1
|
Mu L, Xue S, Tuo W, Wu X, Hou L, Li G. Nec-1 regulates phenotypic transformation of heat stroke-induced vascular smooth muscle cells by inhibiting RIPK1. Int J Hyperthermia 2025; 42:2463477. [PMID: 39988331 DOI: 10.1080/02656736.2025.2463477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE Cardiovascular injury is a common complication of heat stroke (HS). However, the mechanism underlying vascular smooth muscle cells (VSMCs) following HS remains unclear. METHOD A rat and VSMCs model was established by simulating high-temperature exposure. Primary VSMC was extracted in vitro, and CCK8 screened the concentration of Nec-1 and detected cell proliferation activity. The expression of α-smooth muscle protein (α-SMA), osteopontin (OPN), receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), Bcl-2 and Bax were detected by immunohistochemistry and Western blot. RESULTS The results of in vivo experiments showed that with the prolongation of HS recovery time, α-SMA expression basically decreased and OPN expression increased. Meanwhile, the expression of RIPK1 and RIPK3 was increased, which promoted the occurrence of necroptosis. In vitro results showed that with the extension of HS recovery time, the proliferative viability of VSMCs decreased, the cell morphology changed, and the apoptotic cells increased. The fluorescence results indicate that the expression levels of RIPK1 and PIPK3 in the cells are elevated, accompanied by the typical characteristics of cell necroptosis. Nec-1 restored the decreased cell viability and the high expression of RIPK1 and RIPK3 induced by heat stroke, and improved the occurrence of cell necrotic apoptosis. Nec-1 also restored α-SMA expression, reduced OPN expression, and reversed phenotypic abnormalities of VSMC caused by heat stroke. CONCLUSION HS induces abnormal phenotypic transformation and necroptosis in VSMCs. Necrostatin-1 can improve necroptosis and maintain the contractile phenotype of VSMCs. This study can provide new insights into cardiovascular damage caused by high temperatures.
Collapse
Affiliation(s)
- Le Mu
- Department of Public Health, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Shujing Xue
- Department of Basic Medical Sciences, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Wei Tuo
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia Province, China
| | - Xiaomin Wu
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia Province, China
| | - Ling Hou
- Department of Basic Medical Sciences, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| | - Guanghua Li
- Department of Public Health, Ningxia Medical University, Yinchuan City, Ningxia Province, China
- Department of Basic Medical Sciences, Ningxia Medical University, Yinchuan City, Ningxia Province, China
| |
Collapse
|
2
|
Olivero C, Carbone F, Liberale L, Montecucco F. Precision medicine in intestinal ischemia: the emerging role of biomarkers. Intern Emerg Med 2025; 20:369-379. [PMID: 39511053 DOI: 10.1007/s11739-024-03808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Intestinal ischemia (IIs) is a significant gastrointestinal condition characterized by reduced blood flow to the bowel, leading to inflammation and injury. Early diagnosis and management are crucial for preventing severe complications. Under this point of view, circulating biomarkers can enhance patient stratification and guide therapeutic decisions. Fatty acid-binding proteins (FABPs), specifically I-FABP and L-FABP, are small cytosolic proteins released upon enterocyte membrane integrity loss, with elevated plasma levels indicating early intestinal ischemia. Stromal Cell-Derived Factor-1 (SDF-1) regulates stem cell function and shows significantly higher levels in patients with IIs and cardiovascular disease compared to controls. D-Lactate, a bacterial fermentation byproduct, is another significant marker, with higher serum levels observed in intestinal ischemia cases. Alpha-glutathione S-transferase combats intracellular oxidative stress, with significantly elevated levels in acute mesenteric ischemia patients. Additionally, SM22, a small smooth muscle protein, shows higher plasma levels in patients with transmural ischemia compared to those with mucosal ischemic lesions and healthy controls. These biomarkers are promising for their roles in early detection and differentiation of IIs from other gastrointestinal conditions. Therapeutic strategies, including anti-inflammatory therapies, have shown efficacy in managing IIs symptoms and preventing recurrence. This review aims to inform clinicians and researchers about the current advancements in biomarker research and therapeutic approaches for IIs, emphasizing the importance of integrating these biomarkers and treatments into clinical practice to improve the management and prognosis of the disease.
Collapse
Affiliation(s)
- Chiara Olivero
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
| |
Collapse
|
3
|
Qiu R, Pan C, Qin Y, Wei Q, Yu Y, Zhang Y, Xie X, Li J, Chen S, Li K, Fouad D, Wu Y, Zhong Q. Polygonatum kingianum polysaccharide alleviated intestinal injuries by mediating antioxidant ability and microbiota. Front Microbiol 2025; 16:1492710. [PMID: 39949622 PMCID: PMC11821965 DOI: 10.3389/fmicb.2025.1492710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Polygonatum kingianum is a well-known medicinal herb with proven bioactivities; however, little is known about the effects of its polysaccharide on intestinal injuries in animals induced by lipopolysaccharide (LPS). Methods A total of 30 Institute of Cancer Research (ICR) mice were divided into control (CH), induced (MH), and treated (H) groups. Mice in group H were supplemented with 100 mg/kg Polygonatum kingianum polysaccharides, while groups C and M were treated with the same amount of normal saline by gavage for 18 days. On the 18th day animals in groups M and H were induced by LPS (10 mg/kg). Results The results showed the weight of mice in group MH significantly dropped (P < 0.0001), while mice in the PK group had a higher weight (P < 0.01). Pathological analysis found that the majority of the villi in mice induced by LPS were broken and short, while PK-treated animals had longer and considerably integrated villi. The villi length in groups CH (P < 0.0001) and H (P < 0.0001) was longer than that in group M, and the value of villi length/crypt depth in group MH was smaller than that in groups CH (P < 0.0001) and H (P < 0.0001), while the crypt depth in group MH was higher than in groups CH (P < 0.0001) and H (P < 0.0001). Serum inspection showed that MAD (P < 0.05), IL-1β (P < 0.05), IL-6 (P < 0.05), and TNF-α (P < 0.01) were significantly higher in group MH, while SOD (P < 0.001), T-AOC (P < 0.01), and GSH-Px (P < 0.01) were notably higher in groups CH and H. Microbiome sequencing of mice obtained 844,477 raw and 725,469 filtered reads. There were 2,407 ASVs detected in animals, and there were 312 and 328 shared ASVs between CH and MH, and CH and H, respectively. There were 5 phyla and 20genera of remarkable bacteria found among mice groups including genera of Escherichia, Pseudomonas_E, Mailhella, Paramuribaculum, NM07-P-09, Odoribacter, Nanosyncoccus, SFM01, Onthenecus, Clostridium_Q, UBA6985, Ructibacterium, UBA946, Lachnoclostridium_B, Evtepia, CAG-269, Limivicinus, Formimonas, Dehalobacterium, Dwaynesavagella, and UBA6985. We revealed that Polygonatum kingianum polysaccharide could alleviate intestinal injuries by promoting oxidation resistance, decreasing inflammatory responses, and accommodating the intestinal microbiota of mice. Discussion Our results suggest the possibility of developing novel therapies for intestinal diseases.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Chuangye Pan
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Yuxi Qin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Qianfei Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yue Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xuehan Xie
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, Henan, China
| | - Jianqin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shouhai Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiu Zhong
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Tatar M, Tüfekci KK, Uslu S. A determination of the main regulators of necroptosis in testicular tissue under different heat stresses. J Mol Histol 2025; 56:74. [PMID: 39856359 DOI: 10.1007/s10735-024-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Although minimal increases in testicular temperature can compromise spermatogenesis and lead to fertility-related problems, the basic mechanism involved in germ cell destruction as a response to heat stress is still unclear. However, necroptosis is known to regulate a number of physiological and pathological events. This study investigated the role of RIPK1/RIPK3 and MLKL, the main regulators of necroptosis, against different heat stresses in testis tissue. Forty-two Wistar albino rats were divided into seven groups: six experimental exposed to heat stress and one control. Heat stress was induced by causing the rats to swim for 30 min daily for 60 days in a water bath at temperatures of 39 °C and 43 °C. Testis tissues were collected while the animals were under anesthesia on the 1st, 7th, and 14th days after 60 days of heat application. The tissues were first fixed in Bouin's solution. After routine histological procedures, immunohistochemical staining was performed on one-half of the tissues using RIPK1/RIPK3 and MLKL primary antibodies on serially collected 5 μm-thick sections. Immunoblotting analysis was performed on the other half. Analyses revealed an increase in the expression of RIPK1/RIPK3 and MLKL proteins, regulators of necroptosis, in both the 39 °C and 43 °C groups, although this was greater in the tissue exposed to 43 °C heat stress. These molecules were also especially affected by round and elongated spermatids, and reactivity was observed in Leydig cells. In conclusion, exposure to increased temperature may cause RIPK1/RIPK3 and MLKL-mediated cellular changes in the testis.
Collapse
Affiliation(s)
- Musa Tatar
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Türkiye.
| | - Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Türkiye
| | - Sema Uslu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
5
|
Baindara P, Jana A, Dinata R, Mandal SM. Heatstroke-Induced Inflammatory Response and Therapeutic Biomarkers. Biomedicines 2025; 13:261. [PMID: 40002675 PMCID: PMC11852420 DOI: 10.3390/biomedicines13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, heatstroke has become one of the most dangerous illnesses associated with hyperthermia. Hyperthermia is described as an increased body temperature, where there is more heat accrual than dissipation, which happens during environmental heat stress conditions or exhaustive exercise and subsequently leads to heatstroke. Heatstroke is characterized as a dysfunction of the central nervous system (CNS), associated with neuroinflammation, including utmost hyperthermia, which eventually leads to multiorgan failure. Heatstroke-related fatalities have rapidly increased in the recent past; however, there is still a gap in the understanding of heatstroke and associated outcomes during heatstroke. Especially of note, early diagnosis of heatstroke-related complications is one of the important aspects that need to be addressed. This article reviewed current knowledge about heatstroke and associated inflammatory responses, including neuroinflammation and other clinical complications. Using molecular dynamics simulation analysis of triose phosphate isomerase (a housekeeping enzyme) at different temperatures, we demonstrated how protein structures, and thus their functions, can be varied with temperature increases. Additionally, we discussed therapeutically relevant biomarkers of heatstroke which might be helpful in the early detection of heatstroke possibilities and candidate drug targets to control or minimize heatstroke events.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Aritra Jana
- Whitney M. Young Magnet High School Chicago, Chicago, IL 60607, USA;
| | - Roy Dinata
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India;
| | - Santi M. Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA;
| |
Collapse
|
6
|
Gaspa G, Cesarani A, Pauciullo A, Peana I, Macciotta NPP. Genomic Analysis of Sarda Sheep Raised at Diverse Temperatures Highlights Several Genes Involved in Adaptations to the Environment and Heat Stress Response. Animals (Basel) 2024; 14:3585. [PMID: 39765489 PMCID: PMC11672698 DOI: 10.3390/ani14243585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Livestock expresses complex traits influenced by several factors. The response of animals to variations in climatic factors, such as increases in temperature, may induce heat stress conditions. In this study, animals living at different temperatures were compared using the genome-wide Wright fixation index (FST). A total of 825 genotypes of Sarda breed ewes were divided into two groups based on the flocks' average temperature over a 20-year period to compute the FST: 395 and 430 sheep were represented in colder and hotter groups, respectively. After LOWESS regression and CONTROL CHART application, 623 significant markers and 97 selection signatures were found. A total of 280 positional candidate genes were retrieved from a public database. Among these genomic regions, we found 51 annotated genes previously associated with heat stress/tolerance in ruminants (FCGR1A, MDH1, UGP2, MYO1G, and HSPB3), as well as immune response and cellular mechanisms related to how animals cope with thermal stress (RIPK1, SERPINB1, SERPINB9, and PELI1). Moreover, other genes were associated with milk fat (SCD, HERC3, SCFD2, and CHUK), body weight, body fat, and intramuscular fat composition (AGPAT2, ABCD2, MFAP32, YTHDC1, SIRT3, SCD, and RNF121), which might suggest the influence of environmental conditions on the genome of Sarda sheep.
Collapse
Affiliation(s)
- Giustino Gaspa
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, University of Torino, 10124 Torino, Italy;
| | - Ilaria Peana
- Servizio Agrometeorologico Regionale per la Sardegna (ARPAS), 07100 Sassari, Italy;
| | - Nicolò P. P. Macciotta
- Department of Agriculture, University of Sassari, 07100 Sassari, Italy; (A.C.); (N.P.P.M.)
| |
Collapse
|
7
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Wang J, Liu Y, Zheng H, Xin J, Zhong Z, Liu H, Huang Y, Fu H, Zhou Z, Peng G. Screening and genome analysis of heat-resistant and antioxidant lactic acid bacteria from Holstein cow milk. Front Microbiol 2024; 15:1455849. [PMID: 39611093 PMCID: PMC11602510 DOI: 10.3389/fmicb.2024.1455849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Background Heat stress significantly impacts dairy cows, primarily through oxidative stress, which undermines their health. The problem is exacerbated by the ongoing global warming trend. Lactic acid bacteria (LAB) are safe, economical, and readily accessible options for enhancing the host's antioxidant defenses and preventing oxidative damage. They have been proven effective in alleviating heat stress-related damage, making them an excellent choice for protecting dairy cows from the adverse effects of heat stress. Method In this study, five strains of LAB from Holstein cow milk (Lactobacillus plantarum L5, L14, L17, L19, L20) were evaluated for their heat resistance and antioxidant capacity by evaluating the growth characteristics and tolerance of the strains under high-temperature conditions, as well as their H2O2 tolerance, free radical scavenging ability (DPPH, OH-, ABTS), reducing ability, and EPS production ability. Furthermore, we employed Caco-2 cells to assess the adhesion rate of the strain, thereby confirming its ability to successfully colonize the host's intestinal tract and ensuring the effective execution of its probiotic functions. The strain with excellent heat resistance and antioxidant capacity was then subjected to genomic analysis to gain insight into the molecular mechanisms behind their heat resistance, antioxidant capacity, and safety. Results Among the two strains, Lactobacillus plantarum L19 emerges as a highly promising candidate. The strain exhibits robust growth even at high temperatures at 40°C and maintains a survival rate of 16.42% at the extreme temperature of 65°C. Furthermore, it demonstrates superior tolerance to hydrogen peroxide (27.3%), and possesses a notably higher free radical scavenging capacity with a high adhesion rate to Caco-2 cell (22.19%) compared to the other four strains tested. Genomic analysis revealed its' genome has 17 genes related to antioxidants and three genes related to heat resistance. Importantly, L19 lacks any resistance genes, ensuring its safety as a probiotic. Conclusion The results imply that Lactobacillus plantarum L19 has the potential to serve as an effective food additive in mitigating damages associated with heat stress. This research offers a valuable reference for the prevention and management of heat stress in dairy cows, while also expanding the scope of applications for LAB derived from cow milk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Zhang J, Sun J, Gu X, Shen Y, Sun H. Transcriptome sequencing analysis reveals the molecular regulatory mechanism of myocardial hypertrophy induced by angiotensin II. Biochem Pharmacol 2024; 229:116532. [PMID: 39270943 DOI: 10.1016/j.bcp.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The pathogenesis of myocardial hypertrophy remains incompletely understood, highlighting the critical need for in-depth investigation into its pathogenesis and pathophysiology to develop innovative strategies for preventing and treating heart diseases. In this study, a model of angiotensin II (Ang II)-induced myocardial hypertrophy was established using subcutaneous administration with a micropump. Echocardiography, wheat germ agglutinin staining, and western blot analysis were used to evaluate the myocardial hypertrophy model after 5, 10, and 15 days of Ang II treatment. RNA-seq was employed to analyze the differential expression profile of mRNA, followed by bioinformatics analysis. Subsequently, the anti-inflammatory drug meloxicam was utilized to explore its impact on cardiac hypertrophy in mice. The findings demonstrated that mice developed myocardial hypertrophy following subcutaneous administration of Ang II. Transcriptomic analysis revealed significant changes in gene expression in the myocardium induced by Ang II, with the most pronounced differences observed at day 10. Functional analysis and verification of differentially expressed genes indicated that Ang II triggered an inflammatory response in the myocardium, leading to up-regulation of genes associated with fibrosis and apoptosis while decreasing energy metabolism; alterations were also observed in genes related to oxidative stress and calcium ion binding. Treatment with meloxicam improved Ang II-induced myocardial hypertrophy. This study not only elucidated the molecular regulatory mechanism underlying mouse myocardial hypertrophy at a transcriptional level but also provided new insights into clinical prevention and treatment strategies for cardiac diseases such as dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- Laboratory of General Surgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
10
|
Sun M, Li Q, Zou Z, Liu J, Gu Z, Li L. The mechanisms behind heatstroke-induced intestinal damage. Cell Death Discov 2024; 10:455. [PMID: 39468029 PMCID: PMC11519599 DOI: 10.1038/s41420-024-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
With the frequent occurrence of heatwaves, heatstroke (HS) is expected to become one of the main causes of global death. Being a multi-organized disease, HS can result in circulatory disturbance and systemic inflammatory response, with the gastrointestinal tract being one of the primary organs affected. Intestinal damage plays an initiating and promoting role in HS. Multiple pathways result in damage to the integrity of the intestinal epithelial barrier due to heat stress and hypoxia brought on by blood distribution. This usually leads to intestinal leakage as well as the infiltration and metastasis of toxins and pathogenic bacteria in the intestinal cavity, which will eventually cause inflammation in the whole body. A large number of studies have shown that intestinal damage after HS involves the body's stress response, disruption of oxidative balance, disorder of tight junction proteins, massive cell death, and microbial imbalance. Based on these damage mechanisms, protecting the intestinal barrier and regulating the body's inflammatory and immune responses are effective treatment strategies. To better understand the pathophysiology of this complex process, this review aims to outline the potential processes and possible therapeutic strategies for intestinal damage after HS in recent years.
Collapse
Affiliation(s)
- Minshu Sun
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Li
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhimin Zou
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Liu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
- Academy of Orthopedics·Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Li
- Department of Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Zhang Z, Wu X, Zou Z, Shen M, Liu Q, Zhangsun Z, Zhao H, Lei W, Wang Z, Dong Y, Yang Y. Heat stroke: Pathogenesis, diagnosis, and current treatment. Ageing Res Rev 2024; 100:102409. [PMID: 38986844 DOI: 10.1016/j.arr.2024.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.
Collapse
Affiliation(s)
- Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Zou
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Hainan, 572013, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ziyin Zhangsun
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yushu Dong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
12
|
Zhu T, Wu BW. Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 2024; 178:117196. [PMID: 39053418 DOI: 10.1016/j.biopha.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Necroptosis is a crucial modality of programmed cell death characterized by distinct morphological and biochemical hallmarks, including cell membrane rupture, organelle swelling, cytoplasmic and nuclear disintegration, cellular contents leakage, and release of damage-associated molecular patterns (DAMPs), accompanied by the inflammatory responses. Studies have shown that necroptosis is involved in the etiology and evolution of a variety of pathologies including organ damage, inflammation disorders, and cancer. Despite its significance, the field of necroptosis research grapples with the challenge of non-standardized detection methodologies. In this review, we introduce the fundamental concepts and molecular mechanisms of necroptosis and critically appraise the principles, merits, and inherent limitations of current detection technologies. This endeavor seeks to establish a methodological framework for necroptosis detection, thereby propelling deeper insights into the research of cell necroptosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, China
| | - Bo-Wen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Wang Z, Zhu J, Zhang D, Lv J, Wu L, Liu Z. The significant mechanism and treatments of cell death in heatstroke. Apoptosis 2024; 29:967-980. [PMID: 38886312 DOI: 10.1007/s10495-024-01979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
With global warming, extreme environmental heat is becoming a social issue of concern, which can cause adverse health results including heatstroke (HS). Severe heat stress is characterized by cell death of direct heat damage, excessive inflammatory responses, and coagulation disorders that can lead to multiple organ dysfunction (MODS) and even death. However, the significant pathophysiological mechanism and treatment of HS are still not fully clear. Various modes of cell death, including apoptosis, pyroptosis, ferroptosis, necroptosis and PANoptosis are involved in MODS induced by heatstroke. In this review, we summarized molecular mechanism, key transcriptional regulation as for HSF1, NRF2, NF-κB and PARP-1, and potential therapies of cell death resulting in CNS, liver, intestine, reproductive system and kidney injury induced by heat stress. Understanding the mechanism of cell death provides new targets to protect multi-organ function in HS.
Collapse
Affiliation(s)
- Zixin Wang
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510010, China
| | - Jie Zhu
- Department of Pediatric, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Dingshun Zhang
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China
| | - Jinke Lv
- Department of Thoracic Surgery, Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangping Wu
- Department of Metabolic Surgery, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510010, China.
| | - Zhifeng Liu
- Department of Medicine Intensive Care Unit, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
14
|
Huang L, Cao C, Lin X, Lu L, Lin X, Liu HC, Odle J, See MT, Zhang L, Wu W, Luo X, Liao X. Zinc alleviates thermal stress-induced damage to the integrity and barrier function of cultured chicken embryonic primary jejunal epithelial cells via the MAPK and PI3K/AKT/mTOR signaling pathways. Poult Sci 2024; 103:103696. [PMID: 38593549 PMCID: PMC11016803 DOI: 10.1016/j.psj.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 μmol Zn/L was more effective than 100 μmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 μmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 μmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyu Cao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Miles Todd See
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Li Y, Pan M, Meng S, Xu W, Wang S, Dou M, Zhang C. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. Biol Trace Elem Res 2024; 202:2042-2051. [PMID: 37648935 DOI: 10.1007/s12011-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 μg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Pan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenhao Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
16
|
Fang W, Yin B, Fang Z, Tian M, Ke L, Ma X, Di Q. Heat stroke-induced cerebral cortex nerve injury by mitochondrial dysfunction: A comprehensive multi-omics profiling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170869. [PMID: 38342446 DOI: 10.1016/j.scitotenv.2024.170869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
In recent years, global warming has led to frequent instances of extremely high temperatures during summer, arousing significant concern about the adverse effects of high temperature. Among these, heat stroke is the most serious, which has detrimental effects on the all organs of human body, especially on brain. However, the comprehensive pathogenesis leading to brain damage remains unclear. In this study, we constructed a mouse model of heat stroke and conducted multi-omics profiling to identify relevant pathogenesis induced by heat stroke. The mice were placed in a constant temperature chamber at 42 °C with a humidity of 50 %, and the criteria for success in modeling were that the rectal temperature reached 42 °C and that the mice were trembling. Then the mice were immediately taken out for further experiments. Firstly, we conducted cFos protein localization and identified the cerebral cortex, especially the anterior cingulate cortex as the region exhibiting the most pronounced damage. Secondly, we performed metabolomics, transcriptomics, and proteomics analysis on cerebral cortex. This multi-omics investigation unveiled noteworthy alterations in proteins and metabolites within pathways associated with neurotransmitter systems, heatstroke-induced mitochondrial dysfunction, encompassing histidine and pentose phosphate metabolic pathways, as well as oxidative stress. In addition, the cerebral cortex exhibited pronounced Reactive Oxygen Species (ROS) production, alongside significant downregulation of the mitochondrial outer membrane protein Tomm40 and mitochondrial permeability transition pore, implicating cerebral cortex mitochondrial dysfunction as the primary instigator of neural impairment. This study marks a significant milestone as the first to employ multi-omics analysis in exploring the molecular mechanisms underlying heat stroke-induced damage in cerebral cortex neurons. It comprehensively identifies all potentially impacted pathways by heat stroke, laying a solid foundation for ensuing research endeavors. Consequently, this study introduces a fresh angle to clinical approaches in heatstroke prevention and treatment, as well as establishes an innovative groundwork for shaping future-forward environmental policies.
Collapse
Affiliation(s)
- Wen Fang
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Bo Yin
- School of Medicine, Tsinghua University, Beijing, China
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Mengyi Tian
- School of Medicine, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Limei Ke
- School of Medicine, Tsinghua University, Beijing, China
| | - Xindong Ma
- Division of Sports Science& Physical Education, Tsinghua University, Beijing, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China; Institute for Healthy China, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Shi FL, Li Q, Xu R, Yuan LS, Chen Y, Shi ZJ, Li YP, Zhou ZY, Xu LH, Zha QB, Hu B, He XH, Ou-Yang DY. Blocking reverse electron transfer-mediated mitochondrial DNA oxidation rescues cells from PANoptosis. Acta Pharmacol Sin 2024; 45:594-608. [PMID: 37964019 PMCID: PMC10834539 DOI: 10.1038/s41401-023-01182-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
PANoptosis is a new type of cell death featured with pyroptosis, apoptosis and necroptosis, and is implicated in organ injury and mortality in various inflammatory diseases, such as sepsis and hemophagocytic lymphohistiocytosis (HLH). Reverse electron transport (RET)-mediated mitochondrial reactive oxygen species (mtROS) has been shown to contribute to pyroptosis and necroptosis. In this study we investigated the roles of mtROS and RET in PANoptosis induced by TGF-β-activated kinase 1 (TAK1) inhibitor 5Z-7-oxozeaenol (Oxo) plus lipopolysaccharide (LPS) as well as the effects of anti-RET reagents on PANoptosis. We showed that pretreatment with anti-RET reagents 1-methoxy PMS (MPMS) or dimethyl fumarate (DMF) dose-dependently inhibited PANoptosis in macrophages BMDMs and J774A.1 cells induced by Oxo/LPS treatment assayed by propidium iodide (PI) staining. The three arms of the PANoptosis signaling pathway, namely pyroptosis, apoptosis and necroptosis signaling, as well as the formation of PANoptosomes were all inhibited by MPMS or DMF. We demonstrated that Oxo/LPS treatment induced RET and mtROS in BMDMs, which were reversed by MPMS or DMF pretreatment. Interestingly, the PANoptosome was co-located with mitochondria, in which the mitochondrial DNA was oxidized. MPMS and DMF fully blocked the mtROS production and the formation of PANoptosome induced by Oxo plus LPS treatment. An HLH mouse model was established by poly(I:C)/LPS challenge. Pretreatment with DMF (50 mg·kg-1·d-1, i.g. for 3 days) or MPMS (10 mg·kg-1·d-1, i.p. for 2 days) (DMF i.g. MPMS i.p.) effectively alleviated HLH lesions accompanied by decreased hallmarks of PANoptosis in the liver and kidney. Collectively, RET and mtDNA play crucial roles in PANoptosis induction and anti-RET reagents represent a novel class of PANoptosis inhibitors by blocking oxidation of mtDNA, highlighting their potential application in treating PANoptosis-related inflammatory diseases. PANoptotic stimulation induces reverse electron transport (RET) and reactive oxygen species (ROS) in mitochondia, while 1-methoxy PMS and dimethyl fumarate can inhibit PANoptosis by suppressing RETmediated oxidation of mitochondrial DNA.
Collapse
Affiliation(s)
- Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Sha Yuan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ya-Ping Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Bing Zha
- Department of Fetal Medicine, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, the Fifth Affiliated Hospital of Jinan University, Heyuan, 517000, China.
| | - Dong-Yun Ou-Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Guan S, Qu X, Wang J, Zhang D, Lu J. 3-Monochloropropane-1,2-diol esters induce HepG2 cells necroptosis via CTSB/TFAM/ROS pathway. Food Chem Toxicol 2024; 186:114525. [PMID: 38408632 DOI: 10.1016/j.fct.2024.114525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
3-monochloropropane-1,2-diol esters (3-MCPDE) are toxic substances that form in food thermal processing and have a diverse range of toxicities. In this study, we found that 3-MCPDE triggered necroptosis by RIPK1/RIPK3/MLKL pathway in HepG2 cells. Previous studies have shown that ROS is an important activator of RIPK1 and RIPK3. The data showed that 3-MCPDE induced excessive ROS production through mitochondrial damage. After treatment with ROS inhibitor N-acetylcysteine (NAC), 3-MCPDE-induced necroptosis was relieved. Further, we explored how 3-MCPDE destroys mitochondria. The data suggested that 3-MCPDE induced mitochondrial dysfunction through the CTSB/TFAM pathway. Overall, the results indicated that 3-MCPDE induced necroptosis through CTSB/TFAM/ROS pathway in HepG2 cells. Our study provided a new mechanism for 3-MCPDE hepatotoxicity.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiao Qu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Duoduo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
19
|
Zhao M, Zheng Z, Wang C, Yao D, Lin Z, Zhao Y, Chen X, Li S, Aweya JJ, Zhang Y. Penaeid shrimp counteract high ammonia stress by generating and using functional peptides from hemocyanin, such as HMCs27. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167073. [PMID: 37714341 DOI: 10.1016/j.scitotenv.2023.167073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Agricultural and anthropogenic activities release high ammonia levels into aquatic ecosystems, severely affecting aquatic organisms. Penaeid shrimp can survive high ammonia stress conditions, but the underlying molecular mechanisms are unknown. Here, total hemocyanin and oxyhemocyanin levels decreased in Penaeus vannamei plasma under high ammonia stress. When shrimp were subjected to high ammonia stress for 12 h, 24 hemocyanin (HMC) derived peptides were identified in shrimp plasma, among which one peptide, designated as HMCs27, was chosen for further analysis. Shrimp survival was significantly enhanced after treatment with the recombinant protein of HMCs27 (rHMCs27), followed by high ammonia stress. Transcriptome analysis of shrimp hepatopancreas after treatment with or without rHMCs27 followed by high ammonia stress revealed 973 significantly dysregulated genes, notable among which were genes involved in oxidation and metabolism, such as cytochrome C, catalase (CAT), isocitrate dehydrogenase, superoxide dismutase (SOD), trypsin, chymotrypsin, glutathione peroxidase, glutathione s-transferase (GST), and alanine aminotransferase (ALT). In addition, levels of key biochemical indicators, such as SOD, CAT, and total antioxidant capacity (T-AOC), were significantly enhanced, whereas hepatopancreas malondialdehyde levels and plasma pH, NH3, GST, and ALT levels were significantly decreased after rHMCs27 treatment followed by high ammonia stress. Moreover, high ammonia stress induced hepatopancreas tissue injury and apoptosis, but rHMCs27 treatment ameliorated these effects. Collectively, the current study revealed that in response to high ammonia stress, shrimp generate functional peptides, such as peptide HMCs27 from hemocyanin, which helps to attenuate the ammonia toxicity by enhancing the antioxidant system and the tricarboxylic acid cycle to decrease plasma NH3 levels and pH.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Chuanqi Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhongyang Lin
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China.
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
20
|
Zhai W, Wang Z, Ye C, Ke L, Wang H, Liu H. IL-6 Mutation Attenuates Liver Injury Caused by Aeromonas hydrophila Infection by Reducing Oxidative Stress in Zebrafish. Int J Mol Sci 2023; 24:17215. [PMID: 38139043 PMCID: PMC10743878 DOI: 10.3390/ijms242417215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin-6 (IL-6), a pleiotropic cytokine, plays a crucial role in acute stress induced by bacterial infection and is strongly associated with reactive oxygen species (ROS) production. However, the role of IL-6 in the liver of fish after Aeromonas hydrophila infection remains unclear. Therefore, this study constructed a zebrafish (Danio rerio) il-6 knockout line by CRISPR/Cas9 to investigate the function of IL-6 in the liver post bacterial infection. After infection with A. hydrophila, pathological observation showed that il-6-/- zebrafish exhibited milder liver damage than wild-type (WT) zebrafish. Moreover, liver transcriptome sequencing revealed that 2432 genes were significantly up-regulated and 1706 genes were significantly down-regulated in il-6-/- fish compared with WT fish after A. hydrophila infection. Further, gene ontology (GO) analysis showed that differentially expressed genes (DEGs) were significantly enriched in redox-related terms, including oxidoreductase activity, copper ion transport, etc. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were significantly enriched in pathways such as the PPAR signaling pathway, suggesting that il-6 mutation has a significant effect on redox processes in the liver after A. hydrophila infection. Additionally, il-6-/- zebrafish exhibited lower malondialdehyde (MDA) levels and higher superoxide dismutase (SOD) activities in the liver compared with WT zebrafish following A. hydrophila infection, indicating that IL-6 deficiency mitigates oxidative stress induced by A. hydrophila infection in the liver. These findings provide a basis for further studies on the role of IL-6 in regulating oxidative stress in response to bacterial infections.
Collapse
Affiliation(s)
- Wenya Zhai
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Zhensheng Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Canxun Ye
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Lan Ke
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
| | - Huanling Wang
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (Z.W.); (C.Y.); (L.K.); (H.W.)
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
21
|
Ou J, Wang Z, Huang H, Chen J, Liu X, Jia X, Song B, Cheong KL, Gao Y, Zhong S. Intervention effects of sulfate glycosaminoglycan from swim bladder against arsenic-induced damage in IEC-6 cells. Int J Biol Macromol 2023; 252:126460. [PMID: 37619679 DOI: 10.1016/j.ijbiomac.2023.126460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this study, a purified macromolecular sulfate glycosaminoglycan whose structural characterization is similar to chondroitin sulfate from the swim bladder of Aristichthys nobilis, named SBSG, was used to explore the intervention effects on arsenic-induced intestinal epithelial cells (IEC-6) damage. Arsenic exposure led to cell membrane rupture, mitochondrial dysfunction, oxidative damage, and down-regulation of tight junction proteins expression. Treatment with SBSG could alleviate arsenic exposure-induced cell damage by decreasing the extracellular lactate dehydrogenase activity and influencing mitochondrial membrane potential, reactive oxygen species level, malondialdehyde content, and anti-oxidative enzyme activity. On the other hand, SBSG could promote nitric oxide production to achieve potential immunoregulation. The Western blot showed that intervention of SBSG mainly could restrain the activation of the JNK signaling pathway and up-regulate the expression of ZO-1 against arsenic-induced cell damage. This study provides a new perspective for understanding the heavy metal detoxification of SBSG on the intestinal and indicates that SBSG could be used as natural antioxidant resistant to heavy metal toxicity.
Collapse
Affiliation(s)
- Jieying Ou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Zhuo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China.
| | - Houpei Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Jing Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xiaofei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Bingbing Song
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Yuan Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
22
|
Zhou J, Qin X, Li L, Tian D, Zou Z, Gu Z, Su L. Heat stress-induced intestinal epithelial cells necroptosis via TLR3-TRIF-RIP3 pathway was dependent on p53. Int Immunopharmacol 2023; 122:110574. [PMID: 37421775 DOI: 10.1016/j.intimp.2023.110574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Heatstroke is a life-threatening disease. Present study was aimed to investigate the mechanism in heat induced intestinal epithelial cell death. METHOD Heat stress in vitro model was established on IEC cells with 42℃ for 2 h. Caspase-8 inhibitor, Caspase-3 inhibitor, RIP3 inhibitor, TLR3 agonist, poly(I:C) and p53 knockdown were used to determine the signaling pathway. Heatstroke in vivo model was established on C57BL/6 mice, with a temperature of 35.5℃±0.5℃ and a relative humidity of 60% ± 5%. The intestine necroptosis and inflammatory cytokines were measured. Pifithrin α (3 mg/kg) and p53 knockout mice were used to evaluate the role of p53. RESULTS Heat stress-induced reduction of cell viability was remarkable reversed by RIP3 inhibitor. Heat stress induced upregulation of TLR3 and facilitate the formation of TRIF-RIP3 complex. The heat stress induced upregulation of RIP3 and p-RIP3 were normalized by the deletion of p53. Meanwhile, p53 knockout decreased TLR3 expression and blocked the formation of TLR3-TRIF complex. The deletion of p53 blocked the decreased cell viability and restored the activation of RIP3-MLKL signaling after heat stress, however, which were abolished by re-expression of p53 via Tp53 OE. Increased the expression of TLR3 in the p53-deficient cells could not affect the heat stress induced necrotic cell death, which suggests that heat stress induced necroptosis via TLR3-TRIF-RIP3 signaling pathway is dependent on p53. CONCLUSION Heat stress promoted p53 phosphorylation, then upregulated TLR3 and enhanced the interaction of TRIF-RIP3, which would activate the RIP3-MLKL signaling pathway to mediate necroptosis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Junjie Zhou
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, Heyuan People's Hospital, Heyuan 517000, China
| | - Xihe Qin
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou 510515, China; Eusyn Medical Technology Company, Guangzhou 510663, China
| | - Li Li
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Afliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Dan Tian
- Oncology Department, Heyuan People's Hospital, Heyuan 517000, China
| | - Zhimin Zou
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Afliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Zhengtao Gu
- Department of Treatment Center for Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; Academy of Orthopedics of Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Afliated Hospital of Southern Medical University, Guangzhou 510630, Guangdong, China.
| | - Lei Su
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
23
|
Iba T, Helms J, Levi M, Levy JH. Inflammation, coagulation, and cellular injury in heat-induced shock. Inflamm Res 2023; 72:463-473. [PMID: 36609608 DOI: 10.1007/s00011-022-01687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/29/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The number of heatstroke victims hit record numbers in 2022 as global warming continues. In heat-induced injuries, circulatory shock is the most severe and deadly complication. This review aims to examine the mechanisms and potential approaches to heat-induced shock and the life-threatening complications of heatstroke. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning heatstroke, shock, inflammation, coagulopathy, endothelial cell, cell death, and heat shock proteins. RESULTS Dehydration and heat-induced cardiomyopathy were reported as the major causes of heat-induced shock, although other heat-induced injuries are also involved in the pathogenesis of circulatory shock. In addition to dehydration, the blood volume decreases considerably due to the increased vascular permeability as a consequence of endothelial damage. Systemic inflammation is induced by factors that include elevated cytokine and chemokine levels, dysregulated coagulation/fibrinolytic responses, and the release of damage-associated molecular patterns (DAMPs) from necrotic cell death that cause distributive shock. The cytoprotective heat shock proteins can also facilitate circulatory disturbance under excess heat stress. CONCLUSIONS Multiple mechanisms are involved in the pathogenesis of heat-induced shock. In addition to dehydration, heat stress-induced cardiomyopathy due to the thermal damage of mitochondria, upregulated inflammation via damage-associated molecular patterns released from oncotic cells, unbalanced coagulation/fibrinolysis, and endothelial damage are the major factors that are related to circulatory shock.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Julie Helms
- Medical Intensive Care Unit-NHC, Strasbourg University (UNISTRA) Strasbourg University Hospital INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Marcel Levi
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Medicine, University College London Hospitals NHS Foundation Trust, and Cardio-Metabolic Programme-NIHR UCLH/UCL BRC, London, UK
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care, and Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
24
|
Abstract
Heatstroke, which is associated with circulatory failure and multiple organ dysfunction, is a heat stress-induced life-threatening condition characterized by a raised core body temperature and central nervous system dysfunction. As global warming continues to worsen, heatstroke is expected to become the leading cause of death globally. Despite the severity of this condition, the detailed mechanisms that underlie the pathogenesis of heatstroke still remain largely unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a tumor-associated and interferon (IFN)-inducible protein, but has recently been reported to be a Z-nucleic acid sensor that regulates cell death and inflammation; however, its biological function is not yet fully understood. In the present study, a brief review of the main regulators is presented, in which the Z-nucleic acid sensor ZBP1 was identified to be a significant factor in regulating the pathological characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal mechanism of heatstroke is revealed, in addition to a second function of ZBP1 other than as a nucleic acid sensor.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuli He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
26
|
Deng C, Zheng J, Zhou H, You J, Li G. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers. Poult Sci 2022; 102:102408. [PMID: 36584416 PMCID: PMC9827071 DOI: 10.1016/j.psj.2022.102408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study tested the hypothesis that glycine improves intestinal barrier function through regulating oxidative stress in broilers exposed to heat stress. A total of 300 twenty-one-day-old female Arbor Acres broilers (600 ± 2.5g) was randomly allocated to 5 treatments (6 replicate of 10 birds each). The 5 treatments were as follows: the control group (CON) was kept under thermoneutral condition (24 ± 1°C) and was fed a basal diet. Broilers fed a basal diet and reared under high ambient temperature (HT) were considered as the HT group (34 ± 1°C for 8 h/d). Broilers fed a basal diet supplemented with 0.5%, 1.0%, and 2.0% glycine and exposed to HT were regarded as the HT + glycine treatments. The results exhibited that heat stress reduced growth performance, serum total antioxidant capacity (T-AOC), and glutathione (GSH) concentration (P < 0.05); increased activity of serum catalase (CAT) and the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) (P < 0.05). HT exposure led to downregulating the mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1), Occludin, and zonula occludens-1 (ZO-1) (P < 0.05); enhanced the mRNA levels of Kelch-like ECH-associated protein 1 (Keap1), CAT, glutathione synthetase (GSS), and glutamate-cysteine ligase modifier subunit (GCLM) (P < 0.05); impaired the intestinal morphology (P < 0.05); and altered the diversity and community of gut microbiota (P < 0.05). The final body weight (FBW), ADFI, ADG, and gain-to-feed ratio (G: F) increased linearly or quadratically, and the antioxidant capacity was improved (P < 0.05) with glycine supplementation. Glycine treatment increased the villus height (VH), and villus height to crypt depth ratio (V/C) of the duodenum linearly or quadratically, and linearly increased the VH of jejunum and ileum. The mRNA expression of Occludin, and ZO-1 were increased linearly in the ileum mucosa of broilers subjected to HT. Collectively, these results demonstrated that glycine supplementation alleviates heat stress-induced dysfunction of antioxidant status and intestinal barrier in broilers.
Collapse
Affiliation(s)
- Chenxi Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jun Zheng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
27
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
28
|
Wang L, Sun Z, Xie W, Peng C, Ding H, Li Y, Feng S, Wang X, Zhao C, Wu J. 11S Glycinin Up-Regulated NLRP-3-Induced Pyroptosis by Triggering Reactive Oxygen Species in Porcine Intestinal Epithelial Cells. Front Vet Sci 2022; 9:890978. [PMID: 35782549 PMCID: PMC9240605 DOI: 10.3389/fvets.2022.890978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
11S glycinin is a major soybean antigenic protein, which induces human and animal allergies. It has been reported to induce intestinal porcine epithelial (IPEC-J2) cell apoptosis, but the role of pyroptosis in 11S glycinin allergies remains unknown. In this study, IPEC-J2 cells were used as an in vitro physiological model to explore the mechanism of 11S glycinin-induced pyroptosis. The cells were incubated with 0, 1, 5, and 10 mg·ml−1 11S glycinin for 24 h. Our results revealed that 11S glycinin significantly inhibited cell proliferation, induced DNA damage, generated active oxygen, decreased mitochondrial membrane potential, and increased the NOD-like receptor protein 3 (NLRP-3) expression of IPEC-J2 cells in a dose-dependent manner. Further, IPEC-J2 cells were transfected with designed sh-NLRP-3 lentivirus to silence NLRP-3. The results showed that 11S glycinin up-regulated the silenced NLRP-3 gene and increased the expression levels of apoptosis-related spot-like protein (ASC), caspase-1, the cleaved gasdermin D, and interleukin-1β. The IPEC-J2 cells showed pyrolysis morphology. Moreover, we revealed that N-acetyl-L-cysteine can significantly inhibit the production of reactive oxygen species and reduce the expression levels of NLRP-3 and the cleaved gasdermin D. Taken together, 11S glycinin up-regulated NLRP-3-induced pyroptosis by triggering reactive oxygen species in IPEC-J2 cells.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhifeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weina Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chenglu Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chang Zhao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Jinjie Wu
| |
Collapse
|
29
|
Cui Y, Zhou X, Chen L, Tang Z, Mo F, Li XC, Mao H, Wei X, Wang C, Wang H. Crosstalk between Endoplasmic Reticulum Stress and Oxidative Stress in Heat Exposure-Induced Apoptosis Is Dependent on the ATF4-CHOP-CHAC1 Signal Pathway in IPEC-J2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15495-15511. [PMID: 34919378 DOI: 10.1021/acs.jafc.1c03361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal epithelium is susceptible to heat stress (HS), which leads to gut leakage and inflammation. However, the mechanisms underlying HS-induced intestine dysfunction have yet to be elucidated. We established an in vitro chronic heat exposure-induced intestinal injury of intestinal porcine epithelial cells (IPEC-J2) exposed to high temperatures (43 °C) for 12 h. The results revealed that HS increased reactive oxygen species (ROS) generation and decreased superoxide dismutase 2 (SOD2) expression, leading to oxidative stress. Western blotting analysis demonstrated that HS induced apoptosis as evidenced by increased cytochrome c (Cyt c) release in the cytoplasm and caspase 3 activation. Transcriptome sequencing analysis revealed that HS activated the endoplasmic reticulum stress (ERS) response/unfolded protein response (UPR) but inhibited glutathione metabolism. Specifically, HS triggered the pro-apoptotic activating transcription factor 4 (ATF4)/CEBP-homologous protein (CHOP) branch of the UPR. Interestingly, glutathione-specific gamma-glutamylcyclotransferase1 (CHAC1) involved in glutathione degradation was upregulated due to heat exposure and was proved to be downstream of the ATF4-CHOP signal pathway. Knockdown of CHAC1 attenuated the HS-induced decrease in glutathione level and cell apoptosis. These studies suggest that crosstalk between ERS and oxidative stress in HS-induced apoptosis might be dependent on the ATF4-CHOP-CHAC1 signal pathway in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yanjun Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Xu Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Leyi Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Zhining Tang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Fan Mo
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Xiang Chen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Huiling Mao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Xiaoshi Wei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Chong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Lin'an 311300, P. R. China
| | - Haifeng Wang
- College of Animal Science, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
30
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|
31
|
Cao Y, Fan M, Pei Y, Su L, Xiao W, Chen F, Huang J, Liu X, Gu Z, Zhang Z, Yuan F, Jiang Y, Han X. CCAAT/Enhancer-Binding Protein Homologous Protein (CHOP) Deficiency Attenuates Heatstroke-Induced Intestinal Injury. Inflammation 2021; 45:695-711. [PMID: 34841454 PMCID: PMC8956533 DOI: 10.1007/s10753-021-01577-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The intestine is one of the main target organs involved in the pathological process of heatstroke. CCAAT/enhancer-binding protein homologous protein (CHOP) is involved in endoplasmic reticulum (ER) stress-induced apoptosis. This study aimed to explore the role of CHOP in heatstroke-induced intestinal injury and potential therapy. An in vitro heat stress (HS) model using Caco-2 cells was employed. We observed the role of CHOP in apoptosis-mediated intestinal epithelial cell injury secondary to HS by evaluating cell viability, lactate dehydrogenase release, apoptosis levels, and GRP78, PERK, ATF4, CHOP, Bcl-2, and BAX mRNA and protein expression. To further study the role of CHOP in HS-induced intestinal barrier dysfunction, we assessed transepithelial electrical resistance, paracellular tracer flux, ultrastructure of tight junctions, and protein expression of ZO-1 and occludin. Male wild-type mice and CHOP knockout mice were used for in vivo experiments. We evaluated serum d-lactate and diamine oxidase levels, histopathological changes, intestinal ultrastructure, and ZO-1 and occludin protein expression. HS activated the PERK-CHOP pathway and promoted apoptosis by upregulating BAX and downregulating Bcl-2; these effects were prevented by CHOP silencing. Intestinal epithelial barrier function was disrupted by HS in vitro and in vivo. CHOP silencing prevented intestinal barrier dysfunction in Caco-2 cells, whereas CHOP knockout mice exhibited decreased intestinal mucosal injury. The ER stress inhibitor 4-phenylbutyrate (4-PBA) prevented HS-induced intestinal injury in vitro and in vivo. This study indicated that CHOP deficiency attenuates heatstroke-induced intestinal injury and may contribute to the identification of a novel therapy against heatstroke associated with the ER stress pathway.
Collapse
Affiliation(s)
- Yan Cao
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Maiying Fan
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Yanfang Pei
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Lei Su
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Weiwei Xiao
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Fang Chen
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Jie Huang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Xiehong Liu
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Zhengtao Gu
- Department of Treatment Center For Traumatic Injuries, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhongwei Zhang
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China
| | - Fangfang Yuan
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China.
| | - Xiaotong Han
- Department of Emergency, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Province, No.61 Western Jiefang Road, Changsha, 410005, China.
| |
Collapse
|
32
|
李 莉, 邹 志, 李 琴, 张 堃, 苏 磊, 古 正. [Extranuclear p53 suppresses autophagy through AMPK/mTOR signaling to promote heat stress-induced vascular endothelial cell damage]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1664-1671. [PMID: 34916192 PMCID: PMC8685697 DOI: 10.12122/j.issn.1673-4254.2021.11.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the role of extranuclear p53-mediated autophagy suppression by regulating AMPK/mTOR signaling pathway in heat stress (HS)-induced injury of mouse aortic endothelial cells (MAECs). METHODS Primary cultures of MAECs were pretreated with compound C (an AMPK inhibitor), rapamycin (a mTOR inhibitor) or pifithrin-α (PFT, a selective p53 inhibitor) for 1 h before exposure to HS (43 ℃) for 2 h. The changes in cell viability at different time points after HS were examined using CCK-8 assay, and the protein expressions of P53, LC3-II, Beclin-1, p62 and the AMPK/mTOR signaling proteins were detected using Western blotting. In the animal experiment, C57 mice were pretreated with compound C, rapamycin or PFT and exposed to a high temperature at 40 ℃ to induce HS. The pathological changes in the aorta of the mice were observed with HE staining, and cell apoptosis was detected using TUNEL staining. RESULTS In cultured MAECs, the cell viability was significantly reduced (P < 0.05) and the mitochondrial fraction of p53 increased while its cytoplasmic fraction decreased progressively over time following HS. HS significantly lowered the expressions of LC3-II and Beclin-1, increased p62 level, suppressed AMPK phosphorylation, and increased mTOR phosphorylation and the expressions of its downstream proteins at 6 h after the exposure (P < 0.05). Pretreatment with compound C significantly inhibited LC3-II and Beclin- 1 expression, enhanced p62 expression, and aggravated HS-induced cell injury and apoptosis in MAECs; rapamycin treatment produced the opposite effects (P < 0.05). PFT treatment significantly enhanced the viability of MAECs and alleviated HSinduced injury and apoptosis; PFT also significantly promoted activation of AMPK phosphorylation, inhibited mTOR phosphorylation and its downstream proteins (P < 0.05), enhanced the expressions of LC3-II and Beclin 1, and inhibited p62 expression in the MAECs (P < 0.05). In C57 mice, HS resulted in swelling, shedding and apoptosis of aortic vascular endothelial cells. Pretreatment with compound C obviously aggravated HS-induced vascular injury and endothelial cell apoptosis, while pretreatment with either rapamycin or PFT significantly alleviated these injuries. CONCLUSION Autophagy inhibition mediated by extranuclear p53 via inhibiting AMPK activity and activating mTOR signaling participates in HS-induced injury of MAECs.
Collapse
Affiliation(s)
- 莉 李
- 南方医科大学第三附属医院创伤救治中心,广东 广州 510630Treatment Center for Traumatic Injuries, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- 广东省骨科研究院//广东省骨科医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Academy of Orthopedics of Guangdong Province//Orthopedic Hospital of Guangdong Province//Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 志敏 邹
- 南方医科大学第三附属医院创伤救治中心,广东 广州 510630Treatment Center for Traumatic Injuries, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- 广东省骨科研究院//广东省骨科医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Academy of Orthopedics of Guangdong Province//Orthopedic Hospital of Guangdong Province//Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 琴 李
- 南方医科大学第三附属医院创伤救治中心,广东 广州 510630Treatment Center for Traumatic Injuries, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- 广东省骨科研究院//广东省骨科医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Academy of Orthopedics of Guangdong Province//Orthopedic Hospital of Guangdong Province//Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 堃 张
- 南方医科大学第三附属医院创伤救治中心,广东 广州 510630Treatment Center for Traumatic Injuries, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- 广东省骨科研究院//广东省骨科医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Academy of Orthopedics of Guangdong Province//Orthopedic Hospital of Guangdong Province//Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| | - 磊 苏
- 中国人民解放军南部战区总医院重症医学科,广东 广州 510010Department of Critical Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - 正涛 古
- 南方医科大学第三附属医院创伤救治中心,广东 广州 510630Treatment Center for Traumatic Injuries, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
- 广东省骨科研究院//广东省骨科医院//广东省骨与关节退行性疾病重点实验室,广东 广州 510630Academy of Orthopedics of Guangdong Province//Orthopedic Hospital of Guangdong Province//Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou 510630, China
| |
Collapse
|
33
|
Tsai HY, Hsu YJ, Lu CY, Tsai MC, Hung WC, Chen PC, Wang JC, Hsu LA, Yeh YH, Chu P, Tsai SH. Pharmacological Activation Of Aldehyde Dehydrogenase 2 Protects Against Heatstroke-Induced Acute Lung Injury by Modulating Oxidative Stress and Endothelial Dysfunction. Front Immunol 2021; 12:740562. [PMID: 34764958 PMCID: PMC8576434 DOI: 10.3389/fimmu.2021.740562] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Heatstroke (HS) can cause acute lung injury (ALI). Heat stress induces inflammation and apoptosis via reactive oxygen species (ROS) and endogenous reactive aldehydes. Endothelial dysfunction also plays a crucial role in HS-induced ALI. Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that detoxifies aldehydes such as 4-hydroxy-2-nonenal (4-HNE) protein adducts. A single point mutation in ALDH2 at E487K (ALDH2*2) intrinsically lowers the activity of ALDH2. Alda-1, an ALDH2 activator, attenuates the formation of 4-HNE protein adducts and ROS in several disease models. We hypothesized that ALDH2 can protect against heat stress-induced vascular inflammation and the accumulation of ROS and toxic aldehydes. Homozygous ALDH2*2 knock-in (KI) mice on a C57BL/6J background and C57BL/6J mice were used for the animal experiments. Human umbilical vein endothelial cells (HUVECs) were used for the in vitro experiment. The mice were directly subjected to whole-body heating (WBH, 42°C) for 1 h at 80% relative humidity. Alda-1 (16 mg/kg) was administered intraperitoneally prior to WBH. The severity of ALI was assessed by analyzing the protein levels and cell counts in the bronchoalveolar lavage fluid, the wet/dry ratio and histology. ALDH2*2 KI mice were susceptible to HS-induced ALI in vivo. Silencing ALDH2 induced 4-HNE and ROS accumulation in HUVECs subjected to heat stress. Alda-1 attenuated the heat stress-induced activation of inflammatory pathways, senescence and apoptosis in HUVECs. The lung homogenates of mice pretreated with Alda-1 exhibited significantly elevated ALDH2 activity and decreased ROS accumulation after WBH. Alda-1 significantly decreased the WBH-induced accumulation of 4-HNE and p65 and p38 activation. Here, we demonstrated the crucial roles of ALDH2 in protecting against heat stress-induced ROS production and vascular inflammation and preserving the viability of ECs. The activation of ALDH2 by Alda-1 attenuates WBH-induced ALI in vivo.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Chu Hung
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Center for the Prevention and Treatment of Heat Stroke, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
34
|
Xie W, Huang W, Cai S, Chen H, Fu W, Chen Z, Liu Y. NF‑κB/IκBα signaling pathways are essential for resistance to heat stress‑induced ROS production in pulmonary microvascular endothelial cells. Mol Med Rep 2021; 24:814. [PMID: 34558646 PMCID: PMC8477608 DOI: 10.3892/mmr.2021.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The results of a previous study demonstrated that heat stress (HS) triggered oxidative stress, which in turn induced the apoptosis of epithelial cells. These results uncovered a novel mechanism underlying the activation of NF-κB in primary human umbilical vein endothelial cells. The present study aimed to further investigate the role of NF-κB/IκBα signaling pathways in the inhibition of HS-induced reactive oxygen species (ROS) generation and cytotoxicity in endothelial cells. The results of the present study demonstrated that HS triggered a significant amount of NF-κB and IκBα nuclear translocation without IκBα degradation in a time-dependent manner. Mutant constructs of IκBα phosphorylation sites (Ser32, Ser36) were employed in rat pulmonary microvascular endothelial cells (PMVECs). Cell Counting Kit-8 assays demonstrated that both the small interfering (si)RNA-mediated knockdown of p65 and IκBα mutant constructs significantly decreased cell viability and aggravated ROS accumulation in HS-induced rat PMVECs compared with the control. Additionally, western blot analysis revealed that p65 siRNA attenuated the protein expression of IκBα. However, IκBα mutant constructs failed to attenuate NF-κB activation and nuclear translocation, indicating that IκBα-independent pathways contributed to NF-κB activity and nucleus translocation in a time-dependent manner following HS. Collectively, the results of the present study suggested that the NF-κB/IκBα pathway was essential for resistance to HS-induced ROS production and cytotoxicity in rat PMVECs, and that it could be a potential therapeutic target to reduce the mortality and morbidity of heat stroke.
Collapse
Affiliation(s)
- Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
35
|
Popović KJ, Popović DJ, Miljković D, Popović JK, Lalošević D, Poša M, Čapo I. Disulfiram and metformin combination anticancer effect reversible partly by antioxidant nitroglycerin and completely by NF-κB activator mebendazole in hamster fibrosarcoma. Biomed Pharmacother 2021; 143:112168. [PMID: 34536762 DOI: 10.1016/j.biopha.2021.112168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
We investigated the anticancer effect of disulfiram and metformin combination on fibrosarcoma in hamsters. Hamsters of both sexes (~ 70 g) were randomly allocated to control and experimental groups (8 animals per group). In all 10 groups, 2 × 106 BHK-21/C13 cells in 1 ml were injected subcutaneously into the animals' backs. Peroral treatments were carried out with disulfiram 50 mg/kg daily, or with metformin 500 mg/kg daily, or with their combination. Validation and rescue grups were treated by double doses of the single therapy and by the combination with addition of rescue daily doses of ROS inhibitor nitroglycerin 25 mg/kg or NF-κB stimulator mebendazole 460 mg/kg, via a gastric probe after tumor inoculation. After 19 days all animals were sacrificed. Blood samples were collected for hematological and biochemical analyses, the tumors were excised and weighed, and their diameters and volumes were measured. The tumor samples were pathohistologically and immunohistochemically assessed (Ki-67, PCNA, CD34, CD31, COX4, Cytochrome C, GLUT1, iNOS), and the main organs were toxicologically tested. The combination of disulfiram and metformin significantly inhibited fibrosarcoma growth in hamsters without toxicity, compared to monotherapy or control. The single treatments did not show significant antisarcoma effect. Co-treatment with nitroglycerin partly rescued tumor progression, probably by ROS inhibition, while mebendazole completely blocked anticancer activity of the disulfiram and metformin combination, most likely by NF-κB stimulation. Combination of disulfiram with metformin may be used as an effective and safe candidate for novel nontoxic adjuvant and relapse prevention anticancer therapy.
Collapse
Affiliation(s)
- Kosta J Popović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Dušica J Popović
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dejan Miljković
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Jovan K Popović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dušan Lalošević
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Mihalj Poša
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Ivan Čapo
- Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
36
|
Guan ZB, Zhou YY, Cen Y, Feng HD, Liu WW, Yi HJ, Chen H. Necrostatin-1 prolongs latency to convulsion in mice exposed to high oxygen partial pressure. Diving Hyperb Med 2021; 51:134-139. [PMID: 34157727 DOI: 10.28920/dhm51.2.134-139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/15/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Exposure to very high oxygen partial pressure may cause central nervous system oxygen toxicity (CNS-OT). The role of necroptosis in the pathogenesis of CNS-OT is still unclear. METHODS In experiment one, male C57BL/6 mice in the oxygen toxicity (OT) group (n = 5) and necrostatin-1 (Nec-1; a necroptosis inhibitor) (1.5 mg·kg-1, intraperitoneal) group (n = 5) were exposed to pure oxygen at 600 kPa, and the latency to tonic-clonic seizure was recorded. In experiment two, mice were divided into three groups: control group (n = 11), OT group (n = 12) and Nec-1 group (n = 12). Nec-1 was intraperitoneally administered 30 min before oxygen exposure. Mice in the OT group and Nec-1 group were exposed to pure oxygen at 400 kPa for 30 min, and then sacrificed; the brain was harvested for the assessment of inflammation, oxidative stress and necroptosis. RESULTS Experiment one. Nec-1 pre-treatment significantly prolonged the latency to seizure (245 [SD 18] seconds in the OT group versus 336 (34) seconds in the Nec-1 group). Experiment two. Nec-1 pre-treatment markedly reduced inflammatory cytokines and inhibited cerebral necroptosis, but failed to significantly suppress cerebral oxidative stress. CONCLUSIONS These findings indicate necroptosis is involved in the pathogenesis of CNS-OT, and inhibition of necroptosis may prolong seizure latency, but the specific mechanisms should be investigated further.
Collapse
Affiliation(s)
- Zhen-Biao Guan
- Department of Respiratory and Critical Illness, Changhai Hospital, the Naval Military Medical University, People's Liberation Army, Shanghai, 200433, China
| | - Yan-Yan Zhou
- Department of Orthopedic Surgery, Changzheng Hospital, the Naval Military Medical University, People's Liberation Army, Shanghai, 200003, China
| | - Yi Cen
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Han-De Feng
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wu Liu
- Department of Diving and Hyperbaric Medicine, the Naval Military Medical University, People's Liberation Army, Shanghai, 200433, China
| | - Hong-Jie Yi
- Department of Hyperbaric Oxygen, Changhai Hospital, the Naval Military Medical University, People's Liberation Army, Shanghai, 200433, China
| | - Hui Chen
- Department of Hyperbaric Oxygen, Changhai Hospital, the Naval Military Medical University, People's Liberation Army, Shanghai, 200433, China.,Corresponding author: Dr Hui Chen, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, No 1279, Sanmen Road, 200434, Shanghai, China,
| |
Collapse
|
37
|
Xue L, Guo W, Li L, Ou S, Zhu T, Cai L, Ding W, Wu W. Metabolomic profiling identifies a novel mechanism for heat stroke‑related acute kidney injury. Mol Med Rep 2021; 23:241. [PMID: 33655337 PMCID: PMC7893796 DOI: 10.3892/mmr.2021.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Heat stroke can induce a systemic inflammatory response, which may lead to multi‑organ dysfunction including acute kidney injury (AKI) and electrolyte disturbances. To investigate the pathogenesis of heat stroke (HS)‑related AKI, a mouse model of HS was induced by increasing the animal's core temperature to 41˚C. Blood samples obtained from the tail vein were used to measure plasma glucose and creatinine levels. Micro‑positron emission tomography‑computed tomography (micro‑PET/CT), H&E staining and transmission electron microscopy were conducted to examine metabolic and morphological changes in the mouse kidneys. Immunohistochemistry (IHC) and western blot analyses were performed to investigate the expression of apoptosis‑inducing factor mitochondria‑associated 2 (Aifm2), high‑mobility group box 1 (HMGB1) and receptor for advanced glycosylation end products (RAGE). Liquid chromatography‑mass spectrometry analysis was conducted to find differential metabolites and signaling pathways. The HS mouse model was built successfully, with significantly increased creatinine levels detected in the serum of HS mice compared with controls, whereas micro‑PET/CT revealed active metabolism in the whole body of HS mice. H&E and TUNEL staining revealed that the kidneys of HS mice exhibited signs of hemorrhage and apoptosis. IHC and western blotting demonstrated significant upregulation of Aifm2, HMGB1 and RAGE in response to HS. Finally, 136 differential metabolites were screened out, and enrichment of the 'biosynthesis of unsaturated fatty acids' pathway was detected. HS‑associated AKI is the renal manifestation of systemic inflammatory response syndrome, and may be triggered by the HMGB1/RAGE pathway. Metabolomics indicated increased adrenic acid, docosahexaenoic acid and eicosapentaenoic acid may serve as metabolic biomarkers for AKI in HS. The findings suggested that a correlation between the HMGB1/RAGE pathway and biosynthesis of unsaturated fatty acids may contribute to the progression of HS‑related AKI.
Collapse
Affiliation(s)
- Ling Xue
- Department of Urology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Guo
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Li
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Santao Ou
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tingting Zhu
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenfei Ding
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weihua Wu
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
38
|
Liu T, Han S, Pang M, Li J, Wang J, Luo X, Wang Y, Liu Z, Yang X, Ye Z. Cerium oxide nanoparticles protect red blood cells from hyperthermia-induced damages. J Biomater Appl 2020; 36:36-44. [PMID: 33353468 DOI: 10.1177/0885328220979091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heat stroke and severe fever cause anemia, although the underlying mechanism remains unclear. Here, we report the use of Cerium oxide nanoparticles in protection of red blood cells against damage caused by exposure to short-term hyperthermia (42°C, 10 min). Red blood cells exposed to hyperthermia exhibited extradition senescence with higher density, smaller size and lower zeta potential relative to those under normal physiological environment (37°C, 10 min). Furthermore, hyperthermia-exposed cells exhibited significantly higher reactive oxygen species (ROS) production compared to the normal conditions. Importantly, the preconditional treatment, using Ceria nanoparticles (CNPs), ameliorated senescence and apoptosis in red blood cells damaged by hyperthermia by reducing ROS levels. Summarily, short-term hyperthermia caused a significant increase in ROS in red blood cells, and resulted in senescence and apoptosis. These may be possible mechanisms of pathological changes in red blood cells exposed to heat stroke or severe fever. Overall, these findings indicate that CNPs strongly inhibit ROS production, and effectively ameliorates hyperthermia-induced damages in red blood cells.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shiqian Han
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Mao Pang
- Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China
| | - Jing Li
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Department of Preventive Healthcare, Yan'an Hospital affiliated to Kunming Medical, Kunming, China
| | - Jing Wang
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhifeng Liu
- Department of Critical Care medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Xiaochao Yang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhijia Ye
- Department of Tropical Medicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Laboratory Animal Research Center, Chongqing University School of Medicine, Chongqing, China
| |
Collapse
|