
|
8
|
Wang F, Guo L, Wu Z, Zhang T, Dong D, Wu B. The Clock gene regulates kainic acid-induced seizures through inhibiting ferroptosis in mice. J Pharm Pharmacol 2022; 74:1640-1650. [PMID: 35704277 DOI: 10.1093/jpp/rgac042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/20/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Temporal lobe epilepsy (TLE) is a common and intractable form of epilepsy. There is a strong need to better understand molecular events underlying TLE and to find novel therapeutic agents. Here we aimed to investigate the role of Clock and ferroptosis in regulating TLE. METHODS TLE model was established by treating mice with kainic acid (KA). Regulatory effects of the Clock gene on KA-induced seizures and ferroptosis were evaluated using Clock knockout (Clock-/-) mice. mRNA and protein levels were determined by quantitative real-time PCR and western blotting, respectively. Ferroptosis was assessed by measuring the levels of iron, GSH and ROS. Transcriptional regulation was studied using a combination of luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. KEY FINDINGS We found that Clock ablation exacerbated KA-induced seizures in mice, accompanied by enhanced ferroptosis in the hippocampus. Clock ablation reduced the hippocampal expression of GPX4 and PPAR-γ, two ferroptosis-inhibitory factors, in mice and in N2a cells. Moreover, Clock regulates diurnal expression of GPX4 and PPAR-γ in mouse hippocampus and rhythmicity in KA-induced seizures. Consistent with this finding, Clock overexpression up-regulated GPX4 and PPAR-γ and protected against ferroptosis in N2a cells. In addition, luciferase reporter, mobility shift and ChIP assays showed that CLOCK trans-activated Gpx4 and Ppar-γ through direct binding to the E-box elements in the gene promoters. CONCLUSION CLOCK protects against KA-induced seizures through increased expression of GPX4 and PPAR-γ and inhibition of ferroptosis.
Collapse
Affiliation(s)
- Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengping Wu
- School of Medicine, Yichun University, Yichun, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Diurnal Changes in Protein Expression at the Blood-Brain Barrier in Mice. Biol Pharm Bull 2022; 45:751-756. [PMID: 35650102 DOI: 10.1248/bpb.b22-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythms influence the transport function of the blood-brain barrier (BBB) and peripheral organs. However, the influence of circadian rhythms on protein expression in the BBB remains to be completely elucidated. Therefore, we aimed to investigate diurnal changes in protein expression in the mouse BBB using quantitative proteomics. Quantitative proteomics showed that the expression of 67, 10, and 20 proteins in the isolated mouse brain capillary fraction changed significantly at zeitgeber time (ZT) 6, 12, and 18, respectively, compared to ZT0. Among them, the levels of 44 proteins were significantly increased at ZT6 and then returned to the same level as ZT0 at ZT12 and ZT18. Gene ontology analysis indicated that the proteins significantly increased at ZT6 were majorly related to translation. The brain capillary endothelial cell-selective proteins sepiapterin reductase and vascular endothelial growth factor receptor 2 showed diurnal variation. In contrast, the expression of ABC transporters, SLC transporters, and receptors associated with receptor-mediated transcytosis, and tight junction proteins did not change within a day. The present findings demonstrated that protein expression related to transport function and physical barrier at the BBB was maintained throughout the day, although the proteins involved in some biological processes exhibited diurnal variation at the BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
10
|
Furtado A, Mineiro R, Duarte AC, Gonçalves I, Santos CR, Quintela T. The Daily Expression of ABCC4 at the BCSFB Affects the Transport of Its Substrate Methotrexate. Int J Mol Sci 2022; 23:ijms23052443. [PMID: 35269592 PMCID: PMC8909972 DOI: 10.3390/ijms23052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The choroid plexuses (CPs), located in the brain ventricles, form an interface between the blood and the cerebrospinal fluid named the blood-cerebrospinal barrier, which, by the presence of tight junctions, detoxification enzymes, and membrane transporters, limits the traffic of molecules into the central nervous system. It has already been shown that sex hormones regulate several CP functions, including the oscillations of its clock genes. However, it is less explored how the circadian rhythm regulates CP functions. This study aimed to evaluate the impact of sex hormones and circadian rhythms on the function of CP membrane transporters. The 24 h transcription profiles of the membrane transporters rAbca1, rAbcb1, rAbcc1, rAbcc4, rAbcg2, rAbcg4, and rOat3 were characterized in the CPs of intact male, intact female, sham-operated female, and gonadectomized rats. We found that rAbcc1 is expressed in a circadian way in the CPs of intact male rats, rAbcg2 in the CPs of intact female rats, and both rAbcc4 and rOat3 mRNA levels were expressed in a circadian way in the CPs of intact male and female rats. Next, using an in vitro model of the human blood–cerebrospinal fluid barrier, we also found that methotrexate (MTX) is transported in a circadian way across this barrier. The circadian pattern of Abcc4 found in the human CP epithelial papilloma cells might be partially responsible for MTX circadian transport across the basal membrane of CP epithelial cells.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Ana Catarina Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Isabel Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Cecília R. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence:
| |
Collapse
|
11
|
Albuquerque T, Neves AR, Quintela T, Costa D. The Influence of Circadian Rhythm on Cancer Cells Targeting and Transfection Efficiency of a Polycation-Drug/Gene Delivery Vector. Polymers (Basel) 2022; 14:polym14040681. [PMID: 35215593 PMCID: PMC8875434 DOI: 10.3390/polym14040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
The conception of novel anticancer delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy. In this work, polyethylenimine (PEI) has been used to complex p53 encoded plasmid DNA (pDNA), and the anticancer drug methotrexate (MTX) has also been loaded into the vectors. To investigate the influence of circadian clock on drug/gene delivery efficiency, HeLa, C33A and fibroblast cells have been transfected with developed PEI/pDNA/MTX delivery vectors at six different time points. Phenomena as the cellular uptake/internalization, drug/gene delivery and p53 protein production have been evaluated. The cell-associated MTX fluorescence have been monitored, and p53 protein levels quantified. In HeLa and C33A cancer cells, significant levels of MTX were found for T8 and T12. For these time points, a high amount of p53 protein was quantified. Confocal microscopy images showed successful HeLa cell’s uptake of PEI/pDNA/MTX particles, at T8. In comparison, poor levels of MTX and p53 protein were found in fibroblasts; nevertheless, results indicated rhythmicity. Data demonstrate the influence of circadian rhythm on both cancer-cells targeting ability and transfection performance of PEI/pDNA/MTX carriers and seemed to provide the optimum time for drug/gene delivery. This report adds a great contribution to the field of cancer chronobiology, highlighting the relationship between circadian rhythm and nanodelivery systems, and charting the path for further research on a, yet, poorly explored but promising topic.
Collapse
Affiliation(s)
- Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Ana R. Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (T.A.); (A.R.N.); (T.Q.)
- Correspondence:
| |
Collapse
|
12
|
Geng YJ, Madonna R, Hermida RC, Smolensky MH. Pharmacogenomics and circadian rhythms as mediators of cardiovascular drug-drug interactions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100025. [PMID: 34909660 PMCID: PMC8663962 DOI: 10.1016/j.crphar.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2022] Open
Abstract
This article summarizes the current literature and documents new evidence concerning drug-drug interactions (DDI) stemming from pharmacogenomic and circadian rhythm determinants of therapies used to treat common cardiovascular diseases (CVD), such as atherosclerosis and hypertension. Patients with CVD often have more than one pathophysiologic condition, namely metabolic syndromes, hypertension, hyperlipidemia, and hyperglycemia, among others, which necessitate polytherapeutic or polypharmaceutic management. Interactions between drugs, drugs and food/food supplements, or drugs and genetic/epigenetic factors may have adverse impacts on the cardiovascular and other systems of the body. The mechanisms underlying cardiovascular DDI may involve the formation of a complex pharmacointeractome, including the absorption, distribution, metabolism, and elimination of drugs, which affect their respective bioavailability, efficacy, and/or harmful metabolites. The pharmacointeractome of cardiovascular drugs is likely operated with endogenous rhythms controlled by circadian clock genes. Basic and clinical investigations have improved the knowledge and understanding of cardiovascular pharmacogenomics and pharmacointeractomes, and additionally they have presented new evidence that the staging of deterministic circadian rhythms, according to the dosing time of drugs, e.g., upon awakening vs. at bedtime, cannot only differentially impact their pharmacokinetics and pharmacodynamics but also mediate agonistic/synergetic or antagonistic DDI. To properly manage CVD patients and avoid DDI, it is important that clinicians have sufficient knowledge of their multiple risk factors, i.e., age, gender, and life style elements (like diet, smoking, psychological stress, and alcohol consumption), and comorbidities, such as diabetes, hypertension, dyslipidemia, and depression, and the potential interactions between genetic or epigenetic background of their prescribed therapeutics.
Collapse
Affiliation(s)
- Yong-Jian Geng
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rosalinda Madonna
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Chair of Cardiology, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy
| | - Ramon C Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Information and Communication Technologies (atlanTTic), Universidade de Vigo, Vigo, Spain.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Michael H Smolensky
- Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Mishra R, Bethunaickan R, Berthier CC, Yi Z, Strohl JJ, Huerta PT, Zhang W, Davidson A. Reversible dysregulation of renal circadian rhythm in lupus nephritis. Mol Med 2021; 27:99. [PMID: 34488619 PMCID: PMC8419890 DOI: 10.1186/s10020-021-00361-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have found disruption of expression of major transcriptional regulators of circadian rhythm in the kidneys of several mouse models of lupus nephritis. Here we define the consequence of this disturbance with respect to circadian gene expression and renal homeostatic function in a mouse model of lupus nephritis. METHODS Molecular profiling of kidneys from 47 young and 41 nephritic female NZB/W F1 mice was performed at 4 hourly intervals over a 24 h period. Disruption of major circadian transcriptional regulators was confirmed by qPCR. Molecular data was normalized and analyzed for rhythmicity using RAIN analysis. Serum aldosterone and glucose and urine sodium and potassium were measured at 4 hourly intervals in pre-nephritic and nephritic mice and blood pressure was measured every 4 h. Analyses were repeated after induction of complete remission of nephritis using combination cyclophosphamide and costimulatory blockade. RESULTS We show a profound alteration of renal circadian rhythms in mice with lupus nephritis affecting multiple renal pathways. Using Cosinor analysis we identified consequent alterations of renal homeostasis and metabolism as well as blood pressure dipper status. This circadian dysregulation was partially reversed by remission induction therapy. CONCLUSIONS Our studies indicate the role of inflammation in causing the circadian disruption and suggest that screening for loss of normal blood pressure dipping should be incorporated into LN management. The data also suggest a potential role for circadian agonists in the treatment of lupus nephritis.
Collapse
Affiliation(s)
- Rakesh Mishra
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ramalingam Bethunaickan
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Celine C Berthier
- Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhengzi Yi
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA
| | - Joshua J Strohl
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Patricio T Huerta
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weijia Zhang
- Department of Medicine, Mount Sinai Medical Center, One Gustave L. Levy Place, P.O. Box 1243, New York, NY, 10029, USA.
| | - Anne Davidson
- Institute for Molecular Medicine, Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
14
|
Exploring the link between chronobiology and drug delivery: effects on cancer therapy. J Mol Med (Berl) 2021; 99:1349-1371. [PMID: 34213595 DOI: 10.1007/s00109-021-02106-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/01/2023]
Abstract
Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.
Collapse
|
15
|
Lin J, Gao L, Lin Y, Wang S, Yang Z, Ren S, Chen M, Wu B. Pharmacokinetics-Based Chronoefficacy of Semen Strychni and Tripterygium Glycoside Tablet Against Rheumatoid Arthritis. Front Pharmacol 2021; 12:673263. [PMID: 34108880 PMCID: PMC8181759 DOI: 10.3389/fphar.2021.673263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by synovial inflammation and bone destruction. Identifying drugs with time-varying efficacy and toxicity, and elucidating the mechanisms would help to improve treatment efficacy and reduce adverse effects. Here, we aimed to determine the chronoefficacy of semen strychni (SS) and tripterygium glycoside tablet (TGT) against rheumatoid arthritis in mice, and to investigate a potential role of circadian pharmacokinetics in generating chronoefficacy. SS extract and TGT suspension were prepared with ultrasonication. Effects of SS and TGT on collagen-induced arthritis (CIA) were evaluated by measuring TNF-α and IL-6 levels. SS dosed at ZT18 was more effective in protecting against CIA than drug dosed at ZT6 (i.e., lower levels of key inflammatory factors at ZT18 than at ZT6). This was accompanied by higher systemic exposure levels of strychnine and brucine (two main putative active ingredients of SS) in ZT18-treated than in ZT6-treated CIA mice. TGT dosing at ZT2 showed a better efficacy against CIA as compared to herb doing at ZT14. Consistently, ZT2 dosing generated a higher exposure of triptolide (a main putative active ingredient of TGT) as compared to ZT14 dosing in CIA mice. Moreover, strychnine, brucine, and triptolide significantly inhibited the proliferation of fibroblast-like synoviocytes, and reduced the production of TNF-α and IL-6 and the mRNAs of TNF-α, IL-6, COX-2, and iNOS, suggesting that they possessed an anti-arthritis activity. In conclusion, SS and TGT display chronoefficacy against rheumatoid arthritis in mice, that is attributed to circadian pharmacokinetics of main active ingredients. Our findings have implications for improving treatment outcomes of SS and TGT via timed delivery.
Collapse
Affiliation(s)
- Jingpan Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gao
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zemin Yang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Ren
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Abstract
The circadian clock controls several aspects of mammalian physiology and orchestrates the daily oscillations of biological processes and behavior. Our circadian rhythms are driven by an endogenous central clock in the brain that synchronizes with clocks in peripheral tissues, thereby regulating our immune system and the severity of infections. These rhythms affect the pharmacokinetics and efficacy of therapeutic agents and vaccines. The core circadian regulatory circuits and clock-regulated host pathways provide fertile ground to identify novel antiviral therapies. An increased understanding of the role circadian systems play in regulating virus infection and the host response to the virus will inform our clinical management of these diseases. This review provides an overview of the experimental and clinical evidence reporting on the interplay between the circadian clock and viral infections, highlighting the importance of virus-clock research.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Xiaodong Zhuang
- Xiaodong Zhuang, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK; e-mail:
| |
Collapse
|
17
|
Zhao H, Tong Y, Lu D, Wu B. Circadian clock regulates hepatotoxicity of Tripterygium wilfordii through modulation of metabolism. J Pharm Pharmacol 2020; 72:1854-1864. [PMID: 32478421 DOI: 10.1111/jphp.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES We aimed to determine the diurnal rhythm of Tripterygium wilfordii (TW) hepatotoxicity and to investigate a potential role of metabolism and pharmacokinetics in generating chronotoxicity. METHODS Hepatotoxicity was determined based on assessment of liver injury after dosing mice with TW at different circadian time points. Circadian clock control of metabolism, pharmacokinetics and hepatotoxicity was investigated using Clock-deficient (Clock-/- ) mice. KEY FINDINGS Hepatotoxicity of TW displayed a significant circadian rhythm (the highest level of toxicity was observed at ZT2 and the lowest level at ZT14). Pharmacokinetic experiments showed that oral gavage of TW at ZT2 generated higher plasma concentrations (and systemic exposure) of triptolide (a toxic constituent) compared with ZT14 dosing. This was accompanied by reduced formation of triptolide metabolites at ZT2. Loss of Clock gene sensitized mice to TW-induced hepatotoxicity and abolished the time-dependency of toxicity that was well correlated with altered metabolism and pharmacokinetics of triptolide. Loss of Clock gene also decreased Cyp3a11 expression in mouse liver and blunted its diurnal rhythm. CONCLUSIONS Tripterygium wilfordii chronotoxicity was associated with diurnal variations in triptolide pharmacokinetics and circadian expression of hepatic Cyp3a11 regulated by circadian clock. Our findings may have implications for improving TW treatment outcome with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Huan Zhao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongbin Tong
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Chen M, Zhou C, Zhang T, Wu B. Identification of rhythmic human CYPs and their circadian regulators using synchronized hepatoma cells. Xenobiotica 2020; 50:1052-1063. [DOI: 10.1080/00498254.2020.1737890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Cui Zhou
- College of Chemistry and Biology Engineering, Yichun University, Jiangxi, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Yang Z, Lin Y, Gao L, Zhou Z, Wang S, Dong D, Wu B. Circadian clock regulates metabolism and toxicity of Fuzi(lateral root of Aconitum carmichaeli Debx) in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153161. [PMID: 31911401 DOI: 10.1016/j.phymed.2019.153161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Therapeutic applications of Fuzi (lateral root of Aconitum carmichaeli Debx) are seriously concerned with its toxic effects. Strategies and approaches to reducing toxicity are of great interest. PURPOSE We aimed to characterize the diurnal rhythm of Fuzi toxicity, and to determine the role of metabolism and pharmacokinetics in generating toxicity rhythmicity. METHODS Toxicity was determined based on assessment of heart injury and animal survival after dosing mice with Fuzi decoction at different circadian time points. Circadian clock control of pharmacokinetics and toxicity was investigated using Bmal1-deficient (Bmal1-/-) mice. RESULTS Fuzi exhibited a diurnal rhythmicity in cardiotoxicity (reflected by plasma CK-MB and LDH levels). The highest level of toxicity was observed at ZT10 (5 PM), while the lowest level of toxicity occurred at ZT22 (5 AM). Also, a higher mortality rate was observed at ZT10 and lower mortality rates at other times of the day. ZT10 dosing of Fuzi generated higher systemic exposures of three toxic alkaloid ingredients aconitine (AC), hypaconitine (HA) and mesaconitine (MA) compared to ZT22. This was accompanied by reduced the formation of the metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA) at ZT10. Bmal1 ablation resulted in an increased level of Fuzi toxicity at ZT22, while having no influences when drug was dosed at ZT10. As a consequence, circadian time-dependent toxicity of Fuzi was lost in Bmal1-deficient mice. In addition, Bmal1 ablation increased the plasma concentrations of AC, HA and MA in mice after oral gavage of Fuzi, and reduced formation of their metabolites (N-deethyl-AC, didemethyl-HA and 2‑hydroxyl‑MA). Moreover, Fuzi metabolism in wild-type liver microsomes was more extensive at ZT22 than at ZT10. Bmal1 ablation abrogated circadian time-dependency of hepatic Fuzi metabolism. CONCLUSIONS Fuzi chronotoxicity in mice was attributed to time-varying hepatic metabolism and systemic exposure regulated by circadian clock. The findings may have implications in reducing Fuzi toxicity with a chronotherapeutic approach.
Collapse
Affiliation(s)
- Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China.
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Zhou Z, Lin Y, Gao L, Yang Z, Wang S, Wu B. Circadian pharmacological effects of berberine on chronic colitis in mice: Role of the clock component Rev-erbα. Biochem Pharmacol 2019; 172:113773. [PMID: 31866303 DOI: 10.1016/j.bcp.2019.113773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Berberine, initially isolated from Rhizoma Coptidis (Huanglian in Chinese), is a drug used to treat gastrointestinal disorders such as colitis. Here we uncovered a time-varying berberine effect on chronic colitis in mice, and investigated a potential role of the clock protein Rev-erbα in this timing effect. Berberine activity toward Rev-erbα was determined by luciferase reporter, Gal4-cotransfection assay and target gene expression analyses. Chronic colitis was induced by feeding mice with dextran sulfate sodium in drinking water. Colitis severity and pharmacological effects of berberine were assessed by measuring myeloperoxidase and malondialdehyde activities as well as the levels of inflammatory factors (IL-1β, IL-6, IL-18 and Ccl2). Berberine significantly inhibited Bmal1 (-2000/+100 bp)- and Nlrp3 (-1310/+100 bp)-Luc reporter activities, and dose-dependently decreased cellular expressions of both Bmal1 and Nlrp3. Also, it enhanced the transcriptional repressor activity of Rev-erbα in the Gal4 chimeric assay. These data indicated berberine as a Rev-erbα agonist. As expected, berberine attenuated inflammatory responses in BMDMs (bone marrow-derived macrophages) and in colitis mice. However, the anti-inflammatory effects of berberine were lost in BMDMs derived from Rev-erbα-deficient mice. Furthermore, chronic colitis displayed a diurnal rhythmicity in disease severity and its diurnal pattern was in an opposite phase to that of Rev-erbα expression, supporting a direct control of colitis by Rev-erbα. Moreover, berberine effects on chronic colitis were dosing time-dependent. ZT10 dosing generated a better treatment outcome compared to ZT2. This was because colitis was less severe and Rev-erbα expression was much higher at ZT10 than at ZT2. In conclusion, circadian pharmacological effects of berberine on chronic colitis were mainly contributed by diurnal rhythms of both disease severity and Rev-erbα (as a drug target). The findings may have implications for chronotherapeutic practice on colitis or related diseases.
Collapse
Affiliation(s)
- Ziyue Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Yanke Lin
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lu Gao
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Zemin Yang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Shuai Wang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China.
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|