1
|
Young KT, Stephens JQ, Poulson RL, Stallknecht DE, Dimitrov KM, Butt SL, Stanton JB. Putative Novel Avian Paramyxovirus (AMPV) and Reidentification of APMV-2 and APMV-6 to the Species Level Based on Wild Bird Surveillance (United States, 2016-2018). Appl Environ Microbiol 2022; 88:e0046622. [PMID: 35612300 PMCID: PMC9195946 DOI: 10.1128/aem.00466-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Avian paramyxoviruses (APMVs) (subfamily Avulavirinae) have been isolated from over 200 species of wild and domestic birds around the world. The International Committee on Taxonomy of Viruses (ICTV) currently defines 22 different APMV species, with Avian orthoavulavirus 1 (whose viruses are designated APMV-1) being the most frequently studied due to its economic burden to the poultry industry. Less is known about other APMV species, including limited knowledge on the genetic diversity in wild birds, and there is a paucity of public whole-genome sequences for APMV-2 to -22. The goal of this study was to use MinION sequencing to genetically characterize APMVs isolated from wild bird swab samples collected during 2016 to 2018 in the United States. Multiplexed MinION libraries were prepared using a random strand-switching approach using 37 egg-cultured, influenza-negative, hemagglutination-positive samples. Forty-one APMVs were detected, with 37 APMVs having complete polymerase coding sequences allowing for species identification using ICTV's current Paramyxoviridae phylogenetic methodology. APMV-1, -4, -6, and -8 viruses were classified, one putative novel species (Avian orthoavulavirus 23) was identified from viruses isolated in this study, two putative new APMV species (Avian metaavulavirus 24 and 27) were identified from viruses isolated in this study and from retrospective GenBank sequences, and two putative new APMV species (Avian metaavulavirus 25 and 26) were identified solely from retrospective GenBank sequences. Furthermore, coinfections of APMVs were identified in four samples. The potential limitations of the branch length being the only species identification criterion and the potential benefit of a group pairwise distance analysis are discussed. IMPORTANCE Most species of APMVs are understudied and/or underreported, and many species were incidentally identified from asymptomatic wild birds; however, the disease significance of APMVs in wild birds is not fully determined. The rapid rise in high-throughput sequencing coupled with avian influenza surveillance programs have identified 12 different APMV species in the last decade and have challenged the resolution of classical serological methods to identify new viral species. Currently, ICTV's only criterion for Paramyxoviridae species classification is the requirement of a branch length of >0.03 using a phylogenetic tree constructed from polymerase (L) amino acid sequences. The results from this study identify one new APMV species, propose four additional new APMV species, and highlight that the criterion may have insufficient resolution for APMV species demarcation and that refinement or expansion of this criterion may need to be established for Paramyxoviridae species identification.
Collapse
Affiliation(s)
- Kelsey T. Young
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jazz Q. Stephens
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Rebecca L. Poulson
- Department of Population Health, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - David E. Stallknecht
- Department of Population Health, Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia, USA
| | - Kiril M. Dimitrov
- Department of Virology, Texas A&M University, College Station, Texas, USA
| | - Salman L. Butt
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - James B. Stanton
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 2015; 64:53-67. [DOI: 10.1111/tbed.12355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P. Gogoi
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - K. Ganar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - S. Kumar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
3
|
Choi KS, Kye SJ, Kim JY, Seul HJ, Lee HS, Kwon HM, Sung HW. Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications. J Virol Methods 2014; 198:12-7. [PMID: 24374124 DOI: 10.1016/j.jviromet.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Abstract
Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays.
Collapse
Affiliation(s)
- Kang-Seuk Choi
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Soo-Jeong Kye
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Ji-Ye Kim
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Hee-Jeong Seul
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Hee-Soo Lee
- OIE Reference Laboratory for Newcastle Disease, Avian Diseases Division, Animal and Plant Quarantine Agency, Anyang 430-757, Republic of Korea
| | - Hyuk-Moo Kwon
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Haan-Woo Sung
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea.
| |
Collapse
|
4
|
Welchman DDB, Ainsworth HL, Jensen TK, Boye M, King SA, Koylass MS, Whatmore AM, Manvell RJ, Ayling RD, Dalton JR. Demonstration of Ornithobacterium rhinotracheale in pheasants (Phasianus colchicus) with pneumonia and airsacculitis. Avian Pathol 2013; 42:171-8. [PMID: 23581445 DOI: 10.1080/03079457.2013.778387] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Outbreaks of respiratory disease were investigated in reared pheasants (Phasianus colchicus) aged approximately 18 to 32 weeks, released into the semi-wild on four shooting estates in southern England. The clinical signs in the affected birds included swelling of the face and eyes, loss of condition, gasping respirations and coughing. The gross pathology findings included sinusitis, airsacculitis, pleural oedema and lung lesions. The histopathological findings in the affected lungs were characterized by a granulomatous pneumonia. Ornithobacterium rhinotracheale (ORT) was isolated from respiratory tract tissues, and 16S rRNA gene sequencing on three isolates revealed two distinct genotypes, one previously associated with some electrophoretic type (ET) 1 strains and the other a novel genotype that clustered among sequences previously associated with ET 3, ET 4, ET 5 and ET 6 isolates. The localization of ORT within the lung tissue was demonstrated by fluorescent in-situ hybridization in the bronchial exudate of three cases, although not within the granulomatous lesions themselves. In each case, ORT was identified as part of a complex of other respiratory agents including avian paramyxovirus type 2, avian coronavirus, Mycoplasma gallisepticum, Mycoplasma synoviae and other Mycoplasma species, Escherichia coli, Pasteurella multocida, other Pasteurellaceae and Syngamus trachea, suggesting synergism with other agents. Exposure to other intercurrent factors, including adverse weather conditions and internal parasitism, may also have exacerbated the severity of disease.
Collapse
Affiliation(s)
- D de B Welchman
- Animal Health and Veterinary Laboratories Agency, Itchen Abbas, Winchester, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sarute N, Calderón MG, Pérez R, La Torre J, Hernández M, Francia L, Panzera Y. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification. PLoS One 2013; 8:e63595. [PMID: 23675493 PMCID: PMC3652846 DOI: 10.1371/journal.pone.0063595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus) is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H) gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp) coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.
Collapse
Affiliation(s)
- Nicolás Sarute
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Marina Gallo Calderón
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Buenos Aires, Argentina
| | - Ruben Pérez
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - José La Torre
- Centro de Virología Animal, Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Buenos Aires, Argentina
| | - Martín Hernández
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lourdes Francia
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
6
|
Nayak B, Nayak S, Paldurai A, Kumar S, De Nardi R, Terregino C, Collins PL, Samal SK. Evaluation of the genetic diversity of avian paramyxovirus type 4. Virus Res 2012. [PMID: 23178589 DOI: 10.1016/j.virusres.2012.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Avian paramyxoviruses (APMVs) belong to the genus Avulavirus in the family Paramyxoviridae and include at least nine serotypes, APMV-1 to -9, as well as two additional provisional serotypes. Newcastle disease virus (NDV), which comprises APMV-1, is the most extensively studied APMV because it is an important poultry pathogen. A moderate level of antigenic and genetic diversity is recognized for APMV-1 isolates, but our knowledge of the antigenic and genetic diversity of the other APMV serotypes is limited. APMV-4 is frequently isolated from waterfowl around the world. To date complete genome sequences of APMV-4 are available for only strains, which were isolated from ducks in Hong Kong, Korea and Belgium over a period of 37 years. We have carried out genome sequencing from the nucleocapsid (N) gene-end signal to the polymerase (L) gene-start signal of five APMV-4 strains recently isolated from Italy. Each of the eight APMV-4 strains has the same F protein cleavage site, DIQPR↓F. They also share a high level of nucleotide and amino acid sequence identity: for example, the F and HN glycoproteins have greater than 97% sequence identity between the various strains. Thus, comparison of these eight strains of APMV-4 did not provide evidence of substantial diversity, in contrast to similar studies with APMV-2, -3, and -6, in which the F and HN glycoproteins exhibited up to 20-30% amino acid sequence variation within a subgroup. Reciprocal cross-HI assay using post infection chicken sera also failed to detect significant antigenic variation among the available APMV-4 strains.
Collapse
Affiliation(s)
- Baibaswata Nayak
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dundon WG, Heidari A, Fusaro A, Monne I, Beato MS, Cattoli G, Koch G, Starick E, Brown IH, Aldous EW, Briand FX, Le Gall-Reculé G, Jestin V, Jørgensen PH, Berg M, Zohari S, Metreveli G, Munir M, Ståhl K, Albina E, Hammoumi S, Gil P, de Almeida RS, Smietanka K, Domańska-Blicharz K, Minta Z, Van Borm S, van den Berg T, Martin AM, Barbieri I, Capua I. Genetic data from avian influenza and avian paramyxoviruses generated by the European network of excellence (EPIZONE) between 2006 and 2011--review and recommendations for surveillance. Vet Microbiol 2011; 154:209-21. [PMID: 21925809 DOI: 10.1016/j.vetmic.2011.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/13/2011] [Accepted: 08/17/2011] [Indexed: 01/29/2023]
Abstract
Since 2006, the members of the molecular epidemiological working group of the European "EPIZONE" network of excellence have been generating sequence data on avian influenza and avian paramyxoviruses from both European and African sources in an attempt to more fully understand the circulation and impact of these viruses. This review presents a timely update on the epidemiological situation of these viruses based on sequence data generated during the lifetime of this project in addition to data produced by other groups during the same period. Based on this information and putting it all into a European context, recommendations for continued surveillance of these important viruses within Europe are presented.
Collapse
Affiliation(s)
- William G Dundon
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Zhang S, Wang H, Zhao J, Zhang G. Genomic characterization of two avian paramyxovirus type 2 isolates from chickens in China. Virus Genes 2011; 43:55-9. [PMID: 21461587 DOI: 10.1007/s11262-011-0604-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
Abstract
The complete genome sequences were determined for avian paramyxovirus type 2 (APMV-2) strains F8 and NK isolated from chickens in China. Both strains had a genome of 14,904 nucleotides (nt) in length, which followed the "rule of six". Each genome consisted of six genes in the order 3'-N-P-M-F-HN-L-5', with a 55-nt leader at the 3' end and a 154-nt trailer at the 5' end. Sequence alignment and phylogenetic analysis showed that APMV-2 strains F8 and NK shared the highest sequence identity with APMV-2 prototype strain Yucaipa, being classified in the same subgroup as strains Yucaipa, England and Kenya, while strain Bangor represented another subgroup of APMV-2. Among the APMVs, APMV-2 strains F8 and NK exhibited a closer evolutionary relationship with APMV-7 and APMV-8 representative strains.
Collapse
Affiliation(s)
- Xiaojiao Li
- Key Laboratory of Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | |
Collapse
|