1
|
Guo J, Xu C, Neng X, Zhang J, Wu X, Liu X, Liu Y, Tan Z, Jiang Z, Hou J. Encapsulation of Lactiplantibacillus plantarum in W/O/W emulsion stabilized with whey protein isolate and konjac glucomannan complex. Carbohydr Polym 2025; 361:123661. [PMID: 40368570 DOI: 10.1016/j.carbpol.2025.123661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
This experiment investigated the encapsulation of Lactiplantibacillus plantarum 1.0317 in a water-in-oil-in-water (W/O/W) emulsion to significantly enhance the activity of Lactiplantibacillus plantarum 1.0317 under storage conditions, during pasteurization, and in simulated in vitro gastrointestinal digestion environments. Lactiplantibacillus plantarum 1.0317 was encapsulated in emulsion using whey protein isolate (WPI) alone or non-covalent complex of whey protein isolate and konjac glucomannan (KGM). Compared with the WPI-stabilized emulsion, the WPI-KGM stabilized emulsion had smaller particle size, better rheological properties, higher embedding efficiency and markedly improved the vitality of Lactiplantibacillus plantarum 1.0317 after storage, pasteurization, low pH treatment, high concentration of bile salt treatment and simulated gastrointestinal digestion. As the mass ratio of WPI-KGM composite was 3:1, the highest embedding efficiency of W/O/W emulsion was 89.76 %. Moreover, compared with the free Lactiplantibacillus plantarum 1.0317 and its other encapsulated emulsion, when the WPI-KGM complex mass ratio is 3:1, the W/O/W emulsion containing Lactiplantibacillus plantarum 1.0317 has the highest activity of probiotics after 28 days of storage, pasteurization and simulated gastrointestinal digestion, which are 97.03 %, 74.15 % and 70.07 %, respectively. This study offers a novel idea for the emulsion system used in probiotic delivery based on WPI-KGM.
Collapse
Affiliation(s)
- Jiahui Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - XinYu Neng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiamin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuefei Wu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yongchen Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
2
|
Zhang Y, Purohit A, Aghayev Z, Wang Y, Liang J, Beykal B, Luo Y, Qiao M. Optimization and evaluation of a simplified green biorefinery for alginate extraction from sugar kelp (Saccharina latissima). Int J Biol Macromol 2025; 309:143147. [PMID: 40233905 DOI: 10.1016/j.ijbiomac.2025.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/08/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
A simplified two-stage ultrasound-assisted biorefinery process for sodium alginate extraction from sugar kelp (Saccharina latissima) was developed using green solvents. The process yielded three distinct fractions: fucoidan/laminarin (S1), sodium alginate (S2), and cellulose (P2). The results were analyzed with response surface methodology. Key parameters, including sonication amplitude, time, and pH, were evaluated, and sonication energy was introduced as a predictive factor to improve model accuracy. Mathematical optimization of the response surface model identified an optimal sodium alginate yield of 76.4 % at pH 2 and 432.2 kJ of sonication energy. Fourier-transform infrared spectroscopy (FTIR) confirmed effective sodium alginate fractionation, and molecular weight analysis correlated viscosity with alginate quality. Inductively coupled plasma mass spectrometry (ICP-MS) showed reduced heavy metal content in both fucoidan/laminarin and alginate, indicating an improved safety profile for potential food and nutritional applications. This scalable and eco-friendly biorefinery highlights an environmentally sustainable approach for sodium alginate production, maximizing biomass valorization and ensuring product safety.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Anuj Purohit
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Zahir Aghayev
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jiayi Liang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, United States
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, United States; Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, United States; Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
3
|
Jia H, Li Y, Tian Y, Li N, Zheng M, Zhang W, Jiang Y, Zhao Q, Man C. Recent advances in electrospray encapsulation of probiotics: influencing factors, natural polymers and emerging technologies. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39757917 DOI: 10.1080/10408398.2024.2447307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The probiotic food sector is rapidly growing due to increased consumer demand for nutritional supplements. However, ensuring probiotic viability within the harsh conditions of the gastrointestinal tract remains a major challenge. While probiotic encapsulation is a promising solution to enhance probiotic viability, most traditional encapsulation methods have significant limitations. This review underscores the significance of adopting novel encapsulation technologies, particularly electrospray (ES), which offers superior encapsulation efficiency and versatility. It begins with an introduction to the principles and classification of ES, analyzes factors influencing the properties of ES microcapsules, and reviews the use of natural polymers in ES-based encapsulation. Additionally, it discusses recent advancements in this field, focusing on improvements in ES equipment (e.g., coaxial ES and emulsion ES) and the integration of ES with other technologies (e.g., microfluidic ES and ES-fluidized bed coating). Finally, it highlights existing challenges and explores future prospects in this evolving field, offering valuable insights for advancing probiotic encapsulation technologies and enhancing public health outcomes.
Collapse
Affiliation(s)
- Haifu Jia
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Nan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Miao Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Su CY, Li D, Wang LJ. From micropores to mechanical strength: Fabrication and characterization of edible corn starch-sodium alginate double network hydrogels with Ca2+ cross-linking. Food Chem 2024; 467:142276. [PMID: 39631354 DOI: 10.1016/j.foodchem.2024.142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
This study explores the fabrication and characterization of corn starch‑sodium alginate double network hydrogels using two distinct calcium ion cross-linking methods: the gluconolactone immersed method (GIM) and the calcium chloride immersed method (CCIM). We investigated the ionic cross-linking mechanism of these hydrogels and compared their microstructure and mechanical properties. Our results highlight significant differences between GIM and CCIM hydrogels, with the CCIM method producing a more uniform and compact network. At the same calcium ion concentration, CCIM hydrogel exhibited higher mechanical strength and viscoelasticity properties compared to GIM hydrogel. The rapid release of Ca2+ in CCIM allowed for complete cross-linking with sodium alginate, forming a uniform 3D network structure. In contrast, the slow released Ca2+ in GIM resulted in a heterogeneous structure with a tough outer shell and incomplete internal cross-linking. Specifically, the CCIM hydrogel showed a compact network structure and the highest mechanical strength at a calcium chloride concentration of 1.6% (w/v). This study demonstrates that the Ca2+ release rate significantly impacts the microstructure and mechanical properties of double network hydrogels prepared by the immersion method. With this preparation strategy, corn starch‑sodium alginate edible gels that provided higher strength could be fabricated.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Jan T, Negi R, Sharma B, Kumar S, Singh S, Rai AK, Shreaz S, Rustagi S, Chaudhary N, Kaur T, Kour D, Sheikh MA, Kumar K, Yadav AN, Ahmed N. Next generation probiotics for human health: An emerging perspective. Heliyon 2024; 10:e35980. [PMID: 39229543 PMCID: PMC11369468 DOI: 10.1016/j.heliyon.2024.e35980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Over recent years, the scientific community has acknowledged the crucial role of certain microbial strains inhabiting the intestinal ecosystem in promoting human health, and participating in various beneficial functions for the host. These microorganisms are now referred to as next-generation probiotics and are currently considered as biotherapeutic products and food or nutraceutical supplements. However, the majority of next-generation probiotic candidates pose nutritional demands and exhibit high sensitivity towards aerobic conditions, leading to numerous technological hurdles in large-scale production. This underscores the need for the development of suitable delivery systems capable of enhancing the viability and functionality of these probiotic strains. Currently, potential candidates for next generation probiotics (NGP) are being sought among gut bacteria linked to health, which include strains from the genera Bacteroids, Faecalibacterium, Akkermansia and Clostridium. In contrast to Lactobacillus spp. and Bifidobacterium spp., NGP, particularly Bacteroids spp. and Clostridium spp., appear to exhibit greater ambiguity regarding their potential to induce infectious diseases. The present review provides a comprehensive overview of NGPs in terms of their health beneficial effects, regulation framework and risk assessment targeting relevant criteria for commercialization in food and pharmaceutical markets.
Collapse
Affiliation(s)
- Tawseefa Jan
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Rajeshwari Negi
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Babita Sharma
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Sanjeev Kumar
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Sangram Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya, Uttar Pradesh, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sheikh Shreaz
- Desert Agriculture and Ecosystem Department, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Sarvesh Rustagi
- Depratment of Food Technology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Nisha Chaudhary
- Depratment of Food Science and Technology, Agriculture University, Jodhpur, Rajasthan, India
| | - Tanvir Kaur
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Divjot Kour
- Department of Microbiology, Akal College of Basic Science, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Mohd Aaqib Sheikh
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| | - Krishan Kumar
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh, India
| | - Ajar Nath Yadav
- Department of Genetics, Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- Chitkara Center for Research and Development, Chitkara University, Himachal Pradesh, India
| | - Naseer Ahmed
- Department of Food Technology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh, India
| |
Collapse
|
6
|
Panigrahi SK, Das S, Majumdar S. Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques. Adv Colloid Interface Sci 2024; 326:103121. [PMID: 38457900 DOI: 10.1016/j.cis.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Conventional drug delivery systems are associated with various shortcomings, including low bioavailability and limited control over release. Biodegradable polymeric microparticles have emerged as versatile carriers in drug delivery systems addressing all these challenges. This comprehensive review explores the dynamic landscape of microparticles, considering the role of hydrophilic and hydrophobic materials. Within the continuously evolving domain of microparticle preparation methods, this review offers valuable insights into the latest advancements and addresses the factors influencing microencapsulation, which is pivotal for harnessing the full potential of microparticles. Exploration of the latest research in this dynamic field unlocks the possibilities of optimizing microencapsulation techniques to produce microparticles of desired characteristics and properties for different applications, which can help contribute to the ongoing evolution in the field of pharmaceutical science.
Collapse
Affiliation(s)
- Subrat Kumar Panigrahi
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Sougat Das
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Saptarshi Majumdar
- Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
7
|
Datta N, Jinan T, Wong SY, Chakravarty S, Li X, Anwar I, Arafat MT. Self-assembled sodium alginate polymannuronate nanoparticles for synergistic treatment of ophthalmic infection and inflammation: Preparation optimization and in vitro/vivo evaluation. Int J Biol Macromol 2024; 262:130038. [PMID: 38336323 DOI: 10.1016/j.ijbiomac.2024.130038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Frequent administrations are often needed during the treatment of ocular diseases due to the low bioavailability of the existing eye drops owing to inadequate corneal penetration and rapid drug washout. Herein, sodium alginate polymannuronate (SA) nanocarriers were developed using ionic gelation method that can provide better bioavailability through mucoadhesivity and sustained drug release by binding to the ocular mucus layer. This study disproves the common belief that only the G block of SA participates in the crosslinking reaction during ionic gelation. Self-assembly capability due to the linear flexible structure of the M block, better biocompatibility than G block along with the feasibility of controlling physicochemical characteristics postulate a high potential for designing efficient ocular drug delivery systems. Initially, four crosslinkers of varied concentrations were investigated. Taguchi design of experiment revealed the statistically significant effect of the crosslinker type and concentration on the particle size and stability. The best combination was detected by analyzing the particle size and zeta potential values that showed the desired microstructural properties for ocular barrier penetration. The desired combination was SA-Ca-1 that had particle size within the optimal corneal penetration range, that is 10-200 nm (135 nm). The drug carriers demonstrated excellent entrapment efficiency (∼89 % for Ciprofloxacin and ∼96 % for Dexamethasone) along with a sustained and simultaneous release of dual drug for at least 2 days. The nanoparticles also showed biocompatibility (4 ± 0.6 % hemolysis) and high mucoadhesivity (73 ± 2 % for 0.25 g) which was validated by molecular docking analysis. The prepared formulation was able to reduce the scleral inflammation of the rabbit uveitis models significantly within 3 days. Thus, the eye drop showed remarkable potential for efficient drug delivery leading to faster recovery.
Collapse
Affiliation(s)
- Nondita Datta
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Tohfatul Jinan
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore; Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | | | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh.
| |
Collapse
|
8
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
9
|
Lomartire S, Gonçalves AMM. Algal Phycocolloids: Bioactivities and Pharmaceutical Applications. Mar Drugs 2023; 21:384. [PMID: 37504914 PMCID: PMC10381318 DOI: 10.3390/md21070384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
11
|
Feng Y, Niu L, Sun C, Tu J, Yu L, Xiao J. Collagen hydrolysates improve the efficiency of sodium alginate-encapsulated tea polyphenols in beads and the storage stability after commercial sterilization. Int J Biol Macromol 2023; 231:123314. [PMID: 36681216 DOI: 10.1016/j.ijbiomac.2023.123314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
This study showed that sodium alginates (SA)-based beads reinforced with collagen hydrolysates (CHs) significantly increased an encapsulation rate of tea polyphenols (TP) from 34.54 % to 85.06 % when the mass ratio of SA: CHs increased from1.5:0 to 1.5:0.5. And after the 30-day storage at 37 °C, the retention rate of TP in beads with CHs at the solutions with pH = 4.0 or pH = 7.0 increased from 61.10 % to 80.21 %, or from 67.72 % to 80.47 % after sterilization at 98 °C or 121 °C for 30 min, respectively. Also, the addition of CHs at 0.5 % resulted in a greater retention of the polyphenolic compositions values of TP determined by UPLC-Orbitrap-MS system. Additionally, the DPPH and ABTS+ free-radical scavenging capacities and ferric-reducing antioxidant power of beads with CHs after sterilization at 98 °C or 121 °C for 30 min were significantly higher than which without CHs. Physical phenomena based on ζ-potential, particle size, fluorescence, UV spectroscopy and confocal laser scanning microscope showed that tightly non-covalent complexes of CHs in combination to TP could be uniformly and stably distributed in the network of SA solution for encapsulating TP in SA-based beads. These findings provided suggestions for the co-encapsulation design and development of hydrophilic nutritive compounds based on CHs in SA-based beads.
Collapse
Affiliation(s)
- Yaping Feng
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liya Niu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chao Sun
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Tu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lili Yu
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhui Xiao
- Jiangxi Province Key Laboratory of Tuberous Plant Biology, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
12
|
Khan Z, Abourehab MAS, Parveen N, Kohli K, Kesharwani P. Recent advances in microbeads-based drug delivery system for achieving controlled drug release. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:541-564. [PMID: 36168111 DOI: 10.1080/09205063.2022.2127237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Novel drug delivery system endows a beneficial method for achieving a desired drug concentration at the appropriate site in the body. The concept of targeted drug delivery has been emerged to localize the drug in the targeted tissue of interest while reducing the relative concentration of the medication in the surrounding tissues. This could be easily accomplished by using different multi-particulate dosage forms like pellets, granules, microcapsules, liposomes, beads. But the major drawbacks associated with them are the use of harsh chemicals and an elevated temperature for their preparation. Preparation of microbeads by ionotropic gelation and emulsion gelation method overcomes these problems by neither using harsh chemicals nor elevated temperature for their preparation. Thus, this can be proved to be a better alternative over other dosage forms. Several parameters were studied in terms of their morphology, particle size, encapsulation efficiency, swelling ratio, mucoadhesivity, etc. The endeavor of present article is toward presenting a wider perspective of the comprehensive knowledge available in the field of microbeads. Thus, the intent of this review is to recapitulate the relevance of microbeads.
Collapse
Affiliation(s)
- Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Director (Research and Publication), Faculty of pharmacy, Lloyd Institute of Management and Technology, Greater Noida, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
13
|
Stadolnikova PY, Tikhonov BB, Prutenskaya EA, Sidorov AI, Sulman MG. Immobilization of Glucose Oxidase on Sodium Alginate Microspheres. APPL BIOCHEM MICRO+ 2023. [DOI: 10.1134/s000368382301012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Łętocha A, Miastkowska M, Sikora E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers (Basel) 2022; 14:polym14183834. [PMID: 36145992 PMCID: PMC9502979 DOI: 10.3390/polym14183834] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alginates are the most widely used natural polymers in the pharmaceutical, food and cosmetic industries. Usually, they are applied as a thickening, gel-forming and stabilizing agent. Moreover, the alginate-based formulations such as matrices, membranes, nanospheres or microcapsules are often used as delivery systems. Alginate microparticles (AMP) are biocompatible, biodegradable and nontoxic carriers, applied to encapsulate hydrophilic active substances, including probiotics. Here, we report the methods most frequently used for AMP production and encapsulation of different actives. The technological parameters important in the process of AMP preparation, such as alginate concentration, the type and concentration of other reagents (cross-linking agents, oils, emulsifiers and pH regulators), agitation speed or cross-linking time, are reviewed. Furthermore, the advantages and disadvantages of alginate microparticles as delivery systems are discussed, and an overview of the active ingredients enclosed in the alginate carriers are presented.
Collapse
|
15
|
Mollah M, Faruque M, Bradley D, Khandaker M, Al-Assaf S. FTIR and rheology study of alginate samples: Effect of radiation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
17
|
Strong and Elastic Chitosan/Silk Fibroin Hydrogels Incorporated with Growth-Factor-Loaded Microspheres for Cartilage Tissue Engineering. Biomimetics (Basel) 2022; 7:biomimetics7020041. [PMID: 35466258 PMCID: PMC9036308 DOI: 10.3390/biomimetics7020041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
An emulsification method was developed for fabricating core-shell microspheres with a thick shell layer. Kartogenin (KGN) and platelet-derived growth factor BB (PDGF-BB) were respectively loaded into the core portion and the shell layer of the microspheres with high loading efficiency. The optimally built microspheres were combined with chitosan (CH) and silk fibroin (SF) to construct a new type of composite hydrogel with enhanced strength and elasticity, using genipin or/and tyrosinase as crosslinkers for the intended use in cartilage tissue engineering. The composite hydrogels were found to be thermo-responsive at physiological temperature and pH with well-defined injectability. Rheological measurements revealed that they had an elastic modulus higher than 6 kPa with a high ratio of elastic modulus to viscous modulus, indicative of their mechanically strong features. Compressive measurements demonstrated that they possessed well-defined elasticity. In addition, some gels had the ability to administer the temporal separation release of PDGF-BB and KGN in an approximately linear manner for several weeks. The released PDGF-BB was found to be bioactive based on its effects on Balb/c 3T3 cells. The composite gels supported the growth of seeded chondrocytes while preserving their phenotype. The results suggest that these composite gels have the potential for endogenous cartilage repair.
Collapse
|
18
|
Bedse A, Mahajan H, Dhamane S. Formulation of oxybutynin chloride microparticle-loaded suppositories: in vitro characterization and in vivo pharmacokinetic study. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Oxybutynin chloride (OXC) is used to treat overactive urinary bladder. OXC is metabolized in the liver to N-desethyloxybutynin, which is mainly responsible for the anticholinergic side effects of OXC. Conventional oxybutynin suppositories formulated earlier have shown most common side effects, such as dry mouth, constipation and serious anticholinergic reaction. Hence the present research work deals with the formulation and characterization of OXC microparticle-loaded mucoadhesive suppositories which may remain adhered in the lower rectum and avoid first pass metabolism. The emulsification–ionic gelation method is employed to prepare OXC microparticles. Two formulation factors at three levels, i.e. polymer concentration and stirring speed, were selected. Sodium alginate (concentration 1–2%) and 1% w/v Carbopol 971P were used to prepare OXC microparticles. OXC microparticles were evaluated for various parameters such as production yield, entrapment efficiency, mucoadhesive strength, shape, size, zeta potential, Fourier Transform Infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, in vitro dissolution studies and stability studies. Suppositories loaded with OXC microparticles were prepared by the fusion method using Poloxamer 188 and propylene glycol and evaluated for various parameters like weight variation, disintegration time, in vitro dissolution study, stability study and pharmacokinetic study.
Results
Results of in vitro characterization revealed that optimized batch of OXC loaded microparticles exhibited production yield 94.024% entrapment efficiency 95.378% and mucoadhesion strength 95.544%, particle size range 764.04–894.13 µm, zeta potential − 14.5 mV, with 0.946 desirability. Consequences of DSC and XRPD evaluation shown that drug was effectively entrapped inside the microparticles. In vitro release studies revealed improvement in drug dissolution as a consequence of its entrapment into microparticles. SEM results showed that micelles were sphere-shaped. On rectal administration of OXC microparticles loaded suppository in male Sprague–Dawley Rats, the relative bioavailability was found 173.72%.
Conclusion
In vivo study elicits rapid increase in absorption of drug from microparticles loaded suppository when compared with the oral formulation and drug loaded suppository in rats. OXC microparticles loaded suppository is novel and promising drug delivery system for rectal administration and may avoid anticholinergic side effects of hepatic metabolite, N-desethyloxybutynin. These rectal drug delivery systems will be advantageous for efficient absorption of drugs and to avoid first pass metabolism.
Collapse
|
19
|
Zhou Z, Xing M, Zhang S, Yang G, Gao Y. Process optimization of Ca 2+ cross-linked alginate-based swellable microneedles for enhanced transdermal permeability: More applicable to acidic drugs. Int J Pharm 2022; 618:121669. [PMID: 35306152 DOI: 10.1016/j.ijpharm.2022.121669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
We describe a swellable microneedle (SMN) consisting of Ca2+ cross-linked alginate, which expands the types of natural polymers available for SMN fabrication. After investigation of different fabrication methods, the alginate in situ hydrogel-based SMN with a flat substrate was successfully constructed, whose gelation was triggered by ethylenediaminetetraacetic acid calcium disodium salt and D-(+)-glucono-1,5-lactone. With the addition of polyvinyl alcohol and trehalose, SMN possessed good mechanical properties. The biocompatibility of SMN was demonstrated through the tests of in vitro cytotoxicity and in vivo skin irritation. With the assistance of SMN, the in vitro transdermal delivery efficiencies of drugs were significantly improved throughout 16 h. 3-O-ethyl ascorbic acid (EAA, pH = 4.81) exhibited a cumulative release of up to 83.83 ± 6.30%, which was consistent with zero-order kinetics, while tranexamic acid (TA, pH = 6.90) showed the most significant increase in delivery efficiency, which was consistent with the Higuchi model and Ritger-Peppas model. The SMN remained intact after the 16 h of EAA transdermal delivery, indicating its better suitability for acidic drugs. We believe that this technology has the potential to expand the range of drugs available for transdermal administration as well as the breadth of patient care applications.
Collapse
Affiliation(s)
- Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; Beijing CAS Microneedle Technology Ltd, No. 22, Tianrong Street, Beijing 102609, China
| | - Guozhong Yang
- Beijing CAS Microneedle Technology Ltd, No. 22, Tianrong Street, Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing 100049, China; Beijing CAS Microneedle Technology Ltd, No. 22, Tianrong Street, Beijing 102609, China.
| |
Collapse
|
20
|
Functional role of crosslinking in alginate scaffold for drug delivery and tissue engineering: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Şahin OI. Seaweed Polysaccharides: Structure, Extraction and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Park H, Kim H, Kim GY, Lee MY, Kim Y, Kang S. Enhanced biodegradation of hydrocarbons by Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124752. [PMID: 33316667 DOI: 10.1016/j.jhazmat.2020.124752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 05/17/2023]
Abstract
Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads (PAGMs) were prepared at the condition of 10 g/L alginate, 1 g/L gellan gum, and 2.57 mM calcium ions, and investigated for the biodegradation of a diesel-contaminated groundwater. The degradation of diesel with PAGMs reached 71.2% after 10days in the aerobic condition, while that of suspended bacteria was only 32.0% even after 30days. The kinetic analysis showed that PAGMs had more than two-order higher second-order kinetic constant than that of the suspended bacteria. Interestingly, the degradation of diesel was ceased due to the depletion of the dissolved oxygen after 10 day in the PAGM reactor, but the microbial degradation activity was immediately restored after the addition of oxygen to 10.5 mg/L. The change in ATP concentration and the viability of bacteria showed that the microbial activity in PAGMs were maintained (66.4%, and 84.3%, respectively) even after 30days of experiment with PAGMs due to the protective barrier of the microbeads, whereas those of suspended bacteria showed significant decrease to 6.2% and 14.4% of initial value, respectively, due to the direct contact to toxic hydrocarbons. The results suggested that encapsulation of bacterial cells could be used for the enhanced biodegradation of diesel hydrocarbons in aqueous systems.
Collapse
Affiliation(s)
- Hyejoo Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojeon Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ga-Yeong Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi-Young Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young Kim
- Department of Environmental Systems Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
23
|
|
24
|
Zafeiri I, Beri A, Linter B, Norton I. Mechanical properties of starch-filled alginate gel particles. Carbohydr Polym 2021; 255:117373. [PMID: 33436205 DOI: 10.1016/j.carbpol.2020.117373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022]
Abstract
The aim of this work was to investigate the mechanical behaviour of alginate-based composite particles. Alginate gel beads with entrapped starch were used as the replicates of storage cells of plant tissue. Beads were formulated using different ratios of both ingredients and were produced using two methods, resulting in particles in the macro- and micro-scale size range. Compression tests revealed an effect of bead size on mechanical properties and a dominant role of the alginate on the material properties. Starch was successfully encapsulated as native granules in the beads and once encompassed, it suffered restricted swelling, up to 45 % of its original size, after undergoing heating. Force versus displacement data were fitted to both an empirical and the Hertz model and Young's modulus was found to increase only with heated starch inclusions. Microscopy was deemed crucial for the interpretation of mechanical measurements.
Collapse
Affiliation(s)
- Ioanna Zafeiri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Akash Beri
- PepsiCo International Ltd, 4 Leycroft Rd, Leicester, LE4 1ET, UK
| | - Bruce Linter
- PepsiCo International Ltd, 4 Leycroft Rd, Leicester, LE4 1ET, UK
| | - Ian Norton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Jeoh T, Wong DE, Strobel SA, Hudnall K, Pereira NR, Williams KA, Arbaugh BM, Cunniffe JC, Scher HB. How alginate properties influence in situ internal gelation in crosslinked alginate microcapsules (CLAMs) formed by spray drying. PLoS One 2021; 16:e0247171. [PMID: 33630897 PMCID: PMC7906420 DOI: 10.1371/journal.pone.0247171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Alginates gel rapidly under ambient conditions and have widely documented potential to form protective matrices for sensitive bioactive cargo. Most commonly, alginate gelation occurs via calcium mediated electrostatic crosslinks between the linear polyuronic acid polymers. A recent breakthrough to form crosslinked alginate microcapsules (CLAMs) by in situ gelation during spray drying ("CLAMs process") has demonstrated applications in protection and controlled delivery of bioactives in food, cosmetics, and agriculture. The extent of crosslinking of alginates in CLAMs impacts the effectiveness of its barrier properties. For example, higher crosslinking extents can improve oxidative stability and limit diffusion of the encapsulated cargo. Crosslinking in CLAMs can be controlled by varying the calcium to alginate ratio; however, the choice of alginates used in the process also influences the ultimate extent of crosslinking. To understand how to select alginates to target crosslinking in CLAMs, we examined the roles of alginate molecular properties. A surprise finding was the formation of alginic acid gelling in the CLAMs that is a consequence of simultaneous and rapid pH reduction and moisture removal that occurs during spray drying. Thus, spray dried CLAMs gelation is due to calcium crosslinking and alginic acid formation, and unlike external gelation methods, is insensitive to the molecular composition of the alginates. The 'extent of gelation' of spray dried CLAMs is influenced by the molecular weights of the alginates at saturating calcium concentrations. Alginate viscosity correlates with molecular weight; thus, viscosity is a convenient criterion for selecting commercial alginates to target gelation extent in CLAMs.
Collapse
Affiliation(s)
- Tina Jeoh
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Dana E. Wong
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Scott A. Strobel
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Kevin Hudnall
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Nadia R. Pereira
- Laboratory of Food Technology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Benjamin M. Arbaugh
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Julia C. Cunniffe
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| | - Herbert B. Scher
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, United States of America
| |
Collapse
|
26
|
Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.606815] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Global population growth poses a threat to food security in an era of increased ecosystem degradation, climate change, soil erosion, and biodiversity loss. In this context, harnessing naturally-occurring processes such as those provided by soil and plant-associated microorganisms presents a promising strategy to reduce dependency on agrochemicals. Biofertilizers are living microbes that enhance plant nutrition by either by mobilizing or increasing nutrient availability in soils. Various microbial taxa including beneficial bacteria and fungi are currently used as biofertilizers, as they successfully colonize the rhizosphere, rhizoplane or root interior. Despite their great potential to improve soil fertility, biofertilizers have yet to replace conventional chemical fertilizers in commercial agriculture. In the last 10 years, multi-omics studies have made a significant step forward in understanding the drivers, roles, processes, and mechanisms in the plant microbiome. However, translating this knowledge on microbiome functions in order to capitalize on plant nutrition in agroecosystems still remains a challenge. Here, we address the key factors limiting successful field applications of biofertilizers and suggest potential solutions based on emerging strategies for product development. Finally, we discuss the importance of biosafety guidelines and propose new avenues of research for biofertilizer development.
Collapse
|
27
|
Pereira CAA, Nava MR, Walter JB, Scherer CE, Dominique Kupfer Dalfovo A, Barreto-Rodrigues M. Application of zero valent iron (ZVI) immobilized in Ca-Alginate beads for C.I. Reactive Red 195 catalytic degradation in an air lift reactor operated with ozone. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123275. [PMID: 32629350 DOI: 10.1016/j.jhazmat.2020.123275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of nanoscale zero-valent iron (nZVI) for the recalcitrant organic pollutants degradation has been frequently reported. However, some disadvantages such as low hydraulic conductivity, rapid passivation and consequent loss of reactivity have motivated researchers to study immobilized forms. In this work, calcium alginate beads incorporated with nZVI were prepared, characterized and applied in a catalytic ozonation system of Reactive Red 195 dye (RR195). In order to avoid shearing the calcium alginate beads, an Air lift reactor operated with Air/O3 cycles in an 8 mg L-1 concentration was used. The RR195 treatability tests conducted with a dye concentration of 25 mg L-1, 50 g L-1 of nZVI-Alg beads and an Air/O3 feed flow of 1 L min-1, revealed significant process efficiency, which was not limited only to the dye discoloration. Total discoloration levels were observed in 30 min of treatment and reductions in 97 % of organic matter in 90 min of treatment, measured through the chemical oxygen demand. The typical absorptions of aromatic compounds reduction (λmax =290 nm) and the acute toxicity reduction (Artemia Saline bioassay), contribute to the Alg-nZVI/O3 system potential for the application in the treatment of liquid effluents contaminated with dyes.
Collapse
Affiliation(s)
- Cintia Andreia Alves Pereira
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - Mariana Riboli Nava
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - Jilvana Barbara Walter
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - Claudio Eduardo Scherer
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - Amanda Dominique Kupfer Dalfovo
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil
| | - Marcio Barreto-Rodrigues
- Universidade Tecnológica Federal do Paraná (UTFPR), Câmpus Pato Branco, Programa de Pós-graduação em Tecnologia de Processos Químicos e Bioquímicos, Departamento Acadêmico de Química, Via do Conhecimento Km 01, CEP 85503-390, Pato Branco, Paraná, Brazil.
| |
Collapse
|
28
|
Flamminii F, Di Mattia CD, Nardella M, Chiarini M, Valbonetti L, Neri L, Difonzo G, Pittia P. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105849] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int 2020; 137:109682. [DOI: 10.1016/j.foodres.2020.109682] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
|
30
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
31
|
Castro GMMA, Passos TS, Nascimento SSDC, Medeiros I, Araújo NK, Maciel BLL, Padilha CE, Ramalho AMZ, Sousa Júnior FC, de Assis CF. Gelatin nanoparticles enable water dispersibility and potentialize the antimicrobial activity of Buriti (Mauritia flexuosa) oil. BMC Biotechnol 2020; 20:55. [PMID: 33066751 PMCID: PMC7566068 DOI: 10.1186/s12896-020-00649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Background Buriti oil presents numerous health benefits, but due to its lipophilic nature and high oxidation, it is impossible to incorporate it into aqueous food matrices. Thus, the present study evaluated whether powder nanoparticles based on porcine gelatin (OPG) and in combination with sodium alginate (OAG) containing buriti oil obtained by O/W emulsification followed by freeze-drying enabled water dispersibility and preserved or increased the antimicrobial activity of the oil. Results OPG presented spherical shape, smooth surface, smaller particle size and polydispersity index [51.0 (6.07) nm and 0.40 (0.05)], and better chemical interaction between the nonpolar amino acids and the hydrophobic oil chain. OPG also presented a higher dispersibility percentage [85.62% (7.82)] than OAG [50.19% (7.24)] (p < 0.05), and significantly increased the antimicrobial activity of the oil by 59, 62, and 43% for Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus, respectively. Conclusions Thus, nanoencapsulation in gelatin is a promising strategy to increase the potential to use buriti oil in foods.
Collapse
Affiliation(s)
| | - Thais Souza Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Isaiane Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nathália Kelly Araújo
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.,Federal Institute of Education, Science and Technology of Rio Grande do Norte, Pau dos Ferros, RN, Brazil
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos Eduardo Padilha
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Francisco Canidé Sousa Júnior
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil.,Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Cristiane Fernandes de Assis
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil. .,Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
32
|
Polymer or microgel particle: Differences in emulsifying properties of pectin as microgel or as individual polymer chains. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Kang SM, Lee JH, Huh YS, Takayama S. Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomater Sci Eng 2020; 7:2864-2879. [PMID: 34275299 DOI: 10.1021/acsbiomaterials.0c00457] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advances in microscale 3D cell culture systems have helped to elucidate cellular physiology, understand mechanisms of stem cell differentiation, produce pathophysiological models, and reveal important cell-cell and cell-matrix interactions. An important consideration for such studies is the choice of material for encapsulating cells and associated extracellular matrix (ECM). This Review focuses on the use of alginate hydrogels, which are versatile owing to their simple gelation process following an ionic cross-linking mechanism in situ, with no need for procedures that can be potentially toxic to cells, such as heating, the use of solvents, and UV exposure. This Review aims to give some perspectives, particularly to researchers who typically work more with poly(dimethylsiloxane) (PDMS), on the use of alginate as an alternative material to construct microphysiological cell culture systems. More specifically, this Review describes how physicochemical characteristics of alginate hydrogels can be tuned with regards to their biocompatibility, porosity, mechanical strength, ligand presentation, and biodegradability. A number of cell culture applications are also described, and these are subcategorized according to whether the alginate material is used to homogeneously embed cells, to micropattern multiple cellular microenvironments, or to provide an outer shell that creates a space in the core for cells and other ECM components. The Review ends with perspectives on future challenges and opportunities for 3D cell culture applications.
Collapse
Affiliation(s)
- Sung-Min Kang
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America.,NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, 30332, United States of America.,The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332, United States of America
| |
Collapse
|
34
|
Fabrication and Characterization of a Low-Cost Microfluidic System for the Manufacture of Alginate-Lacasse Microcapsules. Polymers (Basel) 2020; 12:polym12051158. [PMID: 32438541 PMCID: PMC7284885 DOI: 10.3390/polym12051158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022] Open
Abstract
The development of microfluidics-based systems in the recent years has provided a rapid and controlled method for the generation of monodisperse microencapsulates for multiple applications. Here, we explore the design, manufacture and characterization of a low-cost microsystem for the encapsulation of the fungal laccase from Pycnoporus sanguineus CS43 in alginate microcapsules. Multiphysics simulations were used to overview the fluid behavior within the device and estimate the resulting capsule size. Polymethylmethacrylate (PMMA) sheets were used for final microsystem manufacture. Different flow rates of the continuous (Qc) and discrete (Qd) phases in the ranges of 83–293 mL/h and 1–5 mL/h, respectively, were evaluated for microcapsule fabrication. Universal Serial Bus (USB) microscope and image analysis was used to measure the final particle size. Laccase encapsulation was evaluated using spectrophotometry and with the aid of fluorescent dyes and confocal microscopy. Results showed microcapsule size was in the range of 203.13–716.00 μm and Qc was found as the dominant parameter to control capsule size. There was an effective enzyme encapsulation of 65.94% with respect to the initial laccase solution.
Collapse
|
35
|
Thermodynamic stability condition can judge whether a nanoparticle dispersion can be considered a solution in a single phase. J Colloid Interface Sci 2020; 575:472-479. [PMID: 32402826 DOI: 10.1016/j.jcis.2020.04.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 11/20/2022]
Abstract
Establishing that a nanoparticle dispersion can, in fact, be treated as a solution has an important practical ramification, namely the application of solubility theories for solvent selection. However, what distinguishes a solution and dispersion has remained ambiguously understood. Based on the recent progress in statistical thermodynamics on multiple-component solutions, here we establish the condition upon which a nanoparticle dispersion can be considered a single-phased solution. We shall provide experimental evidence already found in the literature showing the solution nature of nanoparticle dispersions.
Collapse
|
36
|
Zhou B, Gao S, Li X, Liang H, Li S. Antioxidant Pickering emulsions stabilised by zein/tannic acid colloidal particles with low concentration. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14419] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Zhou
- Key Laboratory of Fermentation Engineering Ministry of Education Glyn O. Phillips Hydrophilic Colloid Research Center School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430030 People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University (BTBU) Beijing 102488 China
| | - Hongshan Liang
- College of Food Science and Technology Huazhong Agriculture University Wuhan 430070 China
| | - Shugang Li
- Key Laboratory of Fermentation Engineering Ministry of Education Glyn O. Phillips Hydrophilic Colloid Research Center School of Biological Engineering and Food Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
37
|
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569:118627. [PMID: 31421199 PMCID: PMC7073469 DOI: 10.1016/j.ijpharm.2019.118627] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Polymers are the backbone of pharmaceutical drug delivery. There are several polymers with varying properties available today for use in different pharmaceutical applications. Alginate is widely used in biomedical research due to its attractive features such as biocompatibility, biodegradability, inertness, low cost, and ease of production and formulation. Encapsulation of therapeutic agents in alginate/alginate complex microspheres protects them from environmental stresses, including the acidic environment in the gastro-intestinal tract (GIT) and enzymatic degradation, and allows targeted and sustained delivery of the agents. Microencapsulation is playing an increasingly important role in drug delivery as evidenced by the recent surge in research articles on the use of alginate in the delivery of small molecules, cells, bacteria, proteins, vaccines, and for tissue engineering applications. Formulation of these alginate microspheres (AMS) are commonly achieved by conventional external gelation method using various instrumental manipulation such as vortexing, homogenization, ultrasonication or spray drying, and each method affects the overall particle characteristics. In this review, an inclusive summary of the currently available methods for the formulation of AMS, its recent use in the encapsulation and delivery of therapeutics, and future outlook will be discussed.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Rachel Movsas
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ugene Sano
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
38
|
Deng XQ, Zhang HB, Wang GF, Xu D, Zhang WY, Wang QS, Cui YL. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharm 2019; 570:118644. [PMID: 31465837 DOI: 10.1016/j.ijpharm.2019.118644] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023]
Abstract
Colitis-associated colorectal cancer (CAC) is a common malignancy that develops in chronically inflamed mucosa and is usually accompanied by metastases at other sites. Puerarin, a natural isoflavone isolated from the root of the Pueraria lobata (Willd.) Ohwi, has potential anti-colon cancer activity. However, the poor solubility and low bioavailability of puerarin has restricted its application in the pharmaceutical industry. In the present study, pH-responsive alginate microspheres loaded with puerarin were prepared by emulsification/internal gelation for targeted treatment of colitis-associated colorectal cancer. Herein, puerarin, as an active drug, could participate in the construction of alginate microspheres with hydrogen bonding. The microspheres exhibited pH-responsive release behavior with little release of puerarin in simulated gastric fluid and high amounts (approximately 55%) of release in simulated colonic fluid. A fluorescence tracer indicated microspheres had high retention time of more than 20 h in the colon. Meanwhile, puerarin-loaded alginate microspheres not only significantly decreased the inflammatory response by downregulating the levels of pro-tumorigenic cytokines, but they reduced tumorigenesis and metastasis by inhibiting epithelial-mesenchymal transitions in AOM/DSS-induced colitis-associated colorectal cancer in mice. The overall results suggested that puerarin-loaded alginate microspheres could effectively inhibit development of colonic tumors, which could be developed as a promising therapeutic strategy for colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Xiao-Qing Deng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hong-Bo Zhang
- Department of Medical Oncology, Tianjin Hospital of ITCWM, Nankai Hospital, Tianjin 300100, PR China
| | - Gui-Fang Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Dong Xu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Wen-Yan Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qiang-Song Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, PR China.
| | - Yuan-Lu Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
39
|
Karakaş CY, Tekarslan Şahin H, İnan B, Özçimen D, Erginer YÖ. In vitro cytotoxic activity of microalgal extracts loaded nano–micro particles produced via electrospraying and microemulsion methods. Biotechnol Prog 2019; 35:e2876. [DOI: 10.1002/btpr.2876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Canan Y. Karakaş
- Faculty of Chemical and Metallurgical Engineering, Food Engineering DepartmentYıldız Technical University Istanbul Turkey
| | - Hande Tekarslan Şahin
- Faculty of Pharmacy, Department of Pharmaceutical TechnologyIstanbul University Istanbul Turkey
| | - Benan İnan
- Faculty of Chemical and Metallurgical Engineering, Bioengineering DepartmentYıldız Technical University Istanbul Turkey
| | - Didem Özçimen
- Faculty of Chemical and Metallurgical Engineering, Bioengineering DepartmentYıldız Technical University Istanbul Turkey
| | - Yıldız Ö. Erginer
- Faculty of Pharmacy, Department of Pharmaceutical TechnologyIstanbul University Istanbul Turkey
| |
Collapse
|
40
|
|
41
|
Preparation and Evaluation of Release Formulation of γ-Oryzanol/Algae Oil Self-Emulsified with Alginate Beads. Mar Drugs 2019; 17:md17030156. [PMID: 30866422 PMCID: PMC6470686 DOI: 10.3390/md17030156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022] Open
Abstract
Self-emulsion improves solubility and bioavailability for γ-oryzanol/algae oil, and alginate beads can be used as controlled release carriers. In this study, self-emulsified alginate beads (SEABs) were prepared with different weight ratios of self-emulsion treatment (5%, 10%, 15%, 20%, and 30%) with alginate. We found that the microstructure with a surfactant of SEABs had a different appearance with alginate-based beads. The encapsulation of γ-oryzanol corresponded with the self-emulsion/alginate ratio, which was 98.93~60.20% with a different formulation of SEABs. During in vitro release, SEABs had the gastric protection of γ-oryzanol/algae oil, because γ-oryzanol and emulsion were not released in the simulated stomach fluid. When the SEABs were transferred to a simulation of the small intestine, they quickly began to swell and dissolve, releasing a higher content of the emulsion. We observed that the emulsion that formed had a bimodal distribution in the simulated intestinal fluid as a result of the hydrogel and emulsion droplets, leading to the formation of large aggregates. These results suggested that γ-oryzanol encapsulation within alginate beads via emulsification combined with gelation can serve as an effective controlled delivery system.
Collapse
|
42
|
Lactoferrin-Loaded Alginate Microparticles to Target Clostridioides difficile Infection. J Pharm Sci 2019; 108:2438-2446. [PMID: 30851342 DOI: 10.1016/j.xphs.2019.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
Abstract
Some forms of bovine lactoferrin (bLf) are effective in delaying Clostridioides difficile growth and preventing toxin production. However, therapeutic use of bLf may be limited by protein stability issues. The objective of this study was to prepare and evaluate colon-targeted, pH-triggered alginate microparticles loaded with bioactive bLf and to evaluate their anti-C difficile defense properties in vitro. Different forms of metal-bound bLf were encapsulated in alginate microparticles using an emulsification or internal gelation method. The microparticles were coated with chitosan to control protein release. In vitro drug release studies were conducted in pH-simulated gastrointestinal conditions to investigate the release kinetics of encapsulated protein. No significant release of metal-bound bLf was observed at acidic pH; however, on reaching simulated colonic pH, most of the encapsulated lactoferrin was released. The application of bLf (5 mg/mL) delivered from alginate microparticles to human intestinal epithelial cells significantly reduced the cytotoxic effects of toxins A and B as well as bacterial supernatant on Caco-2 and Vero cells, respectively. These results are the first to suggest that alginate-bLf microparticles show protective effects against C difficile toxin-mediated epithelial damage and impairment of barrier function in human intestinal epithelial cells. The future potential of lactoferrin-loaded alginate microparticles against C difficile deserves further study.
Collapse
|
43
|
Cuomo F, Cofelice M, Lopez F. Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion. Polymers (Basel) 2019; 11:E259. [PMID: 30960242 PMCID: PMC6419013 DOI: 10.3390/polym11020259] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
The interest toward alginate and nanoemulsion-based hydrogels is driven by the wide potential of application. These systems have been noticed in several areas, ranging from pharmaceutical, medical, coating, and food industries. In this investigation, hydrogels prepared through in situ calcium ion release, starting from lemongrass essential oil nanodispersions stabilized in alginate aqueous suspensions in the presence of the nonionic surfactant Tween 80, were evaluated. The hydrogels prepared at different concentrations of oil, alginate, and calcium were characterized through rheological tests. Flow curves demonstrate that the hydrogels share shear thinning behavior. Oscillatory tests showed that the strength of the hydrogel network increases with the crosslinker increase, and decreases at low polymer concentrations. The hydrogels were thixotropic materials with a slow time of structural restoration after breakage. Finally, by analyzing the creep recovery data, the hydrogel responses were all fitted to the Burger model. Overall, it was demonstrated that the presence of essential oil in the proposed hydrogels does not affect the mechanical characteristics of the materials, which are mainly influenced by the concentration of polymer and calcium as a crosslinker.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy.
| | - Martina Cofelice
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy.
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy.
| |
Collapse
|
44
|
Strobel SA, Scher HB, Nitin N, Jeoh T. Control of physicochemical and cargo release properties of cross-linked alginate microcapsules formed by spray-drying. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Partovinia A, Vatankhah E. Experimental investigation into size and sphericity of alginate micro-beads produced by electrospraying technique: Operational condition optimization. Carbohydr Polym 2019; 209:389-399. [PMID: 30732823 DOI: 10.1016/j.carbpol.2019.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Alginate spherical hydrogel beads have several applications in biomedical and biological processes in which the bead size and sphericity are critical factors affecting mass transfer phenomena. Electrospraying technology facilitates generation of small and almost uniform beads with higher diffusion rate resulting in process performance improvement. There are several key factors affecting particle size and shape behavior of electrosprayed alginate beads meanwhile interactions between these factors introduce complexity in determining appropriate conditions to produce spherical beads with the size of interest. Thus, the need to achieve reliable products has put growing emphasis on the use of modeling methodology to establish correlations between particle size and affecting variables as well as sphericity coefficient and meaningful factors. Obviously, a more applicable model based on intentionally manipulatable factors would spark a great deal of interest for practical engineering applications. In this regard we employed a central composite design (CCD) and response surface methodology (RSM) to model the diameter and sphericity coefficient of electrosprayed alginate beads for the first time. Two quadratic models were obtained in which the effectiveness order of the variables were found. We could benefit from this RSM-based empirical model not only for better understanding the complex physics of the electrospraying process, but also for selection of factors and their levels to produce alginate micro-beads with appropriate size and sphericity. The results indicate that the alginate concentration, voltage and needle size have the strongest influence on both response variables. The quite spherical beads with a minimum size of 130 μm can be obtained at alginate concentration of 1.5%, voltage of 11 kV, and needle size of 26 G.
Collapse
Affiliation(s)
- Ali Partovinia
- Bioprocess Engineering Laboratory, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Elham Vatankhah
- Department of Biological Systems, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
46
|
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019; 25:1312-1334. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.
Collapse
Affiliation(s)
- Patricia Severino
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Classius F da Silva
- Universidade Federal de Sao Paulo, Instituto de Ciências Ambientais, Quimicas e Farmaceuticas, Departamento de Engenharia Quimica, Rua Sao Nicolau, 210, Diadema - SP, CEP 09.913-030, Brazil
| | - Luciana N Andrade
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Daniele de Lima Oliveira
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
47
|
Abstract
In this work, monodisperse agarose gel nanoparticles were prepared using a W/O microemulsion as a template to control the size of the obtained particles. The combination of this template method with a temperature-induced gelling and a solvent exchange methodology has allowed preparing stable aqueous dispersions of monodisperse agarose gel nanoparticles in water. The average size, measured as an apparent hydrodynamic diameter, of the obtained particles was around 150 nm. The ability of the obtained hydrogel particles for the encapsulation and release of a synthetic insecticide (azamethiphos) was tested. The results evidence that the insecticide molecules encapsulated in the fabricated nanoparticles are released following a diffusion-controlled mechanism. These results combined with the biodegradability of the agarose provide the bases for the design of a new vector with application in the control of parasites in water reservoirs.
Collapse
|
48
|
Kulshrestha S, Khan AU. Nanomedicine for anticancer and antimicrobial treatment: an overview. IET Nanobiotechnol 2018; 12:1009-1017. [PMID: 30964006 PMCID: PMC8676473 DOI: 10.1049/iet-nbt.2018.5112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based treatment has become a potential therapeutic approach. The nanosize of these particles provides them with unique physicochemical properties and enhances their interaction with the biological system. Nanomaterials have the potential to overcome some of the major issues in the clinical world which may include cancer treatment and may be utilised to resolve the major problem of drug resistance in infection control. These particles are being used to improve present therapeutics by virtue of their shape, size and diverse intrinsic as well as chemical properties. The authors have discussed the use of nanoparticles in cancer treatment, infections caused by multidrug-resistant microbial strains and biofilm inhibition along with the detailed description of the current status of nanomaterials in the field of medicine.
Collapse
Affiliation(s)
- Shatavari Kulshrestha
- Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
49
|
Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Niemeyer P, Smirnova I, Milow B. Review on the Production of Polysaccharide Aerogel Particles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2144. [PMID: 30384442 PMCID: PMC6265924 DOI: 10.3390/ma11112144] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/04/2023]
Abstract
A detailed study of the production of polysaccharide aerogel (bio-aerogel) particles from lab to pilot scale is surveyed in this article. An introduction to various droplets techniques available in the market is given and compared with the lab scale production of droplets using pipettes and syringes. An overview of the mechanisms of gelation of polysaccharide solutions together with non-solvent induced phase separation option is then discussed in the view of making wet particles. The main steps of particle recovery and solvent exchange are briefly described in order to pass through the final drying process. Various drying processes are overviewed and the importance of supercritical drying is highlighted. In addition, we present the characterization techniques to analyse the morphology and properties of the aerogels. The case studies of bio-aerogel (agar, alginate, cellulose, chitin, κ-carrageenan, pectin and starch) particles are reviewed. Potential applications of polysaccharide aerogel particles are briefly given. Finally, the conclusions summarize the prospects of the potential scale-up methods for producing bio-aerogel particles.
Collapse
Affiliation(s)
- Kathirvel Ganesan
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Tatiana Budtova
- MINES Paris Tech, PSL Research University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| | - Lorenz Ratke
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Pavel Gurikov
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Victor Baudron
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Imke Preibisch
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Philipp Niemeyer
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| | - Irina Smirnova
- Institute of Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany.
| | - Barbara Milow
- German Aerospace Center, Institute of Materials Research, Linder Hoehe, 51147 Cologne, Germany.
| |
Collapse
|
50
|
Abstract
Due to its favorable structural properties and biocompatibility, alginate is recognized as a suitable versatile biopolymer for use in a broad range of applications ranging from drug delivery, wound healing, tissue engineering, and food formulations such as nanodispersions. Rheological analysis plays a crucial role in the design of suitable nanoemulsion based coatings. Different essential oil and alginate nanodispersion compositions stabilized by Tween 80 were analyzed for rheological and conductometric properties. The results confirmed that the nanoformulations shared a pseudoplastic non-Newtonian behavior that was more evident with higher alginate concentrations (2%). Nanodispersions made of alginate and essential oil exhibited a slight thixotropic behavior, demonstrating the aptitude to instantaneously recover from the applied stress or strain. Oscillatory frequency sweep tests showed a similar fluid-like behavior for 1% and 2% alginate nanodispersions. Finally, it was demonstrated that advantages coming with the use of the essential oil are added to the positive aspects of alginate with no dramatic modification on the flow behavior.
Collapse
|