1
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
2
|
Pham TN, Coupey J, Rousseau M, Thariat J, Valable S. Revealing the effect of X-ray or proton brain irradiation on systemic inflammation and leukocyte subpopulation interplay in rodents. J Leukoc Biol 2024; 116:1530-1543. [PMID: 38952292 DOI: 10.1093/jleuko/qiae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024] Open
Abstract
The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B cells, NK cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics was further examined using modeling. Leukocyte subpopulation interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| | - Marc Rousseau
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France-Normandie Université, 14000 Caen, Normandy, France
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, Normandy, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, Normandy, France
| |
Collapse
|
3
|
Raymakers L, Demmers TJ, Meijer GJ, Molenaar IQ, van Santvoort HC, Intven MPW, Leusen JHW, Olofsen PA, Daamen LA. The Effect of Radiation Treatment of Solid Tumors on Neutrophil Infiltration and Function: A Systematic Review. Int J Radiat Oncol Biol Phys 2024; 120:845-861. [PMID: 39009323 DOI: 10.1016/j.ijrobp.2024.07.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Radiation therapy (RT) initiates a local and systemic immune response which can induce antitumor immunity and improve immunotherapy efficacy. Neutrophils are among the first immune cells that infiltrate tumors after RT and are suggested to be essential for the initial antitumor immune response. However, neutrophils in tumors are associated with poor outcomes and RT-induced neutrophil infiltration could also change the composition of the tumor microenvironment (TME) in favor of tumor progression. To improve RT efficacy for patients with cancer it is important to understand the interplay between RT and neutrophils. Here, we review the literature on how RT affects the infiltration and function of neutrophils in the TME of solid tumors, using both patients studies and preclinical murine in vivo models. In general, it was found that neutrophil levels increase and reach maximal levels in the first days after RT and can remain elevated up to 3 weeks. Most studies report an immunosuppressive role of neutrophils in the TME after RT, caused by upregulated expression of neutrophil indoleamine 2,3-dioxygenase 1 and arginase 1, as well as neutrophil extracellular trap formation. RT was also associated with increased reactive oxygen species production by neutrophils, which can both improve and inhibit antitumor immunity. In addition, multiple murine models showed improved RT efficacy when depleting neutrophils, suggesting that neutrophils have a protumor phenotype after RT. We conclude that the role of neutrophils should not be overlooked when developing RT strategies and requires further investigation in specific tumor types. In addition, neutrophils can possibly be exploited to enhance RT efficacy by combining RT with neutrophil-targeting therapies.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Thijs J Demmers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert J Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Patricia A Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lois A Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands; Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center and St. Antonius Hospital Nieuwegein, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Hao X, Jiang B, Wu J, Xiang D, Xiong Z, Li C, Li Z, He S, Tu C, Li Z. Nanomaterials for bone metastasis. J Control Release 2024; 373:640-651. [PMID: 39084467 DOI: 10.1016/j.jconrel.2024.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Buchan Jiang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Changsha Medical University, Changsha 410219, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Shenzhen Research Institute of Central South University, Guangdong 518063, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
5
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
6
|
Ge Z, Zhang Q, Lin W, Jiang X, Zhang Y. The role of angiogenic growth factors in the immune microenvironment of glioma. Front Oncol 2023; 13:1254694. [PMID: 37790751 PMCID: PMC10542410 DOI: 10.3389/fonc.2023.1254694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Angiogenic growth factors (AGFs) are a class of secreted cytokines related to angiogenesis that mainly include vascular endothelial growth factors (VEGFs), stromal-derived factor-1 (SDF-1), platelet-derived growth factors (PDGFs), fibroblast growth factors (FGFs), transforming growth factor-beta (TGF-β) and angiopoietins (ANGs). Accumulating evidence indicates that the role of AGFs is not only limited to tumor angiogenesis but also participating in tumor progression by other mechanisms that go beyond their angiogenic role. AGFs were shown to be upregulated in the glioma microenvironment characterized by extensive angiogenesis and high immunosuppression. AGFs produced by tumor and stromal cells can exert an immunomodulatory role in the glioma microenvironment by interacting with immune cells. This review aims to sum up the interactions among AGFs, immune cells and cancer cells with a particular emphasis on glioma and tries to provide new perspectives for understanding the glioma immune microenvironment and in-depth explorations for anti-glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanyu Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
7
|
Chaklai A, Canaday P, O’Niel A, Cucinotta FA, Sloop A, Gladstone D, Pogue B, Zhang R, Sunnerberg J, Kheirollah A, Thomas CR, Hoopes PJ, Raber J. Effects of UHDR and Conventional Irradiation on Behavioral and Cognitive Performance and the Percentage of Ly6G+ CD45+ Cells in the Hippocampus. Int J Mol Sci 2023; 24:12497. [PMID: 37569869 PMCID: PMC10419899 DOI: 10.3390/ijms241512497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
We assessed the effects of conventional and ultra-high dose rate (UHDR) electron irradiation on behavioral and cognitive performance one month following exposure and assessed whether these effects were associated with alterations in the number of immune cells in the hippocampus using flow cytometry. Two-month-old female and male C57BL/6J mice received whole-brain conventional or UHDR irradiation. UHDR mice were irradiated with 9 MeV electrons, delivered by the Linac-based/modified beam control. The mice were irradiated or sham-irradiated at Dartmouth, the following week shipped to OHSU, and behaviorally and cognitively tested between 27 and 41 days after exposure. Conventional- and UHDR-irradiated mice showed impaired novel object recognition. During fear learning, conventional- and UHDR-irradiated mice moved less during the inter-stimulus interval (ISI) and UHDR-irradiated mice also moved less during the baseline period (prior to the first tone). In irradiated mice, reduced activity levels were also seen in the home cage: conventional- and UHDR-irradiated mice moved less during the light period and UHDR-irradiated mice moved less during the dark period. Following behavioral and cognitive testing, infiltrating immune cells in the hippocampus were analyzed by flow cytometry. The percentage of Ly6G+ CD45+ cells in the hippocampus was lower in conventional- and UHDR-irradiated than sham-irradiated mice, suggesting that neutrophils might be particularly sensitive to radiation. The percentage of Ly6G+ CD45+ cells in the hippocampus was positively correlated with the time spent exploring the novel object in the object recognition test. Under the experimental conditions used, cognitive injury was comparable in conventional and UHDR mice. However, the percentage of CD45+ CD11b+ Ly6+ and CD45+ CD11b+ Ly6G- cells in the hippocampus cells in the hippocampus was altered in conventional- but not UHDR-irradiated mice and the reduced percentage of Ly6G+ CD45+ cells in the hippocampus might mediate some of the detrimental radiation-induced cognitive effects.
Collapse
Affiliation(s)
- Ariel Chaklai
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Pamela Canaday
- Knight Flow Cytometry Core OHSU, Portland, OR 97239, USA;
| | - Abigail O’Niel
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
| | - Francis A. Cucinotta
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Austin Sloop
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - David Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Brian Pogue
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA;
| | - Rongxiao Zhang
- Department of Radiation Medicine, New York Medical College, Westchester Medical Center, Valhalla, NY 10595, USA;
| | - Jacob Sunnerberg
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Alireza Kheirollah
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Charles R. Thomas
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - P. Jack Hoopes
- Department of Radiation Oncology, Geisel School of Medicine, The Thayer School of Engineering, The Dartmouth Cancer Center, at Dartmouth College and the Dartmouth-Hitchcock Medical Center (DHMC), Hanover, NH 03755, USA; (A.S.); (D.G.); (J.S.); (A.K.); (P.J.H.)
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health Science University, Portland, OR 97239, USA; (A.C.); (A.O.)
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, Wang Q, Yang J, Wang L, Yao L. Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis. Cell Oncol (Dordr) 2023; 46:969-985. [PMID: 37014552 DOI: 10.1007/s13402-023-00791-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate, in which about 90% of patients harbor somatic oncogenic point mutations in KRAS. SPRY family genes have been recognized as crucial negative regulators of Ras/Raf/ERK signaling. Here, we investigate the expression and role of SPRY proteins in PDAC. METHODS Expression of SPRY genes in human and mice PDAC was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus datasets, and by immunohistochemistry analysis. Gain-of-function, loss-of-function of Spry1 and orthotopic xenograft model were adopted to investigate the function of Spry1 in mice PDAC. Bioinformatics analysis, transwell and flowcytometry analysis were used to identify the effects of SPRY1 on immune cells. Co-immunoprecipitation and K-ras4B G12V overexpression were used to identify molecular mechanism. RESULTS SPRY1 expression was remarkably increased in PDAC tissues and positively associated with poor prognosis of PDAC patients. SPRY1 knockdown suppressed tumor growth in mice. SPRY1 was found to promote CXCL12 expression and facilitate neutrophil and macrophage infiltration via CXCL12-CXCR4 axis. Pharmacological inhibition of CXCL12-CXCR4 largely abrogated the oncogenic functions of SPRY1 by suppressing neutrophil and macrophage infiltration. Mechanistically, SPRY1 interacted with ubiquitin carboxy-terminal hydrolase L1 to induce activation of nuclear factor κB signaling and ultimately increase CXCL12 expression. Moreover, SPRY1 transcription was dependent on KRAS mutation and was mediated by MAPK-ERK signaling. CONCLUSION High expression of SPRY1 can function as an oncogene in PDAC by promoting cancer-associated inflammation. Targeting SPRY1 might be an important approach for designing new strategy of tumor therapy.
Collapse
Affiliation(s)
- Tiezhu Shi
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Jiahao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yin Yin Ooi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University. No. 1, Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Qi Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jianyu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| | - Lulu Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069, People's Republic of China.
| | - Linli Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
10
|
Ollivier L, Moreau Bachelard C, Renaud E, Dhamelincourt E, Lucia F. The abscopal effect of immune-radiation therapy in recurrent and metastatic cervical cancer: a narrative review. Front Immunol 2023; 14:1201675. [PMID: 37539054 PMCID: PMC10394237 DOI: 10.3389/fimmu.2023.1201675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Despite human papillomavirus vaccination and screening, in about 5% of cases, cervical cancer (CC) is discovered at an initial metastatic stage. Moreover, nearly one-third of patients with locally advanced CC (LACC) will have a recurrence of their disease during follow-up. At the stage of recurrent or metastatic CC, there are very few treatment options. They are considered incurable with a very poor prognosis. For many years, the standard of care was the combination of platinum-based drug and paclitaxel with the possible addition of bevacizumab. The most recent years have seen the development of the use of immune checkpoint inhibitors (ICIs) (pembrolizumab, cemiplimab and others) in patients with CC. They have shown long term responses with improved overall survival of patients in 1st line (in addition to chemotherapy) or 2nd line (as monotherapy) treatment. Another emerging drug is tisotumab vedotin, an antibody-drug conjugate targeting tissue factor. Radiation therapy (RT) often has a limited palliative indication in metastatic cancers. However, it has been observed that RT can induce tumor shrinkage both in distant metastatic tumors beyond the radiation field and in primary irradiated tumors. This is a rarely observed phenomenon, called abscopal effect, which is thought to be related to the immune system and allows a tumor response throughout the body. It would be the activation of the immune system induced by the irradiation of cancer cells that would lead to a specific type of apoptosis, the immunogenic cell death. Today, there is a growing consensus that combining RT with ICIs may boost abscopal response or cure rates for various cancers. Here we will review the potential abscopal effect of immune-radiation therapy in metastatic cervical cancer.
Collapse
Affiliation(s)
- Luc Ollivier
- Department of Radiation Oncology, Institut De Cancérologie De L’Ouest (ICO), Saint-Herblain, France
| | | | - Emmanuelle Renaud
- Department of Medical Oncology, CHRU Morvan, University Hospital, Brest, France
| | | | - Francois Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| |
Collapse
|
11
|
De Thoré MG, Meziani L, Deutsch E, Mondini M. Cytofluorometric characterization of the myeloid compartment of irradiated mouse tumors. Methods Cell Biol 2023; 174:17-30. [PMID: 36710048 DOI: 10.1016/bs.mcb.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The use of ionizing radiation (IR) is a cornerstone for the treatment of cancer and radiotherapy (RT) is used in roughly 50% of cancer patients. It is now well established that RT exerts widespread effects on the tumor stroma, including the immune environment. Together with its deeply characterized effects on the lymphoid compartment, RT also deeply affects the myeloid cell compartment. Fluorescence-activated flow cytometry is one of the most widely used technologies in immunology, allowing the multiparametric analysis of cells on a cell-by-cell basis. Here, we provide a detailed flow cytometry protocol to analyze the myeloid cell populations of human papillomavirus (HPV)-positive TC1/Luc tumors engrafted in the oral mucosa of immunocompetent mice, and to evaluate their modulations in response to RT. The same method, with slight modifications, can be used to study the tumor myeloid cells from a variety of other mouse tumors.
Collapse
Affiliation(s)
| | - Lydia Meziani
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France
| | - Eric Deutsch
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| | - Michele Mondini
- Gustave Roussy, INSERM U1030, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
12
|
Wang X, Li X, Wu Y, Hong J, Zhang M. The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer 2023; 23:20. [PMID: 36609243 PMCID: PMC9817270 DOI: 10.1186/s12885-022-10492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) in the tumor microenvironment are prognostic biomarkers in many malignancies. However, it is unclear whether TANs can serve as a prognostic marker for clinical outcomes in patients with glioblastoma (GBM), as classified according to World Health Organization Classification of Tumors of the Central Nervous System, fifth edition (CNS5). In the present study, we analyzed correlations of TANs and peripheral blood neutrophils prior to radiotherapy with overall survival (OS) in GBM (CNS5). METHODS RNA-seq expression profiles of patients with newly diagnosed GBM (CNS5) were extracted from The Cancer Genome Atlas (TCGA), and The Chinese Glioma Genome Atlas (CGGA). TAN infiltration was inferred using CIBERSORTx algorithm. Neutrophil counts prior to radiotherapy in newly diagnosed GBM (CNS5) were obtained from the First Affiliated Hospital of Fujian Medical University. The prognostic value of TANs and peripheral blood neutrophils before radiotherapy was investigated using Kaplan-Meier analysis and Cox proportional hazards models. The robustness of these findings was evaluated by sensitivity analysis, and E values were calculated. RESULTS A total of 146 and 173 individuals with GBM (CNS5) were identified from the TCGA and CGGA cohorts, respectively. High infiltration of TANs was of prognostic of poor OS in TCGA (HR = 1.621, 95% CI: 1.004-2.619) and CGGA (HR = 1.546, 95% CI: 1.029-2.323). Levels of peripheral blood neutrophils before radiotherapy (HR = 2.073, 95% CI: 1.077-3.990) were independently associated with poor prognosis. Sensitivity analysis determined that the E-value of high TANs infiltration was 2.140 and 2.465 in the TCGA and CGGA cohorts. CONCLUSIONS TANs and peripheral blood neutrophil levels before radiotherapy are prognostic of poor outcomes in GBM (CNS5).
Collapse
Affiliation(s)
- Xuezhen Wang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoxia Li
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yufan Wu
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingwei Zhang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Chen D, Qin H, Deng G, Wang Q, Wang H, Liu X. Pre-radiotherapy systemic immune inflammation index associated with overall survival in patients with advanced EGFR mutant non-small cell lung cancer receiving thoracic radiotherapy. Clin Transl Oncol 2023; 25:226-235. [PMID: 36070068 PMCID: PMC9813231 DOI: 10.1007/s12094-022-02936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE This study aimed to investigate the prognostic potential of the pre-radiotherapy systemic immune-inflammation index (SII) for the survival of advanced lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutations, which might provide a basis for optimizing the comprehensive treatment scheme. METHODS A total of 111 lung adenocarcinoma patients with EGFR mutations, who received thoracic radiotherapy, were included in this retrospective study. The primary endpoint of the study was based on the overall survival (OS) of patients. The receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off value of each immune inflammation index. Kaplan-Meier analysis was performed for the comparison of OS. The Cox proportional-hazard model was used for the multivariate and univariate regression analyses to determine the correlations of prognostic factors with the disease. RESULTS SII was divided into the high SII group (≥ 620.2; 45.95%) and the low SII group (SII < 620.2; 54.05%) based on the optimal cutoff values. The median OS rates were 53.3 and 33.3 months in the low and high SII groups, respectively, showing statistically significant differences ( hazard ratio (HR) = 0.459; 95% CI 0.286-0.736; P < 0.001). The multivariate analysis showed that, after adjusting for the significant covariates, the SII values were independently associated with the improved OS of the patients (adjusted HR = 0.444; 95% CI 0.279-0.709; P = 0.001). The low NLR values were associated with the better OS of patients (HR = 0.509; 95% CI 0.326-0.792; P = 0.005) and vice versa (HR = 0.422; 95% CI 0.213-0.836; P < 0.001). The patients in the low LMR group before radiotherapy exhibited longer OS as compared to those in the high LMR group (HR = 0.497; 95% CI 0.308-0.802; P = 0.001). CONCLUSIONS This study showed that these inflammatory indices might have an important prognostic potential for advanced lung adenocarcinoma patients with EGFR mutations, receiving thoracic radiotherapy and might provide a basis for the individualized treatment of these patients.
Collapse
Affiliation(s)
- Dujuan Chen
- Dongming People’s Hospital, Heze, Shandong Province China
| | - Hongyue Qin
- grid.410587.fShandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China ,grid.440144.10000 0004 1803 8437Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong Province China
| | - Guangchuan Deng
- grid.410587.fShandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China ,grid.440144.10000 0004 1803 8437Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong Province China
| | - Qi Wang
- grid.410587.fShandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China ,grid.440144.10000 0004 1803 8437Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong Province China
| | - Haiyong Wang
- grid.440144.10000 0004 1803 8437Department of Internal Medicine-Oncology, Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong Province China
| | - Xijun Liu
- grid.440144.10000 0004 1803 8437Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, 250117 Shandong Province China
| |
Collapse
|
14
|
Hu J, Pan M, Wang Y, Zhu Y, Wang M. Functional plasticity of neutrophils after low- or high-dose irradiation in cancer treatment - A mini review. Front Immunol 2023; 14:1169670. [PMID: 37063873 PMCID: PMC10098001 DOI: 10.3389/fimmu.2023.1169670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Over the last several decades, radiotherapy has been considered the primary treatment option for a broad range of cancer types, aimed at prolonging patients' survival and slowing down tumor regression. However, therapeutic outcomes of radiotherapy remain limited, and patients suffer from relapse shortly after radiation. Neutrophils can initiate an immune response to infection by releasing cytokines and chemokines to actively combat pathogens. In tumor immune microenvironment, tumor-derived signals reprogram neutrophils and induce their heterogeneity and functional versatility to promote or inhibit tumor growth. In this review, we present an overview of the typical phenotypes of neutrophils that emerge after exposure to low- and high-dose radiation. These phenotypes hold potential for developing synergistic therapeutic strategies to inhibit immunosuppressive activity and improve the antitumor effects of neutrophils to render radiation therapy as a more effective strategy for cancer patients, through tumor microenvironment modulation.
Collapse
Affiliation(s)
- Jing Hu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Mingyue Pan
- Faculty of Law, University of Freiburg, Freiburg, Germany
| | - Yixi Wang
- Department of Rehabilitation Medicine, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Yujie Zhu
- Department of Obstetrics and Gynecology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Meidan Wang,
| |
Collapse
|
15
|
Zhang Y, Song J, Zhang Y, Li T, Peng J, Zhou H, Zong Z. Emerging Role of Neutrophil Extracellular Traps in Gastrointestinal Tumors: A Narrative Review. Int J Mol Sci 2022; 24:334. [PMID: 36613779 PMCID: PMC9820455 DOI: 10.3390/ijms24010334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibrous networks consisting of depolymerized chromatin DNA skeletons with a variety of antimicrobial proteins. They are secreted by activated neutrophils and play key roles in host defense and immune responses. Gastrointestinal (GI) malignancies are globally known for their high mortality and morbidity. Increasing research suggests that NETs contribute to the progression and metastasis of digestive tract tumors, among them gastric, colon, liver, and pancreatic cancers. This article explores the formation of NETs and reviews the role that NETs play in the gastrointestinal oncologic microenvironment, tumor proliferation and metastasis, tumor-related thrombosis, and surgical stress. At the same time, we analyze the qualitative and quantitative detection methods of NETs in recent years and found that NETs are specific markers of coronavirus disease 2019 (COVID-19). Then, we explore the possibility of NET inhibitors for the treatment of digestive tract tumor diseases to provide a new, efficient, and safe solution for the future therapy of gastrointestinal tumors.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- HuanKui Academy, Nanchang University, Nanchang 330006, China
| | - Jingjing Song
- Nanchang University School of Ophthalmology & Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yiwei Zhang
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Haonan Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
- Queen Marry College, Nanchang University, Nanchang 330006, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, Nanchang 330006, China
| |
Collapse
|
16
|
Abscopal Response in Metastatic Melanoma: Real-World Data of a Retrospective, Multicenter Study. Cancers (Basel) 2022; 14:cancers14174213. [PMID: 36077747 PMCID: PMC9454568 DOI: 10.3390/cancers14174213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: To evaluate the incidence of the abscopal response (AR) in patients with metastatic melanoma requiring palliative radiotherapy (RT). Patients and methods: Patients treated for metastatic melanoma between January 1998 and February 2020 in four oncology departments were screened. Patients with progression under immune checkpoint inhibitors or without ongoing systemic treatment, and requiring palliative RT were considered. The AR was defined as an objective response according to RECIST and/or iRECIST for at least one non-irradiated metastasis at distance (≥10 cm) from the irradiated lesion. Primary endpoint was the rate of AR. Secondary endpoints were overall survival (OS), progression-free survival (PFS), local control (LC) of the irradiated lesion, and toxicity as assessed by CTCAE v5. Results: Over the period considered, 118 patients were included and analyzed. Fifteen patients (12.7%) had an AR. With a median follow-up of 7.7 months (range, 0.2−242.2), median OS and PFS after RT were significantly longer in patients with an AR compared to those without: 28 vs. 6.6 months (p < 0.01) and not reached vs. 3.2 months, respectively. No grade ≥2 toxicity was reported. Patients who developed an AR were more likely to be treated with immunotherapy (93.3% vs. 55.9%, p = 0.02). In multivariate analysis, they had a higher number of irradiated metastases treated concomitantly (HR = 16.9, p < 0.01) and a higher rate of mild infections during RT (HR = 403.5, p < 0.01). Conclusions: AR in metastatic melanoma seems to be highly prognostic of overall survival, although it is a rare phenomenon. It may be promoted by multiple concomitant treatments with RT and immunotherapy and by acute inflammatory events such as infection.
Collapse
|
17
|
Establishment and Validation of a Predictive Model for Radiation-Associated Aspiration Pneumonia in Patients with Radiation-Induced Dysphagia after Nasopharyngeal Carcinoma. Behav Neurol 2022; 2022:6307804. [PMID: 36039334 PMCID: PMC9418526 DOI: 10.1155/2022/6307804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Radiotherapy for patients with head and neck cancers raises their risk of aspiration pneumonia-related death. We aimed to develop and validate a model to predict radiation-associated aspiration pneumonia (RAP) among patients with dysphagia after radiotherapy for nasopharyngeal carcinoma (NPC). Materials and Methods A total of 453 dysphagic patients with NPC were retrospectively recruited from Sun Yat-Sen Memorial Hospital from January 2012 to January 2018. Patients were randomly divided into training cohort (n = 302) and internal validation cohort (n = 151) at a ratio of 2 : 1. The concordance index (C-index) and calibration curve were used to evaluate the accuracy and discriminative ability of this model. Moreover, decision curve analysis was performed to evaluate the net clinical benefit. The results were externally validated in 203 dysphagic patients from the First People's Hospital of Foshan. Results Derived from multivariable analysis of the training cohort, four independent factors were introduced to predict RAP, including Kubota water drinking test grades, the maximum radiation dose of lymph node gross tumor volume (Dmax of the GTVnd), neutrophil count, and erythrocyte sedimentation rate (ESR). The nomogram showed favorable calibration and discrimination regarding the training cohort, with a C-index of 0.749 (95% confidence interval (CI), 0.681 to 0.817), which was confirmed by the internal validation cohort (C-index 0.743; 95% CI, 0.669 to 0.818) and the external validation cohort (C-index 0.722; 95% CI, 0.606 to 0.838). Conclusions Our study established and validated a simple nomogram for RAP among patients with dysphagia after radiotherapy for NPC.
Collapse
|
18
|
Cytidine deaminase activity increases in the blood of breast cancer patients. Sci Rep 2022; 12:14062. [PMID: 35982128 PMCID: PMC9388666 DOI: 10.1038/s41598-022-18462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
Cytidine deaminase (CDA), an enzyme of the pyrimidine salvage pathway, deaminates cytidine, deoxycytidine and analogs, such as gemcitabine. Constitutive low levels of CDA activity have been reported in the blood of patients with hematological malignancies or suffering from gemcitabine toxicity. We previously reported that cellular CDA deficiency leads to genetic instability. We therefore hypothesized that constitutive CDA deficiency might confer a predisposition to cancer. We analyzed CDA activity and expression in blood samples from breast cancer (BC) patients with a suspected predisposition to the disease, and in healthy controls. Contrary to our hypothesis, we found that both CDA activity and mRNA levels were higher in blood samples from BC patients than in those from controls, and that this difference was not due to excess neutrophils. CDA activity levels were significantly higher in the serum samples of BC patients treated by radiotherapy (RT) than in those of untreated healthy controls, and hormone therapy in RT-treated BC patients was associated with significantly lower levels of CDA activity. A preliminary analysis of CDA activity in the serum of the very few BC patients who had undergone no treatment other than surgery suggested that the increase in CDA activity might be due to the breast cancer itself. Our findings raise important questions, which should lead to studies to elucidate the origin and significance of the increase in CDA activity in the serum of BC patients, and the impact of hormone therapy.
Collapse
|
19
|
Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol 2022; 10:938289. [PMID: 36060811 PMCID: PMC9428510 DOI: 10.3389/fcell.2022.938289] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis, a primary cause of death in patients with malignancies, is promoted by intrinsic changes in both tumor and non-malignant cells in the tumor microenvironment (TME). As major components of the TME, tumor-associated neutrophils (TANs) promote tumor progression and metastasis through communication with multiple growth factors, chemokines, inflammatory factors, and other immune cells, which together establish an immunosuppressive TME. In this review, we describe the potential mechanisms by which TANs participate in tumor metastasis based on recent experimental evidence. We have focused on drugs in chemotherapeutic regimens that target TANs, thereby providing a promising future for cancer immunotherapy.
Collapse
Affiliation(s)
- Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Rui Niu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
20
|
Impact of radiotherapy schedule on survival of patients treated with immune-checkpoint inhibitors for advanced melanoma and non-small cell lung cancer. Cancer Radiother 2022; 26:1045-1053. [DOI: 10.1016/j.canrad.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/30/2021] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
|
21
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
22
|
Kool R, Marcq G, Shinde-Jadhav S, Mansure JJ, Saleh R, Rajan R, Aprikian A, Tanguay S, Cury FL, Brimo F, Souhami L, Kassouf W. Role of Serum Lymphocyte-derived Biomarkers in Nonmetastatic Muscle-invasive Bladder Cancer Patients Treated with Trimodal Therapy. EUR UROL SUPPL 2022; 36:26-33. [PMID: 35098169 PMCID: PMC8783035 DOI: 10.1016/j.euros.2021.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Background The role of serum lymphocyte-based biomarkers, such as the neutrophil-to-lymphocyte (NLR), lymphocyte-to-monocyte (LMR), and platelet-to-lymphocyte (PLR) ratios, was previously studied in patients with muscle-invasive bladder cancer (MIBC) treated with radical cystectomy but remains underexplored in patients treated with trimodal therapy (TMT). Objective To analyze the impact of serum lymphocyte-based biomarkers on main oncological outcomes after TMT for MIBC. Design, setting, and participants A retrospective study, including 176 patients treated with TMT for nonmetastatic MIBC (cT2–4/cN0–2) between 2001 and 2017 at a tertiary academic center, was conducted. Intervention TMT, consisting of initial maximal transurethral resection of the bladder tumor, followed by radiotherapy with concurrent chemotherapy. Outcome measurements and statistical analysis Clinicopathological characteristics, serum laboratory tests, and imaging reports were collected. NLR, LMR, and PLR were calculated before and at the end of TMT. Dynamic patterns of NLR, LMR, and PLR during TMT were studied. Multivariable regression models were performed to estimate the effect of these biomarkers on complete response (CR) to TMT and survival. Results and limitations The median age was 75 yr (interquartile range 66–82). Staging was cT2 in 156 (89%) and cN0 in 159 (90%) patients. A pretreatment NLR (pre-NLR) of ≥4.0 was independently associated with lower CR rates (odds ratio 0.32; p = 0.013). In addition, a pre-NLR of ≥4.0 was associated with worse cancer-specific survival (hazard ratio [HR] 1.88; p = 0.032) and overall survival (OS; HR 1.61; p = 0.033) together with other factors such as hydronephrosis, Eastern Cooperative Oncology Group performance status, and cT stage 3-4a. When both pre- and post-treatment variables were considered, an increase in NLR beyond 75% during TMT (HR 1.63; p = 0.035) was associated with worse OS. This study was limited by its retrospective design. Conclusions A high pre-NLR value was independently associated with lower rates of CR and worse survival in MIBC patients undergoing TMT. Prospective validation is needed to implement NLR into clinical practice. Patient summary In this study, we reported the oncological outcomes of patients with muscle-invasive bladder cancer treated with trimodal therapy. We found that the neutrophil-to-lymphocyte ratio, a cheap and available blood-derived biomarker, was associated with response to trimodal therapy and survival outcomes.
Collapse
|
23
|
Lin YJ, Wei KC, Chen PY, Lim M, Hwang TL. Roles of Neutrophils in Glioma and Brain Metastases. Front Immunol 2021; 12:701383. [PMID: 34484197 PMCID: PMC8411705 DOI: 10.3389/fimmu.2021.701383] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils, which are the most abundant circulating leukocytes in humans, are the first line of defense against bacterial and fungal infections. Recent studies have reported the role and importance of neutrophils in cancers. Glioma and brain metastases are the most common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may prevent drug penetration and decrease the efficacy of immunotherapy. However, there are limited studies on the correlation between brain cancer and neutrophils. This review discusses the origin and functions of neutrophils. Additionally, the current knowledge on the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain metastases has been summarized. Furthermore, the implications of tumor-associated neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the potential effects of various treatments on TANs and the ability of neutrophils to function as a nanocarrier of drugs to the brain TME have been summarized. However, further studies are needed to elucidate the complex interactions between neutrophils, other immune cells, and brain tumor cells.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
24
|
Liu Z, Hu S, Yun Z, Hu W, Zhang S, Luo D. Using dynamic cell communication improves treatment strategies of breast cancer. Cancer Cell Int 2021; 21:275. [PMID: 34034721 PMCID: PMC8145794 DOI: 10.1186/s12935-021-01979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Several insights from the clinical treatment of breast cancer patients have revealed that only a portion of patients achieve the expected curative effect after traditional targeted therapy, that surgical treatment may promote the development of cancer metastasis, and that the optimal combination of neoadjuvant chemotherapy and traditional treatment is not clear. Therefore, a more precise classification of breast cancer and selection of treatment methods should be undertaken to improve the efficacy of clinical treatment. In the clinical treatment of breast cancer, cell communication molecules are often selected as therapeutic targets. However, various cell communications are not static. Their dynamic changes are related to communicating cells, communicating molecules, and various intertwined internal and external environmental factors. Understanding the dynamic microenvironment can help us improve therapeutic efficacy and provide new ways to more accurately determine the cancer status. Therefore, this review describes multiple types of cellular communication in the breast cancer microenvironment and incorporates internal and external environmental factors as variable signaling factors in cell communication. Using dynamic and developmental concepts, we summarize the functional changes in signaling molecules and cells to aid in the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Zhibo Liu
- Second Clinic Medical College, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong District, Chongqing, People's Republic of China
| | - Song Hu
- Thrombosis Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zehui Yun
- Queen Mary School, School of Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Wanshan Hu
- School of Medicine, Forth Clinic Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Aiguo Road, No. 152, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Bayi Road, No. 461, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
25
|
Zhang C, Liang Z, Ma S, Liu X. Radiotherapy and Cytokine Storm: Risk and Mechanism. Front Oncol 2021; 11:670464. [PMID: 34094967 PMCID: PMC8173139 DOI: 10.3389/fonc.2021.670464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Radiotherapy (RT) shows advantages as one of the most important precise therapy strategies for cancer treatment, especially high-dose hypofractionated RT which is widely used in clinical applications due to the protection of local anatomical structure and relatively mild impairment. With the increase of single dose, ranging from 2~20 Gy, and the decrease of fractionation, the question that if there is any uniform standard of dose limits for different therapeutic regimens attracts more and more attention, and the potential adverse effects of higher dose radiation have not been elucidated. In this study, the immunological adverse responses induced by radiation, especially the cytokine storm and the underlying mechanisms such as DAMPs release, pro-inflammatory cytokine secretion and cGAS-STING pathway activation, will be elucidated, which contributes to achieving optimal hypofractionated RT regimen, improving the killing of cancer cells and avoiding the severe side effects.
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zhenzhen Liang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Shumei Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
26
|
Pulse-dose-rate interstitial brachytherapy in anal squamous cell carcinoma: clinical outcomes and patients' health quality perception. J Contemp Brachytherapy 2021; 13:263-272. [PMID: 34122565 PMCID: PMC8170522 DOI: 10.5114/jcb.2021.106247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/07/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To examine clinical outcomes and quality of life of patients with anal squamous cell carcinoma treated with interstitial pulsed-dose-rate brachytherapy (PDR-BT) with a boost to residual tumor after external radiotherapy. Material and methods Medical records of patients receiving a brachytherapy boost after radiotherapy for anal squamous cell carcinoma in our Institute between 2008 and 2019 were retrospectively reviewed. After receiving pelvic irradiation ± concurrent chemotherapy, patients received PDR-BT boost to residual tumor, in order to deliver a minimal total dose of 60 Gy. Patients’ outcomes were analyzed, with primary focus on local control, sphincter preservation, morbidity, and quality of life. Results A total of 42 patients were identified, included 24, 13, and 5 patients with I, II, and III tumor stages, respectively. Median brachytherapy (BT) dose was 20 Gy (range, 10-30 Gy). Median dose per pulse was 42 cGy (range, 37.5-50 cGy). With median follow-up of 60.4 months (range, 5.4-127.4 months), estimated local control and colostomy-free survival rates at 5 years were both 88.7% (95% CI: 67.4-96.4%). The largest axis of residual lesion after external beam radiation therapy (EBRT) and poor tumor shrinkage were associated with more frequent relapses (p = 0.02 and p = 0.007, respectively). Out of 40 patients with more than 6 months follow-up, only one experienced severe delayed toxicity (fecal incontinence). Health quality perception was very good or good in 20 of 22 (91%) patients, according to their replies of quality-of-life surveys. A total dose ≥ 63 Gy was associated with higher number of anorectal grade 1+ toxicities (n = 1.5 vs. n = 0.61, p = 0.02). Conclusions In this cohort of 42 patients with mainly I and II tumor stages, PDR-BT boost allowed for local control in 88.7% of patients, with only one grade 3 anorectal toxicity.
Collapse
|
27
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
28
|
Long W, Chen J, Gao C, Lin Z, Xie X, Dai H. Brief review on the roles of neutrophils in cancer development. J Leukoc Biol 2020; 109:407-413. [PMID: 32970873 PMCID: PMC7891660 DOI: 10.1002/jlb.4mr0820-011r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Neutrophils, which are traditionally regarded as a hallmark of inflammation, are also a member of the intratumoral immune cells. The roles of neutrophils in cancer development are diverse and undefined. So far, they are known to be involved in tumor initiation and tumor cell proliferation and metastasis. They show heterogeneity in both phenotypes and functions during early versus late stage of cancer development. Because they are also associated with the clinical outcomes of various types of solid tumors, cancer treatments that target neutrophils might be highly effective. In this review, we briefly cover the latest findings on the multiple roles of neutrophils in cancer development and point out the future directions as well.
Collapse
Affiliation(s)
- Wang Long
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Pathological Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jingjing Chen
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Chen Gao
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Zhi Lin
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
29
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 687] [Impact Index Per Article: 137.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Sherry AD, von Eyben R, Newman NB, Gutkin P, Mayer I, Horst K, Chakravarthy AB, Rafat M. Systemic Inflammation After Radiation Predicts Locoregional Recurrence, Progression, and Mortality in Stage II-III Triple-Negative Breast Cancer. Int J Radiat Oncol Biol Phys 2020; 108:268-276. [PMID: 31809877 PMCID: PMC7473500 DOI: 10.1016/j.ijrobp.2019.11.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Patients with triple-negative breast cancer experience high rates of recurrence after radiation, which may be facilitated by the recruitment of circulating tumor cells to proinflammatory microenvironments in the absence of lymphocytes. We hypothesized that patients with lymphopenia and elevated inflammatory hematologic markers after radiation therapy would have an increased risk of locoregional failure. METHODS AND MATERIALS With approval, we retrospectively studied a cohort of women treated with adjuvant radiation therapy for stage II-III triple-negative breast cancer. We analyzed the relationship between post-radiation therapy neutrophil:lymphocyte ratio (NLR) and locoregional recurrence by using Cox regression. RESULTS One-hundred thirty patients met inclusion criteria, and median follow-up time was 7.6 years. Patients with an NLR ≥3 had a higher rate of locoregional failure (P = .04) and lower overall survival (P = .04). After adjusting for stage (hazard ratio [HR], 5.5; P < .0001) and neoadjuvant chemotherapy (HR, 2.5; P = .0162), NLR was highly predictive of locoregional failure (HR, 1.4; P = .0009). NLR was also highly predictive of overall survival (HR, 1.3; P = .0007) after adjustment for stage and neoadjuvant chemotherapy. CONCLUSIONS Innate peripheral inflammation after radiation therapy for triple-negative breast cancer in an immunocompromised setting may be a novel prognostic biomarker for locoregional recurrence, progression, and survival. This finding supports preclinical studies of post-radiation therapy inflammation-mediated tumor progression. Further studies are needed to confirm this finding and develop treatment strategies.
Collapse
Affiliation(s)
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Neil B Newman
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paulina Gutkin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Ingrid Mayer
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kathleen Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - A Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marjan Rafat
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee.
| |
Collapse
|
31
|
Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AMC, Hendriks LEL, Eckert F, Hiley C, Dooms C, Lievens Y, de Jong MC, Bussink J, Geets X, Valentini V, Elia G, Neri D, Billiet C, Abdollahi A, Pasquier D, Boisselier P, Yaromina A, De Ruysscher D, Dubois LJ, Lambin P. Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer 2020; 20:557. [PMID: 32539805 PMCID: PMC7296663 DOI: 10.1186/s12885-020-07055-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND About 50% of non-small cell lung cancer (NSCLC) patients have metastatic disease at initial diagnosis, which limits their treatment options and, consequently, the 5-year survival rate (15%). Immune checkpoint inhibitors (ICI), either alone or in combination with chemotherapy, have become standard of care (SOC) for most good performance status patients. However, most patients will not obtain long-term benefit and new treatment strategies are therefore needed. We previously demonstrated clinical safety of the tumour-selective immunocytokine L19-IL2, consisting of the anti-ED-B scFv L19 antibody coupled to IL2, combined with stereotactic ablative radiotherapy (SABR). METHODS This investigator-initiated, multicentric, randomised controlled open-label phase II clinical trial will test the hypothesis that the combination of SABR and L19-IL2 increases progression free survival (PFS) in patients with limited metastatic NSCLC. One hundred twenty-six patients will be stratified according to their metastatic load (oligo-metastatic: ≤5 or poly-metastatic: 6 to 10) and randomised to the experimental-arm (E-arm) or the control-arm (C-arm). The C-arm will receive SOC, according to the local protocol. E-arm oligo-metastatic patients will receive SABR to all lesions followed by L19-IL2 therapy; radiotherapy for poly-metastatic patients consists of irradiation of one (symptomatic) to a maximum of 5 lesions (including ICI in both arms if this is the SOC). The accrual period will be 2.5-years, starting after the first centre is initiated and active. Primary endpoint is PFS at 1.5-years based on blinded radiological review, and secondary endpoints are overall survival, toxicity, quality of life and abscopal response. Associative biomarker studies, immune monitoring, CT-based radiomics, stool collection, iRECIST and tumour growth rate will be performed. DISCUSSION The combination of SABR with or without ICI and the immunocytokine L19-IL2 will be tested as 1st, 2nd or 3rd line treatment in stage IV NSCLC patients in 14 centres located in 6 countries. This bimodal and trimodal treatment approach is based on the direct cytotoxic effect of radiotherapy, the tumour selective immunocytokine L19-IL2, the abscopal effect observed distant from the irradiated metastatic site(s) and the memory effect. The first results are expected end 2023. TRIAL REGISTRATION ImmunoSABR Protocol Code: NL67629.068.18; EudraCT: 2018-002583-11; Clinicaltrials.gov: NCT03705403; ISRCTN ID: ISRCTN49817477; Date of registration: 03-April-2019.
Collapse
Affiliation(s)
- Relinde I Y Lieverse
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Evert J Van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cary J G Oberije
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Esther G C Troost
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus at Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- OncoRay, National Center for Radiation Research in Oncology, Dresden, Germany
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Marie C Dingemans
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Rotterdam, The Netherlands
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Franziska Eckert
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christophe Dooms
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospitals KU Leuven, Leuven, Belgium
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Monique C de Jong
- Department of Radiation Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066, Amsterdam, CX, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xavier Geets
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, MIRO - IREC Lab, UCL, Bruxelles, Belgium
| | - Vincenzo Valentini
- Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Istituto di Radiologia, Roma, Italy
| | - Giuliano Elia
- Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Charlotte Billiet
- Department of Radiation Oncology, Iridium Network, Wilrijk (Antwerp), Belgium
- University of Antwerp, Faculty of Medicine and Health Sciences, Campus Drie Eiken, Building S, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Pasquier
- Academic Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Pierre Boisselier
- Department of Radiation Oncology, ICM-Val d'Aurelle, Université de Montpellier, Montpellier, France
| | - Ala Yaromina
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The D-Lab and The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
32
|
Holub K, Busato F, Gouy S, Sun R, Pautier P, Genestie C, Morice P, Leary A, Deutsch E, Haie-Meder C, Biete A, Chargari C. Analysis of Systemic Inflammatory Factors and Survival Outcomes in Endometrial Cancer Patients Staged I-III FIGO and Treated with Postoperative External Radiotherapy. J Clin Med 2020; 9:E1441. [PMID: 32408668 PMCID: PMC7291051 DOI: 10.3390/jcm9051441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The causal link between elevated systemic inflammation biomarkers and poor survival has been demonstrated in cancer patients. However, the evidence for this correlation in endometrial cancer (EC) is too weak to influence current criteria of risk assessment. Here, we examined the role of inflammatory indicators as a tool to identify EC patients at higher risk of death in a retrospective observational study. METHODS A total of 155 patients surgically diagnosed with EC stage I-III FIGO 2009 and treated with postoperative External Beam Radiotherapy (EBRT) ± brachytherapy and chemotherapy according to ESMO-ESTRO-ESGO recommendation for patients at high risk of recurrence at the Gustave Roussy Institut, France, and Hospital Clínic, Spain, between 2008 and 2017 were evaluated. The impact of pre-treatment Neutrophil-to-Lymphocyte Ratio (NLR ≥ 2.2), Monocyte-to-Lymphocyte Ratio (MLR ≥ 0.18), Systemic Immune-Inflammatory Index (SII ≥ 1100) and lymphopenia (<1.0×109/L) on overall survival (OS), cancer-specific survival and progression-free survival was evaluated. Subsequently, a cohort of 142 patients within high-advanced risk groups according to ESMO-ESGO-ESTRO classification was evaluated. RESULTS On univariate analysis, NLR (HR = 2.2, IC 95% 1.1-4.7), SII (HR = 2.2, IC 95% 1.1-4.6), MLR (HR = 5.0, IC 95% 1.1-20.8) and lymphopenia (HR = 3.8, IC 95% 1.6-9.0) were associated with decreased OS. On multivariate analysis, NLR, MLR, SII and lymphopenia proved to be independent unfavorable prognostic factors. CONCLUSIONS lymphopenia and lymphocytes-related ratio are associated with poorer outcome in surgically staged I-III FIGO EC patients classified as high risk and treated with adjuvant EBRT and could be considered at cancer diagnosis. External validation in an independent cohort is required before implementation for patients' stratification.
Collapse
Affiliation(s)
- Katarzyna Holub
- Radiation Oncology Department, Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| | - Fabio Busato
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| | - Sebastien Gouy
- Surgery Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (S.G.); (P.M.)
| | - Roger Sun
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| | - Patricia Pautier
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (P.P.); (A.L.)
| | - Catherine Genestie
- Pathology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France;
| | - Philippe Morice
- Surgery Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (S.G.); (P.M.)
| | - Alexandra Leary
- Medical Oncology Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (P.P.); (A.L.)
| | - Eric Deutsch
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| | - Christine Haie-Meder
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| | - Albert Biete
- Radiation Oncology Department, Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain;
| | - Cyrus Chargari
- Radiotherapy Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France; (F.B.); (R.S.); (E.D.); (C.H.-M.); (C.C.)
| |
Collapse
|
33
|
Wang D, Guo D, Li A, Wang P, Teng F, Yu J. The post-treatment neutrophil-to-lymphocyte ratio and changes in this ratio predict survival after treatment of stage III non-small-cell lung cancer with conventionally fractionated radiotherapy. Future Oncol 2020; 16:439-449. [PMID: 32141321 DOI: 10.2217/fon-2019-0837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To investigate the predictive potential of post-treatment neutrophil-to-lymphocyte ratio (NLR) and changes in this ratio (ΔNLR) for stage III non-small-cell lung cancer (NSCLC) patients who received conventionally fractionated radiotherapy (CFRT). Patients & methods: The data of 168 NSCLC patients treated at the Shandong Cancer Hospital were analyzed retrospectively. The relationship between progression-free survival (PFS), overall survival (OS) and post-treatment NLR and ΔNLR were analyzed using both Kaplan-Meier and Cox regression methods. Results: Kaplan-Meier survival analyses showed that post-treatment NLR and ΔNLR were associated with PFS (p < 0.001) and OS (p < 0.001) after CFRT. Multivariate analyses revealed that ΔNLR was an independent predictor of PFS (p = 0.001) and OS (p = 0.018). Post-treatment NLR can only be used as an independent predictor of PFS (p = 0.040). Conclusion: Our results demonstrated the prognostic value of the ΔNLR in predicting PFS and OS in stage III NSCLC patients undergoing CFRT. However, post-treatment NLR has predictive value only for PFS.
Collapse
Affiliation(s)
- Duoying Wang
- Department of Clinical Medicine, Weifang Medical University, Weifang, PR China.,Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Dong Guo
- Department of Radiotherapy, Sunshine Union Hospital, Weifang, PR China
| | - Aijie Li
- Department of Clinical Medicine, Weifang Medical University, Weifang, PR China.,Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Peiliang Wang
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Feifei Teng
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Jinming Yu
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| |
Collapse
|
34
|
Turpin A, Duterque-Coquillaud M, Vieillard MH. Bone Metastasis: Current State of Play. Transl Oncol 2020; 13:308-320. [PMID: 31877463 PMCID: PMC6931192 DOI: 10.1016/j.tranon.2019.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Bone metastasis (BM) in cancer remains a critical issue because of its associated clinical and biological complications. Moreover, BM can alter the quality of life and survival rate of cancer patients. Growing evidence suggests that bones are a fertile ground for the development of metastasis through a "vicious circle" of bone resorption/formation and tumor growth. This review aims to outline the current major issues in the diagnosis and management of BM in the most common types of osteotropic cancers and describe the mechanisms and effects of BM. First, we discuss the incidence of BM through the following questions: Are we witnessing an increase in incidence, and are we now better equipped with modern imaging techniques? Is the advent of efficient bone resorption inhibitors affecting the bigger picture of BM management? Second, we discuss the potential effects of cancer progression and well-prescribed drugs, such as multitarget tyrosine kinase inhibitors, inhibitors of the mammalian target of rapamycin, and immune checkpoint inhibitors, on BM. Finally, we examine the duality of the effects of some therapies that may help in cancer treatment but may also contribute to further BM.
Collapse
Affiliation(s)
- Anthony Turpin
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Targeted Therapies, F-59021 Lille, France; Department of Medical Oncology, CHU Lille, 59037 Lille, France
| | - Martine Duterque-Coquillaud
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - Mechanisms of Tumorigenesis and Targeted Therapies, F-59021 Lille, France.
| | - Marie-Hélène Vieillard
- Department of Rheumatology, CHU de Lille, 59037 Lille, France; Department of supportive care, Centre Oscar Lambret, 59000 Lille, France
| |
Collapse
|
35
|
Prognostic value of post-radiotherapy neutrophil-to-lymphocyte ratio in locally advanced nasopharyngeal carcinoma. Strahlenther Onkol 2019; 196:252-261. [PMID: 31701168 DOI: 10.1007/s00066-019-01529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To explore the temporal profile of the peripheral neutrophil-to-lymphocyte ratio (NLR) in patients with locally advanced nasopharyngeal carcinoma (LANPC) and the potential prognostic value of its dynamic changes. METHODS Complete blood count of 112 patients from a previous phase II study were retrospectively collected at the timepoints of the initiation of induction chemotherapy (pre-IC), within 1 week before radiotherapy started (pre-RT), and within 1 week after radiotherapy finished (post-RT). Data of 103 patients were fully recorded and Cox regression analysis was used to analyze the correlations of potential risk factors with 5‑year overall survival (OS). The performance of the prognostic factor was validated in another independent cohort of 103 matched (by T and N stage) patients selected from 236 consecutive NPC patients treated with IC and concurrent chemoradiation. RESULTS Multivariate analysis (MVA) identified patient age >50 years old (hazard ratio [HR] = 3.4, p = 0.02), weight loss during RT >7.5% (HR = 3.2, p = 0.03), and post-RT peripheral NLR >7.05 (vs. NLR ≤7.05, HR = 2.5, p = 0.04, 5‑year OS 71.4% vs. 87.8%) as unfavorable prognostic factors for OS. There was also a non-significant trend in the MVA that patients with post-RT peripheral NLR >7.05 showed worse progression-free survival (PFS; HR = 1.9, p = 0.06, 5‑year PFS 64.1% vs. 81.8%). Post-RT NLR had a good prognostic performance in the validation cohort (concordance index = 0.73, standard error 0.10; p = 0.02, Wilcoxon test). CONCLUSION Post-RT NLR is an independent prognostic factor for OS in LANPC patients. The dynamic change of the routinely tested inflammatory variable could help selection of appropriate treatment options and follow-up strategies.
Collapse
|
36
|
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Cai Grau
- Department of Oncology and Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
37
|
Lin C, Lin S, Guo QJ, Zong JF, Lu TZ, Lin N, Lin SJ, Pan JJ. Systemic immune-inflammation index as a prognostic marker in patients with newly diagnosed metastatic nasopharyngeal carcinoma: a propensity score-matched study. Transl Cancer Res 2019; 8:2089-2098. [PMID: 35116958 PMCID: PMC8797649 DOI: 10.21037/tcr.2019.09.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/04/2019] [Indexed: 01/21/2023]
Abstract
Background Systemic immune-inflammation index (SII) is significantly associated with poor survival in variety of cancers. However, SII has not yet been investigated in patients with newly diagnosed metastatic nasopharyngeal carcinoma (mNPC). Thus, our aim is to explore the role of SII in metastatic Nasopharyngeal Carcinoma. Methods Two hundred and forty-three patients with newly diagnosed mNPC were retrospectively enrolled. The Kaplan-Meier analysis and Cox regression analysis was performed to evaluate the prognostic value of SII in overall survival (OS) and progression-free survival (PFS). Heterogeneity of factors was balanced by using propensity score-matched (PSM) analysis (1:1 for high SII versus low SII). Results Kaplan-Meier analysis showed that patients with high SII were associated with poor median OS (18.0 vs. 36.0 m, P<0.001) and PFS (10.0 vs. 22.0 m, P<0.001) in mNPC. The Cox regression analysis suggested that high SII was a prognostic factor for OS (HR 1.75, 95% CI: 1.22–2.52, P=0.001) and PFS (HR 1.69, 95% CI: 1.22–2.35, P=0.002). PSM analysis still confirmed that SII was an independent marker for OS (HR 1.86, 95% CI: 1.22–2.83, P=0.004) and PFS (HR 1.84, 95% CI: 1.23–2.77, P=0.003). Conclusions SII is an independent prognostic biomarker for poor OS and PFS in patients with newly diagnosed mNPC and might be a promising tool for guiding treatment strategy decisions.
Collapse
Affiliation(s)
- Cheng Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Sheng Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Qiao-Juan Guo
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Jing-Feng Zong
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Tian-Zhu Lu
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Na Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Shao-Jun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| | - Jian-Ji Pan
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou 350000, China
| |
Collapse
|
38
|
Abstract
Nearly two-thirds of cancer patients are treated with radiation therapy (RT), often with the intent to achieve complete and permanent tumor regression (local control). RT is the primary treatment modality used to achieve local control for many malignancies, including locally advanced cervical cancer, head and neck cancer, and lung cancer. The addition of concurrent platinum-based radiosensitizing chemotherapy improves local control and patient survival. Enhanced outcomes with concurrent chemoradiotherapy may result from increased direct killing of tumor cells and effects on nontumor cell populations. Many patients treated with concurrent chemoradiotherapy exhibit a decline in neutrophil count, but the effects of neutrophils on radiation therapy are controversial. To investigate the clinical significance of neutrophils in the response to RT, we examined patient outcomes and circulating neutrophil counts in cervical cancer patients treated with definitive chemoradiation. Although pretreatment neutrophil count did not correlate with outcome, lower absolute neutrophil count after starting concurrent chemoradiotherapy was associated with higher rates of local control, metastasis-free survival, and overall survival. To define the role of neutrophils in tumor response to RT, we used genetic and pharmacological approaches to deplete neutrophils in an autochthonous mouse model of soft tissue sarcoma. Neutrophil depletion prior to image-guided focal irradiation improved tumor response to RT. Our results indicate that neutrophils promote resistance to radiation therapy. The efficacy of chemoradiotherapy may depend on the impact of treatment on peripheral neutrophil count, which has the potential to serve as an inexpensive and widely available biomarker.
Collapse
|
39
|
|
40
|
Gabriely G, Quintana FJ. Role of AHR in the control of GBM-associated myeloid cells. Semin Cancer Biol 2019; 64:13-18. [PMID: 31128300 DOI: 10.1016/j.semcancer.2019.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor; its malignancy has been associated with the activity of tumor infiltrating myeloid cells. Myeloid cells play important roles in the tumor control by the immune response, but also in tumor progression. Indeed, GBM exploits multiple mechanisms to recruit and modulate myeloid cells. The Aryl Hydrocarbon Receptor (AHR) is a ligand activated transcription factor implicated in the regulation of myeloid cells. In this review, we will summarize current knowledge on the AHR role in the control of myeloid cells and its impact on GBM pathogenesis.
Collapse
Affiliation(s)
- Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
41
|
Seban RD, Robert C, Dercle L, Yeh R, Dunant A, Reuze S, Schernberg A, Sun R, Mignot F, Terroir M, Schlumberger M, Haie-Meder C, Chargari C, Deutsch E. Increased bone marrow SUVmax on 18F-FDG PET is associated with higher pelvic treatment failure in patients with cervical cancer treated by chemoradiotherapy and brachytherapy. Oncoimmunology 2019; 8:e1574197. [PMID: 31069132 PMCID: PMC6492982 DOI: 10.1080/2162402x.2019.1574197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate if bone marrow (BM) SUVmax measured on pre-treatment 18F-FDG PET/CT predicts the clinical outcome of locally advanced cervical cancer (LACC). We recruited retrospectively patients with LACC who underwent staging 18F-FDG PET/CT and had baseline blood tests, then treated by chemoradiation therapy (CRT), followed by image-guided adaptive brachytherapy (IGABT). BM SUVmax was calculated and correlated to inflammatory blood markers. Tumor size and pelvic lymph node involvement were evaluated on baseline MRI. Prognostic value of SUV uptake and blood markers regarding overall survival (OS), pelvic and extra-pelvic recurrence-free survival (PRFS and EPRFS respectively) was assessed using Cox models with adjusted p-values. 116 patients with FIGO stage Ib-IVa cervical cancer, treated between 2005 and 2014, were analyzed. The median follow-up was 75.5 months. BM SUVmax was significantly correlated to tumor SUVmax. In multivariate analysis, PRFS was significantly poorer in patients with high BM SUVmax (>2.8) and neutrophilia (p < .05). Tumor size (>5 vs ≤5 cm) could predict PRFS, EPRFS and OS (p < .05). In our cohort, FIGO stage (I-II vs III-IV), pelvic lymph node involvement and tumor SUVmax (>12 vs ≤12) were not prognostic for OS or pelvic and extra-pelvic relapses. Patients with LACC and high BM SUVmax on 18F-FDG PET have worse PFRS following CRT plus IGABT. These results can be potentially explained by the pro-inflammatory role of the tumor microenvironment and G-CSF expressed by tumor cells. These data support the role of PET as a potential indicator of disease aggressiveness beyond tumor staging.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Charlotte Robert
- INSERM, Villejuif, France.,Faculté de médecine, Université Paris-Sud, Université Paris-Saclay, France.,Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Department of Medical Physics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Laurent Dercle
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,INSERM, Villejuif, France.,Department of Radiology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Randy Yeh
- Department of Radiology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Ariane Dunant
- Biostatistics and Epidemiology Unit, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Sylvain Reuze
- INSERM, Villejuif, France.,Faculté de médecine, Université Paris-Sud, Université Paris-Saclay, France.,Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Department of Medical Physics, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antoine Schernberg
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Roger Sun
- INSERM, Villejuif, France.,Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Fabien Mignot
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Terroir
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Martin Schlumberger
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Faculté de médecine, Université Paris-Sud, Université Paris-Saclay, France
| | - Christine Haie-Meder
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Cyrus Chargari
- INSERM, Villejuif, France.,Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,French Military Health Services Academy, Paris, France.,Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France
| | - Eric Deutsch
- INSERM, Villejuif, France.,Faculté de médecine, Université Paris-Sud, Université Paris-Saclay, France.,Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
42
|
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis. Int J Mol Sci 2019; 20:ijms20040999. [PMID: 30823602 PMCID: PMC6412551 DOI: 10.3390/ijms20040999] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is associated with significant morbidity for cancer patients and results in a reduced quality of life. The bone marrow is a fertile soil containing a complex composition of immune cells that may actually provide an immune-privileged niche for disseminated tumor cells to colonize and proliferate. In this unique immune milieu, multiple immune cells including T cells, natural killer cells, macrophages, dendritic cells, myeloid-derived suppressor cells, and neutrophils are involved in the process of bone metastasis. In this review, we will discuss the crosstalk between immune cells in bone microenvironment and their involvement with cancer cell metastasis to the bone. Furthermore, we will highlight the anti-tumoral and pro-tumoral function of each immune cell type that contributes to bone metastasis. We will end with a discussion of current therapeutic strategies aimed at sensitizing immune cells.
Collapse
Affiliation(s)
- Lisha Xiang
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu 610041, China.
| | - Daniele M Gilkes
- Breast & Ovarian Cancer Program, Department of Oncology, The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
43
|
Wu L, Chung YL. Tumor-Infiltrating T Cell Receptor-Beta Repertoires are Linked to the Risk of Late Chemoradiation-Induced Temporal Lobe Necrosis in Locally Advanced Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2019; 104:165-176. [PMID: 30654091 DOI: 10.1016/j.ijrobp.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 01/05/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Temporal lobe necrosis (TLN), a late complication of nasopharyngeal carcinoma (NPC) after concurrent chemoradiotherapy (CCRT), causes permanent neurologic deficits. We aimed to investigate the risk factors for the development of CCRT-induced TLN in locally advanced NPC patients. METHODS AND MATERIALS The incidence of CCRT-induced TLN was assessed in consecutive patients with NPC initially staged with T3-4N0-3M0 receiving curative intensity modulated radiation therapy (IMRT) and cisplatin-based chemotherapy with long-term follow-up. The TLN risk was evaluated with radiation dose-volume histograms (a dosimetric risk indicator of organ injury) and the dynamics of blood circulating neutrophil-to-lymphocyte ratios (a clinical indicator of systemic inflammation) by linear and logistic regression models. High-throughput unbiased T cell receptor-beta (TCRbeta) sequencing was performed to correlate the different TCRbeta repertoires of NPC-infiltrating lymphocytes (a biological factor of the immune microenvironment) with TLN incidence. RESULTS In the era of modern IMRT-based CCRT, radiation doses of up to 74 Gy achieved local control rates of more than 90% in both T3 and T4 diseases but still induced a remarkably higher incidence of TLN in the T4 patients (30.14%) compared with the rare incidence of TLN observed in the T3 patients (2.78%) (P < .0001). We found that in the T4 NPC patients, univariate and multivariate analyses showed the radiation tolerance dose-volume effect was not an absolutely independent factor influencing TLN occurrence. However, increased TLN risk was observed in association with higher pre-CCRT baseline and post-CCRT neutrophil-to-lymphocyte ratios. There was also a link between intratumoral TCRbeta repertoire subtypes and TLN incidence. Combining the inherent TCRbeta genomic susceptibility with the clinical variable neutrophil-to-lymphocyte ratio better predicted the risk of TLN for T4 NPC patients after CCRT. CONCLUSIONS The associations of tumor-infiltrating lymphocyte repertoires and blood circulating neutrophil-to-lymphocyte ratios with TLN occurrence in T4 NPC patients suggest that the immune and inflammatory milieus play roles in the late brain damage caused by CCRT. Modulated or provoked by CCRT locally and systemically, the reciprocal interactions of neutrophils and lymphocytes in the intracranial NPC-associated immune microenvironment could be a key driver of chronic TLN pathogenesis.
Collapse
Affiliation(s)
- LiFu Wu
- Department of Radiation Oncology, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei, Taiwan; Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Yih-Lin Chung
- Department of Radiation Oncology, Koo Foundation Sun-Yat-Sen Cancer Center, Taipei, Taiwan.
| |
Collapse
|
44
|
Rane D, Patil T, More V, Patra SS, Bodhale N, Dandapat J, Sarkar A. Neutrophils: Interplay between host defense, cellular metabolism and intracellular infection. Cytokine 2018; 112:44-51. [DOI: 10.1016/j.cyto.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
|
45
|
Schernberg A, Bockel S, Annede P, Fumagalli I, Escande A, Mignot F, Kissel M, Morice P, Bentivegna E, Gouy S, Deutsch E, Haie-Meder C, Chargari C. Tumor Shrinkage During Chemoradiation in Locally Advanced Cervical Cancer Patients: Prognostic Significance, and Impact for Image-Guided Adaptive Brachytherapy. Int J Radiat Oncol Biol Phys 2018; 102:362-372. [PMID: 29920324 DOI: 10.1016/j.ijrobp.2018.06.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE To study the prognostic value of gross tumor volume (GTV) shrinkage and its dosimetric implication in a large cohort of patients with cervical cancer receiving definitive chemoradiotherapy plus image guided adaptive brachytherapy. METHODS AND MATERIALS Clinical records of consecutive patients treated in our institution between February 2004 and November 2015 by concurrent chemoradiotherapy (45 Gy in 25 fractions ± lymph node boosts) followed by a magnetic resonance imaging-guided adaptive pulse-dose rate brachytherapy were included. The prognostic value of GTV and its evolution after chemoradiotherapy were examined first on initial staging magnetic resonance imaging and then at time of brachytherapy. All measures and measurement cutoffs were selected using time-dependent area under the curve for 3-year progression-free survival (PFS). RESULTS GTV evolution between diagnosis and the time of brachytherapy was assessed in 247 patients. After chemoradiotherapy, complete response was observed in 75 patients (28%). Optimal cutoffs were GTV = 55 cm3 at diagnosis, GTV = 7.5 cm3 at brachytherapy, and GTV reduction ≥90%. All patients with volume above or reduction below these cutoffs had significant reduced overall survival, PFS, local control, and distant metastasis control (P < .001). Patients with anemia at diagnosis had a lower tumor volume response rate (P < .001). In multivariate analysis, incorporating the International Federation of Gynecology and Obstetrics stage, N+ stage, anemia, and dosimetric parameters for image guided adaptive brachytherapy, GTV optimal volume reduction after chemoradiotherapy was independently associated with improved overall survival, PFS, local control, and distant metastasis control (P < .001). CONCLUSIONS These results could provide a rationale for dose de-escalation studies in brachytherapy for patients displaying optimal GTV volumetric reduction after chemoradiotherapy and may reinforce the need for dose escalation in poorly responding patients.
Collapse
Affiliation(s)
- Antoine Schernberg
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France; INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sophie Bockel
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pierre Annede
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ingrid Fumagalli
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandre Escande
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabien Mignot
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Manon Kissel
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Philippe Morice
- Faculté de médecine PARIS Sud, Université Paris Sud, Université Paris-Saclay, France; Department of Surgery, Gustave Roussy, Villejuif, France
| | | | - Sebastien Gouy
- Department of Surgery, Gustave Roussy, Villejuif, France
| | - Eric Deutsch
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France; INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Gustave Roussy, Villejuif, France
| | - Christine Haie-Meder
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France
| | - Cyrus Chargari
- Radiotherapy Department, Brachytherapy Unit, Gustave Roussy Cancer Campus, Villejuif, France; INSERM U1030, Gustave Roussy Cancer Campus, Villejuif, France; Department of Surgery, Gustave Roussy, Villejuif, France; French Military Health Services Academy, Ecole du Val-de-Grâce, Paris, France; Institut de Recherche Biomédicale des Armées, Bretigny-sur-Orge, France.
| |
Collapse
|
46
|
Barbetta A, Nobel TB, Sihag S, Hsu M, Tan KS, Bains MS, Isbell JM, Janjigian YY, Wu AJ, Bott MJ, Jones DR, Molena D. Neutrophil to Lymphocyte Ratio as Predictor of Treatment Response in Esophageal Squamous Cell Cancer. Ann Thorac Surg 2018; 106:864-871. [PMID: 29738752 DOI: 10.1016/j.athoracsur.2018.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of this study was to assess the difference (Δ) in neutrophil to lymphocyte ratio (NLR), before and after chemoradiotherapy, as a predictor of treatment response and a prognostic factor for recurrence and disease-free survival in patients with esophageal squamous cell cancer treated with chemoradiotherapy with or without surgery. METHODS Patients with locally advanced esophageal squamous cell cancer treated with chemoradiation with and without surgery who had a complete blood count before and after chemoradiotherapy were included. Pretreatment and posttreatment NLR were calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. The ΔNLR was defined as posttreatment minus pretreatment NLR. Characteristics were evaluated for association with ΔNLR using the Wilcoxon signed rank test or the Kruskal-Wallis test. Risk of recurrence and disease-free survival were evaluated using Gray's and the log rank tests, respectively. RESULTS We included 217 patients. Of them, 133 patients (61.3%) received only chemoradiotherapy and 84 (38.7%) underwent surgery after chemoradiotherapy. Among the surgical patients, 43% with pathologic complete response showed significantly lower median ΔNLR than patients with residual disease (-0.03 versus 1.04, p = 0.004). High ΔNLR was a negative predictor of treatment response (odds ratio 0.77, 95% confidence interval: 0.62 to 0.9, p = 0.004). A significant association between high ΔNLR and increased risk of recurrence was also identified. CONCLUSIONS The ΔNLR was inversely related to pathologic complete response and associated with risk of recurrence. This simple test, in concert with other clinical tools, can help identify patients with pathologic complete response.
Collapse
Affiliation(s)
- Arianna Barbetta
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tamar B Nobel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meier Hsu
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kay See Tan
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manjit S Bains
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James M Isbell
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Y Janjigian
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniela Molena
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
47
|
Gorphe P, Chekkoury Idrissi Y, Tao Y, Schernberg A, Ou D, Temam S, Casiraghi O, Blanchard P, Mirghani H. Anemia and neutrophil-to-lymphocyte ratio are prognostic in p16-positive oropharyngeal carcinoma treated with concurrent chemoradiation. PAPILLOMAVIRUS RESEARCH 2017; 5:32-37. [PMID: 29253748 PMCID: PMC5886959 DOI: 10.1016/j.pvr.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES We investigated the prognostic value of pre-treatment hematological parameters in patients with p16-positive oropharyngeal squamous-cell carcinoma (OPSCC). MATERIAL AND METHODS Neutrophil count, lymphocyte count, neutrophil-to-lymphocyte ratio (NLR), and hemoglobin concentration measurement (Hb), were collected on day one of treatment. Endpoints were overall survival (OS) and progression-free survival (PFS). All patients were planned to receive concurrent chemoradiation. Staging were reviewed according to the recent AJCC 8th edition. RESULTS We included 167 patients in this study. In multivariate analyses, a smoking history > 30 packyears was associated with decreased OS (p = 0.009; HR, 3.4827) and PFS (p = 0.042; HR, 2.421); Hb < 12g/dL was associated with impaired OS (p = 0.007; HR, 6.527) and PFS (p = 0.014; HR, 4.092); an NLR > 5 before treatment was associated with decreased OS (p = 0.042; HR, 2.945). Hemoglobin concentration and the NLR were not correlated (p = 0.577), nor anemia and an NLR > 5 (p = 0.167). Patients with an NLR > 5 had a significantly higher rate of disease recurrence (30.8% vs. 8.4%, p = 0.0299, RR = 3.922, 95% CI 1.351-11.386). DISCUSSION We found hemoglobin level and the NLR to be independent prognostic factors in p16-positive OPSCC patients. This approach is to be considered for further clinical investigations, and its significance in treatment decision-making should be further explored.
Collapse
Affiliation(s)
- Philippe Gorphe
- Department of Head and Neck Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
| | - Younès Chekkoury Idrissi
- Department of Head and Neck Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yungan Tao
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Antoine Schernberg
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Dan Ou
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Stéphane Temam
- Department of Head and Neck Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Odile Casiraghi
- Department of Pathology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Pierre Blanchard
- Department of Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Haïtham Mirghani
- Department of Head and Neck Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
48
|
Grau C, Høyer M, Poulsen PR, Muren LP, Korreman SS, Tanderup K, Lindegaard JC, Alsner J, Overgaard J. Rethink radiotherapy - BIGART 2017. Acta Oncol 2017; 56:1341-1352. [PMID: 29148908 DOI: 10.1080/0284186x.2017.1371326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cai Grau
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Ludvig Paul Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Kari Tanderup
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jan Alsner
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|