1
|
Kok HP, Crezee J. Predicted SAR/temperature changes induced by phase-amplitude steering are minimally affected by uncertainties in tissue properties: a basis for robust on-line adaptive hyperthermia treatment planning. Int J Hyperthermia 2025; 42:2483433. [PMID: 40159146 DOI: 10.1080/02656736.2025.2483433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Reliability of absolute specific absorption rate (SAR)/temperature levels predicted by treatment planning is strongly affected by tissue parameter uncertainties. Therefore, regular re-optimization to suppress hot spots can accidentally induce new hot spots elsewhere. Adaptive planning methods to avoid this problem re-optimize with respect to the current predicted 3D-distribution. This strategy is robust if reliability of predicted SAR/temperature changes (i.e., increases/decreases) after phase-amplitude adjustments is minimally affected by parameter uncertainties; this work evaluated this robustness. METHODS We validated the basic concept in an inhomogeneous phantom, followed by a patient model. Uncertainties in electrical conductivity, permittivity and perfusion were mimicked by simulations using 100 random parameter samples from normal distributions. Reliability of predicted SAR/temperature increase/decrease after phase-amplitude adjustments was evaluated. Next, correlations between measured and simulated SAR and SAR changes were determined for phase settings evaluated at the treatment start for a treatment series. Finally, practical use in an adaptive workflow was illustrated. RESULTS Local SAR/temperature increases/decreases after phase-amplitude adjustments can be predicted accurately. For the phantom, the measured 28.5% SAR decrease was predicted accurately(28.5 ± 0.7%). In the patient model, predicted SAR/temperature changes were typically accurate within a few percent. For the treatment series, correlations between measured and simulated (relative) SAR changes were much better(R2=0.70-0.82) than for absolute SAR levels(R2=0.29). Predictions of steering effects during treatment corresponded qualitatively with measurements/observations. CONCLUSION Predictions of SAR/temperature increases/decreases induced by phase-amplitude steering are hardly affected by tissue parameter uncertainties. On-line adaptive planning based on predicted changes is thus robust to effectively support clinical steering strategies.
Collapse
Affiliation(s)
- H P Kok
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - J Crezee
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands
| |
Collapse
|
2
|
IJff M, Mei X, Scutigliani EM, Rodermond HM, van Bochove GGW, Krawczyk PM, Franken NAP, Stalpers LJA, Crezee J, Oei AL. Addition of PARP1-inhibition enhances chemoradiotherapy and thermoradiotherapy when treating cervical cancer in an in vivo mouse model. Int J Hyperthermia 2025; 42:2450514. [PMID: 39837264 DOI: 10.1080/02656736.2025.2450514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Background: Efficacy of current treatment options for cervical cancer require improvement. Previous in vitro studies have shown the enhancing effects of the addition of PARP1-inhibitors to chemoradiotherapy and thermoradiotherapy. The aim of our present study was to test efficacy of different combinations of treatment modalities radiotherapy, cisplatin, hyperthermia and PARP1-inhibitors using in vitro tumor models, ex vivo treated patient samples and in vivo tumor models. Materials and Methods: In vitro clonogenic survival curves (0-6 Gy) show that PARP1-i (4-5 M Olaparib) enhances both chemoradiotherapy (0.3-0.5 µM cisplatin) and thermoradiotherapy (42 °C for 1 h) in SiHa, CaSki and HeLa cells. A cervical cancer mouse model and freshly obtained in-house developed patient-derived organoids were used to examine the effects of different treatment combinations. For the in vivo study, human cervical cancer (SiHa) cells were injected in the right hind leg of athymic nude mice. In vivo mouse experiments show that PARP1-i enhances thermoradiotherapy or chemoradiotherapy by reduction of tumor volumes. Five cycles of treatment were applied with the following doses per cycle: irradiation 3 Gy, hyperthermia 1 h at 42 °C, cisplatin at 2 mg/kg, and twice PARP1-i at 50 mg/kg. Results: Quadruple treatment, combining radiotherapy, hyperthermia, cisplatin and PARP1-i, was very effective but also lead to severe side effects causing severe weight loss and death. In contrast, thermoradiotherapy or chemoradiotherapy with addition of PARP1-i, were effective without serious side effects. Conclusion: The triple combinations are promising options for potentially more effective treatment of locally advanced cervical cancer without more toxicity.
Collapse
Affiliation(s)
- Marloes IJff
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Xionge Mei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Enzo M Scutigliani
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans M Rodermond
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Gregor G W van Bochove
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
3
|
G A, A A, M I, G N, G P V. A multi-objective optimization framework through genetic algorithm for hyperthermia-mediated drug delivery. Comput Biol Med 2025; 189:109895. [PMID: 40020552 DOI: 10.1016/j.compbiomed.2025.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
This study presents an approach to the multi-objective optimization of hyperthermia-mediated drug delivery using thermo-sensitive liposomes (TSLs) for the treatment of hepatocellular carcinoma. The research focuses on addressing the non-optimal coupling methods that combine thermal treatments and chemotherapy by employing a Multi-Objective Genetic Algorithm (MOGA) optimization process, in order to identify the right combination of design variables to achieve better treatment outcomes. The proposed model integrates Computational Fluid Dynamics (CFD) analysis using the Pennes' Bioheat equation for tissue heating and a convection-diffusion model for drug delivery. The goal is to maximize the fraction of killed cancer cells through the pharmaceutical treatment while minimizing thermal damage to the tissue, aiming to not hinder the drug feeding from the vascular system. The optimization considers several design variables, including heating power, timing, and the number of antenna slots for the microwave heating. Simulations results suggest that a two-slots antenna configuration with a specific heating schedule yields optimal therapeutic outcomes by maximizing drug concentration in the tumor while limiting damage to healthy tissue. The results of the CFD analysis also show a significant improvement in the treatment outcomes compared to non-optimized results proposed previously in the literature, leading to an increase from the 10 % up to the 33 % for the fraction of killed cells function. The proposed optimization through Genetic Algorithm framework could significantly improve patient-specific treatment planning for hyperthermia-mediated drug delivery.
Collapse
Affiliation(s)
- Adabbo G
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy.
| | - Andreozzi A
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Iasiello M
- Dipartimento di Ingegneria Industriale, Università degli Studi di Napoli Federico II, P.le Tecchio 80, 80125, Napoli, Italy
| | - Napoli G
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| | - Vanoli G P
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università del Molise, Via Francesco De Sanctis 1, 86100, Campobasso, Italy
| |
Collapse
|
4
|
Su D, Lai X, Lin Z, Xu Y, Fu Z, Chen J, Wu X. Innovative nanodelivery systems for targeted breast cancer therapy: overcoming drug delivery challenges and exploring future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04039-5. [PMID: 40095056 DOI: 10.1007/s00210-025-04039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Cancer chemotherapy is often limited by insufficient drug targeting, which can cause severe adverse effects on healthy tissues. The advent of nanodelivery systems offers a potential solution to this issue. It intricately enhances drug accumulation in tumor regions, while optimizing drug solubility, ensuring colloidal stability, and promoting cellular uptake, significantly improving the precision and efficacy of treatment, opening a gentler yet more effective new path for cancer therapy. This article begins with the pathogenesis of breast cancer and extends to the current treatment methods and their shortcomings, exploring in-depth the targeting therapeutic effects of five innovative nanodelivery technologies used in the treatment of breast cancer in recent years. Finally, it discusses the potential opportunities and challenges that nanodelivery systems may face in future development.
Collapse
Affiliation(s)
- Dandan Su
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Xiaolin Lai
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Youfa Xu
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhiqin Fu
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
5
|
Tello Valverde CP, Bakker A, Kok HP, Kolff MW, van Tienhoven G, Kostoulas P, Slotman BJ, Pateras K, Crezee H. The Probability of Locoregional Control in Patients With Locoregional Recurrent Breast Cancer Treated With Postoperative Reirradiation and Hyperthermia (RADHY): A Continuous Thermal Dose-effect Relationship. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00176-2. [PMID: 40057286 DOI: 10.1016/j.ijrobp.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/08/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE Mild hyperthermia (HT) (39-43 °C) combined with reirradiation is considered for patients with locoregional recurrent (LRR) breast cancer. Studies analyzing dichotomized HT thermal dose (TD) parameters suggest that higher TD correlates with better response rates, but evidence quantifying optimal TD levels needed to achieve locoregional control (LRC) is limited. We investigated the continuous TD-effect relationship of LRC in patients with LRR breast cancer treated with postoperative reirradiation and HT. METHODS AND MATERIALS In this historical cohort study, 112 patients with LRR breast cancer were treated in 2010-2017 with postoperative reirradiation 8 × 4 Gy (n = 34) or 23 × 2 Gy (n = 78) and 4 to 5 weekly HT sessions, TD was measured using invasive thermometry in the target region. Primary endpoint was the estimated probability of LRC at 5-years. The logarithm of highest ("Best") CEM43T50 (median cumulative equivalent minutes at 43 °C) of all HT sessions was analyzed as TD parameter based on Weibull univariate and stepwise multivariate regression analyses. Additionally, the best fitted Bayesian LRC survival model was analyzed assuming 3 informative priors: age, tumor location (breast/chest wall), and lymph node involvement. RESULTS Twenty-four patients developed an infield recurrence; median time to recurrence was 3.4 years (interquartile range, 2.7-4.6 years). Increasing median Best session CEM43T50 TD range from 0.08 to 101.9 minutes was associated with increasing probability of LRC from ∼44% to 94% at 5-years, and over this range a 2-fold TD increase resulted in ∼5% to 10% increasing LRC. The hazard ratio for a subsequent recurrence decreased 48% (95% confidence interval, 18%-84%) with a 2-fold increase in TD over the TD range, P = .001. This effect was confirmed in Weibull multivariate regression analysis and in Bayesian LRC survival regression analysis. CONCLUSIONS Increasing TD was strongly associated with an improved LRC, showing that adequate TD must be ensured and confirming that HT is essential for strongly sensitizing efficacy of postoperative reirradiation for patients with LRR breast cancer.
Collapse
Affiliation(s)
- C Paola Tello Valverde
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - Akke Bakker
- Department of Pediatric Oncology, Princess Máxima Center, Utrecht, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - M Willemijn Kolff
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Polychronis Kostoulas
- Laboratory of Epidemiology and Artificial Intelligence, Faculty of Public and One Health, University of Thessaly, Karditsa, Greece
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Konstantinos Pateras
- Laboratory of Epidemiology and Artificial Intelligence, Faculty of Public and One Health, University of Thessaly, Karditsa, Greece
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Treatment and Quality of Life, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Burstow R, Andrés D, Jiménez N, Camarena F, Thanou M, Pouliopoulos AN. Acoustic holography in biomedical applications. Phys Med Biol 2025; 70:06TR01. [PMID: 39978080 DOI: 10.1088/1361-6560/adb89a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Acoustic holography can be used to construct an arbitrary wavefront at a desired 2D plane or 3D volume by beam shaping an emitted field and is a relatively new technique in the field of biomedical applications. Acoustic holography was first theorized in 1985 following Gabor's work in creating optical holograms in the 1940s. Recent developments in 3D printing have led to an easier and faster way to manufacture monolithic acoustic holographic lenses that can be attached to single-element transducers. As ultrasound passes through the lens material, a phase shift is applied to the waves, causing an interference pattern at the 2D image plane or 3D volume, which forms the desired pressure field. This technology has many applications already in use and has become of increasing interest for the biomedical community, particularly for treating regions that are notoriously difficult to operate on, such as the brain. Acoustic holograms could provide a non-invasive, precise, and patient specific way to deliver drugs, induce hyperthermia, or create tissue cell patterns. However, there are still limitations in acoustic holography, such as the difficulties in creating 3D holograms and the passivity of monolithic lenses. This review aims to outline the biomedical applications of acoustic holograms reported to date and discuss their current limitations and the future work that is needed for them to reach their full potential in the biomedical community.
Collapse
Affiliation(s)
- Rachel Burstow
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| | - Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Antonios N Pouliopoulos
- Department of Surgical & Interventional Engineering, School of Biomedical Engineering Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Bai Z, Li Z, Shao Y. Subcellular Cavitation Bubbles Induce Cellular Mechanolysis and Collective Wound Healing in Ultrasound-Inflicted Cell Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410760. [PMID: 39887946 PMCID: PMC11923933 DOI: 10.1002/advs.202410760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/21/2024] [Indexed: 02/01/2025]
Abstract
Focused ultrasound (FUS) has been widely adopted in medical and life science researches. Although various physical and biological effects of FUS have been well-documented, there is still a lack of understanding and direct evidence on the biological mechanism of therapeutic cell ablation caused by high-intensity ultrasound (HIFU) and the subsequent wound healing responses. This study develops an enclosed cell culture device that synergistically combines non-invasive FUS stimulation and real-time, on-the-fly live-cell imaging, providing an in vitro platform to explore short and long-term biological effects of ultrasound. The process, mechanism, and wound healing response of cell ablation induced by HIFU are elucidated, revealing a unique mechanism, termed ultrasound-inflicted cellular mechanolysis, that is mediated by growing subcellular cavitation air bubbles under confined contact with cells. This provides a previously unappreciated mechanism for understanding the biomechanical principles of ultrasound-based ablative therapy. A post-ablation phantom layer is also revealed that serves as a guiding cue for collective cell migration during wound healing, thereby providing a biomimetic model for studying wound healing after HIFU-inflicted damage. Together, this study provides theoretical and technological basis for advancing the understanding of the biological effects of ultrasound-based ablative therapy and inspiring clinically relevant applications in the future.
Collapse
Affiliation(s)
- Ziyue Bai
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Zaimeng Li
- Institute of Fluid Mechanics, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Isaković J, Chin BD, Oberwinter M, Rance HK. From lab coats to clinical trials: Evolution and application of electromagnetic fields for ischemic stroke rehabilitation and monitoring. Brain Res 2025; 1850:149391. [PMID: 39662791 DOI: 10.1016/j.brainres.2024.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Stroke is a neurovascular disorder which stands as one of the leading causes of death and disability worldwide, resulting in motor and cognitive impairment. Although the treatment approach depends on the time elapsed, the type of stroke and the availability of care centers, common interventions include thrombectomy or the administration of a tissue plasminogen activator (tPA). While these methods restore blood flow, they fall short in helping patients regain lost function. With that, recent years have seen a rise in novel methods, one of which is the use of electromagnetic fields (EMFs). Due to their ability to impact the charges in their vicinity, thereby altering the immune response and cell signaling, EMFs became suitable candidates for stroke rehabilitation. Based on their characteristics, therapeutic EMFs can be categorized into transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), pulsed (PEMFs) and low frequency (LF-EMFs) electromagnetic fields, among others. In addition to treatment, EMFs are being explored for stroke monitoring, utilizing external EMFs for imaging or recording innate EMFs linked to neural activity. Drawing from research on the effects of EMFs, this review aims to provide a comprehensive overview of the physical principles and molecular mechanisms underlying the action of EMFs, along with a discussion of their application in preclinical studies and clinical trials. Finally, this paper not only addresses the importance of treatment availability and potential side-effects, but also delves into the technical and ethical challenges associated with the use of EMFs, while exploring their prospects and future opportunities.
Collapse
Affiliation(s)
- Jasmina Isaković
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany.
| | - Benjamin Daniel Chin
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Moritz Oberwinter
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| | - Hannah Katarina Rance
- School of Medicine, European University Cyprus - Frankfurt Branch, 60488 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Long Y, Gan Y, Sun F, Zhao Y. Study on the heating law of thermal effect of HIFU on tissue based on piezoelectric ceramic voltage and vibration frequency. Sci Rep 2025; 15:4168. [PMID: 39905147 PMCID: PMC11794541 DOI: 10.1038/s41598-025-87166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
When high-intensity focused ultrasound (HIFU) is used to heat human tissues during surgery, shortening the heating time and increasing the heating rate are crucial for implementing surgery. During operations, the vibration frequencies and voltages that are suitable for piezoelectric ceramics can maximize the heating rate of HIFU. To correctly select the frequency and voltage of piezoelectric ceramics, it is necessary to understand the change law between the frequency and voltage of piezoelectric ceramics and the temperature of the heated tissue. Therefore, this study focuses on the piezoelectric ceramics in the ultrasonic transducer that produces HIFU. By coupling the piezoelectric equation, Helmholtz equation, and biological heat transfer equation of piezoelectric ceramics, the solid mechanical properties of piezoelectric ceramics and the sound field and temperature field produced by its vibration are combined to determine the influence of vibration frequency and voltage on heating time. Results show that the relation between the temperature variation of the tissue, vibration frequency, and voltage of the piezoelectric ceramics can be determined using the Rational Taylor function. The maximum voltage that the piezoelectric ceramics with different frequencies can withstand varies greatly.
Collapse
Affiliation(s)
- Yuping Long
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Gan
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Fujia Sun
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yansong Zhao
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Kok HP, Crezee J. Validation of the implementation of phased-array heating systems in Plan2Heat. Strahlenther Onkol 2025; 201:135-150. [PMID: 39143400 PMCID: PMC11754364 DOI: 10.1007/s00066-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Hyperthermia treatment planning can be supportive to ensure treatment quality, provided reliable prediction of the heating characteristics (i.e., focus size and effects of phase-amplitude and frequency steering) of the device concerned is possible. This study validates the predictions made by the treatment planning system Plan2Heat for various clinically used phased-array systems. METHODS The evaluated heating systems were AMC-2, AMC-4/ALBA-4D (Med-Logix srl, Rome, Italy), BSD Sigma-30, and Sigma-60 (Pyrexar Medical, Salt Lake City, UT, USA). Plan2Heat was used for specific absorption rate (SAR) simulations in phantoms representing measurement set-ups reported in the literature. SAR profiles from published measurement data based on E‑field or temperature rise were used to compare the device-specific heating characteristics predicted by Plan2Heat. RESULTS Plan2Heat is able to predict the correct location and size of the SAR focus, as determined by phase-amplitude settings and operating frequency. Measured effects of phase-amplitude steering on focus shifts (i.e., local SAR minima or maxima) were also correctly reflected in treatment planning predictions. Deviations between measurements and simulations were typically < 10-20%, which is within the range of experimental uncertainty for such phased-array measurements. CONCLUSION Plan2Heat is capable of adequately predicting the heating characteristics of the AMC‑2, AMC-4/ALBA-4D, BSD Sigma-30, and Sigma-60 phased-array systems routinely used in clinical hyperthermia.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC, University of Amsterdam, Dept. Radiation Oncology, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Treatment and quality of life, Cancer biology and immunology, Amsterdam, The Netherlands.
| | - J Crezee
- Amsterdam UMC, University of Amsterdam, Dept. Radiation Oncology, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Cancer biology and immunology, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Huang Z, Zhang T, Pan J, Zhang G, Jiang L, Jiang H, Wan P, Peng Y, Zou W, Liu Q, Chen N. Transcriptomic Profiles for Elucidating Response of Bladder Intracavitary Hyperthermic Perfusion Chemotherapy in High-Risk Nonmuscular Invasive Bladder Cancer. Cancer Med 2025; 14:e70672. [PMID: 39980308 PMCID: PMC11842869 DOI: 10.1002/cam4.70672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Bladder intracavitary hyperthermic perfusion chemotherapy (HIPEC) is a promising treatment for non-muscular invasive bladder cancer (NMIBC). However, the molecular mechanisms underlying the response to HIPEC remain poorly understood. This study aimed to elucidate the transcriptomic profiles associated with the response to HIPEC in NMIBC patients. METHODS RNA sequencing was performed on bladder tumor samples from NMIBC patients who underwent HIPEC treatment. Differentially expressed genes (DEGs) between responders and non-responders to HIPEC were identified. Gene ontology and pathway analysis were conducted to explore the biological functions and pathways enriched in the DEGs. Additionally, the expression of specific immune-related genes was evaluated for their association with HIPEC response. The diagnostic efficiency of selected genes in predicting relapse before and after HIPEC treatment was assessed in a validation cohort. RESULTS We assessed the expression status of differentially expressed genes (DEGs) between responders and non-responders to HIPEC. Gene ontology and pathway analysis revealed that DEGs were enriched in immune-related pathways, including cytokine-cytokine receptor interaction, chemokine signaling pathway, and antigen processing and presentation. Furthermore, the expression of several immune-related genes, including ZMAP4, UPP2, and GALR1, was significantly associated with the response to HIPEC. Therefore, the immune system's reaction plays a crucial role in the response to HIPEC in patients with NMIBC. At last, a considerable diagnostic efficiency that tissue TMEFF2, KRT222, and GTSF1 in predicting relapse in NMIBC patients after HIPEC treatment, and ZMAP4, UPP2, and GALR1 in predicting relapse in NMIBC patients before HIPEC treatment in the validation cohort. CONCLUSION Transcriptomic profiling revealed that immune-related pathways and genes play a crucial role in the response to HIPEC in NMIBC patients. These findings suggest that transcriptomic profiling could provide a valuable tool for predicting treatment outcomes and identifying therapeutic targets for NMIBC.
Collapse
Affiliation(s)
- Zhicheng Huang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Tianhui Zhang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of Magnetic Resonance ImagingMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Jinghua Pan
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Guihao Zhang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Linjun Jiang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Huiming Jiang
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Pei Wan
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Ying Peng
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Wenchao Zou
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Qinghua Liu
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of PathologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| | - Nanhui Chen
- Shantou University Medical College Meizhou Clinical CollegeMeizhouGuangdong ProvinceChina
- Department of UrologyMeizhou People's HospitalMeizhouGuangdong ProvinceChina
| |
Collapse
|
12
|
Firuzalizadeh M, Gaffoglio R, Giordanengo G, Righero M, Zucchi M, Musacchio Adorisio G, Bellone A, Vallan A, Perrone G, Vecchi G. Joint Optimization of Antenna System Matching and Specific Absorption Rate Focusing in Microwave Hyperthermia Cancer Treatment. Cancers (Basel) 2025; 17:386. [PMID: 39941755 PMCID: PMC11816380 DOI: 10.3390/cancers17030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE Microwave hyperthermia is a clinically proven cancer treatment used in combination with conventional therapies to enhance the overall treatment outcome. It consists in selectively increasing the temperature of tumor cells to 40-44 °C by means of electromagnetic fields that are externally generated and coupled to the patient body via antenna applicators. The primary goal is to shape the power deposition (specific absorption rate, SAR) with focusing on the tumor region, and minimizing the risk of hotspots in the surrounding healthy tissues. METHODS For non-superficial tumors, phased-array antennas are used to focus the energy on the tumor. Finding patient-specific optimal antenna feeding coefficients represents an essential step to ensure an effective and safe administration of the heating. In this article, we present a way to optimize the array power transfer effectiveness (impedance matching) that does not deteriorate the spatial power deposition performance. A global optimization approach is adopted, using a cost function properly tailored to incorporate the active reflection coefficients of the array and the Hotspot-to-Target SAR Quotient (HTQ)-the latter being the standard in hyperthermia applications. RESULTS The effectiveness of the technique is demonstrated in a scenario relevant to the treatment of tumors in the neck region. The results show that our method significantly improves antenna matching without compromising the HTQ, achieving values within the recommended limits. The performance of the proposed approach is also experimentally tested with full heating in a corresponding phantom. CONCLUSIONS This study introduces an optimization approach that enhances phased-array antenna performance for hyperthermia treatments without affecting spatial power deposition.
Collapse
Affiliation(s)
- Maryam Firuzalizadeh
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Rossella Gaffoglio
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Giorgio Giordanengo
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Marco Righero
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Marcello Zucchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Giuseppe Musacchio Adorisio
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Aurora Bellone
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Alberto Vallan
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Guido Perrone
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Giuseppe Vecchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| |
Collapse
|
13
|
De Mendoza AM, Michlíková S, Castro PS, Muñoz AG, Eckhardt L, Lange S, Kunz-Schughart LA. Generalized, sublethal damage-based mathematical approach for improved modeling of clonogenic survival curve flattening upon hyperthermia, radiotherapy, and beyond. Phys Med Biol 2025; 70:025022. [PMID: 39761642 DOI: 10.1088/1361-6560/ada680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/06/2025] [Indexed: 01/21/2025]
Abstract
Objective. Mathematical modeling can offer valuable insights into the behavior of biological systems upon treatment. Different mathematical models (empirical, semi-empirical, and mechanistic) have been designed to predict the efficacy of either hyperthermia (HT), radiotherapy (RT), or their combination. However, mathematical approaches capable of modeling cell survival from shared general principles for both mono-treatments alone and their co-application are rare. Moreover, some cell cultures show dose-dependent saturation in response to HT or RT, manifesting in survival curve flattenings. An advanced survival model must, therefore, appropriately reflect such behavior.Approach. We propose a mathematical approach to model the effect of both treatments based on the general principle of sublethal damage (SLD) accumulation for the induction of cell death and irreversible proliferation arrest. Our approach extends Jung's model on heat-induced cellular inactivation by incorporating dose-dependent recovery rates that delineate changes in SLD restoration.Main results. The resulting unified model (Umodel) accurately describes HT and RT survival outcomes, applies to simultaneous thermoradiotherapy modeling, and is particularly suited to reproduce survival curve flattening phenomena. We demonstrate the Umodel's robust performance (R2 0.95) based on numerous clonogenic cell survival data sets from the literature and our experimental studies.Significance. The proposed Umodel allows using a single unified mathematical function based on generalized principles of accumulation of SLD with implemented radiosensitization, regardless of the type of energy deposited and the mechanism of action. It can reproduce various patterns of clonogenic survival curves, including any flattening, thus encompassing the variability of cell reactions to therapy, thereby potentially better reflecting overall tumor responses. Our approach opens a range of options for further model developments and strategic therapy outcome predictions of sequential treatments applied in different orders and varying recovery intervals between them.
Collapse
Affiliation(s)
- Adriana M De Mendoza
- Physics Department, Pontificia Universidad Javeriana, Carrera 7 N 40 - 62, Bogotá, 110231, Colombia
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Soňa Michlíková
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Paula S Castro
- Universidad Distrital-Francisco José de Caldas, Bogotá 111611, Colombia
| | - Anni G Muñoz
- Physics Department, Pontificia Universidad Javeriana, Carrera 7 N 40 - 62, Bogotá, 110231, Colombia
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
| | - Lisa Eckhardt
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
| | - Steffen Lange
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- DataMedAssist Group, HTW Dresden-University of Applied Sciences, 01069 Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC): German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
14
|
Wang X, Zhao S, Zhang A. Image-Based Monitoring of Thermal Ablation. Bioengineering (Basel) 2025; 12:78. [PMID: 39851352 PMCID: PMC11762831 DOI: 10.3390/bioengineering12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Thermal therapy is a commonly used local treatment technique in clinical practice. Monitoring the treatment process is essential for ensuring its success. In this review, we analyze recent image-based methods for thermal therapy monitoring, focusing particularly on their feasibility for synchronous or immediate postoperative monitoring. This includes thermography and other techniques that track the physical changes in tissue during thermal ablation. Potential directions and challenges for further clinical applications are also summarized.
Collapse
Affiliation(s)
| | | | - Aili Zhang
- School of Biomedical Engineering, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; (X.W.); (S.Z.)
| |
Collapse
|
15
|
Díaz-Riascos ZV, Llaguno-Munive M, Lafuente-Gómez N, Luengo Y, Holmes S, Volatron J, Ibarrola O, Mancilla S, Sarno F, Aguirre JJ, Razafindrakoto S, Southern P, Terán FJ, Keogh A, Salas G, Prina-Mello A, Lacal JC, Del Pozo A, Pankhurst QA, Hidalgo M, Gazeau F, Somoza Á, Schwartz S, Abasolo I. Preclinical Development of Magnetic Nanoparticles for Hyperthermia Treatment of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2924-2939. [PMID: 39745145 DOI: 10.1021/acsami.4c16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very challenging disease with a very poor prognosis. It is characterized by a dense desmoplastic stroma that hampers drug penetration and limits the effectiveness of conventional chemotherapy (CT). As an alternative, the combination of CT with hyperthermia (HT) has been proposed as an innovative treatment modality for PDAC. In previous works, we reported on the development of iron oxide magnetic nanoparticles (MNPs) that, when exposed to time-varying magnetic fields, exhibit strong HT responses that inhibited the growth of pancreatic cancers. We report here on advances toward the clinical use of these MNPs as an intratumorally administered sterile magnetic fluid (the "NoCanTher ThermoTherapy" or "NTT" Agent) alongside intravenous standard-of-care drugs (gemcitabine and nab-paclitaxel) for the treatment of PDAC. In vitro cell viability assays show that the combination of low doses of CT and HT is highly synergistic, particularly in the BxPC-3 cell line. In vivo, biodistribution assays showed that the NTT Agent MNPs remained mainly within the tumor, concentrated around areas with a high stromal component. Moreover, the combined CT/HT treatment shows clear advantages over CT alone in terms of drug penetration and reduction of the tumor volume, suggesting a potential direct effect of HT in the disruption of the interstitial stroma to facilitate the access of the drugs to malignant cells. These studies have led to the approval and commencement of a clinical investigational study at the Vall d'Hebron University Hospital (Barcelona, Spain) of the NTT Agent alongside CT in patients with locally advanced PDAC.
Collapse
Affiliation(s)
- Zamira V Díaz-Riascos
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Monserrat Llaguno-Munive
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Nuria Lafuente-Gómez
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Yurena Luengo
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
| | - Sarah Holmes
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Jeanne Volatron
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Sandra Mancilla
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Francesca Sarno
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | | | - Sarah Razafindrakoto
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | | | - Francisco J Terán
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Anna Keogh
- Department of Histopathology, St. James's Hospital and Trinity College Dublin, Cancer Molecular Diagnostics, Dublin 8 Dublin, Ireland
| | - Gorka Salas
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
- Unidad de Nanomateriales Avanzados, IMDEA Nanociencia (Unidad de I+D+I Asociada al Instituto de Ciencia de Materiales de Madrid, CSIC), 28049 Madrid, Spain
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
- Trinity St. James's Cancer Institute, School of Medicine (TCD) and St. James's Hospital, Dublin 8 Dublin, Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8 Dublin, Ireland
| | - Juan Carlos Lacal
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
- Instituto de Investigaciones Biomédicas (IIB), CSIC, 28029 Madrid, Spain
| | - Angel Del Pozo
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin (TCD), Dublin 8 Dublin, Ireland
| | - Quentin A Pankhurst
- Resonant Circuits Limited, London W1S 4BS, U.K
- Healthcare Biomagnetics Laboratory, University College London, London W1S 4BS, U.K
| | - Manuel Hidalgo
- Grupo de Oncología Traslacional, Hospital Universitario de Fuenlabrada, 28942 Madrid, Spain
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot, Paris 75205, cedex, France
| | - Álvaro Somoza
- IMDEA Nanociencia, Unidad Asociada al Centro Nacional de Biotecnología (CSIC) 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnología (CNB-CSIC e IMDEA Nanociencia), 28049 Madrid, Spain
| | - Simó Schwartz
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery & Therapy (CB-DDT), Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR), Unit20 ICTS Nanbiosis, Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Instituto de Química Avanzada de Cataluña (IQAC), CSIC, 08034 Barcelona, Spain
| |
Collapse
|
16
|
Kennedy BE, Noftall EB, Dean C, Roth A, Clark KN, Rowles D, Singh K, Pagliaro L, Giacomantonio CA. Targeted intra-tumoral hyperthermia using uniquely biocompatible gold nanorods induces strong immunogenic cell death in two immunogenically 'cold' tumor models. Front Immunol 2025; 15:1512543. [PMID: 39872527 PMCID: PMC11769938 DOI: 10.3389/fimmu.2024.1512543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Hyperthermia is an established adjunct in multimodal cancer treatments, with mechanisms including cell death, immune modulation, and vascular changes. Traditional hyperthermia applications are resource-intensive and often associated with patient morbidity, limiting their clinical accessibility. Gold nanorods (GNRs) offer a precise, minimally invasive alternative by leveraging near-infrared (NIR) light to deliver targeted hyperthermia therapy (THT). THT induces controlled tumor heating, promoting immunogenic cell death (ICD) and modulating the tumor microenvironment (TME) to enhance immune engagement. This study explores the synergistic potential of GNR-mediated THT with immunotherapies in immunogenically 'cold' tumors to achieve durable anti-tumor immunity. Methods GNRs from Sona Nanotech Inc.™ were intratumorally injected and activated using NIR light to induce mild hyperthermia (42-48°C) for 5 minutes. Tumor responses were analyzed for cell death pathways and immune modulation. The immunogenic effects of THT were assessed alone and in combination with intratumoral interleukin-2 (i.t. IL-2) or systemic PD-1 immune checkpoint blockade. Immune cell infiltration, gene expression changes, and tumor growth kinetics were evaluated. Results THT reduced tumor burden through cell death mechanisms, including upregulated ICD marked by calreticulin exposure within 48 hours. By 48 hours, CD45+ immune cell levels were increased, including increased levels of immunosuppressive M2 macrophages. While THT led to innate immune cell stimulations highlighted by gene expression upregulation in the STING cGAS pathway and enhanced M1 and dendritic cell levels, tumor regrowth was observed within six days post-treatment. To enhance THT's immunogenic effects, the therapy was combined with intratumoral interleukin-2 (i.t. IL-2) or systemic PD-1 immune checkpoint blockade. Sequential administration of i.t. IL-2 post-THT induced robust CD8+ T-cell infiltration and led to sustained tumor regression in both treated and distant tumors, accompanied by the emergence of memory T cells. However, IL-2-induced immunosuppressive T-reg populations were also sustained to tumor endpoint suggesting that therapy could be further enhanced. Additionally, PD-1 expression, which was upregulated in CD8+ T cells by THT, was targeted with systemic PD-1 inhibition, further augmenting immune engagement within the TME. Discussion These combinatory treatments demonstrated synergistic effects, promoting durable anti-tumor responses and immune memory. Collectively, GNR-mediated THT effectively reduces tumor burden and remodels the TME, potentiating systemic immunity and enhancing the impact of complementary immunotherapies.
Collapse
Affiliation(s)
- Barry E. Kennedy
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Erin B. Noftall
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Cheryl Dean
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Alexander Roth
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Kate N. Clark
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Darren Rowles
- Department of Diagnoses, Sona Nanotech Inc.™, Halifax, NS, Canada
| | - Kulbir Singh
- Department of R&D, Sona Nanotech Inc.™, Halifax, NS, Canada
| | - Len Pagliaro
- Department of R&D, Sona Nanotech Inc.™, Halifax, NS, Canada
| | - Carman A. Giacomantonio
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of R&D, Sona Nanotech Inc.™, Halifax, NS, Canada
- Department of Surgery, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Price SEN, Gjennestad MA, Kjelstrup S, Hansen R. The effect of temperature constraints on the treatment of tumors using focused ultrasound-induced acoustic streaming. Sci Rep 2025; 15:49. [PMID: 39747331 PMCID: PMC11697381 DOI: 10.1038/s41598-024-83782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The transport of drugs into tumor cells near the center of the tumor is known to be severely hindered due to the high interstitial pressure and poor vascularization. The aim of this work is to investigate the possibility to induce acoustic streaming in a tumor. Two tumor cases (breast and abdomen) are simulated to find the acoustic streaming and temperature rise, while varying the focused ultrasound transducer radius, frequency, and power for a constant duty cycle (1%). In the absence of perfusion, the simulated rise in temperature, despite the low duty cycle, never reaches a steady state and is fitted to a logarithmic equation, enabling predictions of the temperature for long treatment times. Higher frequencies and larger probe radii are found to result in shorter treatment times relative to the temperature rise, at the cost of a smaller treated area. Results from the simulations indicate that it may be possible to achieve reasonable acoustic streaming values in tumor without the temperature exceeding 50 °C. Treatment times for streaming a distance of 50 μm in the breast case are shown to range from less than one and a half hour to 93 h, depending on the probe settings.
Collapse
Affiliation(s)
- Sebastian E N Price
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway.
| | | | - Signe Kjelstrup
- Porelab and Department of Chemistry, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| | - Rune Hansen
- SINTEF, Department of Health Research and Department of Circulation and Medical Imaging, The Norwegian University of Science and Technology NTNU, 7491, Trondheim, Norway
| |
Collapse
|
18
|
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie 2025; 71:101604. [PMID: 39413572 DOI: 10.1016/j.neuchi.2024.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Laser interstitial thermal therapy (LITT) is being performed more frequently for various lesions within neurosurgery, including epileptic foci, vascular malformations, and tumors. Though this technique generally has an excellent safety profile, it is important to be aware of potential complications. Thermal ablation of tissue leads to disruption of the blood brain barrier as well as an inflammatory response both of which cause the majority of complications from LITT. The most common complications of LITT include cerebral edema, focal neurologic deficits, and intracranial hemorrhage. Few studies have identified factors predicting development of these complications, but many of these are transient and resolve without intervention. Modifications to LITT technique that allows better visualization of patient anatomy along the tract, such as fusing vascular imaging with intraoperative MRI, reduce the risk of complications.
Collapse
Affiliation(s)
- Kyle McGrath
- College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Matthew Frain
- Department of Medical Physics, University of Florida, Gainesville, FL, United States; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Grace Hey
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States; Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Yao J, Cui Z, Zhang F, Li H, Tian L. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. J Mater Chem B 2024; 13:117-136. [PMID: 39544081 DOI: 10.1039/d4tb01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Localized cancer therapies such as radiotherapy, phototherapy, and chemotherapy are precise cancer treatment strategies aimed at minimizing systemic side effects. However, cancer metastasis remains the primary cause of mortality among cancer patients in clinical settings, and localized cancer treatments have limited efficacy against metastatic cancer. Therefore, researchers are exploring strategies that combine localized therapy with immunotherapy to activate robust anti-tumor immune responses, thereby eradicating metastatic cancer. Biomaterials, as novel materials, exhibit great potential in biomedical applications and have achieved great progress in clinic translation. This review introduces biomaterials and their applications in research focused on enhancing localized cancer treatment activated anti-tumor immunity. Additionally, the current challenges and future directions of biomaterials are also discussed, providing insights and references for related research.
Collapse
Affiliation(s)
- Jipeng Yao
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
20
|
Sinha PM, Folefac CA, Overgaard J, Horsman MR. The Rationale for Combining Hypofractionated Radiation and Hyperthermia. Cancers (Basel) 2024; 16:3916. [PMID: 39682105 DOI: 10.3390/cancers16233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The conventional radiation treatment of cancer patients has typically involved a large number of daily treatments with relatively low doses of radiation. However, improved technology has now resulted in the increased use of fewer radiation fractions at a high dose per fraction. This latter approach is often referred to as hypofractionated irradiation. While conventional radiation typically kills tumor cells through the production of DNA damage, treatments with higher doses per fraction have been suggested to also kill cells via the induction of vascular damage. Such vascular effects will also increase the level of adverse microenvironmental conditions, such as hypoxia and acidity, that already exist in tumors. Cells existing in these adverse microenvironmental conditions are resistant to radiation but actually sensitive to hyperthermia (heating at 40-45 °C) treatment. This suggests that the combination of hypofractionated radiation and heat may be a viable treatment approach. While there are preliminary pre-clinical and even clinical studies investigating this option, there are actually no data on the optimal application for the greatest therapeutic benefit. In this critical review, we will present the rationale for combining hypofractionated radiation with hyperthermia and discuss what has been done and what should be done to establish this combination as an effective cancer therapy option.
Collapse
Affiliation(s)
- Priyanshu M Sinha
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Charlemagne A Folefac
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jens Overgaard
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
21
|
Farasatkia A, Maeso L, Gharibi H, Dolatshahi-Pirouz A, Stojanovic GM, Edmundo Antezana P, Jeong JH, Federico Desimone M, Orive G, Kharaziha M. Design of nanosystems for melanoma treatment. Int J Pharm 2024; 665:124701. [PMID: 39278291 DOI: 10.1016/j.ijpharm.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Melanoma is a prevalent and concerning form of skin cancer affecting millions of individuals worldwide. Unfortunately, traditional treatments can be invasive and painful, prompting the need for alternative therapies with improved efficacy and patient outcomes. Nanosystems offer a promising solution to these obstacles through the rational design of nanoparticles (NPs) which are structured into nanocomposite forms, offering efficient approaches to cancer treatment procedures. A range of NPs consisting of polymeric, metallic and metal oxide, carbon-based, and virus-like NPs have been studied for their potential in treating skin cancer. This review summarizes the latest developments in functional nanosystems aimed at enhancing melanoma treatment. The fundamentals of these nanosystems, including NPs and the creation of various functional nanosystem types, facilitating melanoma treatment are introduced. Then, the advances in the applications of functional nanosystems for melanoma treatment are summarized, outlining both their benefits and the challenges encountered in implementing nanosystem therapies.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Hamidreza Gharibi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Goran M Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jee-Heon Jeong
- Laboratory of Drug Delivery and Cell Therapy (LDDCT). Department of Precision Medicine. School of Medicine, Sungkyunkwan University. South Korea
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
22
|
Scharr MV, Damm F, Krahl P, Dieper A, Veltsista PD, Hansch A, Beck M, Gerster D, Giovannelli AC, Bullinger L, Zips D, Ghadjar P. Review of preclinical data on hyperthermia treatment in lymphomas and its potential for clinical application. Int J Hyperthermia 2024; 41:2418427. [PMID: 39489511 DOI: 10.1080/02656736.2024.2418427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
INTRODUCTION Hyperthermia (HT) at temperatures between 39 °C and 44 °C is utilized as an adjunctive cancer therapy, serving as potent radio- and chemosensitizer. Its effectiveness in treating solid malignancies has been well established. This raises the question of whether HT can also benefit patients with nonsolid tumors, such as lymphomas. OBJECTIVE To provide an overview of the current literature on research involving the use of HT in the treatment of lymphomas. MATERIAL AND METHODS This systematic literature review was conducted following the PRISMA guidelines. For this purpose, a MeSH-term-defined literature search on MEDLINE (Pubmed) and Embase (Ovid) was conducted from June 25 to June 28, 2024. Included were in vitro studies on lymphoma cell lines and preclinical studies on animal models with lymphoma that were both treated with HT as monotherapy or HT in combination with another treatment, and studies on patients with lymphoma. Excluded were studies that used thermal ablation and hyperthermic perfusions. RESULTS Thirty-nine studies were included, predominantly in vitro studies (n = 32) or studies on animal models (n = 5). The in vitro studies utilized HT either as monotherapy (n = 6), with substances that enhance HT efficacy (n = 18) or as a sensitizer for other treatments (n = 8). Additionally, two clinical case reports on the treatment of lymphoma patients were included. CONCLUSIONS In vitro results suggest that HT can have anticancer effects on lymphoma cells and may enhance existing treatments. These findings are supported by in vivo studies and case reports. However, additional clinical data are needed before translation into the clinic can be implemented.
Collapse
Affiliation(s)
- Moritz V Scharr
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik Damm
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | - Paul Krahl
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Dieper
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Hansch
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna-Chiara Giovannelli
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Bullinger
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Oncology and Cancer Immunology, Charité - Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin corporate member of Free University Berlin and Humboldt University Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Bohra M, Giaremis S, Ks A, Mathioudaki S, Kioseoglou J, Grammatikopoulos P. Ferromagnetic-Antiferromagnetic Coupling in Gas-Phase Synthesized M(Fe, Co, and Ni)-Cr Nanoparticles for Next-Generation Magnetic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403708. [PMID: 39316368 DOI: 10.1002/advs.202403708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Combining ferromagnetic-antiferromagnetic materials in nanoalloys (i.e., nanoparticles, NPs, containing more than one element) can create a diverse landscape of potential electronic structures. As a result, a number of their magnetic properties can be manipulated, such as the exchange bias between NP core and shell, the Curie temperature of nanoparticulated samples, or their magnetocaloric effect. In this work, such a family of materials (namely M-Cr NPs where M is Fe, Co, Ni, or some combination of them) is reviewed with respect to the tunability of their magnetic properties via optimized doping with Cr up to its solubility limit. To this end, gas-phase synthesis has proven a most effective method, allowing excellent control over the physical structure, composition, and chemical ordering of fabricated NPs by appropriately selecting various deposition parameters. Recent advances in this field (both experimental and computational) are distilled to provide a better understanding of the underlying physical laws and point toward new directions for cutting-edge technological applications. For each property, a relevant potential application is associated, such as memory cells and recording heads, induced hyperthermia treatment, and magnetic cooling, respectively, aspiring to help connect the output of fundamental and applied research with current real-world challenges.
Collapse
Affiliation(s)
- Murtaza Bohra
- Physics Department, School of Engineering, Mahindra University, Survey Number 62/1A, Bahadurpally Jeedimetla, Hyderabad, Telangana, 500043, India
| | - Stefanos Giaremis
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Abisegapriyan Ks
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | | | - Joseph Kioseoglou
- School of Physics, Department of Condensed Matter and Materials Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Center for Interdisciplinary Research & Innovation, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panagiotis Grammatikopoulos
- Materials Science and Engineering, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
| |
Collapse
|
24
|
Ye M, Yin D, Wu Y, Miao H, Wu Z, Liu P. Infrared radiation for cancer hyperthermia: the light to brighten up oncology. Expert Rev Anticancer Ther 2024; 24:1147-1160. [PMID: 39390965 DOI: 10.1080/14737140.2024.2416063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Cancer constitutes the greatest public health threat to humans, as its incidence and mortality rates continue to increase worldwide. With the development of medical physics, more practitioners focus on the direct and indirect anti-tumor effects of physical factors. Infrared radiation (INR) is currently the most rapidly developing physical therapy method for tumors and has become a favored target for many oncologists and researchers owing to its advantages of high efficiency, low toxicity, and strong feasibility. AREAS COVERED This work provides a comprehensive collection of the latest information on INR anti-tumor research, drawing from public medical databases (PubMed, Web of Science, Embase, and Clinical Trials) from the last 10 years (2014 to 2024), and encompassing both basic and clinical research in oncology and physics. This article reviews the application of INR in tumor hyperthermia, summarizes and analyzes the practical value of INR for tumor treatment, and discusses future development trends to provide valuable assistance for the subsequent development of oncology. EXPERT OPINION Currently, INR has continuously accumulated excellent data in the field of tumor hyperthermia, bringing practical survival benefits to patients with cancer, and playing an important role in basic and clinical cancer research.
Collapse
Affiliation(s)
- Mengna Ye
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Dashan Yin
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Wu
- ACS (International) School of Singapore, Singapore, Singapore
| | - Hua Miao
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Jameel B, Harkavyi Y, Bielas R, Józefczak A. Optimization of ultrasound heating with Pickering droplets using core-shell scattering theory. ULTRASONICS SONOCHEMISTRY 2024; 109:106965. [PMID: 39084075 PMCID: PMC11339063 DOI: 10.1016/j.ultsonch.2024.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024]
Abstract
Nanoparticles find widespread application in various medical contexts, including targeted nanomedicine and enhancing therapeutic efficacy. Moreover, they are employed to stabilize emulsions, giving rise to stabilized droplets known as Pickering droplets. Among the various methods to improve anti-cancer treatment, ultrasound hyperthermia stands out as an efficient approach. This research proposes Pickering droplets as promising sonosensitizer candidates, to enhance the attenuation of ultrasound with simultaneous potential to act as drug carriers. The enhanced ultrasound energy dissipation could be, therefore, optimized by changing the parameters of Pickering droplets. The ultrasound scattering theory, based on the core-shell model, was employed to calculate theoretical ultrasound properties such as attenuation and velocity. Additionally, computer simulations, based on a bioheat transfer model, were utilized to compute heat generation in agar-based phantoms of tissues under different ultrasound wave frequencies. Two types of phantoms were simulated: a pure agar phantom and an agar phantom incorporating spherical inclusions. The spherical inclusions, with a diameter of 10 mm, were doped with various sizes of Pickering droplets, considering their core radius and shell thickness. Computer simulation of these spherical inclusions incorporated within agar phantom resulted in different enhancement of achieved temperature elevation, which depending on the core radius, shell thickness, and the material properties of the system. Notably, spherical inclusions doped with Pickering droplets stabilized by magnetite nanoparticles exhibited a higher temperature rise compared to droplets stabilized by silica nanoparticles. Moreover, nanodroplets with a core radius below 400 nm demonstrated better heating performance compared to microdroplets. Furthermore, Pickering droplets incorporated into agar phantom could allow obtaining a similar effect of local heating as sophisticated focused ultrasound devices.
Collapse
Affiliation(s)
- Bassam Jameel
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Yaroslav Harkavyi
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Rafał Bielas
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| | - Arkadiusz Józefczak
- Chair of Acoustics, Faculty of Physics, Adam Mickiewicz University in Poznań Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| |
Collapse
|
26
|
Omar H, Alkurdi YA, Fathima A, Alsharaeh EH. Investigation of the Application of Reduced Graphene Oxide-SPION Quantum Dots for Magnetic Hyperthermia. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1547. [PMID: 39404274 PMCID: PMC11477580 DOI: 10.3390/nano14191547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Integrating hyperthermia with conventional cancer therapies shows promise in improving treatment efficacy while mitigating their side effects. Nanotechnology-based hyperthermia, particularly using superparamagnetic iron oxide nanoparticles (SPIONs), offers a simplified solution for cancer treatment. In this study, we developed composites of SPION quantum dots (Fe3O4) with reduced graphene oxide (Fe3O4/RGO) using the coprecipitation method and investigated their potential application in magnetic hyperthermia. The size of Fe3O4 nanoparticles was controlled within the quantum dot range (≤10 nm) by varying the synthesis parameters, including reaction time as well as the concentration of ammonia and graphene oxide, where their biocompatibility was further improved with the inclusion of polyethylene glycol (PEG). These nanocomposites exhibited low cytotoxic effects on healthy cells (CHO-K1) over an incubation period of 24 h, though the inclusion of PEG enhanced their biocompatibility for longer incubation periods over 48 h. The Fe3O4/RGO composites dispersed in acidic pH buffer (pH 4.66) exhibited considerable heating effects, with the solution temperature increasing by ~10 °C within 5 min of exposure to pulsed magnetic fields, as compared to their dispersions in phosphate buffer and aqueous dimethylsulfoxide solutions. These results demonstrated the feasibility of using quantum dot Fe3O4/RGO composites for magnetic hyperthermia-based therapy to treat cancer, with further studies required to systematically optimize their magnetic properties and evaluate their efficacy for in vitro and in vivo applications.
Collapse
Affiliation(s)
| | | | | | - Edreese H. Alsharaeh
- College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (H.O.)
| |
Collapse
|
27
|
Prokhorova A, Helbig M. Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5902. [PMID: 39338647 PMCID: PMC11435978 DOI: 10.3390/s24185902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Hyperthermia induces slight temperature increase of 4-8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy tissue, methods for non-invasive temperature monitoring are needed. Temperature estimation by means of microwave imaging is of great interest among the scientific community. In this paper, we present the results of experiments based on ultra-wideband (UWB) M-sequence technology. Our temperature estimation approach uses temperature dependency of tissue dielectric properties and relation of UWB images to the reflection coefficient on the boundary between tissue types. The realistic measurement setup for neck cancer hyperthermia considers three antenna arrangements. Data are processed with Delay and Sum beamforming and Truncated Singular Value Decomposition. Two types of experiments are presented in this paper. In the first experiment, relative permittivity of subsequently replaced tumor mimicking material is estimated, and in the second experiment, real temperature change in the tumor imitate is monitored. The results showed that the presented approach allows for qualitative as well as quantitative permittivity and temperature estimation. The frequency range for temperature estimation, preferable antenna configurations, and limitations of the method are indicated.
Collapse
Affiliation(s)
- Alexandra Prokhorova
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Marko Helbig
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
28
|
Gubieda AG, Gandarias L, Pósfai M, Pattammattel A, Fdez-Gubieda ML, Abad-Díaz-de-Cerio A, García-Prieto A. Temporal and spatial resolution of magnetosome degradation at the subcellular level in a 3D lung carcinoma model. J Nanobiotechnology 2024; 22:529. [PMID: 39218876 PMCID: PMC11367995 DOI: 10.1186/s12951-024-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic nanoparticles offer many exciting possibilities in biomedicine, from cell imaging to cancer treatment. One of the currently researched nanoparticles are magnetosomes, magnetite nanoparticles of high chemical purity synthesized by magnetotactic bacteria. Despite their therapeutic potential, very little is known about their degradation in human cells, and even less so of their degradation within tumours. In an effort to explore the potential of magnetosomes for cancer treatment, we have explored their degradation process in a 3D human lung carcinoma model at the subcellular level and with nanometre scale resolution. We have used state of the art hard X-ray probes (nano-XANES and nano-XRF), which allow for identification of distinct iron phases in each region of the cell. Our results reveal the progression of magnetite oxidation to maghemite within magnetosomes, and the biosynthesis of magnetite and ferrihydrite by ferritin.
Collapse
Affiliation(s)
- Alicia G Gubieda
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Lucía Gandarias
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, Saint-Paul-les-Durance, 13108, France
| | - Mihály Pósfai
- Research Center of Biomolecular and Chemical Engineering, University of Pannonia Veszprém, Veszprém, Hungary
- HUN-REN-PE Environmental Mineralogy Research Group, Veszprém, Hungary
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Luisa Fdez-Gubieda
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Ana Abad-Díaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Ana García-Prieto
- Department of Applied Physics, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
| |
Collapse
|
29
|
Guo Y, Wang W, Li W, Li J, Zhu M, Song R, Zhu W, Wang L, Ji Z, Shi X. In vivo electrical properties of the healthy liver and the hepatic tumor in a mouse model between 1 Hz and 1 MHz during a thermal treatment. Int J Hyperthermia 2024; 41:2396122. [PMID: 39218439 DOI: 10.1080/02656736.2024.2396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Objective: Understansding the changing patterns of in vivo electrical properties for the target tissue is crucial for the accurate temperature monitoring and the treatment efficacy in thermal therapy. Our research aims to investigate the changing patterns and the reversibility of in vivo electrical properties for both healthy livers and liver tumors in a mouse model over a frequency range of 1 Hz to 1 MHz at temperatures between 30 °C to 90 °C. Methods and materials: The mice were anesthetized and the target organ was exposed. An 808-nm near-infrared laser was employed as the heating source to heat the organ in vivo. The four-needle electrode, connected to an impedance analyzer, was utilized to obtain the impedance at varying temperatures, which were monitored by a thermocouple. Results: The findings indicated a gradual decline in impedance with an increase in temperature. Furthermore, the impedance was normalized to that at 30 °C, and the real part of the normalized impedance was defined as the k-values, which range from 0 to 1. The results demonstrated a linear correlation between k-values and temperatures (R2 > 0.9 for livers and R2 > 0.8 for tumors). Significant differences were observed between livers and tumors at 1, 10 and 50 kHz (p < 0.05). Additionally, it was demonstrated that the electrical properties could be reversed when the temperature was below or equal to 45 °C. Conclusion: We believe that these results will contribute to the advancement of radiofrequency ablation systems and the development of techniques for temperature monitoring during liver thermal treatment.
Collapse
Affiliation(s)
- Yitong Guo
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Weice Wang
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Weichen Li
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Junyao Li
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Mingxu Zhu
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Ruteng Song
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Wenjing Zhu
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Institute of Medical Research, Northwest Polytechnical University, Xi'an, China
| | - Lei Wang
- Institute of Medical Research, Northwest Polytechnical University, Xi'an, China
| | - Zhenyu Ji
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| |
Collapse
|
30
|
Rho S, Stillwell RA, Yan K, de Almeida Barreto AFB, Smith JR, Fay P, Police AM, O'Sullivan TD. Wirelessly Powered Visible Light-Emitting Implant for Surgical Guidance during Lumpectomy. SENSORS (BASEL, SWITZERLAND) 2024; 24:5639. [PMID: 39275550 PMCID: PMC11398236 DOI: 10.3390/s24175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024]
Abstract
Achieving negative surgical margins, defined as no tumor found on the edges of the resected tissue, during lumpectomy for breast cancer is critical for mitigating the risk of local recurrence. To identify nonpalpable tumors that cannot be felt, pre-operative placements of wire and wire-free localization devices are typically employed. Wire-free localization approaches have significant practical advantages over wired techniques. In this study, we introduce an innovative localization system comprising a light-emitting diode (LED)-based implantable device and handheld system. The device, which is needle injectable and wire free, utilizes multiple wirelessly powered LEDs to provide direct visual guidance for lumpectomy. Two distinct colors, red and blue, provide a clear indication of tissue depth: blue light is absorbed strongly in tissue, visible within a close range of <1 cm, while red light remains visible through several centimeters of tissue. The LEDs, integrated with an impedance-matching circuit and receiver coil, are encapsulated in biocompatible epoxy for injection with a 12 G needle. Our findings demonstrate that the implant exhibits clearly perceivable depth-dependent color changes and remains visible through >2 cm of ex vivo chicken breast and bovine muscle tissue using less than 4 W of transmitted power from a handheld antenna. These miniaturized needle-injectable localization devices show promise for improving surgical guidance of nonpalpable breast tumors.
Collapse
Affiliation(s)
- Sunghoon Rho
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Roy A Stillwell
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kedi Yan
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | | | - Joshua R Smith
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick Fay
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alice M Police
- Monument Health Cancer Care Institute, 353 Fairmont Boulevard Rapid City, Rapid City, SD 57701, USA
| | - Thomas D O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
31
|
Stigliano RV, Danelyan I, Gabriadze G, Shoshiashvili L, Baker I, Hoopes PJ, Jobava R, Shubitidze F. Alternating magnetic field guiding system for MNP hyperthermia treatment of deep-seated cancers. Int J Hyperthermia 2024; 41:2391008. [PMID: 39205623 DOI: 10.1080/02656736.2024.2391008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Demonstrate the potential application of a novel, endoscope-like device to guide and focus an alternating magnetic field (AMF) for treating deep-seated cancers via magnetic nanoparticle hyperthermia (MNPH). METHODS AMF delivery, MNP activation, and eddy current distribution characteristics are investigated through experimental studies in phantoms and computational simulations using a full 3-dimensional human model. The 3D simulations compare the novel device to traditional AMF designs, including a MagForce-like, two-coil system (used clinically) and a single surface-coil system. RESULTS The results demonstrate that this approach can deliver the same magnetic field strength at the prostate's centroid as traditional AMF designs, while reducing eddy current heating by 2 to 6 times. At the same level of normal tissue heating, this method provides 5.0 times, 1.5 times, and 0.92 times the magnetic field strength to the nearest, centroid, and farthest regions of the prostate, respectively. CONCLUSIONS These results demonstrate proof-of-concept for an endoscopic magnetic field guiding and focusing system capable of delivering clinically relevant AMF from a distance. This innovative approach offers a promising alternative to conventional field delivery methods by directing AMF through the body, concentrating it in the tumor region, reducing eddy currents in surrounding healthy tissue, and avoiding exposure of nearby metallic implants.
Collapse
Affiliation(s)
| | | | | | - Levan Shoshiashvili
- Department of Electrical and Electronics Engineering, Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Ian Baker
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering at Dartmouth College, Hanover, NH, USA
- Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | | | | |
Collapse
|
32
|
Song L, Peng W, Lu Q, Feng L, Yang Z, Huang L, Luo Y. Thermoacoustic Imaging Using Single-Channel Data Acquisition System for Non-Invasive Assessment of Liver Microwave Ablation: A Feasibility Study. PHOTONICS 2024; 11:807. [DOI: 10.3390/photonics11090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Microwave ablation (MWA) plays a crucial role in non-surgical liver cancer treatment, but the existing efficacy evaluation tools lack the characteristics of being real-time, non-invasive, and efficient. As an emerging imaging technology, thermoacoustic imaging (TAI) has attracted extensive clinical attention for its excellent merits, which combine the advantages of high contrast in microwave imaging and high resolution in ultrasound imaging. Particularly, the application of a circular scanned single-channel data acquisition system maximizes the capture of thermoacoustic signals, thereby providing more comprehensive image information and rendering reconstructed images closer to reality. This study aimed to verify the feasibility of TAI in non-invasive evaluation of the efficacy of MWA on ex vivo porcine liver and in vivo rabbit liver. During the experiments, ultrasound is used to cross-verify the results of TAI to ensure the accuracy and reliability of the method. Additionally, by altering the thickness of porcine liver tissue to increase the distance (from 0 mm to 80 mm) between the horn antenna and the target (soy sauce tube), TAI is used to observe the change of the image signal-to-noise ratio to preliminarily explore the imaging depth of TAI. The results of ex and in vivo experiments can not only promote the clinical application of TAI, but also be expected to provide a more accurate and reliable efficacy assessment method for MWA in liver cancer treatment.
Collapse
Affiliation(s)
- Ling Song
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanting Peng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Lu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeqi Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
33
|
Sarogni P, Frusca V, Zamborlin A, Giannini N, Menicagli M, Brancato L, Linsalata S, Di Martino F, Gonnelli A, Paiar F, Van den Bossche J, Bogers J, Voliani V. Neoadjuvant Hyperthermia Combined with Hybrid Nanoarchitectures Enhances Chemoradiotherapy Efficacy in Head and Neck Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43272-43282. [PMID: 39126693 DOI: 10.1021/acsami.4c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Head and neck squamous cell carcinomas are characterized by a high incidence of recurrence, especially in patients with locally advanced disease. Standard treatment strategies can be associated with severe side effects to healthy tissues that can negatively impact the patient's quality of life. Hyperthermia (HT) is a noninvasive treatment modality that has improved the effectiveness of chemotherapy (CT) and/or radiotherapy (RT) for the management of some solid neoplasms. In this context, the association of this approach with rationally designed nanomaterials may further enhance the treatment outcome. In this study, we demonstrate the enhanced effect of neoadjuvant HT in combination with hybrid nanoarchitectures enclosing a cisplatin prodrug (NAs-CisPt) and RT. All the treatments and their combinations have been fully evaluated by employing standardized chorioallantoic membrane tumor models of HPV-negative head and neck carcinoma. An improved tumor-shrinking effect was observed by the administration of the trimodal treatment (HT/NAs-CisPt/RT), which also highlighted a significant increase in apoptosis. Our findings demonstrate that the combination of HT with nanotechnology-based CT and RT in a certain order enhances the in vivo treatment outcome. On a broader basis, this study paves the way for the next exploration of noninvasive treatment approaches for the clinical management of oral cancer based on innovative strategies.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, 56017 Pisa, Italy
| | | | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | | | - Johannes Bogers
- ElmediX NV, Esperantolaan 4, 3001 Heverlee, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
34
|
Cortiana V, Vallabhaneni H, Gambill J, Nadar S, Itodo K, Park CH, Leyfman Y. Advancing Pancreatic Cancer Surgical Treatments and Proposal of New Approaches. Cancers (Basel) 2024; 16:2848. [PMID: 39199619 PMCID: PMC11352325 DOI: 10.3390/cancers16162848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer is a significant challenge in oncology due to its aggressive nature and complex management, leading to high mortality rates and a dismally low 5-year survival rate. Approximately 85% of cases manifest as adenocarcinoma, while endocrine tumors constitute less than 5%. Borderline resectable and locally advanced pancreatic cancers are particularly difficult to treat due to vascular involvement, which complicates complete resections and increases morbidity. Various therapeutic modalities aim to overcome these challenges and improve patient outcomes. Traditionally, upfront surgery was the standard for resectable tumors, with multimodal chemotherapy being central to treatment. Understanding surgical anatomy is pivotal in enhancing surgical outcomes and patient survival. Resectability challenges are several when seeking to achieve R0 resections, particularly for borderline resectable tumors. Various classification systems-the MD Anderson criteria, the NCCN criteria, the AHPA/SSAT/SSO consensus statement, and the Alliance definition-assess tumor involvement with major blood vessels, with the first of these systems being broadly accepted. Vascular staging integration is also important, with the Ishikawa staging system using preoperative imaging to assess venous involvement. Furthermore, neoadjuvant therapy enhances treatment effectiveness by addressing micro-metastatic disease early, increasing R0 resection chances, and downstaging tumors for optimal surgery. Insights from the Fox Chase Cancer Center's neoadjuvant treatment approach highlight the importance of a multidisciplinary strategy when advancing therapy and improving patient prognosis. This commentary, inspired by Dr. Sanjay S. Reddy's Keynote Conference during MedNews week, highlights current advancements and ongoing challenges in the treatment of pancreatic cancer, emphasizing the need for a comprehensive, multidisciplinary approach to improve outcomes.
Collapse
Affiliation(s)
- Viviana Cortiana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | | | | | - Soumiya Nadar
- Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Kennedy Itodo
- Nigerian Institute for Trypanosomiasis Research Jos, Kaduna PMB 2077, Nigeria
| | | | - Yan Leyfman
- Icahn School of Medicine at Mount Sinai South Nassau, Oceanside, NY 11572, USA;
| |
Collapse
|
35
|
Righini MF, Durham A, Tsoutsou PG. Hyperthermia and radiotherapy: physiological basis for a synergistic effect. Front Oncol 2024; 14:1428065. [PMID: 39165690 PMCID: PMC11333208 DOI: 10.3389/fonc.2024.1428065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels. A phenomenon of temporary resistance to heat, known as thermotolerance, follows each HT session. Cancer treatment requires innovative concepts and combinations to be tested but, for a meaningful development of clinical trials, the understanding of the underlying mechanisms of the tested modalities is essential. In this mini-review, we aimed to describe the synergistic effects of the combination of HT with RT as well as the phenomena of thermal shock and thermotolerance, in order to stimulate clinicians in new, clinically relevant concepts and combinations, which become particularly relevant in the era of technological advents in both modalities but also cancer immunotherapy.
Collapse
Affiliation(s)
| | - André Durham
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pelagia G. Tsoutsou
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
36
|
Bravo M, Fortuni B, Mulvaney P, Hofkens J, Uji-I H, Rocha S, Hutchison JA. Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability. J Control Release 2024; 372:751-777. [PMID: 38909701 DOI: 10.1016/j.jconrel.2024.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Despite significant advances, cancer remains a leading global cause of death. Current therapies often fail due to incomplete tumor removal and nonspecific targeting, spurring interest in alternative treatments. Hyperthermia, which uses elevated temperatures to kill cancer cells or boost their sensitivity to radio/chemotherapy, has emerged as a promising alternative. Recent advancements employ nanoparticles (NPs) as heat mediators for selective cancer cell destruction, minimizing damage to healthy tissues. This approach, known as NP hyperthermia, falls into two categories: photothermal therapies (PTT) and magnetothermal therapies (MTT). PTT utilizes NPs that convert light to heat, while MTT uses magnetic NPs activated by alternating magnetic fields (AMF), both achieving localized tumor damage. These methods offer advantages like precise targeting, minimal invasiveness, and reduced systemic toxicity. However, the efficacy of NP hyperthermia depends on many factors, in particular, the NP properties, the tumor microenvironment (TME), and TME-NP interactions. Optimizing this treatment requires accurate heat monitoring strategies, such as nanothermometry and biologically relevant screening models that can better mimic the physiological features of the tumor in the human body. This review explores the state-of-the-art in NP-mediated cancer hyperthermia, discussing available nanomaterials, their strengths and weaknesses, characterization methods, and future directions. Our particular focus lies in preclinical NP screening techniques, providing an updated perspective on their efficacy and relevance in the journey towards clinical trials.
Collapse
Affiliation(s)
- M Bravo
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - B Fortuni
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - P Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - J Hofkens
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Max Planck Institute for Polymer Research, Mainz D-55128, Germany
| | - H Uji-I
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium; Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Sapporo 001-0020, Hokkaido, Japan
| | - S Rocha
- Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - J A Hutchison
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
37
|
Chen K, Kong D, Yuan J, Hu Y, Li J, Ma J, Wen J. Asymmetric-Backed Multi-Frequency Ultrasonic Transducer for Conformal Tumor Ablation. IEEE Trans Biomed Eng 2024; 71:2432-2441. [PMID: 38457328 DOI: 10.1109/tbme.2024.3374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Minimally invasive ultrasound ablation transducers have been widely studied. However, conventional designs are limited by the single working frequency, restricting their conformal ablation ability (i.e., ablation size and shape controllability). METHODS New multi-frequency ultrasonic transducer design method is proposed based on the asymmetric backing layer, which divides the transducer into non-backing-layer region (i.e., front-piezoelectric region) and backing-layer region (i.e., front-piezoelectric-backing region) with multiple local thickness mode resonant frequencies. Ablation zone can be controlled by exciting the local resonance within or between the regions, and its control flexibility is further enhanced by driven under a frequency modulation signal. Experiments and calculations are combined for verifying the proposal. RESULTS The fabricated transducer with a Y-direction asymmetric backing layer shows five resonances, with two in each region and one resonance excited in both regions. Spatial ultrasound emission is demonstrated by acoustic measurements. Tissue ablation experiments verified spatial ablation zone control, and frequency modulation driving method enables the spatial transition of ablation zone from one region to the other, generating different ablation sizes and shapes. Finally, patient-specific simulations verified the effectiveness of conformal ablation. CONCLUSION The proposed transducer enables flexible control of ablation zone. SIGNIFICANCE This study demonstrates a new method for conformal tumor ablation.
Collapse
|
38
|
Ödén J, Eriksson K, Pavoni B, Crezee H, Kok HP. A Novel Framework for Thermoradiotherapy Treatment Planning. Int J Radiat Oncol Biol Phys 2024; 119:1530-1544. [PMID: 38387812 DOI: 10.1016/j.ijrobp.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Thermoradiotherapy combines radiation therapy with hyperthermia to increase therapeutic effectiveness. Currently, both modalities are optimized separately and in state-of-the-art research the enhanced therapeutic effect is evaluated using equivalent radiation dose in 2-Gy fractions (EQD2). This study proposes a novel thermoradiotherapy treatment planning framework with voxelwise EQD2 radiation therapy optimizing including thermal radiosensitization and direct thermal cytotoxicity. METHODS AND MATERIALS To demonstrate proof-of-concept of the planning framework, 3 strategies consisting of 20 radiation therapy fractions were planned for 4 prostate cancer cases with substantially different temperature distributions: (1) Conventional radiation therapy plan of 60 Gy combined with 4 hyperthermia sessions (RT60 + HT), (2) standalone uniform dose escalation to 68 Gy without hyperthermia (RT68), and (3) uniform target EQD2 that maximizes the tumor control probability (TCP) accounting for voxelwise thermal effects of 4 hyperthermia sessions without increasing normal tissue doses (RTHT + HT). Assessment included dose, EQD2, TCP, and rectal normal tissue complication probability (NTCP), alongside robustness analyses for TCP and NTCP against parameter uncertainties. RESULTS The estimated TCP of around 76% for RT60 without hyperthermia was increased to an average of 85.9% (range, 81.3%-90.5%) for RT60 + HT, 92.5% (92.4%-92.5%) for RT68, and 94.4% (91.7%-96.6%) for RTHT + HT. The corresponding averaged rectal NTCPs were 8.7% (7.9%-10.0%), 14.9% (13.8%-17.1%), and 8.4% (7.5%-9.7%), respectively. RT68 and RTHT + HT exhibited slightly enhanced TCP robustness against parameter uncertainties compared with RT60 + HT, and RT68 presented higher and less robust rectal NTCP values compared with the other planning strategies. CONCLUSIONS This study introduces an innovative thermoradiotherapy planning approach, integrating thermal effects into EQD2-based radiation therapy optimization. Results demonstrate an ability to achieve enhanced and uniform target EQD2 and TCP across various temperature distributions without elevating normal tissue EQD2 or NTCP compared with conventional methods. Although promising for improving clinical outcomes, realizable enhancements depend on accurate tumor- and tissue-specific data and precise quantification of hyperthermic effects, which are seamlessly integrable in the planning framework as they emerge.
Collapse
Affiliation(s)
- Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden.
| | | | | | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Song M, Cheng J, Guo S, Zhuang Y, Tulupov A, Fan D, Dong Y, Ji Z, Zhang Y, Cheng J, Bao J. Hollow magnetic vortex nanorings loaded with quercetin encapsulated in polydopamine: A high-performance, intelligent nanotheranostic platform for enhanced tumor imaging and dual thermal treatment. Int J Pharm 2024; 660:124335. [PMID: 38897488 DOI: 10.1016/j.ijpharm.2024.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Nanoparticle-mediated thermotherapeutic research strives innovative, multifunctional, efficient, and safe treatments. Our study introduces a novel nanoplatform: the hollow magnetic vortex nanorings within a polydopamine layer (HMVNp), which exhibit dual functionality as magnetic and photothermal agents. Utilizing a "Dual-mode" approach, combining an alternating magnetic field (AMF) with near-infrared (NIR) laser irradiation, HMVNp demonstrated a significant enhancement in heating efficacy (58 ± 8 %, SAR = 1441 vs 1032 W/g) over traditional solid magnetite nanoparticles coated with polydopamine (SMNp). The unique geometry larger surface area to volume ratio facilitates efficient magnetic vortex dynamics and enhanced heat transfer. Addressing the challenge of heat resistant heat shock protein (Hsp) expression, encapsulated quercetin (Q) within HMVNp leverages tumor acidity and dual-mode thermal therapy to enhance release, showing a 28.8 ± 6.81 % increase in Q loading capacity compared to traditional SMNp. Moreover, HMVNp significantly improves contrast for both magnetic resonance imaging (MRI) and photoacoustic imaging (PAI), with an approximately 62 % transverse relaxation (R2 = 81.5 vs 31.6 mM-1s-1 [Fe]). In vivo studies showed that while single treatments slowed tumor growth, dual-mode therapy with quercetin significantly reduced tumors and effectively prevented metastases. Our study highlights the potential of HMVNp/Q as a versatile agent in thermotherapeutic interventions, offering improved diagnostic imaging capabilities.
Collapse
Affiliation(s)
- Manli Song
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Junying Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshuang Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester 14627, USA
| | - Andrey Tulupov
- The Laboratory «MRT TECHNOLOGIES», The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya Str. 3A, 630090, Novosibirsk, Russia
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanbo Dong
- Faculty of Teacher Education, Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Zhenyu Ji
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
40
|
Rahimi F, Nurzed B, Eigentler TW, Berangi M, Oberacker E, Kuehne A, Ghadjar P, Millward JM, Schuhmann R, Niendorf T. Helmet Radio Frequency Phased Array Applicators Enhance Thermal Magnetic Resonance of Brain Tumors. Bioengineering (Basel) 2024; 11:733. [PMID: 39061815 PMCID: PMC11273942 DOI: 10.3390/bioengineering11070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) integrates Magnetic Resonance Imaging (MRI) diagnostics and targeted radio-frequency (RF) heating in a single theranostic device. The requirements for MRI (magnetic field) and targeted RF heating (electric field) govern the design of ThermalMR applicators. We hypothesize that helmet RF applicators (HPA) improve the efficacy of ThermalMR of brain tumors versus an annular phased RF array (APA). An HPA was designed using eight broadband self-grounded bow-tie (SGBT) antennae plus two SGBTs placed on top of the head. An APA of 10 equally spaced SGBTs was used as a reference. Electromagnetic field (EMF) simulations were performed for a test object (phantom) and a human head model. For a clinical scenario, the head model was modified with a tumor volume obtained from a patient with glioblastoma multiforme. To assess performance, we introduced multi-target evaluation (MTE) to ensure whole-brain slice accessibility. We implemented time multiplexed vector field shaping to optimize RF excitation. Our EMF and temperature simulations demonstrate that the HPA improves performance criteria critical to MRI and enhances targeted RF and temperature focusing versus the APA. Our findings are a foundation for the experimental implementation and application of a HPA en route to ThermalMR of brain tumors.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Bilguun Nurzed
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
- Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Thomas W. Eigentler
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
| | - Mostafa Berangi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
| | | | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jason M. Millward
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Rolf Schuhmann
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
41
|
Liu H, Ding S, Lin X, Wang S, Wang Y, Feng Z, Song J. Bone Fracture Healing under the Intervention of a Stretchable Ultrasound Array. ACS NANO 2024. [PMID: 39008625 DOI: 10.1021/acsnano.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ultrasound treatment has been recognized as an effective and noninvasive approach to promote fracture healing. However, traditional rigid ultrasound probe is bulky, requiring cumbersome manual operations and inducing unfavorable side effects when functioning, which precludes the wide application of ultrasound in bone fracture healing. Here, we report a stretchable ultrasound array for bone fracture healing, which features high-performance 1-3 piezoelectric composites as transducers, stretchable multilayered serpentine metal films in a bridge-island pattern as electrical interconnects, soft elastomeric membranes as encapsulations, and polydimethylsiloxane (PDMS) with low curing agent ratio as adhesive layers. The resulting ultrasound array offers the benefits of large stretchability for easy skin integration and effective affecting region for simple skin alignment with good electromechanical performance. Experimental investigations of the stretchable ultrasound array on the delayed union model in femoral shafts of rats show that the callus growth is more active in the second week of treatment and the fracture site is completely osseous healed in the sixth week of treatment. Various bone quality indicators (e.g., bone modulus, bone mineral density, bone tissue/total tissue volume, and trabecular bone thickness) could be enhanced with the intervention of a stretchable ultrasound array. Histological and immunohistochemical examinations indicate that ultrasound promotes osteoblast differentiation, bone formation, and remodeling by promoting the expression of osteopontin (OPN) and runt-related transcription factor 2 (RUNX2). This work provides an effective tool for bone fracture healing in a simple and convenient manner and creates engineering opportunities for applying ultrasound in medical applications.
Collapse
Affiliation(s)
- Hang Liu
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Shuchen Ding
- Center of Orthopedics, The 903rd Hospital of People's Liberation Army, Hangzhou Zhejiang 310003, China
| | - Xinyi Lin
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhiyun Feng
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
42
|
Zhang Y, Lu M. Numerical Simulation of Thermal Therapy for Melanoma in Mice. Bioengineering (Basel) 2024; 11:694. [PMID: 39061776 PMCID: PMC11273475 DOI: 10.3390/bioengineering11070694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, the progressively escalating incidence and exceptionally high fatality rate of cutaneous melanoma have drawn the attention of numerous scholars. Magnetic induction hyperthermia, as an efficacious tumor treatment modality, has been promoted and applied in the therapy of some tumors. In this paper, the melanoma atop the mice's heads was chosen as the research subject, and a magnetic induction hyperthermia approach based on Helmholtz coils as the magnetic field excitation was investigated and designed. The influence of the electromagnetic field and thermal field on organisms was addressed through modeling by COMSOL simulation software. The results showed that the maximum values of induced electric field and magnetic induction strength in mouse tumor tissues were 63.1 V/m and 8.5621 mT, respectively, which reached the threshold value of magnetic field strength required for magnetic induction hyperthermia. The maxima of the induced electric field and magnetic induction intensity in brain tissues are, respectively, 35.828 V/m and 8.57 mT. Approximately 93% of the tumor tissue can reach 42 °C, and the maximum temperature is 44.2 °C. Within this temperature range, a large quantity of tumor cells can be successfully induced to undergo apoptosis without harming normal cells, and the therapeutic effect is favorable.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China;
| |
Collapse
|
43
|
Xiang Y, Tang L, Pang H, Xu H, He Y, Feng Y, Ju L, Zhang L, Wang D. Ultrasound -Induced Thermal Effect Enhances the Efficacy of Chemotherapy and Immunotherapy in Tumor Treatment. Int J Nanomedicine 2024; 19:6677-6692. [PMID: 38975322 PMCID: PMC11227868 DOI: 10.2147/ijn.s464830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background The inadequate perfusion, frequently resulting from abnormal vascular configuration, gives rise to tumor hypoxia. The presence of this condition hinders the effective delivery of therapeutic drugs and the infiltration of immune cells into the tumor, thereby compromising the efficacy of treatments against tumors. The objective of this study is to exploit the thermal effect of ultrasound (US) in order to induce localized temperature elevation within the tumor, thereby facilitating vasodilation, augmenting drug delivery, and enhancing immune cell infiltration. Methods The selection of US parameters was based on intratumor temperature elevation and their impact on cell viability. Vasodilation and hypoxia improvement were investigated using enzyme-linked immunosorbent assay (ELISA) and immunofluorescence examination. The distribution and accumulation of commercial pegylated liposomal doxorubicin (PLD) and PD-L1 antibody (anti-PD-L1) in the tumor were analyzed through frozen section analysis, ELISA, and in vivo fluorescence imaging. The evaluation of tumor immune microenvironment was conducted using flow cytometry (FCM). The efficacy of US-enhanced chemotherapy in combination with immunotherapy was investigated by monitoring tumor growth and survival rate after various treatments. Results The US irradiation condition of 0.8 W/cm2 for 10 min effectively elevated the tumor temperature to approximately 40 °C without causing any cellular or tissue damage, and sufficiently induced vasodilation, thereby enhancing the distribution and delivery of PLD and anti-PD-L1 in US-treated tumors. Moreover, it effectively mitigated tumor hypoxia while significantly increasing M1-phenotype tumor-associated macrophages (TAMs) and CD8+ T cells, as well as decreasing M2-phenotype TAMs. By incorporating US irradiation, the therapeutic efficacy of PLD and anti-PD-L1 was substantially boosted, leading to effective suppression of tumor growth and prolonged survival in mice. Conclusion The application of US (0.8 W/cm2 for 10 min) can effectively induce vasodilation and enhance the delivery of PLD and anti-PD-L1 into tumors, thereby reshaping the immunosuppressive tumor microenvironment and optimizing therapeutic outcomes.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Li Tang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Han Xu
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiman He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuyue Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Linjun Ju
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
44
|
Jiao L, Zhang T, Gao P, Zhou C, Mei X, Zhang W, Lu Y, Zhang L, Zhou Z, Yu Z, He M. Exploring and validating heating dynamics in a radio-frequency electromagnetic field-based resonant chamber for mouse hyperthermia research. Electromagn Biol Med 2024; 43:164-175. [PMID: 38859623 DOI: 10.1080/15368378.2024.2361873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
Mild whole-body hyperthermia has been shown to have anti-tumor effects through an immune-modulating mechanism. Before it is widely applied in the clinic, tremendous mechanistic research in animals is necessary to adhere to evidence-based principles. The radio frequency electromagnetic field (RF-EMF) based heating facility could be a good choice for hyperthermia treatment, but the heating characteristics of a facility, including structure design, electromagnetic and thermal dosimetry, and the biologic effects of hyperthermia, need to be well elucidated. Here, we reported the heating characteristic study on a resonant chamber (RC) excited by a 1800 MHz solid source. The EMF in the RC was stirred by 24 static reflectors, which resulted in the standard deviation of electric field intensity being below 3 dB in the EM homogeneity evaluation. For the exposure scenario, six free-moving mice were loaded into separate cases and exposed simultaneously in the RC. The EMF energy absorption and distribution in exposed mice were calculated with the 12-plane-waves method of numerical simulation. Different levels of core body temperature increment in exposed mice were achieved through regulation of the source output power. Overexpression of heat shock proteins (HSPs) was detected in the liver, lung and muscle, but not in the brain of the exposed mice. The levels of representative inflammatory cytokines in the serum, TNF-α and IL-10 increased post RC exposure. Based on the heating characteristic study and validation, the applied RC would be a qualified heating system for mild whole-body hyperthermia effect research in mice.
Collapse
Affiliation(s)
- Lijiao Jiao
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
- Department of Nursing, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People's Republic of China
| | - Tao Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Chao Zhou
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
- Xizang Autonomous Region, China
| | - Xiang Mei
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Wenjuan Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Yonghui Lu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Lei Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Zhengping Yu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| | - Mindi He
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education, Department of Occupational Health, Army Medical University, Chongqing, China
| |
Collapse
|
45
|
Grammatikaki S, Bala VM, Katifelis H, Lampropoulou DI, Mukha I, Vityuk N, Lagopati N, Kouloulias V, Aravantinos G, Gazouli M. Fe 3O 4 and Fe 3O 4core Au shell-based Hyperthermia Reduces Expression of Proliferation Markers Ki-67, TOP2A and TPX2 in a Human Breast Cancer Cell Line. In Vivo 2024; 38:1665-1670. [PMID: 38936909 PMCID: PMC11215606 DOI: 10.21873/invivo.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Hyperthermia represents an adjuvant local anticancer strategy which relies on the increase of temperature beyond the physiological level. In this study, we investigated the anticancer potential of Fe3O4 and Fe3O4core Aushell nanoparticles as hyperthermic agents in terms of cytotoxicity and studied the expression of cellular markers of proliferation (changes in mRNA levels via real-time polymerase chain reaction). MATERIALS AND METHODS The human breast cancer cell line SK-BR-1 was incubated with either Fe3O4 or Fe3O4core Aushell nanoparticles stabilized with tryptophan, prior to hyperthermia treatment. The normal HEK293 cell line was used as a control. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay to estimate possible toxic effects of the tested nanoparticles. After RNA extraction and cDNA synthesis, mRNA expression of three indicators of proliferation, namely marker of proliferation Ki-67, DNA topoisomerase II alpha (TOP2A) and TPX2 microtubule nucleation factor (TPX2), was investigated. RESULTS At each concentration tested, Fe3O4core Aushell nanoparticles showed greater toxicity compared to Fe3O4, while SK-BR-3 cells were more susceptible to their cytotoxic effects compared to the HEK293 cell line. The expression of Ki-67, TOP2A and TPX2 was reduced in SK-BR-3 cells by both Fe3O4 or Fe3O4core Aushell nanoparticles compared to untreated cells, while the only observed change in HEK293 cells was the up-regulation of TOP2A. CONCLUSION Both Fe3O4core Aushell and Fe3O4 NPs exhibit increased cytotoxicity to the cancer cell line tested (SK-BR-3) compared to HEK293 cells. The down-regulation in SK-BR-3 cells of the three proliferative markers studied, Ki-67, TOP2A and TPX2, after incubation with NPs suggests that cells that survived thermal destruction were not actively proliferating.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
46
|
Kok HP, Herrera TD, Crezee J. Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlenther Onkol 2024; 200:512-522. [PMID: 38177701 PMCID: PMC11111588 DOI: 10.1007/s00066-023-02185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics. METHODS Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4‑h time interval (suboptimal logistics) was evaluated. RESULTS Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4‑h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals. CONCLUSION Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.
Collapse
Affiliation(s)
- H P Kok
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - T D Herrera
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
47
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
48
|
Wang X, Xi Z, Ye K, Gong Z, Chen Y, Wang X. Improvement of Phased Antenna Array Applied in Focused Microwave Breast Hyperthermia. SENSORS (BASEL, SWITZERLAND) 2024; 24:2682. [PMID: 38732788 PMCID: PMC11085649 DOI: 10.3390/s24092682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Focused microwave breast hyperthermia (FMBH) employs a phased antenna array to perform beamforming that can focus microwave energy at targeted breast tumors. Selective heating of the tumor endows the hyperthermia treatment with high accuracy and low side effects. The effect of FMBH is highly dependent on the applied phased antenna array. This work investigates the effect of polarizations of antenna elements on the microwave-focusing results by simulations. We explore two kinds of antenna arrays with the same number of elements using different digital realistic human breast phantoms. The first array has all the elements' polarization in the vertical plane of the breast, while the second array has half of the elements' polarization in the vertical plane and the other half in the transverse plane, i.e., cross polarization. In total, 96 sets of different simulations are performed, and the results show that the second array leads to a better focusing effect in dense breasts than the first array. This work is very meaningful for the potential improvement of the antenna array for FMBH, which is of great significance for the future clinical applications of FMBH. The antenna array with cross polarization can also be applied in microwave imaging and sensing for biomedical applications.
Collapse
Affiliation(s)
- Xuanyu Wang
- School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China; (X.W.); (Z.X.); (K.Y.)
| | - Zijun Xi
- School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China; (X.W.); (Z.X.); (K.Y.)
| | - Ke Ye
- School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China; (X.W.); (Z.X.); (K.Y.)
| | - Zheng Gong
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China;
| | - Yifan Chen
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiong Wang
- School of Information Science and Technology, Shanghai Tech University, Shanghai 201210, China; (X.W.); (Z.X.); (K.Y.)
| |
Collapse
|
49
|
Groen JA, Crezee J, van Laarhoven HWM, Coolen BF, Strijkers GJ, Bijlsma MF, Kok HP. Robust, planning-based targeted locoregional tumour heating in small animals. Phys Med Biol 2024; 69:085017. [PMID: 38471172 DOI: 10.1088/1361-6560/ad3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Bram F Coolen
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Pei J, Yan Y, Jayaraman S, Rajagopal P, Natarajan PM, Umapathy VR, Gopathy S, Roy JR, Sadagopan JC, Thalamati D, Palanisamy CP, Mironescu M. A review on advancements in the application of starch-based nanomaterials in biomedicine: Precision drug delivery and cancer therapy. Int J Biol Macromol 2024; 265:130746. [PMID: 38467219 DOI: 10.1016/j.ijbiomac.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yuqiang Yan
- Department of anaesthesia, Xi'an Central Hospital, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 095, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai-600107, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | - Janaki Coimbatore Sadagopan
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | | | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Sibiu 550024, Romania.
| |
Collapse
|