1
|
Sailo BL, Chauhan S, Hegde M, Girisa S, Alqahtani MS, Abbas M, Goel A, Sethi G, Kunnumakkara AB. Therapeutic potential of tocotrienols as chemosensitizers in cancer therapy. Phytother Res 2025; 39:1694-1720. [PMID: 38353331 DOI: 10.1002/ptr.8131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 04/23/2025]
Abstract
Chemoresistance is the adaptation of cancer cells against therapeutic agents. When exhibited by cancer cells, chemoresistance helps them to avoid apoptosis, cause relapse, and metastasize, making it challenging for chemotherapeutic agents to treat cancer. Various strategies like dosage modification of drugs, nanoparticle-based delivery of chemotherapeutics, antibody-drug conjugates, and so on are being used to target and reverse chemoresistance, one among such is combination therapy. It uses the combination of two or more therapeutic agents to reverse multidrug resistance and improve the effects of chemotherapy. Phytochemicals are known to exhibit chemosensitizing properties and are found to be effective against various cancers. Tocotrienols (T3) and tocopherols (T) are natural bioactive analogs of vitamin E, which exhibit important medicinal value and potential curative properties apart from serving as an antioxidant and nutrient supplement. Notably, T3 exhibits a variety of pharmacological activities like anticancer, anti-inflammatory, antiproliferative, and so on. The chemosensitizing property of tocotrienol is exhibited by modulating several signaling pathways and molecular targets involved in cancer cell survival, proliferation, invasion, migration, and metastasis like NF-κB, STATs, Akt/mTOR, Bax/Bcl-2, Wnt/β-catenin, and many more. T3 sensitizes cancer cells to chemotherapeutic drugs including cisplatin, doxorubicin, and paclitaxel increasing drug concentration and cytotoxicity. Discussed herewith are the chemosensitizing properties of tocotrienols on various cancer cell types when combined with various drugs and biological molecules.
Collapse
Affiliation(s)
- Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Suravi Chauhan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, California, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
2
|
Chiaramonte R, Sauro G, Giannandrea D, Limonta P, Casati L. Molecular Insights in the Anticancer Activity of Natural Tocotrienols: Targeting Mitochondrial Metabolism and Cellular Redox Homeostasis. Antioxidants (Basel) 2025; 14:115. [PMID: 39857449 PMCID: PMC11760857 DOI: 10.3390/antiox14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The role of mitochondria as the electric engine of cells is well established. Over the past two decades, accumulating evidence has pointed out that, despite the presence of a highly active glycolytic pathway (Warburg effect), a functional and even upregulated mitochondrial respiration occurs in cancer cells to meet the need of high energy and the biosynthetic demand to sustain their anabolic growth. Mitochondria are also the primary source of intracellular ROS. Cancer cells maintain moderate levels of ROS to promote tumorigenesis, metastasis, and drug resistance; indeed, once the cytotoxicity threshold is exceeded, ROS trigger oxidative damage, ultimately leading to cell death. Based on this, mitochondrial metabolic functions and ROS generation are considered attractive targets of synthetic and natural anticancer compounds. Tocotrienols (TTs), specifically the δ- and γ-TT isoforms, are vitamin E-derived biomolecules widely shown to possess striking anticancer properties since they regulate several intracellular molecular pathways. Herein, we provide for the first time an overview of the mitochondrial metabolic reprogramming and redox homeostasis perturbation occurring in cancer cells, highlighting their involvement in the anticancer properties of TTs. This evidence sheds light on the use of these natural compounds as a promising preventive or therapeutic approach for novel anticancer strategies.
Collapse
Affiliation(s)
- Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Giulia Sauro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “R. Paoletti”, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (R.C.); (G.S.); (D.G.)
| |
Collapse
|
3
|
Nair AB, Gorain B, Pandey M, Jacob S, Shinu P, Aldhubiab B, Almuqbil RM, Elsewedy HS, Morsy MA. Tocotrienol in the Treatment of Topical Wounds: Recent Updates. Pharmaceutics 2022; 14:pharmaceutics14112479. [PMID: 36432670 PMCID: PMC9699634 DOI: 10.3390/pharmaceutics14112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Mahendergarh 123031, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
4
|
Pang KL, Foong LC, Abd Ghafar N, Soelaiman IN, Law JX, Leong LM, Chin KY. Transcriptomic Analysis of the Anticancer Effects of Annatto Tocotrienol, Delta-Tocotrienol and Gamma-Tocotrienol on Chondrosarcoma Cells. Nutrients 2022; 14:4277. [PMID: 36296960 PMCID: PMC9611384 DOI: 10.3390/nu14204277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have demonstrated the anticancer activities of tocotrienol on several types of cancer, but its effects on chondrosarcoma have never been investigated. Therefore, this study aims to determine the anticancer properties of annatto tocotrienol (AnTT), γ-tocotrienol (γ-T3) and δ-tocotrienol (δ-T3) on human chondrosarcoma SW1353 cells. Firstly, the MTT assay was performed to determine the half-maximal inhibitory concentration (IC50) of tocotrienol on SW1353 cells after 24 h treatment. The mode of cell death, cell cycle analysis and microscopic observation of tocotrienol-treated SW1353 cells were then conducted according to the respective IC50 values. Subsequently, RNAs were isolated from tocotrienol-treated cells and subjected to RNA sequencing and transcriptomic analysis. Differentially expressed genes were identified and then verified with a quantitative PCR. The current study demonstrated that AnTT, γ-T3 and δ-T3 induced G1 arrest on SW1353 cells in the early phase of treatment (24 h) which progressed to apoptosis upon 48 h of treatment. Furthermore, tocotrienol-treated SW1353 cells also demonstrated large cytoplasmic vacuolation. The subsequent transcriptomic analysis revealed upregulated signalling pathways in endoplasmic reticulum stress, unfolded protein response, autophagy and transcription upon tocotrienol treatment. In addition, several cell proliferation and cancer-related pathways, such as Hippo signalling pathway and Wnt signalling pathway were also significantly downregulated upon treatment. In conclusion, AnTT, γ-T3 and δ-T3 possess promising anticancer properties against chondrosarcoma cells and further study is required to confirm their effectiveness as adjuvant therapy for chondrosarcoma.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Suite 8-1 & 8-2, Level 8, Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur 50470, Malaysia
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, Petaling Jaya 47301, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| |
Collapse
|
5
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Gu I, Gregory E, Atwood C, Lee SO, Song YH. Exploring the Role of Metabolites in Cancer and the Associated Nerve Crosstalk. Nutrients 2022; 14:nu14091722. [PMID: 35565690 PMCID: PMC9103817 DOI: 10.3390/nu14091722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Since Otto Warburg's first report on the increased uptake of glucose and lactate release by cancer cells, dysregulated metabolism has been acknowledged as a hallmark of cancer that promotes proliferation and metastasis. Over the last century, studies have shown that cancer metabolism is complex, and by-products of glucose and glutamine catabolism induce a cascade of both pro- and antitumorigenic processes. Some vitamins, which have traditionally been praised for preventing and inhibiting the proliferation of cancer cells, have also been proven to cause cancer progression in a dose-dependent manner. Importantly, recent findings have shown that the nervous system is a key player in tumor growth and metastasis via perineural invasion and tumor innervation. However, the link between cancer-nerve crosstalk and tumor metabolism remains unclear. Here, we discuss the roles of relatively underappreciated metabolites in cancer-nerve crosstalk, including lactate, vitamins, and amino acids, and propose the investigation of nutrients in cancer-nerve crosstalk based on their tumorigenicity and neuroregulatory capabilities. Continued research into the metabolic regulation of cancer-nerve crosstalk will provide a more comprehensive understanding of tumor mechanisms and may lead to the identification of potential targets for future cancer therapies.
Collapse
Affiliation(s)
- Inah Gu
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Emory Gregory
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Casey Atwood
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Sun-Ok Lee
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72704, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
How vitamin E and its derivatives regulate tumour cells via the MAPK signalling pathway?'. Gene 2022; 808:145998. [PMID: 34626718 DOI: 10.1016/j.gene.2021.145998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022]
Abstract
In tumour cells, vitamin E and its derivatives play a critical role in the regulation of multiple signalling pathways through their oxidative and nonoxidative functions. To date, there are 8 known natural vitamin E forms and many kinds of derivatives, among which VES and α-TEA have excellent anticancer activities. The MAPK pathway consists of a complex cascade of proteins that control the proliferation, differentiation and apoptosis of tumour cells. The MAPK pathway includes four subfamilies, ERK1/2, JNK1/2, p38 MAPK, and ERK5. Most of the proteins in these subfamilies interact with each other in a complex manner. The anticancer function of vitamin E and its derivatives is closely related to the MAPK cascade. Studies have shown that in tumour cells, α-T/γ-T/γ-T3/δ-T3/VES/α-TEA regulated ERK1/2, prevent tumorigenesis, inhibit tumour cell growth and metastasis and induce cell differentiation, apoptosis, and cell cycle arrest; γ-T3/δ-T3/VES/α-TEA regulates JNK1/2, induce apoptosis, reduce ceramide synthesis and inhibit proliferation; and γ-T3/δ-T3/VES regulate p38 MAPK and induce apoptosis. This paper reviews the role of vitamin E and its derivatives in the MAPK cascade, and tumour cells are used as a model in an attempt to explore the mechanism of their interactions.
Collapse
|
8
|
Fontana F, Marzagalli M, Raimondi M, Zuco V, Zaffaroni N, Limonta P. δ-Tocotrienol sensitizes and re-sensitizes ovarian cancer cells to cisplatin via induction of G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis. Cell Prolif 2021; 54:e13111. [PMID: 34520051 PMCID: PMC8560608 DOI: 10.1111/cpr.13111] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Among gynaecologic malignancies, ovarian cancer (OC) represents the leading cause of death for women worldwide. Current OC treatment involves cytoreductive surgery followed by platinum-based chemotherapy, which is associated with severe side effects and development of drug resistance. Therefore, new therapeutic strategies are urgently needed. Herein, we evaluated the anti-tumour effects of Vitamin E-derived δ-tocotrienol (δ-TT) in two human OC cell lines, IGROV-1 and SKOV-3 cells. MATERIALS AND METHODS MTT and Trypan blue exclusion assays were used to assess δ-TT cytotoxicity, alone or in combination with other molecules. δ-TT effects on cell cycle, apoptosis, ROS generation and MAPK phosphorylation were investigated by flow cytometry, Western blot and immunofluorescence analyses. The synergism between δ-TT and chemotherapy was evaluated by isobologram analysis. RESULTS We demonstrated that δ-TT could induce cell cycle block at G1-S phase and mitochondrial apoptosis in OC cell lines. In particular, we found that the proapoptotic activity of δ-TT correlated with mitochondrial ROS production and subsequent JNK and p38 activation. Finally, we observed that the compound was able to synergize with cisplatin, not only enhancing its cytotoxicity in IGROV-1 and SKOV-3 cells but also re-sensitizing IGROV-1/Pt1 cell line to its anti-tumour effects. CONCLUSIONS δ-TT triggers G1 phase cell cycle arrest and ROS/MAPK-mediated apoptosis in OC cells and sensitizes them to platinum treatment, thus representing an interesting option for novel chemopreventive/therapeutic strategies for OC.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zuco
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Kim KW, Kim BM, Won JY, Min HK, Lee SJ, Lee SH, Kim HR. Tocotrienol regulates osteoclastogenesis in rheumatoid arthritis. Korean J Intern Med 2021; 36:S273-S282. [PMID: 32550719 PMCID: PMC8009144 DOI: 10.3904/kjim.2019.372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS The present study aimed to investigate whether tocotrienol regulates interleukin 17 (IL-17)-induced osteoclastogenesis in rheumatoid arthritis (RA). METHODS We evaluated the effect of tocotrienol on IL-17-induced receptor activator of nuclear factor kappa B ligand (RANKL) production using RA fibroblast-like synoviocyte (FLS), together with real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Osteoclast differentiation was confirmed after culturing IL-17-treated RA FLS and Th17 cells with tocotrienol and monocytes. We analyzed the suppressive effect of tocotrienol on Th17 cells percentage or Th17-cytokine levels among peripheral blood mononuclear cells using flow cytometry. RESULTS We found that IL-17 stimulated FLS to produce RANKL and tocotrienol decreased this IL-17-induced RANKL production. Tocotrienol decreased the IL-17-induced activation of mammalian target of rapamycin, extracellular signal-regulated kinase, and inhibitor of kappa B-alpha. When monocytes were incubated with IL-17, RANKL, IL-17-treated FLS or Th17 cells, osteoclasts were differentiated and tocotrienol decreased this osteoclast differentiation. Tocotrienol reduced Th17 cell differentiation and the production of IL-17 and sRANKL; however, tocotrienol did not affect Treg cell differentiation. CONCLUSION Tocotrienol inhibited IL-17- activated RANKL production in RA FLS and IL-17-activated osteoclast formation. In addition, tocotrienol reduced Th17 differentiation. Therefore, tocotrienol could be a new therapeutic choice to treat bone destructive processes in RA.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Yeon Won
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Seoung Joon Lee
- Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Hae-Rim Kim, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea Tel: +82-2-2030-7542 Fax: +82-2-2030-7748 E-mail:
| |
Collapse
|
10
|
Teo CWL, Tay SHY, Tey HL, Ung YW, Yap WN. Vitamin E in Atopic Dermatitis: From Preclinical to Clinical Studies. Dermatology 2020; 237:553-564. [PMID: 33070130 DOI: 10.1159/000510653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Oxidative stress and inflammation are some of the proposed mechanisms involved in the pathogenesis of atopic dermatitis (AD). Current pharmacotherapeutic approaches are effective yet they are not without adverse effects. Vitamin E has great potential as an adjunctive treatment for AD owing to its antioxidant and anti-inflammatory bioactivities. SUMMARY This review article summarizes the current available evidence from cellular, animal and clinical studies on the relationship between vitamin E and AD. The future prospects of vitamin E are also discussed. Vitamin E in practice does not show any toxicity to humans within a range of reasonable dosage. Albeit rarely, vitamin E as a contact allergen should be considered. Collectively, this review envisaged vitamin E as an adjunctive treatment for AD patients. Future research on the distinct effects of different vitamin E isoforms as well as their delivery system in skin disorders is needed.
Collapse
Affiliation(s)
- Cheryl Wei Ling Teo
- Research and Development Department, Davos Life Science, Singapore, Singapore, .,Research and Development Department, KL-Kepong Oleomas Sdn Bhd (KLK-Oleo), Selangor, Malaysia,
| | - Shawn Han Yueh Tay
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yee Wei Ung
- Research and Development Department, KL-Kepong Oleomas Sdn Bhd (KLK-Oleo), Selangor, Malaysia
| | - Wei Ney Yap
- Research and Development Department, Davos Life Science, Singapore, Singapore.,Research and Development Department, KL-Kepong Oleomas Sdn Bhd (KLK-Oleo), Selangor, Malaysia
| |
Collapse
|
11
|
Idriss M, Hodroj MH, Fakhoury R, Rizk S. Beta-Tocotrienol Exhibits More Cytotoxic Effects than Gamma-Tocotrienol on Breast Cancer Cells by Promoting Apoptosis via a P53-Independent PI3-Kinase Dependent Pathway. Biomolecules 2020; 10:biom10040577. [PMID: 32283796 PMCID: PMC7226046 DOI: 10.3390/biom10040577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Studies on tocotrienols have progressively revealed the benefits of these vitamin E isoforms on human health. Beta-tocotrienol (beta-T3) is known to be less available in nature compared to other vitamin E members, which may explain the restricted number of studies on beta-T3. In the present study, we aim to investigate the anti-proliferative effects and the pro-apoptotic mechanisms of beta-T3 on two human breast adenocarcinoma cell lines MDA-MB-231 and MCF7. To assess cell viability, both cell lines were incubated for 24 and 48 h, with different concentrations of beta-T3 and gamma-T3, the latter being a widely studied vitamin E isoform with potent anti-cancerous properties. Cell cycle progression and apoptosis induction upon treatment with various concentrations of the beta-T3 isoform were assessed. The effect of beta-T3 on the expression level of several apoptosis-related proteins p53, cytochrome C, cleaved-PARP-1, Bax, Bcl-2, and caspase-3, in addition to key cell survival proteins p-PI3K and p-GSK-3 α/β was determined using western blot analysis. Beta-tocotrienol exhibited a significantly more potent anti-proliferative effect than gamma-tocotrienol on both cell lines regardless of their hormonal receptor status. Beta-T3 induced a mild G1 arrest on both cell lines, and triggered a mitochondrial stress-mediated apoptotic response in MDA-MB-231 cells. Mechanistically, beta-T3′s anti-neoplastic activity involved the downregulation of phosphorylated PI3K and GSK-3 cell survival proteins. These findings suggest that vitamin E beta-T3 should be considered as a promising anti-cancer agent, more effective than gamma-T3 for treating human breast cancer and deserves to be further studied to investigate its effects in vitro and on other cancer types.
Collapse
Affiliation(s)
- Maya Idriss
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
| | - Rajaa Fakhoury
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Correspondence: ; Tel.: +961-1786456
| |
Collapse
|
12
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
13
|
Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P. Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents. Recent Pat Anticancer Drug Discov 2019; 14:5-18. [PMID: 30652648 DOI: 10.2174/1574892814666190116111827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties. OBJECTIVE The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy. METHODS Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty. RESULTS TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability. CONCLUSION The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Michela Raimondi
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Marzagalli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Roberta M Moretti
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marina Montagnani Marelli
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Patrizia Limonta
- Department of Excellence, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
14
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
15
|
Vitamin E and cancer: an update on the emerging role of γ and δ tocotrienols. Eur J Nutr 2019; 59:845-857. [PMID: 31016386 DOI: 10.1007/s00394-019-01962-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Despite significant advances in the diagnosis and treatment of cancer, the latter still remains a fatal disease due to the lack of prevention, early diagnosis, and effective drugs. Radiotherapy, chemotherapy, and surgery are not only expensive but produce a number of side effects that are detrimental to the patients' quality of life. Therefore, there is a great need to discover anti-cancer therapies that are specific to cancer cells and affordable, safe, and well tolerated by the patients. Vitamin E is a potential candidate due to its safety. Accumulating evidence on the anti-cancer potency of vitamin E has shifted the focus from tocopherols (TOCs) to tocotrienols (TTs). γ-TT and δ-TT have the highest anti-cancer activities and target common molecular pathways involved in the inhibition of the cell cycle, the induction of apoptosis and autophagy, and the inhibition of invasion, metastasis, and angiogenesis. Future directions should focus on further investigating how γ-TT and δ-TT (solely or in combination) induce anti-cancer molecular pathways when used in the presence of conventional chemotherapeutic drugs. These studies should be carried out in vitro, and promising results and combinations should then be assessed in in vivo experiments and finally in clinical trials. Finally, future research should focus on further evaluating the roles of γ-TT and δ-TT in the chemoprevention of cancer.
Collapse
|
16
|
Mutalip SSM, Rajikin MH, Rahim SA, Khan NMN. Annatto ( Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/ Akt-Cyclin D1 pathway. INT J VITAM NUTR RES 2019; 88:16-26. [PMID: 30907699 DOI: 10.1024/0300-9831/a000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of PI3K/Akt-Cyclin D1 pathway against the nicotine-induced DNA damages is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as reproductive toxicant. 48 female balb/c mice (6-8 weeks) (23-25 g) were randomly divided into 8 groups (G1-G8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for 7 consecutive days. On Day 8, the females were superovulated and mated before euthanized for embryo collection (46 hours post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (G2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to control (G1). Intervention with mixed annatto δ-TCT (G3) and pure annatto δ-TCT (G4) significantly increased the number of produced 2-cell embryos by 127 % and 79 % respectively compared to G2, but these were lower than G1. Concurrent treatment with soy α-TOC (G5) decreased embryo production by 7 %. Supplementations with δ-TCT and α-TOC alone (G6-G8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50 %, 36 % and 41 % respectively, compared to control (G1). These results were found to be associated with the alterations in the PI3K/Akt-Cyclin D1 gene expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against the nicotinic embryonic damages. To our knowledge, this is the first attempt on studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- 1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor, Malaysia.,2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia
| | - Mohd Hamim Rajikin
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- 3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| | - Norashikin Mohamed Noor Khan
- 2 Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Malaysia.,3 Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor, Malaysia
| |
Collapse
|
17
|
Tham SY, Loh HS, Mai CW, Fu JY. Tocotrienols Modulate a Life or Death Decision in Cancers. Int J Mol Sci 2019; 20:372. [PMID: 30654580 PMCID: PMC6359475 DOI: 10.3390/ijms20020372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Malignancy often arises from sophisticated defects in the intricate molecular mechanisms of cells, rendering a complicated molecular ground to effectively target cancers. Resistance toward cell death and enhancement of cell survival are the common adaptations in cancer due to its infinite proliferative capacity. Existing cancer treatment strategies that target a single molecular pathway or cancer hallmark fail to fully resolve the problem. Hence, multitargeted anticancer agents that can concurrently target cell death and survival pathways are seen as a promising alternative to treat cancer. Tocotrienols, a minor constituent of the vitamin E family that have previously been reported to induce various cell death mechanisms and target several key survival pathways, could be an effective anticancer agent. This review puts forward the potential application of tocotrienols as an anticancer treatment from a perspective of influencing the life or death decision of cancer cells. The cell death mechanisms elicited by tocotrienols, particularly apoptosis and autophagy, are highlighted. The influences of several cell survival signaling pathways in shaping cancer cell death, particularly NF-κB, PI3K/Akt, MAPK, and Wnt, are also reviewed. This review may stimulate further mechanistic researches and foster clinical applications of tocotrienols via rational drug designs.
Collapse
Affiliation(s)
- Shiau-Ying Tham
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
- Biotechnology Research Centre, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor, Malaysia.
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
- Centre for Cancer and Stem Cell Research, Institute for Research, Development and Innovation, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia.
| |
Collapse
|
18
|
Mohd Mutalip SS, Rajikin MH, Ab Rahim S, Mohamed Noor Khan N. Annatto ( Bixa orellana) δ-TCT Supplementation Protection against Embryonic Malformations through Alterations in PI3K/Akt-Cyclin D1 Pathway. Biomolecules 2019; 9:E19. [PMID: 30634632 PMCID: PMC6358786 DOI: 10.3390/biom9010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Protective action by annatto-derived delta-tocotrienol (δ-TCT) and soy-derived alpha-tocopherol (α-TOC) through the regulation of the PI3K/Akt-cyclin D1 pathway against nicotine-induced DNA damage is the focus of the present study. Nicotine, which has been widely reported to have numerous adverse effects on the reproductive system, was used as a reproductive toxicant. 48 female balb/c mice (6⁻8 weeks) (23⁻25 g) were randomly divided into eight groups (Grp.1⁻Grp.8; n = 6) and treated with either nicotine or/and annatto δ-TCT/soy α-TOC for seven consecutive days. On Day 8, the females were superovulated and mated before euthanization for embryo collection (46 h post-coitum). Fifty 2-cell embryos from each group were used in gene expression analysis using Affymetrix QuantiGene Plex2.0 assay. Findings indicated that nicotine (Grp.2) significantly decreased (p < 0.05) the number of produced 2-cell embryos compared to the control (Grp.1). Intervention with mixed annatto δ-TCT (Grp.3) and pure annatto δ-TCT (Grp.4) significantly increased the number of produced 2-cell embryos by 127% and 79%, respectively compared to Grp.2, but these were lower than Grp.1. Concurrent treatment with soy α-TOC (Grp.5) decreased embryo production by 7%. Supplementations with δ-TCT and α-TOC alone (Grp.6-Grp.8) significantly increased (p < 0.05) the number of produced 2-cell embryos by 50%, 36%, and 41%, respectively, compared to control (Grp.1). These results were found to be associated with alterations in the PI3K/Akt-Cyclin D1 genes expressions, indicating the inhibitory effects of annatto δ-TCT and soy α-TOC against nicotinic embryonic damage. To our knowledge, this is the first attempt in studying the benefits of annatto δ-TCT on murine preimplantation 2-cell embryos.
Collapse
Affiliation(s)
- Siti Syairah Mohd Mutalip
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, Selangor 42300, Malaysia.
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
| | - Mohd Hamim Rajikin
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| | - Norashikin Mohamed Noor Khan
- Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA (UiTM), Selangor 40450, Malaysia.
- Faculty of Medicine, Universiti Teknologi MARA (UiTM) Sg. Buloh Campus, Selangor 47000, Malaysia.
| |
Collapse
|
19
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
20
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
21
|
Qureshi AA, Zuvanich EG, Khan DA, Mushtaq S, Silswal N, Qureshi N. Proteasome inhibitors modulate anticancer and anti-proliferative properties via NF-kB signaling, and ubiquitin-proteasome pathways in cancer cell lines of different organs. Lipids Health Dis 2018; 17:62. [PMID: 29606130 PMCID: PMC5879737 DOI: 10.1186/s12944-018-0697-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer is second most common cause of death in the United State. There are over 100 different types of cancer associated with different human organs, predominantly breast, liver, pancreas, prostate, colon, rectum, lung, and stomach. We have recently reported properties of pro-inflammatory (for treatment of various types of cancers), and anti-inflammatory (for cardiovascular disease and diabetes) compounds. The major problem associated with development of anticancer drugs is their lack of solubility in aqueous solutions and severe side effects in cancer patients. Therefore, the present study was carried out to check anticancer properties of selected compounds, mostly aqueous soluble, in cancer cell lines from different organs. METHODS The anticancer properties, anti-proliferative, and pro-apoptotic activity of novel naturally occurring or FDA approved, nontoxic, proteasome inhibitors/activators were compared. In addition to that, effect of δ-tocotrienol on expression of proteasome subunits (X, Y, Z, LMP7, LMP2, LMP10), ICAM-1, VCAM-1, and TNF-α using total RNAs derived from plasmas of hepatitis C patients was investigated. RESULTS Our data demonstrated that following compounds are very effective in inducing apoptosis of cancer cells: Thiostrepton, dexamethasone, 2-methoxyestradiol, δ-tocotrienol, quercetin, amiloride, and quinine sulfate have significant anti-proliferation properties in Hela cells (44% - 87%) with doses of 2.5-20 μM, compared to respective controls. Anti-proliferation properties of thiostrepton, 2-methoxyestradiol, δ-tocotrienol, and quercetin were 70% - 92%. However, thiostrepton, dexamethasone, 2-methoxyestradiol, δ-tocotrienol, quercetin, and quinine sulphate were effective in pancreatic, prostate, breast, lungs, melanoma, Β-lymphocytes, and T-cells (Jurkat: 40% to 95%) compared to respective controls. In lung cancer cells, these compounds were effective between 5 and 40 μM. The IC50 values of anti-proliferation properties of thiostrepton in most of these cell lines were between doses of 2.5-5 μM, dexamethasone 2.5-20 μM, 2-methoxyestradiol 2.5-10 μM, δ-tocotrienol 2.5-20 μM, quercetin 10-40 μM, and (-) Corey lactone 40-80 μM. In hepatitis C patients, δ-tocotrienol treatment resulted in significant decrease in the expression of pro-inflammatory cytokines. CONCLUSIONS These data demonstrate effectiveness of several natural-occurring compounds with anti-proliferative properties against cancer cells of several organs of humans. Thiostrepton, dexamethasone, 2-methoxyestradiol, δ-tocotrienol and quercetin are very effective for apoptosis of cancer cells in liver, pancreas, prostate, breast, lung, melanoma, Β-lymphocytes and T-cells. The results have provided an opportunity to test these compounds either individually or in combination as dietary supplements in humans for treatment of various types of cancers.
Collapse
Affiliation(s)
- Asaf A Qureshi
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| | - Eleanor G Zuvanich
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Dilshad A Khan
- Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology and National University of Medical Science, Rawalpindi, 64000, Pakistan
| | - Shahida Mushtaq
- Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology and National University of Medical Science, Rawalpindi, 64000, Pakistan
| | - Neerupma Silswal
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Nilofer Qureshi
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.,Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| |
Collapse
|
22
|
Tocotrienols: The promising analogues of vitamin E for cancer therapeutics. Pharmacol Res 2018; 130:259-272. [DOI: 10.1016/j.phrs.2018.02.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
|
23
|
Husain K, Malafa MP. Role of Tocotrienols in Chemosensitization of Cancer. ROLE OF NUTRACEUTICALS IN CHEMORESISTANCE TO CANCER 2018:77-97. [DOI: 10.1016/b978-0-12-812373-7.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
Musa I, Khaza’ai H, Abdul Mutalib MS, Yusuf F, Sanusi J, Chang SK. Effects of oil palm tocotrienol rich fraction on the viability and morphology of astrocytes injured with glutamate. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Abedi Z, Khaza'ai H, Vidyadaran S, Mutalib MSA. The Modulation of NMDA and AMPA/Kainate Receptors by Tocotrienol-Rich Fraction and Α-Tocopherol in Glutamate-Induced Injury of Primary Astrocytes. Biomedicines 2017; 5:biomedicines5040068. [PMID: 29194360 PMCID: PMC5744092 DOI: 10.3390/biomedicines5040068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are known as structural and supporting cells in the central nervous system (CNS). Glutamate, as a main excitatory amino acid neurotransmitter in the mammalian central nervous system, can be excitotoxic, playing a key role in many chronic neurodegenerative diseases. The aim of the current study was to elucidate the potential of vitamin E in protecting glutamate-injured primary astrocytes. Hence, primary astrocytes were isolated from mixed glial cells of C57BL/6 mice by applying the EasySep® Mouse CD11b Positive Selection Kit, cultured in Dulbecco's modified Eagle medium (DMEM) and supplemented with special nutrients. The IC20 and IC50 values of glutamate, as well as the cell viability of primary astrocytes, were assessed with 100 ng/mL, 200 ng/mL, and 300 ng/mL of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP), as determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mitochondrial membrane potential (MMP) detected in primary astrocytes was assessed with the same concentrations of TRF and α-TCP. The expression levels of the ionotropic glutamate receptor genes (Gria2, Grin2A, GRIK1) were independently determined using RT-PCR. The purification rate of astrocytes was measured by a flow-cytometer as circa 79.4%. The IC20 and IC50 values of glutamate were determined as 10 mM and 100 mM, respectively. Exposure to 100 mM of glutamate in primary astrocytes caused the inhibition of cell viability of approximately 64.75% and 61.10% in pre- and post-study, respectively (p < 0.05). Both TRF and α-TCP (at the lowest and highest concentrations, respectively) were able to increase the MMP to 88.46% and 93.31% pre-treatment, and 78.43% and 81.22% post-treatment, respectively. Additionally, the findings showed a similar pattern for the expression level of the ionotropic glutamate receptor genes. Increased extracellular calcium concentrations were also observed, indicating that the presence of vitamin E altered the polarization of astrocytes. In conclusion, α-TCP showed better recovery and prophylactic effects as compared to TRF in the pre-treatment of glutamate-injured primary astrocytes.
Collapse
Affiliation(s)
- Zahra Abedi
- Department of Biomedical Science, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia.
| | - Huzwah Khaza'ai
- Department of Biomedical Science, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia.
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia.
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, University Putra Malaysia, Jalan Upm, 43400 Serdang, Malaysia.
| |
Collapse
|
26
|
Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 2016; 17:ijms17101605. [PMID: 27669218 PMCID: PMC5085638 DOI: 10.3390/ijms17101605] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.
Collapse
|
27
|
Montagnani Marelli M, Marzagalli M, Moretti RM, Beretta G, Casati L, Comitato R, Gravina GL, Festuccia C, Limonta P. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells. Sci Rep 2016; 6:30502. [PMID: 27461002 PMCID: PMC4996065 DOI: 10.1038/srep30502] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Roberta M. Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, 20129, Italy
| | - Raffaella Comitato
- Council for Agricultural Research and Economics, Food and Nutrition Research Centre, Roma, 00178, Italy
| | - Giovanni L. Gravina
- Department of Applied and Biotechnological Clinical Sciences, Università degli Studi dell’Aquila, L’Aquila, 67100, Italy
| | - Claudio Festuccia
- Department of Applied and Biotechnological Clinical Sciences, Università degli Studi dell’Aquila, L’Aquila, 67100, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| |
Collapse
|
28
|
Tan XW, Bhave M, Fong AYY, Matsuura E, Kobayashi K, Shen LH, Hwang SS. Cytoprotective and Cytotoxic Effects of Rice Bran Extracts in Rat H9c2(2-1) Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6943053. [PMID: 27239253 PMCID: PMC4863109 DOI: 10.1155/2016/6943053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/07/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
Abstract
This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT.
Collapse
Affiliation(s)
- Xian Wen Tan
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
- Swinburne Sarawak Research Centre for Sustainable Technologies, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122, Australia
| | - Alan Yean Yip Fong
- Sarawak General Hospital Heart Centre, 94300 Kota Samarahan, Sarawak, Malaysia
- Clinical Research Centre, Sarawak General Hospital, Jalan Hospital, 93586 Kuching, Sarawak, Malaysia
| | - Eiji Matsuura
- Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuko Kobayashi
- Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Lian Hua Shen
- Collaborative Research Center (OMIC), Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Siaw San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
- Swinburne Sarawak Research Centre for Sustainable Technologies, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia
| |
Collapse
|
29
|
De Silva L, Chuah LH, Meganathan P, Fu JY. Tocotrienol and cancer metastasis. Biofactors 2016; 42:149-62. [PMID: 26948691 DOI: 10.1002/biof.1259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/30/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023]
Abstract
Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3). Despite sharing structural similarities with tocopherols, T3 strive to gain scientific prominence due to their anti-cancer effects. Recent studies have shed some light on the anti-metastatic properties of T3. In this review, the roles of T3 in each step of the metastatic process are discussed. During the invasion process, signaling pathways that regulate the extracellular matrix and tumor cell motility have been reported to be modulated by T3. Although studies on T3 and tumor cell migration are fairly limited, they were shown to play a vital role in the suppression of angiogenesis. Furthermore, the anti-inflammatory effect of T3 could be highly promising in the regulation of tumor microenvironment, which is crucial in supporting tumor growth in distant organs.
Collapse
Affiliation(s)
- Leanne De Silva
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Ju-Yen Fu
- Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
30
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Xia W, Mo H. Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. J Nutr Biochem 2015; 31:1-9. [PMID: 27133418 DOI: 10.1016/j.jnutbio.2015.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Currently there is no cure for Alzheimer's disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienols further contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.
Collapse
Affiliation(s)
- Weiming Xia
- Geriatric Research Education and Clinical Center, ENR Memorial Veterans Hospital, Bedford, MA.
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA; Center for Obesity Reversal, Georgia State University, Atlanta, GA.
| |
Collapse
|
32
|
Yusof KM, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZW. γ-Tocotrienol and 6-Gingerol in Combination Synergistically Induce Cytotoxicity and Apoptosis in HT-29 and SW837 Human Colorectal Cancer Cells. Molecules 2015; 20:10280-97. [PMID: 26046324 PMCID: PMC6272690 DOI: 10.3390/molecules200610280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/16/2022] Open
Abstract
Numerous bioactive compounds have cytotoxic properties towards cancer cells. However, most studies have used single compounds when bioactives may target different pathways and exert greater cytotoxic effects when used in combination. Therefore, the objective of this study was to determine the anti-proliferative effect of γ-tocotrienol (γ-T3) and 6-gingerol (6G) in combination by evaluating apoptosis and active caspase-3 in HT-29 and SW837 colorectal cancer cells. MTS assays were performed to determine the anti-proliferative and cytotoxicity effect of γ-T3 (0–150 µg/mL) and 6G (0–300 µg/mL) on the cells. The half maximal inhibitory concentration (IC50) value of 6G+ γ-T3 for HT-29 was 105 + 67 µg/mL and for SW837 it was 70 + 20 µg/mL. Apoptosis, active caspase-3 and annexin V FITC assays were performed after 24 h of treatment using flow cytometry. These bioactives in combination showed synergistic effect on HT-29 (CI: 0.89 ± 0.02,) and SW837 (CI: 0.79 ± 0.10) apoptosis was increased by 21.2% in HT-29 and 55.4% in SW837 (p < 0.05) after 24 h treatment, while normal hepatic WRL-68 cells were unaffected. Increased apoptosis by the combined treatments was also observed morphologically, with effects like cell shrinkage and pyknosis. In conclusion, although further studies need to be done, γ-T3 and 6G when used in combination act synergistically increasing cytotoxicity and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Khairunnisa' Md Yusof
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Roslan Harun
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Norfilza Mokhtar
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| | - Wan Zurinah Wan Ngah
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras 56000, Malaysia.
| |
Collapse
|
33
|
Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ. Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:64. [PMID: 25886747 PMCID: PMC4369828 DOI: 10.1186/s12906-015-0590-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/25/2015] [Indexed: 01/25/2023]
Abstract
Background To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells. Methods HepG2 cells were treated with 70 μM GTT for 48 hours and differentially expressed protein spots were determined by two-dimensional electrophoresis (2DE), identified by MALDI-TOF mass spectrometer (MS) and validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results GTT treatment on HepG2 cells showed a total of five differentially expressed proteins when compared to their respective untreated cells where three proteins were down-regulated and two proteins were up-regulated. One of these upregulated proteins was identified as peroxiredoxin-4 (Prx4). Validation by qRT-PCR however showed decreased expression of Prx4 mRNA in HepG2 cells following GTT treatment. Conclusions GTT might directly influence the expression dynamics of peroxiredoxin-4 to control proliferation in liver cancer.
Collapse
|
34
|
Lubrano V, Derrey S, Truc G, Mirabel X, Thariat J, Cupissol D, Sassolas B, Combemale P, Modiano P, Bedane C, Dygai-Cochet I, Lamant L, Mourrégot A, Rougé Bugat MÈ, Siegrist S, Tiffet O, Mazeau-Woynar V, Verdoni L, Planchamp F, Leccia MT. [Locoregional treatments of brain metastases for patients with metastatic cutaneous melanoma: French national guidelines]. Neurochirurgie 2014; 60:269-75. [PMID: 25241016 DOI: 10.1016/j.neuchi.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The management of metastatic cutaneous melanoma is changing, marked by innovative therapies. However, their respective use and place in the therapeutic strategy continue to be debated by healthcare professionals. OBJECTIVE The French national cancer institute has led a national clinical practice guideline project since 2008. It has carried out a review of these modalities of treatment and established recommendations. METHODS The clinical practice guidelines development process is based on systematic literature review and critical appraisal by experts. The recommendations are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines are reviewed by independent practitioners in cancer care delivery. RESULTS This article presents the results of bibliographic search, the conclusions of the literature and the recommendations concerning locoregional treatments of brain metastases for patients with metastatic cutaneous melanoma.
Collapse
Affiliation(s)
- V Lubrano
- Service de neurochirurgie, hôpital de Rangueil, CHU de Toulouse, 1, avenue du Professeur-Jean-Poulhès, TSA 50032, 31059 Toulouse, France
| | - S Derrey
- Département de neurochirurgie, hôpital Charles-Nicolle, 1, rue de Germont, 76000 Rouen, France
| | - G Truc
- Département de radiothérapie, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, BP 77980, 21079 Dijon, France
| | - X Mirabel
- Département de radiothérapie-curiethérapie, centre Oscar-Lambret, 3, rue Frédéric-Combemale, BP 307, 59020 Lille, France
| | - J Thariat
- Pôle de radiothérapie, centre Antoine-Lacassagne, 33, avenue de Valombrose, 06189 Nice, France
| | - D Cupissol
- Service d'oncologie médicale, ICM, institut du cancer de Montpellier Val-d'Aurelle, 208, avenue des Apothicaires, parc Euromédecine, 34298 Montpellier, France
| | - B Sassolas
- Service de dermatologie, hôpital Cavale-Blanche, boulevard Tanguy-Prigent, 29609 Brest, France
| | - P Combemale
- Unité onco-dermatologie, centre Léon Bérard, 28, rue Laennec, 69008 Lyon, France
| | - P Modiano
- Service de dermatologie, hôpital Saint-Vincent-de-Paul, boulevard de Belfort, BP 387, 59020 Lille, France
| | - C Bedane
- Service de dermatologie, hôpital Dupuytren, 2, avenue Martin-Luther-King, 87042 Limoges, France
| | - I Dygai-Cochet
- Service de médecine nucléaire, centre Georges-François-Leclerc, 1, rue du Professeur-Marion, BP 77980, 21079 Dijon, France
| | - L Lamant
- Service d'anatomie pathologique, hôpital Purpan, place Baylac, 31059 Toulouse, France
| | - A Mourrégot
- Service de chirurgie oncologique, ICM, institut du cancer de Montpellier Val-d'Aurelle, 208, avenue des Apothicaires, parc Euromédecine, 34298 Montpellier, France
| | - M-È Rougé Bugat
- Cabinet médical, 59, rue de la Providence, 31500 Toulouse, France
| | - S Siegrist
- Cabinet médical, 3, rue Saint-Sigisbert, 57050 le Ban-Saint-Martin, France
| | - O Tiffet
- Service de chirurgie générale et thoracique, centre hospitalier universitaire, 42055 Saint-Étienne, France
| | - V Mazeau-Woynar
- Direction des recommandations et de la qualité de l'expertise, Institut national du cancer, 52, avenue André-Morizet, 92513 Boulogne-Billancourt, France
| | - L Verdoni
- Direction des recommandations et de la qualité de l'expertise, Institut national du cancer, 52, avenue André-Morizet, 92513 Boulogne-Billancourt, France
| | - F Planchamp
- Direction des recommandations et de la qualité de l'expertise, Institut national du cancer, 52, avenue André-Morizet, 92513 Boulogne-Billancourt, France.
| | - M-T Leccia
- Clinique de dermatolo-vénéréologie, photobiologie et allergologie, pôle pluridisciplinaire de médecine, hôpital Michallon, 38043 Grenoble, France
| |
Collapse
|
35
|
Murzaku EC, Bronsnick T, Rao BK. Diet in dermatology: Part II. Melanoma, chronic urticaria, and psoriasis. J Am Acad Dermatol 2014; 71:1053.e1-1053.e16. [PMID: 25454037 DOI: 10.1016/j.jaad.2014.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 02/07/2023]
Abstract
The roles of dietary factors in aggravating, preventing, or treating skin diseases are common questions encountered in dermatology practice. Part II of this two-part series reviews dietary modifications that can potentially be utilized in the management of melanoma, chronic urticaria, and psoriasis patients. Specifically, we examine the effect of alcohol consumption and supplementation with vitamins D and E, polyunsaturated fatty acids, selenium, green tea, resveratrol, and lycopene on melanoma risk. The relationships between chronic urticaria symptoms and dietary pseudoallergens, gluten, and vitamin D are analyzed. We explore weight loss, reduced alcohol consumption, and gluten avoidance as means of reducing psoriasis-associated morbidity, as well as the possible utility of supplementation with polyunsaturated fatty acids, folic acid, vitamin D, and antioxidants. With proper knowledge of the role of diet in these cutaneous disease processes, dermatologists can better answer patient inquiries and consider implementation of dietary modifications as adjuncts to other treatments and preventative measures.
Collapse
Affiliation(s)
- Era Caterina Murzaku
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Tara Bronsnick
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.
| | - Babar K Rao
- Department of Dermatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
36
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
37
|
Liu J, Lau EYT, Chen J, Yong J, Tang KD, Lo J, Ng IOL, Lee TKW, Ling MT. Polysaccharopeptide enhanced the anti-cancer effect of gamma-tocotrienol through activation of AMPK. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:303. [PMID: 25129068 PMCID: PMC4246518 DOI: 10.1186/1472-6882-14-303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/13/2014] [Indexed: 12/25/2022]
Abstract
Background Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy. Method We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (γ-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining γ-T3 and PSP in the treatment of prostate cancer. Result We showed that in the presence of PSP, γ-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward γ-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and γ-T3 treaments significantly reduced the growth of prostate tumor in vivo. Conclusion Our results indicate that PSP and γ-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.
Collapse
|
38
|
Chinembiri TN, du Plessis LH, Gerber M, Hamman JH, du Plessis J. Review of natural compounds for potential skin cancer treatment. Molecules 2014; 19:11679-721. [PMID: 25102117 PMCID: PMC6271439 DOI: 10.3390/molecules190811679] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Collapse
Affiliation(s)
- Tawona N Chinembiri
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Josias H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Jeanetta du Plessis
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| |
Collapse
|
39
|
Oliver RE, Islamovic E, Obert DE, Wise ML, Herrin LL, Hang A, Harrison SA, Ibrahim A, Marshall JM, Miclaus KJ, Lazo GR, Hu G, Jackson EW. Comparative systems biology reveals allelic variation modulating Tocochromanol profiles in Barley (Hordeum vulgare L.). PLoS One 2014; 9:e96276. [PMID: 24820172 PMCID: PMC4018352 DOI: 10.1371/journal.pone.0096276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/06/2014] [Indexed: 12/01/2022] Open
Abstract
Tocochromanols are recognized for nutritional content, plant stress response, and seed longevity. Here we present a systems biological approach to characterize and develop predictive assays for genes affecting tocochromanol variation in barley. Major QTL, detected in three regions of a SNP linkage map, affected multiple tocochromanol forms. Candidate genes were identified through barley/rice orthology and sequenced in genotypes with disparate tocochromanol profiles. Gene-specific markers, designed based on observed polymorphism, mapped to the originating QTL, increasing R2 values at the respective loci. Polymorphism within promoter regions corresponded to motifs known to influence gene expression. Quantitative PCR analysis revealed a trend of increased expression in tissues grown at cold temperatures. These results demonstrate utility of a novel method for rapid gene identification and characterization, and provide a resource for efficient development of barley lines with improved tocochromanol profiles.
Collapse
Affiliation(s)
- Rebekah E. Oliver
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America, formerly USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Emir Islamovic
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Donald E. Obert
- Limagrain Cereal Seeds, Battle Ground, Indiana, United States of America, formerly USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Mitchell L. Wise
- USDA-ARS, Cereal Crops Research Unit, Madison, Wisconsin, United States of America
| | - Lauri L. Herrin
- USDA-ARS, Cereal Crops Research Unit, Madison, Wisconsin, United States of America
| | - An Hang
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Stephen A. Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Amir Ibrahim
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Juliet M. Marshall
- Department of Plant, Soil, and Entomological Sciences, University of Idaho Research and Extension, Idaho Falls, Idaho, United States of America
| | - Kelci J. Miclaus
- SAS Institute Inc., JMP Genomics Development, Cary, North Carolina, United States of America
| | - Gerard R. Lazo
- USDA-ARS, Western Regional Research Center, Genomics and Gene Discovery, Albany, California, United States of America
| | - Gongshe Hu
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
| | - Eric W. Jackson
- Crop Biosciences, General Mill, Inc., Kannapolis, North Carolina, United States of America, formerly USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, Idaho, United States of America
- * E-mail:
| |
Collapse
|
40
|
Tissue distribution of emulsified γ-tocotrienol and its long-term biological effects after subcutaneous administration. Lipids Health Dis 2014; 13:66. [PMID: 24712339 PMCID: PMC4040479 DOI: 10.1186/1476-511x-13-66] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/05/2014] [Indexed: 01/11/2023] Open
Abstract
Background γ-tocotrienol (GT3), an analogue of vitamin E, has gained increasing scientific interest recently as it provides significant health benefits. It has been shown that emulsified GT3, after subcutaneous administration, has long-term biological effects. However, whether the effects are due to the increase of GT3 level in the early phase following administration or the persistent functions after accumulation in tissues is unknown. This study was conducted to determine the levels of GT3 in different tissues by high performance liquid chromatography (HPLC) with a fluorescence detector after a single-dose of GT3 with polyethylene glycol (PEG-400) emulsion via subcutaneous injection. Previous studies have explored that GT3 has favorable effects on bone and can inhibit osteoclast formation. To confirm the persistent biological activity of accumulated GT3 in tissues, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) gene expressions, which have an important role in regulating osteoclast formation, were also evaluated in bone tissue on day 1, 3, 7 and 14 after a signal subcutaneous injection of GT3. Methods C57BL/6 female mice were administrated GT3 (100 mg/kg body weight) with PEG-400 emulsion by subcutaneous injection. GT3 levels in different tissues were determined by HPLC with a fluorescence detector. Gene expressions were measured by real-time PCR. Results GT3 predominantly accumulated in adipose and heart tissue, and was maintained at a relatively stable level in bone tissues after a single-dose administration. Accumulated GT3 in bone tissues significantly inhibited the increase in RANKL expression and the decrease in OPG expression induced by db-cAMP. Conclusions We investigated the tissue distribution of GT3 with PEG emulsion by subcutaneous administration, which has never been reported so far. Our results suggest that GT3 with PEG emulsion accumulated in tissues is able to carry out a long-term biological effect and has therapeutic value for treating and preventing osteoporosis.
Collapse
|
41
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
42
|
Husain K, Centeno BA, Chen DT, Hingorani SR, Sebti SM, Malafa MP. Vitamin E δ-tocotrienol prolongs survival in the LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer. Cancer Prev Res (Phila) 2013; 6:1074-83. [PMID: 23963802 PMCID: PMC4165552 DOI: 10.1158/1940-6207.capr-13-0157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous work has shown that vitamin E δ-tocotrienol (VEDT) prolongs survival and delays progression of pancreatic cancer in the LSL-Kras(G12D)(/+);Pdx-1-Cre mouse model of pancreatic cancer. However, the effect of VEDT alone or in combination with gemcitabine in the more aggressive LSL-Kras(G12D)(/+);LSL-Trp53(R172H)(/+);Pdx-1-Cre (KPC) mouse model is unknown. Here, we studied the effects of VEDT and the combination of VEDT and gemcitabine in the KPC mice. KPC mice were randomized into four groups: (i) vehicle [olive oil, 1.0 mL/kg per os twice a day and PBS 1.0 mL/kg intrapertoneally (i.p.) twice a week], (ii) gemcitabine (100 mg/kg i.p. twice a week), (iii) VEDT (200 mg/kg per os twice a day), and (iv) gemcitabine + VEDT. Mice received treatment until they displayed symptoms of impending death from pancreatic cancer, at which point animals were euthanized. At 16 weeks, survival was 10% in the vehicle group, 30% in the gemcitabine group, 70% in the VEDT group (P < 0.01), and 90% in the VEDT combined with gemcitabine group (P < 0.05). VEDT alone and combined with gemcitabine resulted in reversal of epithelial-to-mesenchymal transition in tumors. Biomarkers of apoptosis (plasma CK18), PARP1 cleavage, and Bax expression were more greatly induced in tumors subjected to combined treatment versus individual treatment. Combined treatment induced cell-cycle inhibitors (p27(Kip1) and p21(Cip1)) and inhibited VEGF, vascularity (CD31), and oncogenic signaling (pAKT, pMEK, and pERK) greater than individual drugs. No significant differences in body weight gain between drug treatment and control mice were observed. These results strongly support further investigation of VEDT alone and in combination with gemcitabine for pancreatic cancer prevention and treatment.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612.
| | | | | | | | | | | |
Collapse
|
43
|
Behery FA, Akl MR, Ananthula S, Parajuli P, Sylvester PW, El Sayed KA. Optimization of tocotrienols as antiproliferative and antimigratory leads. Eur J Med Chem 2013; 59:329-41. [DOI: 10.1016/j.ejmech.2012.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/20/2012] [Accepted: 11/10/2012] [Indexed: 10/27/2022]
|
44
|
|
45
|
Manu KA, Shanmugam MK, Ramachandran L, Li F, Fong CW, Kumar AP, Tan P, Sethi G. First evidence that γ-tocotrienol inhibits the growth of human gastric cancer and chemosensitizes it to capecitabine in a xenograft mouse model through the modulation of NF-κB pathway. Clin Cancer Res 2012; 18:2220-9. [PMID: 22351692 DOI: 10.1158/1078-0432.ccr-11-2470] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Because of poor prognosis and development of resistance against chemotherapeutic drugs, the existing treatment modalities for gastric cancer are ineffective. Hence, novel agents that are safe and effective are urgently needed. Whether γ-tocotrienol can sensitize gastric cancer to capecitabine in vitro and in a xenograft mouse model was investigated. EXPERIMENTAL DESIGN The effect of γ-tocotrienol on proliferation of gastric cancer cell lines was examined by mitochondrial dye uptake assay, apoptosis by esterase staining, NF-κB activation by DNA-binding assay, and gene expression by Western blotting. The effect of γ-tocotrienol on the growth and chemosensitization was also examined in subcutaneously implanted tumors in nude mice. RESULTS γ-Tocotrienol inhibited the proliferation of various gastric cancer cell lines, potentiated the apoptotic effects of capecitabine, inhibited the constitutive activation of NF-κB, and suppressed the NF-κB-regulated expression of COX-2, cyclin D1, Bcl-2, CXCR4, VEGF, and matrix metalloproteinase-9 (MMP-9). In a xenograft model of human gastric cancer in nude mice, we found that administration of γ-tocotrienol alone (1 mg/kg body weight, intraperitoneally 3 times/wk) significantly suppressed the growth of the tumor and this effect was further enhanced by capecitabine. Both the markers of proliferation index Ki-67 and for microvessel density CD31 were downregulated in tumor tissue by the combination of capecitabine and γ-tocotrienol. As compared with vehicle control, γ-tocotrienol also suppressed the NF-κB activation and the expression of cyclin D1, COX-2, intercellular adhesion molecule-1 (ICAM-1), MMP-9, survivin, Bcl-xL, and XIAP. CONCLUSIONS Overall our results show that γ-tocotrienol can potentiate the effects of capecitabine through suppression of NF-κB-regulated markers of proliferation, invasion, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Kanjoormana A Manu
- Department of Pharmacology, Yong Loo Lin School of Medicine, Cancer Science Institute of Singapore, National University of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ling MT, Luk SU, Al-Ejeh F, Khanna KK. Tocotrienol as a potential anticancer agent. Carcinogenesis 2011; 33:233-9. [PMID: 22095072 DOI: 10.1093/carcin/bgr261] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin E is composed of two structurally similar compounds: tocopherols (TPs) and tocotrienols (T3). Despite being overshadowed by TP over the past few decades, T3 is now considered to be a promising anticancer agent due to its potent effects against a wide range of cancers. A growing body of evidence suggests that in addition to its antioxidative and pro-apoptotic functions, T3 possesses a number of anticancer properties that make it superior to TP. These include the inhibition of epithelial-to-mesenchymal transitions, the suppression of vascular endothelial growth factor tumor angiogenic pathway and the induction of antitumor immunity. More recently, T3, but not TP, has been shown to have chemosensitization and anti-cancer stem cell effects, further demonstrating the potential of T3 as an effective anticancer therapeutic agent. With most of the previous clinical studies on TP producing disappointing results, research has now focused on testing T3 as the next generation vitamin E for chemoprevention and cancer treatment. This review will summarize recent developments in the understanding of the anticancer effects of T3. We will also discuss current progress in clinical trials involving T3 as an adjuvant to conventional cancer therapy.
Collapse
Affiliation(s)
- Ming T Ling
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Qld 4102, Australia.
| | | | | | | |
Collapse
|
47
|
Rajendran P, Li F, Manu KA, Shanmugam MK, Loo SY, Kumar AP, Sethi G. γ-Tocotrienol is a novel inhibitor of constitutive and inducible STAT3 signalling pathway in human hepatocellular carcinoma: potential role as an antiproliferative, pro-apoptotic and chemosensitizing agent. Br J Pharmacol 2011; 163:283-98. [PMID: 21198544 DOI: 10.1111/j.1476-5381.2010.01187.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of signal transducer and activator of transcription 3 (STAT3) play a critical role in the survival, proliferation, angiogenesis and chemoresistance of tumour cells. Thus, agents that suppress STAT3 phosphorylation have potential as cancer therapies. In the present study, we investigated whether the apoptotic, antiproliferative and chemosensitizing effects of γ-tocotrienol are associated with its ability to suppress STAT3 activation in hepatocellular carcinoma (HCC). EXPERIMENTAL APPROACH The effect of γ-tocotrienol on STAT3 activation, associated protein kinases and phosphatase, STAT3-regulated gene products, cellular proliferation and apoptosis in HCC cells was investigated. KEY RESULTS γ-Tocotrienol inhibited both the constitutive and inducible activation of STAT3 with minimum effect on STAT5. γ-Tocotrienol also inhibited the activation of Src, JAK1 and JAK2 implicated in STAT3 activation. Pervanadate reversed the γ-tocotrienol-induced down-regulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Indeed, we found that γ-tocotrienol induced the expression of the tyrosine phosphatase SHP-1 and deletion of the SHP-1 gene by small interfering RNA abolished the ability of γ-tocotrienol to inhibit STAT3 activation. γ-Tocotrienol also down-regulated the expression of STAT3-regulated gene products, including cyclin D1, Bcl-2, Bcl-xL, survivin, Mcl-1 and vascular endothelial growth factor. Finally, γ-tocotrienol inhibited proliferation, induced apoptosis and significantly potentiated the apoptotic effects of chemotherapeutic drugs (paclitaxel and doxorubicin) used for the treatment of HCC. CONCLUSIONS AND IMPLICATIONS Overall, these results suggest that γ-tocotrienol is a novel blocker of the STAT3 activation pathway, with a potential role in future therapies for HCC and other cancers.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
48
|
Inoue A, Takitani K, Koh M, Kawakami C, Kuno T, Tamai H. Induction of apoptosis by γ-tocotrienol in human cancer cell lines and leukemic blasts from patients: dependency on Bid, cytochrome c, and caspase pathway. Nutr Cancer 2011; 63:763-70. [PMID: 21660856 DOI: 10.1080/01635581.2011.563030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tocotrienols (Toc3) have been suggested to possess anticancer effects besides antioxidant and antiinflammatory effects. Previous studies have demonstrated that Toc3 induce apoptosis in epithelial carcinoma. However, the effects of Toc3 on malignant hematopoietic cells have not yet been thoroughly investigated. We investigated Toc3-induced apoptosis in human hematological cancer cell lines. α-, δ-, and γ-Toc3 induced concentration-dependent apoptosis, and γ-Toc3 demonstrated more effective induction than the other Toc3 derivatives in HL-60 cells. γ-Toc3 may have induced apoptosis by activation of the caspase cascade, cytochrome c (Cyt.c) release, Bid cleavage, and mitochondorial membrane depolarization in HL-60, NB-4, Raji, and SY-5Y cells. Furthermore, 10-30 μM γ-Toc3 showed cytotoxicity for leukemic cells from various patients regardless of lymphoblastic, myeloblastic, or relapsed leukemia, but the cytotoxic effect was weak in normal mononuclear cells, interestingly. γ-Toc3 may have a role in cancer prevention and potential for treating hematological malignancies.
Collapse
Affiliation(s)
- Akiko Inoue
- Department of Pediatrics, Osaka Medical College, Takatsuki, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E. GENES AND NUTRITION 2011; 7:29-41. [PMID: 21505906 DOI: 10.1007/s12263-011-0219-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.
Collapse
|
50
|
Kannappan R, Gupta SC, Kim JH, Aggarwal BB. Tocotrienols fight cancer by targeting multiple cell signaling pathways. GENES AND NUTRITION 2011; 7:43-52. [PMID: 21484157 DOI: 10.1007/s12263-011-0220-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/11/2022]
Abstract
Cancer cells are distinguished by several distinct characteristics, such as self-sufficiency in growth signal, resistance to growth inhibition, limitless replicative potential, evasion of apoptosis, sustained angiogenesis, and tissue invasion and metastasis. Tumor cells acquire these properties due to the dysregulation of multiple genes and associated cell signaling pathways, most of which are linked to inflammation. For that reason, rationally designed drugs that target a single gene product are unlikely to be of use in preventing or treating cancer. Moreover, targeted drugs can cause serious and even life-threatening side effects. Therefore, there is an urgent need for safe and effective promiscuous (multitargeted) drugs. "Mother Nature" produces numerous such compounds that regulate multiple cell signaling pathways, are cost effective, exhibit low toxicity, and are readily available. One among these is tocotrienol, a member of the vitamin E family, which has exhibited anticancer properties. This review summarizes data from in vitro and in vivo studies of the effects of tocotrienol on nuclear factor-κB, signal transducer and activator of transcription (STAT) 3, death receptors, apoptosis, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), hypoxia-inducible factor (HIF) 1, growth factor receptor kinases, and angiogenic pathways.
Collapse
Affiliation(s)
- Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | |
Collapse
|