1
|
Dondero L, De Negri Atanasio G, Tardanico F, Lertora E, Boggia R, Capra V, Cometto A, Costamagna M, Fi L S E, Feletti M, Garibaldi F, Grasso F, Jenssen M, Lanteri L, Lian K, Monti M, Perucca M, Pinto C, Poncini I, Robino F, Rombi JV, Ahsan SS, Shirmohammadi N, Tiso M, Turrini F, Zaccone M, Zanotti-Russo M, Demori I, Ferrari PF, Grasselli E. Unlocking the Potential of Marine Sidestreams in the Blue Economy: Lessons Learned from the EcoeFISHent Project on Fish Collagen. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:63. [PMID: 40080223 PMCID: PMC11906597 DOI: 10.1007/s10126-025-10438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/20/2025] [Indexed: 03/15/2025]
Abstract
This review provides a general overview of collagen structure, biosynthesis, and biological properties, with a particular focus on marine collagen sources, especially fisheries discards and by-catches. Additionally, well-documented applications of collagen are presented, with special emphasis not only on its final use but also on the processes enabling sustainable and safe recovery from materials that would otherwise go to waste. Particular attention is given to the extraction process, highlighting key aspects essential for the industrialization of fish sidestreams, such as hygiene standards, adherence to good manufacturing practices, and ensuring minimal environmental impact. In this context, the EcoeFISHent projects have provided valuable insights, aiming to create replicable, systemic, and sustainable territorial clusters based on a multi-circular economy and industrial symbiosis. The main goal of this project is to increase the monetary income of certain categories, such as fishery and aquaculture activities, through the valorization of underutilized biomass.
Collapse
Affiliation(s)
- Lorenzo Dondero
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Francesca Tardanico
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Erica Lertora
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- Angel Consulting, Via San Senatore 14, 20122, Milan, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Vittorio Capra
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Agnese Cometto
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | | | - Fi L S E
- Filse S.p.A., Piazza De Ferrari 1, 16121, Genoa, Italy
| | - Mirvana Feletti
- Regione Liguria - Direzione Generale Turismo, Agricoltura E Aree Interne Settore Politiche Agricole E Della Pesca , Viale Brigate Partigiane, 2, 16100, Genoa, Italy
| | - Fulvio Garibaldi
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Federica Grasso
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Marte Jenssen
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Luca Lanteri
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Kjersti Lian
- Department of Marine Biotechnology, Nofima AS, Muninbakken 9-13, 9291, Tromsø, Norway
| | - Marco Monti
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | - Massimo Perucca
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Cecilia Pinto
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy
| | - Ilaria Poncini
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Junio Valerio Rombi
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Syed Saad Ahsan
- Project HUB-360, Corso Laghi 22, 10051, Avigliana, TO, Italy
| | - Nikta Shirmohammadi
- Ticass S.C.R.L.- Tecnologie Innovative Per Il Controllo Ambientale E Lo Sviluppo Sostenibile, Via Domenico Fiasella, 3/16, 16121, Genoa, Italy
| | - Micaela Tiso
- MICAMO Lab - Microbiologia Ambientale E Molecolare, Via XX Settembre 33/10, 16121, Genoa, Italy
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy
| | - Marta Zaccone
- Proplast, Via Roberto Di Ferro 86, 15122, Alessandria, AL, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Corso Europa 26, Genoa, Italy.
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121, Naples, Italy.
| |
Collapse
|
2
|
Elkhenany H, Soliman MW, Atta D, El-Badri N. Innovative Marine-Sourced Hydroxyapatite, Chitosan, Collagen, and Gelatin for Eco-Friendly Bone and Cartilage Regeneration. J Biomed Mater Res A 2025; 113:e37833. [PMID: 39508545 DOI: 10.1002/jbm.a.37833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
In recent years, the exploration of sustainable alternatives in the field of bone tissue engineering has led researchers to focus on marine waste byproducts as a valuable resource. These marine resources, often overlooked remnants of various industries, exhibit a rich composition of hydroxyapatite, collagen, calcium carbonate, and other minerals essential to the complex framework of bone structure. Marine waste by-products can emit gases such as methane and carbon dioxide, highlighting the urgency to repurpose these materials for innovative tissue regeneration solutions, offering a sustainable approach to address environmental challenges while advancing medical science. Using these discarded materials offers a promising pathway for sustainable development in regenerative medicine. This review investigates the distinctive properties of marine waste byproducts, emphasizing their capacity to be recycled effectively to contribute to the rebuilding of bone and cartilage tissue during regeneration processes. We also highlight the compatibility of these resources with biological materials such as platelet-rich plasma (PRP), stem cells, exosomes, and natural bioproducts, as well as nanoparticles (NPs) and polymers. By using the natural potential of these resources, we simultaneously address environmental challenges and promote innovative solutions in skeletal tissue engineering, initiating a new era of environmentally green biomedical research.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
3
|
Wosicka-Frąckowiak H, Poniedziałek K, Woźny S, Kuprianowicz M, Nyga M, Jadach B, Milanowski B. Collagen and Its Derivatives Serving Biomedical Purposes: A Review. Polymers (Basel) 2024; 16:2668. [PMID: 39339133 PMCID: PMC11435467 DOI: 10.3390/polym16182668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Biomaterials have been the subject of extensive research, and their applications in medicine and pharmacy are expanding rapidly. Collagen and its derivatives stand out as valuable biomaterials due to their high biocompatibility, biodegradability, and lack of toxicity and immunogenicity. This review comprehensively examines collagen from various sources, its extraction and processing methods, and its structural and functional properties. Preserving the native state of collagen is crucial for maintaining its beneficial characteristics. The challenges associated with chemically modifying collagen to tailor its properties for specific clinical needs are also addressed. The review discusses various collagen-based biomaterials, including solutions, hydrogels, powders, sponges, scaffolds, and thin films. These materials have broad applications in regenerative medicine, tissue engineering, drug delivery, and wound healing. Additionally, the review highlights current research trends related to collagen and its derivatives. These trends may significantly influence future developments, such as using collagen-based bioinks for 3D bioprinting or exploring new collagen nanoparticle preparation methods and drug delivery systems.
Collapse
Affiliation(s)
- Hanna Wosicka-Frąckowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Kornelia Poniedziałek
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Mateusz Kuprianowicz
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
| | - Martyna Nyga
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| | - Bartłomiej Milanowski
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (H.W.-F.); (K.P.); (S.W.); (M.K.); (M.N.)
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, ul. Rokietnicka 3, 60-806 Poznan, Poland;
| |
Collapse
|
4
|
Geszke-Moritz M, Moritz M. Biodegradable Polymeric Nanoparticle-Based Drug Delivery Systems: Comprehensive Overview, Perspectives and Challenges. Polymers (Basel) 2024; 16:2536. [PMID: 39274168 PMCID: PMC11397980 DOI: 10.3390/polym16172536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In the last few decades, there has been a growing interest in the use of biodegradable polymeric nanoparticles (BPNPs) as the carriers for various therapeutic agents in drug delivery systems. BPNPs have the potential to improve the efficacy of numerous active agents by facilitating targeted delivery to a desired site in the body. Biodegradable polymers are especially promising nanocarriers for therapeutic substances characterized by poor solubility, instability, rapid metabolism, and rapid system elimination. Such molecules can be efficiently encapsulated and subsequently released from nanoparticles, which greatly improves their stability and bioavailability. Biopolymers seem to be the most suitable candidates to be used as the nanocarriers in various delivery platforms, especially due to their biocompatibility and biodegradability. Other unique properties of the polymeric nanocarriers include low cost, flexibility, stability, minimal side effects, low toxicity, good entrapment potential, and long-term and controlled drug release. An overview summarizing the research results from the last years in the field of the successful fabrication of BPNPs loaded with various therapeutic agents is provided. The possible challenges involving nanoparticle stability under physiological conditions and the possibility of scaling up production while maintaining quality, as well as the future possibilities of employing BPNPs, are also reviewed.
Collapse
Affiliation(s)
- Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| | - Michał Moritz
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Plac Polskiego Czerwonego Krzyża 1, 71-251 Szczecin, Poland
| |
Collapse
|
5
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Newman MS. In Reply. Menopause 2024; 31:468-469. [PMID: 38595171 DOI: 10.1097/gme.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
|
7
|
Moussa M, Pozzolini M, Ferrando S, Mannai A, Tassara E, Giovine M, Said K. Insight on thermal stress response of demosponge Chondrosia reniformis (Nardo, 1847). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169648. [PMID: 38159772 DOI: 10.1016/j.scitotenv.2023.169648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Global warming has led to an increase in extreme weather and climate phenomena, including floods and heatwaves. Marine heatwaves have frightening consequences for coastal benthic communities around the world. Each species exhibits a natural range of thermal tolerance and responds to temperature variations through behavioral, physiological, biochemical, and molecular adjustments. Physiological stress leading to disease and mass mortality appears when tolerance thresholds are exceeded. Sessile species are therefore particularly affected by these phenomena. Among these sessile species, marine sponges are important members of coral reef ecosystems. To better understand the sponge thermal stress response, we tested the response of demosponge Chondrosia reniformis (Nardo, 1847) to three different temperatures (8 °C, 24 °C and 30 °C) during two exposure periods of time (4 and 14 h). Histological studies of whole parts of the sponge, biochemical analyses (Defense enzymes) and gene expression levels of some target genes were undertaken in this study. The exposure to cold temperature (8 °C) resulted in inhibition of antioxidant enzymes and less modification in the gene expression level of the heat shock proteins (HSPs). These latter were strongly upregulated after exposure to a temperature of 24 °C for 4 h. However, exposure to 30 °C at both periods of time resulted in indication of HSP, antioxidant enzymes, the gene involved in the apoptosis process (Bcl-2: B-cell lymphoma 2), the gene involved in inflammation (TNF: Tumor Necrosis Factor), as well as the aquaporin gene, involved in H2O2 permeation. Moreover, the normal organization of the whole organism was disrupted by the extension and fusion of choanocyte chambers and alteration of the pinacoderm. Interestingly, exposure to sublethal temperatures may show that this sponge has an adaptation threshold temperature. These insights into the adaptation mechanisms of sponges contribute to better management and conservation of sponges and to the prediction of ecosystem trajectories with future climate change.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Sara Ferrando
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Asma Mannai
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy.
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| |
Collapse
|
8
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
9
|
Hogan KJ, Perez MR, Mikos AG. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering. J Control Release 2023; 360:888-912. [PMID: 37482344 DOI: 10.1016/j.jconrel.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The extracellular matrix (ECM) consists of a complex combination of proteins, proteoglycans, and other biomolecules. ECM-based materials have been demonstrated to have high biocompatibility and bioactivity, which may be harnessed for drug delivery and tissue engineering applications. Herein, nanoparticles incorporating ECM-based materials and their applications in drug delivery and tissue engineering are reviewed. Proteins such as gelatin, collagen, and fibrin as well as glycosaminoglycans including hyaluronic acid, chondroitin sulfate, and heparin have been employed for cancer therapeutic delivery, gene delivery, and wound healing and regenerative medicine. Strategies for modifying and functionalizing these materials with synthetic and natural polymers or to enable stimuli-responsive degradation and drug release have increased the efficacy of these materials and nano-systems. The incorporation and modification of ECM-based materials may be used to drive drug targeting and increase tissue-specific cell differentiation more effectively.
Collapse
Affiliation(s)
- Katie J Hogan
- Department of Bioengineering, Rice University, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Marissa R Perez
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
Li ZR, Jia RB, Cai X, Luo D, Chen C, Zhao M. Characterizations of food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion and its benefits on solubility, dispersity and biotransformation of ellagic acid. Food Chem 2023; 413:135530. [PMID: 36758386 DOI: 10.1016/j.foodchem.2023.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
The current study was aimed to enhance the solubility, dispersibility and biotransformation efficacy of ellagic acid (EA) by preparing food-derived ellagic acid-Undaria pinnatifida polysaccharides solid dispersion (EA/UPP SD). The results demonstrated that the solubility of EA/UPP SD was improved from 0.014 mg/mL to 0.383 mg/mL, and the enhancement was related to converting to a more amorphous state and restraining its self-aggregation during the mechanochemical process. The structure of EA/UPP SDs was mostly maintained by hydrogen bonds and hydrophobic interactions between EA and UPP. Moreover, the result of in vitro anaerobic incubations showed the biotransformation process was improved with EA/UPP SD addition to substrate due to the advance of microbial accessibility in EA dispersion. Altogether, these results indicated that the EA/UPP SDs expanded the application of EA by increasing the solubility and dispersity, and provided a theoretical basis for bioconversion efficiency enhancement.
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xueyuan Cai
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Chong Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Hainan Key Laboratory of Storage and Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
11
|
Tassara E, Orel B, Ilan M, Cavallo D, Dodero A, Castellano M, Vicini S, Giovine M, Pozzolini M. Seasonal Molecular Difference in Fibrillar Collagen Extracts Derived from the Marine Sponge Chondrosia reniformis (Nardo, 1847) and Their Impact on Its Derived Biomaterials. Mar Drugs 2023; 21:md21040210. [PMID: 37103350 PMCID: PMC10141479 DOI: 10.3390/md21040210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chondrosia reniformis (Nardo, 1847) is a marine sponge of high biotechnological interest both for its natural compound content and for its peculiar collagen, which is suitable for the production of innovative biomaterials in the form, for instance, of 2D membranes and hydrogels, exploitable in the fields of tissue engineering and regenerative medicine. In this study, the molecular and chemical-physical properties of fibrillar collagen extracted from specimens collected in different seasons are studied to evaluate the possible impact of sea temperature on them. Collagen fibrils were extracted from sponges harvested by the Sdot Yam coast (Israel) during winter (sea temperature: 17 °C) and during summer (sea temperature: 27 °C). The total AA composition of the two different collagens was evaluated, together with their thermal stability and glycosylation level. The results showed a lower lysyl-hydroxylation level, lower thermal stability, and lower protein glycosylation level in fibrils extracted from 17 °C animals compared to those from 27 °C animals, while no differences were noticed in the GAGs content. Membranes obtained with fibrils deriving from 17 °C samples showed a higher stiffness if compared to the 27 °C ones. The lower mechanical properties shown by 27 °C fibrils are suggestive of some unknown molecular changes in collagen fibrils, perhaps related to the creeping behavior of C. reniformis during summer. Overall, the differences in collagen properties gain relevance as they can guide the intended use of the biomaterial.
Collapse
Affiliation(s)
- Eleonora Tassara
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Boaz Orel
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Ilan
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
- Adolphe Merkle Institute (AMI), University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
- Correspondence: (M.G.); (M.P.)
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
- Correspondence: (M.G.); (M.P.)
| |
Collapse
|
12
|
Sreena R, Nathanael AJ. Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16062364. [PMID: 36984244 PMCID: PMC10058375 DOI: 10.3390/ma16062364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
Biopolymers are polymers obtained from either renewable or non-renewable sources and are the most suitable candidate for tailor-made nanoparticles owing to their biocompatibility, biodegradability, low toxicity and immunogenicity. Biopolymeric nanoparticles (BPn) can be classified as natural (polysaccharide and protein based) and synthetic on the basis of their origin. They have been gaining wide interest in biomedical applications such as tissue engineering, drug delivery, imaging and cancer therapy. BPn can be synthesized by various fabrication strategies such as emulsification, ionic gelation, nanoprecipitation, electrospray drying and so on. The main aim of the review is to understand the use of nanoparticles obtained from biodegradable biopolymers for various biomedical applications. There are very few reviews highlighting biopolymeric nanoparticles employed for medical applications; this review is an attempt to explore the possibilities of using these materials for various biomedical applications. This review highlights protein based (albumin, gelatin, collagen, silk fibroin); polysaccharide based (chitosan, starch, alginate, dextran) and synthetic (Poly lactic acid, Poly vinyl alcohol, Poly caprolactone) BPn that has recently been used in many applications. The fabrication strategies of different BPn are also being highlighted. The future perspective and the challenges faced in employing biopolymeric nanoparticles are also reviewed.
Collapse
Affiliation(s)
- Radhakrishnan Sreena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- School of Biosciences & Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arputharaj Joseph Nathanael
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
13
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
14
|
Newman MS, Curran DA, Mayfield BP, Saltiel D, Stanczyk FZ. Assessment of estrogen exposure from transdermal estradiol gel therapy with a dried urine assay. Steroids 2022; 184:109038. [PMID: 35483542 DOI: 10.1016/j.steroids.2022.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
Transdermal estradiol gel is a commonly used menopausal hormone therapy. In research studies investigating the pharmacokinetics and clinical utility of transdermal estradiol gels, serum is often used to measure estradiol levels. Serum results only represent a moment in time during phlebotomy and thus provide little information and allow for limited inference unless serial measurements are performed. In contrast, dried urine may provide a representation of serum estradiol levels over a longer period of time, while also being non-invasive and easier to collect. The primary aim of this study was to evaluate a dried urine method to determine if it may be a viable option for evaluating estrogen exposure resulting from transdermal estradiol gel use. A secondary aim was to explore differences in the urinary estrogen profiles of premenopausal women on no therapy and postmenopausal women who were either on transdermal estradiol gel therapy or no therapy at all. The results of this study demonstrated that the expected dose-proportional changes in estrogen exposure can be observed in the urinary estrogen profile using a GC-MS/MS dried urine assay. The GC-MS/MS assay also showed the differences in the urinary estrogen profiles of premenopausal women, postmenopausal women on estrogen replacement therapy, and postmenopausal women on no therapy.
Collapse
Affiliation(s)
- Mark S Newman
- Precision Analytical, Inc 3138 NE Rivergate St., Suite 301C, McMinnville, OR 97128, USA
| | - Desmond A Curran
- Precision Analytical, Inc 3138 NE Rivergate St., Suite 301C, McMinnville, OR 97128, USA
| | - Bryan P Mayfield
- Precision Analytical, Inc 3138 NE Rivergate St., Suite 301C, McMinnville, OR 97128, USA; Department of Pharmacy Practice, Texas Tech University Health Sciences Center Jerry H. Hodge School of Pharmacy, 5920 Forest Park Road, Dallas, TX 75235, USA
| | - Doreen Saltiel
- Precision Analytical, Inc 3138 NE Rivergate St., Suite 301C, McMinnville, OR 97128, USA
| | - Frank Z Stanczyk
- Departments of Obstetrics and Gynecology, and Population and Public Health Sciences, University of Southern California, LRB 1321 N. Mission Road, Los Angeles, CA, USA
| |
Collapse
|
15
|
Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022; 20:md20040219. [PMID: 35447892 PMCID: PMC9027906 DOI: 10.3390/md20040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010–2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.
Collapse
Affiliation(s)
- Giovanna Romano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- Correspondence: (G.R.); (L.B.)
| | - Mariana Almeida
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Varela Coelho
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Adele Cutignano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
- CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Luis G Gonçalves
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (A.V.C.); (L.G.G.)
| | - Espen Hansen
- Marbio, UiT-The Arctic University of Norway, 9037 Tromso, Norway;
| | - Denis Khnykin
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Department of Pathology, Oslo University Hospital-Rikshospitalet, 0450 Oslo, Norway;
| | - Tali Mass
- Faculty of Natural Science, Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, SI-6330 Piran, Slovenia;
| | - Miguel S. Rocha
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Barco, 4805-017 Guimarães, Portugal; (M.A.); (M.S.R.); (T.H.S.)
- ICVS/3B´s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria, 2, 20133 Milan, Italy;
| | - Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35100 Padova, Italy
- Correspondence: (G.R.); (L.B.)
| | - Anne-Marie Genevière
- Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, CNRS, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France;
| |
Collapse
|
17
|
Manconi R, Cubeddu T, Pronzato R, Sanna MA, Nieddu G, Gaino E, Stocchino GA. Collagenic architecture and morphotraits in a marine basal metazoan as a model for bioinspired applied research. J Morphol 2022; 283:585-604. [PMID: 35119713 PMCID: PMC9306819 DOI: 10.1002/jmor.21460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
In some Porifera (Demospongiae: Keratosa), prototypes of the connective system are almost exclusively based on collagenic networks. We studied the topographic distribution, spatial layout, microtraits, and/or morphogenesis of these collagenic structures in Ircinia retidermata (Dictyoceratida: Irciniidae). Analyses were carried out on a clonal strain from sustainable experimental mariculture by using light and scanning electron microscopy. Histology revealed new insights on the widely diversified and complex hierarchical assemblage of collagenic structures. Key evolutionary novelties in the organization of sponge connective system were found out. The aquiferous canals are shaped as corrugate‐like pipelines conferring plasticity to the water circulation system. Compact clusters of elongated cells are putatively involved in a nutrient transferring system. Knob‐ended filaments are characterized by a banding pattern and micro‐components. Ectosome and outer endosome districts are the active fibrogenetic areas, where exogenous material constitutes an axial condensation nucleus for the ensuing morphogenesis. The new data can be useful to understand not only the evolutionary novelties occurring in the target taxon but also the morpho‐functional significance of its adaptive collagenic anatomical traits. In addition, data may give insights on both marine collagen sustainable applied researches along with evolutionary and phylogenetic analyses, thus highlighting sponges as a key renewable source for inspired biomaterials. Therefore, we also promote bioresources sustainable exploitation with the aim to provide new donors of marine collagen, thereby supporting conservation of wild populations/species.
Collapse
Affiliation(s)
- Renata Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Roberto Pronzato
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Marina A Sanna
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | - Elda Gaino
- Viale Canepa 15/10, 16153 Sestri Ponente, Italy
| | | |
Collapse
|
18
|
Moussa M, Choulak S, Rhouma‐Chatti S, Chatti N, Said K. First insight of genetic diversity, phylogeographic relationships, and population structure of marine sponge Chondrosia reniformis from the eastern and western Mediterranean coasts of Tunisia. Ecol Evol 2022; 12:e8494. [PMID: 35136554 PMCID: PMC8809441 DOI: 10.1002/ece3.8494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022] Open
Abstract
Despite the strategic localization of Tunisia in the Mediterranean Sea, no phylogeographic study on sponges has been investigated along its shores. The demosponge Chondrosia reniformis, descript only morphologically along Tunisian coasts, was chosen to estimate the influence of natural oceanographic and biogeographic barriers on its genetic differentiation and its Phylogeography. The cytochrome oxidase subunit I (COI) gene was amplified and analyzed for 70 Mediterranean Chondrosia reniformis, collected from eight localities in Tunisia. Polymorphism results revealed high values of haplotype diversity (H d) and very low nucleotide diversity (π). Thus, these results suggest that our sponge populations of C. reniformis may have undergone a bottleneck followed by rapid demographic expansion. This suggestion is strongly confirmed by the results of neutrality tests and "mismatch distribution." The important number of haplotypes between localities and the high genetic differentiation (F st ranged from 0.590 to 0.788) of the current C. reniformis populations could be maintained by the limited gene flow Nm (0.10-0.18). Both haplotype Network and the biogeographic analysis showed a structured distribution according to the geographic origin. C. reniformis populations are subdivided into two major clades: Western and Eastern Mediterranean. This pattern seems to be associated with the well-known discontinuous biogeographic area: the Siculo-Tunisian Strait, which separates two water bodies circulating with different hydrological, physical, and chemical characteristics. The short dispersal of pelagic larvae of C. reniformis and the marine bio-geographic barrier created high differentiation among populations. Additionally, it is noteworthy to mention that the "Mahres/Kerkennah" group diverged from Eastern groups in a single sub-clade. This result was expected, the region Mahres/Kerkennah, presented a particular marine environment.
Collapse
Affiliation(s)
- Maha Moussa
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Sarra Choulak
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Soumaya Rhouma‐Chatti
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Noureddine Chatti
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| | - Khaled Said
- Laboratory of Genetics, Biodiversity, and Bioresources Valorization (LR11ES41)Higher Institute of Biotechnology of MonastirUniversity of MonastirMonastirTunisia
| |
Collapse
|
19
|
Xu N, Peng XL, Li HR, Liu JX, Cheng JSY, Qi XY, Ye SJ, Gong HL, Zhao XH, Yu J, Xu G, Wei DX. Marine-Derived Collagen as Biomaterials for Human Health. Front Nutr 2021; 8:702108. [PMID: 34504861 PMCID: PMC8421607 DOI: 10.3389/fnut.2021.702108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Collagen is a kind of biocompatible protein material, which is widely used in medical tissue engineering, drug delivery, cosmetics, food and other fields. Because of its wide source, low extraction cost and good physical and chemical properties, it has attracted the attention of many researchers in recent years. However, the application of collagen derived from terrestrial organisms is limited due to the existence of diseases, religious beliefs and other problems. Therefore, exploring a wider range of sources of collagen has become one of the main topics for researchers. Marine-derived collagen (MDC) stands out because it comes from a variety of sources and avoids issues such as religion. On the one hand, this paper summarized the sources, extraction methods and characteristics of MDC, and on the other hand, it summarized the application of MDC in the above fields. And on the basis of the review, we found that MDC can not only be extracted from marine organisms, but also from the wastes of some marine organisms, such as fish scales. This makes further use of seafood resources and increases the application prospect of MDC.
Collapse
Affiliation(s)
- Ning Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Xue-Liang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Ji-Si-Yu Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shao-Jie Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Hai-Lun Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Xiao-Hong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Jiangming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Department of Life Sciences and Medicine, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Antioxidative Activity of Soy, Wheat and Pea Protein Isolates Characterized by Multi-Enzyme Hydrolysis. NANOMATERIALS 2021; 11:nano11061509. [PMID: 34200422 PMCID: PMC8227270 DOI: 10.3390/nano11061509] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Hydrolysis of protein by proteases produces small molecular weights (MWs) peptides as nanomaterials that are easily absorbed. This study investigated the physicochemical properties and antioxidant activity of three plant protein isolates (PIs) including soy, wheat and pea after multi-enzyme hydrolysis. The MWs, particle size and microstructure of PI hydrolysate (PIH) were determined by SDS-PAGE and MALDI-TOF-MS mass spectrometry, dynamic light scattering and transmission electron microscopy, respectively. Cell viability was determined in vitro using a mouse skeletal muscle cell line (C2C12) and crystal violet staining. The MWs and particle sizes of the three plant PIs were reduced after hydrolysis by three proteases (bromelain, Neutrase and Flavourzyme). The MWs of soy, wheat and pea PIH were 103.5–383.0 Da, 103.5–1146.5 Da and 103.1–1937.7 Da, respectively, and particle size distributions of 1.9–2.0 nm, 3.2–5.6 nm and 1.3–3.2 nm, respectively. All three plant PIHs appeared as aggregated nanoparticles. Soy PIH (100 μg/mL) provided better protection against H2O2-induced oxidative damage to C2C12 than wheat or pea PIH. In summary, soy PIH had the best antioxidant activity, and particle size than wheat PIH and pea PIH. Therefore, soy PIH might be a dietary supplement for healthy diet and medical applications.
Collapse
|
21
|
Lin Z, Tao Y, Huang Y, Xu T, Niu W. Applications of marine collagens in bone tissue engineering. Biomed Mater 2021; 16:042007. [PMID: 33793421 DOI: 10.1088/1748-605x/abf0b6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For decades, collagen has been among the most widely used biomaterials with several biomedical applications. Recently, researchers have shown a keen interest in collagen obtained from marine sources because of its biocompatibility, biodegradability, ease of extractability, safety, low immunogenicity, and low production costs. A wide variety of marine collagen-based scaffolds have been developed for bone tissue engineering, and these scaffolds display excellent biological effects. This review aims to provide an overview of the biological effects of marine collagen in bone engineering, such as promoting osteogenesis and collagen synthesis, inhibiting inflammation, inducing the differentiation of cartilage, and improving bone mineral density. Marine collagen holds great promise as a biomaterial in bone tissue engineering.
Collapse
Affiliation(s)
- Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China. East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Scarfì S, Pozzolini M, Oliveri C, Mirata S, Salis A, Damonte G, Fenoglio D, Altosole T, Ilan M, Bertolino M, Giovine M. Identification, Purification and Molecular Characterization of Chondrosin, a New Protein with Anti-tumoral Activity from the Marine Sponge Chondrosia Reniformis Nardo 1847. Mar Drugs 2020; 18:409. [PMID: 32748866 PMCID: PMC7459819 DOI: 10.3390/md18080409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
: Chondrosia reniformis is a common marine demosponge showing many peculiarities, lacking silica spicules and with a body entirely formed by a dense collagenous matrix. In this paper, we have described the identification of a new cytotoxic protein (chondrosin) with selective activity against specific tumor cell lines, from C. reniformis, collected from the Liguria Sea. Chondrosin was extracted and purified using a salting out approach and molecular weight size exclusion chromatography. The cytotoxic fractions were then characterized by two-dimensional gel electrophoresis and mass spectrometry analysis and matched the results with C. reniformis transcriptome database. The procedure allowed for identifying a full-length cDNA encoding for a 199-amino acids (aa) polypeptide, with a signal peptide of 21 amino acids. The mature protein has a theoretical molecular weight of 19611.12 and an IP of 5.11. Cell toxicity assays showed a selective action against some tumor cell lines (RAW 264.7 murine leukemia cells in particular). Cell death was determined by extracellular calcium intake, followed by cytoplasmic reactive oxygen species overproduction. The in silico modelling of chondrosin showed a high structural homology with the N-terminal region of the ryanodine receptor/channel and a short identity with defensin. The results are discussed suggesting a possible specific interaction of chondrosin with the Cav 1.3 ion voltage calcium channel expressed on the target cell membranes.
Collapse
Affiliation(s)
- Sonia Scarfì
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
- Centro 3R, Interuniversitary Center for the Promotion of the Principles of the 3Rs in Teaching and Research, Via Caruso 16, 56122 Pisa, Italy
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Serena Mirata
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Daniela Fenoglio
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
- Centre of Excellence for Biomedical Research (CEBR), University of Genova, Viale Benedetto XV 9, 16132 Genova, Italy
| | - Tiziana Altosole
- Department of Experimental Medicine (DIMES), Biochemistry Section, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (A.S.); (G.D.); (D.F.); (T.A.)
| | - Micha Ilan
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy; (S.S.); (M.P.); (C.O.); (S.M.); (M.B.)
| |
Collapse
|
23
|
Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Lim YS, Ok YJ, Hwang SY, Kwak JY, Yoon S. Marine Collagen as A Promising Biomaterial for Biomedical Applications. Mar Drugs 2019; 17:E467. [PMID: 31405173 PMCID: PMC6723527 DOI: 10.3390/md17080467] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the expanding role of marine collagen (MC)-based scaffolds for biomedical applications. A scaffold-a three-dimensional (3D) structure fabricated from biomaterials-is a key supporting element for cell attachment, growth, and maintenance in 3D cell culture and tissue engineering. The mechanical and biological properties of the scaffolds influence cell morphology, behavior, and function. MC, collagen derived from marine organisms, offers advantages over mammalian collagen due to its biocompatibility, biodegradability, easy extractability, water solubility, safety, low immunogenicity, and low production costs. In recent years, the use of MC as an increasingly valuable scaffold biomaterial has drawn considerable attention from biomedical researchers. The characteristics, isolation, physical, and biochemical properties of MC are discussed as an understanding of MC in optimizing the subsequent modification and the chemistries behind important tissue engineering applications. The latest technologies behind scaffold processing are assessed and the biomedical applications of MC and MC-based scaffolds, including tissue engineering and regeneration, wound dressing, drug delivery, and therapeutic approach for diseases, especially those associated with metabolic disturbances such as obesity and diabetes, are discussed. Despite all the challenges, MC holds great promise as a biomaterial for developing medical products and therapeutics.
Collapse
Affiliation(s)
- Ye-Seon Lim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Ye-Jin Ok
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seon-Yeong Hwang
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
25
|
Song WK, Liu D, Sun LL, Li BF, Hou H. Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia ( Oreochromis niloticus) for Biomedical Applications. Mar Drugs 2019; 17:E137. [PMID: 30813606 PMCID: PMC6471296 DOI: 10.3390/md17030137] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the physicochemical properties, biosafety, and biocompatibility of the collagen extract from the skin of Nile tilapia, and evaluate its use as a potential material for biomedical applications. Two extraction methods were used to obtain acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from tilapia skin. Amino acid composition, FTIR, and SDS-PAGE results showed that ASC and PSC were type I collagen. The molecular form of ASC and PSC is (α₁)₂α₂. The FTIR spectra of ASC and PSC were similar, and the characteristic peaks corresponding to amide A, amide B, amide I, amide II, and amide III were 3323 cm-1, 2931 cm-1, 1677 cm-1, 1546 cm-1, and 1242 cm-1, respectively. Denaturation temperatures (Td) were 36.1 °C and 34.4 °C, respectively. SEM images showed the loose and porous structure of collagen, indicting its physical foundation for use in applications of biomedical materials. Negative results were obtained in an endotoxin test. Proliferation rates of osteoblastic (MC3T3E1) cells and fibroblast (L929) cells from mouse and human umbilical vein endothelial cells (HUVEC) were increased in the collagen-treated group compared with the controls. Furthermore, the acute systemic toxicity test showed no acute systemic toxicity of the ASC and PSC collagen sponges. These findings indicated that the collagen from Nile tilapia skin is highly biocompatible in nature and could be used as a suitable biomedical material.
Collapse
Affiliation(s)
- Wen-Kui Song
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China.
| | - Lei-Lei Sun
- College of Life Science, Yantai University, Yantai 264005, China.
| | - Ba-Fang Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| |
Collapse
|
26
|
Rahman MA. Collagen of Extracellular Matrix from Marine Invertebrates and Its Medical Applications. Mar Drugs 2019; 17:E118. [PMID: 30769916 PMCID: PMC6410095 DOI: 10.3390/md17020118] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
The extraction and purification of collagen are of great interest due to its biological function and medicinal applications. Although marine invertebrates are abundant in the animal kingdom, our knowledge of their extracellular matrix (ECM), which mainly contains collagen, is lacking. The functions of collagen isolated from marine invertebrates remain an untouched source of the proteinaceous component in the development of groundbreaking pharmaceuticals. This review will give an overview of currently used collagens and their future applications, as well as the methodological issues of collagens from marine invertebrates for potential drug discovery.
Collapse
Affiliation(s)
- M Azizur Rahman
- Department of Chemical & Physical Sciences, University of Toronto, Mississauga, ON L5L 1C6, Canada.
- Center for Climate Change Research, Toronto, ON M4P 1J4, Canada.
| |
Collapse
|
27
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
28
|
Macha IJ, Ben-Nissan B. Marine Skeletons: Towards Hard Tissue Repair and Regeneration. Mar Drugs 2018; 16:E225. [PMID: 30004435 PMCID: PMC6071272 DOI: 10.3390/md16070225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Musculoskeletal disorders in the elderly have significantly increased due to the increase in an ageing population. The treatment of these diseases necessitates surgical procedures, including total joint replacements such as hip and knee joints. Over the years a number of treatment options have been specifically established which are either permanent or use temporary natural materials such as marine skeletons that possess unique architectural structure and chemical composition for the repair and regeneration of bone tissue. This review paper will give an overview of presently used materials and marine structures for hard tissue repair and regeneration, drugs of marine origin and other marine products which show potential for musculoskeletal treatment.
Collapse
Affiliation(s)
- Innocent J Macha
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania.
| | - Besim Ben-Nissan
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
29
|
Felician FF, Xia C, Qi W, Xu H. Collagen from Marine Biological Sources and Medical Applications. Chem Biodivers 2018. [DOI: 10.1002/cbdv.201700557] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fatuma Felix Felician
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Chunlei Xia
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Weiyan Qi
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
- Department of Marine Pharmacy; College of Life Science and Technology; P. R. China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development; China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
- Department of Marine Pharmacy; College of Life Science and Technology; P. R. China Pharmaceutical University; Nanjing 211198 Jiangsu Province P. R. China
| |
Collapse
|
30
|
Ashtikar M, Wacker MG. Nanopharmaceuticals for wound healing - Lost in translation? Adv Drug Deliv Rev 2018; 129:194-218. [PMID: 29567397 DOI: 10.1016/j.addr.2018.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/17/2022]
Abstract
Today, many of the newly developed pharmaceuticals and medical devices take advantage of nanotechnology and with a rising incidence of chronic diseases such as diabetes and cardiovascular disease, the number of patients afflicted globally with non-healing wounds is growing. This has created a requirement for improved therapies and wound care. However, converting the strategies applied in early research into new products is still challenging. Many of them fail to comply with the market requirements. This review discusses the legal and scientific challenges in the design of nanomedicines for wound healing. Are they lost in translation or is there a new generation of therapeutics in the pipeline?
Collapse
Affiliation(s)
- Mukul Ashtikar
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), Frankfurt, Germany; Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany.
| |
Collapse
|
31
|
Ehrlich H, Wysokowski M, Żółtowska-Aksamitowska S, Petrenko I, Jesionowski T. Collagens of Poriferan Origin. Mar Drugs 2018; 16:E79. [PMID: 29510493 PMCID: PMC5867623 DOI: 10.3390/md16030079] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/03/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis, structural diversity, and functionality of collagens of sponge origin are still paradigms and causes of scientific controversy. This review has the ambitious goal of providing thorough and comprehensive coverage of poriferan collagens as a multifaceted topic with intriguing hypotheses and numerous challenging open questions. The structural diversity, chemistry, and biochemistry of collagens in sponges are analyzed and discussed here. Special attention is paid to spongins, collagen IV-related proteins, fibrillar collagens from demosponges, and collagens from glass sponge skeletal structures. The review also focuses on prospects and trends in applications of sponge collagens for technology, materials science and biomedicine.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Sonia Żółtowska-Aksamitowska
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| | - Iaroslav Petrenko
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany;
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; (M.W.); (S.Ż.-A.); (T.J.)
| |
Collapse
|
32
|
Pallela R, Chandra P, Noh HB, Shim YB. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens Bioelectron 2016; 85:883-890. [DOI: 10.1016/j.bios.2016.05.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
|
33
|
Abstract
Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.
Collapse
|
34
|
Pozzolini M, Scarfì S, Mussino F, Salis A, Damonte G, Benatti U, Giovine M. Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: A new biotechnological tool for the recombinant production of marine collagen. J Biotechnol 2015; 208:28-36. [PMID: 26022422 DOI: 10.1016/j.jbiotec.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 11/30/2022]
Abstract
Prolyl 4-hydroxylase (P4H) is a α2β2 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens. Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets. In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy
| | - Sonia Scarfì
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy.
| | - Francesca Mussino
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV, 1, 16132, Genova, Italy
| | - Annalisa Salis
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 5, 16132, Genova, Italy
| | - Gianluca Damonte
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV, 1, 16132, Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 5, 16132, Genova, Italy
| | - Umberto Benatti
- Department of Experimental Medicine, Section of Biochemistry, Viale Benedetto XV, 1, 16132, Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 5, 16132, Genova, Italy
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy; Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV, 5, 16132, Genova, Italy
| |
Collapse
|
35
|
Pozzolini M, Scarfì S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular Cloning, Characterization, and Expression Analysis of a Prolyl 4-Hydroxylase from the Marine Sponge Chondrosia reniformis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:393-407. [PMID: 25912371 DOI: 10.1007/s10126-015-9630-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
Prolyl 4-hydroxylase (P4H) catalyzes the hydroxylation of proline residues in collagen. P4H has two functional subunits, α and β. Here, we report the cDNA cloning, characterization, and expression analysis of the α and β subunits of the P4H derived from the marine sponge Chondrosia reniformis. The amino acid sequence of the α subunit is 533 residues long with an M r of 59.14 kDa, while the β subunit counts 526 residues with an M r of 58.75 kDa. Phylogenetic analyses showed that αP4H and βP4H are more related to the mammalian sequences than to known invertebrate P4Hs. Western blot analysis of sponge lysate protein cross-linking revealed a band of 240 kDa corresponding to an α2β2 tetramer structure. This result suggests that P4H from marine sponges shares the same quaternary structure with vertebrate homologous enzymes. Gene expression analyses showed that αP4H transcript is higher in the choanosome than in the ectosome, while the study of factors affecting its expression in sponge fragmorphs revealed that soluble silicates had no effect on the αP4H levels, whereas ascorbic acid strongly upregulated the αP4H mRNA. Finally, treatment with two different tumor necrosis factor (TNF)-alpha inhibitors determined a significant downregulation of αP4H gene expression in fragmorphs demonstrating, for the first time in Porifera, a positive involvement of TNF in sponge matrix biosynthesis. The molecular characterization of P4H genes involved in collagen hydroxylation, including the mechanisms that regulate their expression, is a key step for future recombinant sponge collagen production and may be pivotal to understand pathological mechanisms related to extracellular matrix deposition in higher organisms.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department of Territory Environment and Life Sciences, University of Genova, Via Pastore 3, 16132, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
36
|
Silk fibroin nanoparticle as a novel drug delivery system. J Control Release 2015; 206:161-76. [DOI: 10.1016/j.jconrel.2015.03.020] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/12/2023]
|
37
|
Nandi SK, Kundu B, Mahato A, Thakur NL, Joardar SN, Mandal BB. In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr Biol (Camb) 2015; 7:250-62. [DOI: 10.1039/c4ib00289j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This investigation was carried out to identify and characterize marine sponges as potential bioscaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Samit K. Nandi
- Department of Veterinary Surgery and Radiology
- West Bengal University of Animal and Fishery Sciences
- Kolkata
- India
| | - Biswanath Kundu
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata
- India
| | - Arnab Mahato
- Bioceramics and Coating Division
- CSIR-Central Glass and Ceramic Research Institute
- Kolkata
- India
| | | | - Siddhartha N. Joardar
- Department of Veterinary Microbiology
- West Bengal University of Animal and Fishery Sciences
- Kolkata
- India
| | - Biman B. Mandal
- Department of Biotechnology
- Indian Institute of Technology
- Guwahati
- India
| |
Collapse
|
38
|
Kim SY, Wong AHM, Abou Neel EA, Chrzanowski W, Chan HK. The future perspectives of natural materials for pulmonary drug delivery and lung tissue engineering. Expert Opin Drug Deliv 2014; 12:869-87. [DOI: 10.1517/17425247.2015.993314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Marine origin collagens and its potential applications. Mar Drugs 2014; 12:5881-901. [PMID: 25490254 PMCID: PMC4278207 DOI: 10.3390/md12125881] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 01/21/2023] Open
Abstract
Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment) and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation.
Collapse
|
40
|
Ben-Nissan B, Green DW. Marine Structures as Templates for Biomaterials. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-642-53980-0_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Cheng Q, Blais MO, Harris G, Jabbarzadeh E. PLGA-carbon nanotube conjugates for intercellular delivery of caspase-3 into osteosarcoma cells. PLoS One 2013; 8:e81947. [PMID: 24312611 PMCID: PMC3849501 DOI: 10.1371/journal.pone.0081947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/18/2013] [Indexed: 11/18/2022] Open
Abstract
Cancer has arisen to be of the most prominent health care issues across the world in recent years. Doctors have used physiological intervention as well as chemical and radioactive therapeutics to treat cancer thus far. As an alternative to current methods, gene delivery systems with high efficiency, specificity, and safety that can reduce side effects such as necrosis of tissue are under development. Although viral vectors are highly efficient, concerns have arisen from the fact that viral vectors are sourced from lethal diseases. With this in mind, rod shaped nano-materials such as carbon nanotubes (CNTs) have become an attractive option for drug delivery due to the enhanced permeability and retention effect in tumors as well as the ability to penetrate the cell membrane. Here, we successfully engineered poly (lactic-co-glycolic) (PLGA) functionalized CNTs to reduce toxicity concerns, provide attachment sites for pro-apoptotic protein caspase-3 (CP3), and tune the temporal release profile of CP3 within bone cancer cells. Our results showed that CP3 was able to attach to functionalized CNTs, forming CNT-PLGA-CP3 conjugates. We show this conjugate can efficiently transduce cells at dosages as low as 0.05 μg/ml and suppress cell proliferation up to a week with no further treatments. These results are essential to showing the capabilities of PLGA functionalized CNTs as a non-viral vector gene delivery technique to tune cell fate.
Collapse
Affiliation(s)
- Qingsu Cheng
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Marc-Olivier Blais
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Greg Harris
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
| | - Ehsan Jabbarzadeh
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina, United States of America
- Department of Orthopaedic Surgery, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 851] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 2012; 161:38-49. [DOI: 10.1016/j.jconrel.2012.04.036] [Citation(s) in RCA: 550] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
|
45
|
The microstructure of collagen type I gel cross-linked with gold nanoparticles. Colloids Surf B Biointerfaces 2012; 101:118-25. [PMID: 22796781 DOI: 10.1016/j.colsurfb.2012.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 11/20/2022]
Abstract
Scanning electron microscopy, transmission electron microscopy, rheometry, and electrochemistry were used to provide insight into the microstructure of collagen type I gel (1%, w/v) modified with the tiopronin-protected (N-(2-mercaptopropionyl)glycine) gold nanoparticles (TPAu), a multivalent crosslinker. The cross-linking reaction, performed via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling, results in compliant, mechanically stable and continuous gels. The gels contain unusual interconnected collagen-TPAu particles. Electrochemical measurements of 4-hydroxy-(2,2,6,6-tetramethylpiperidine-1-oxyl) (4HT) diffusion within the gel reveal that the gel hindrance is nearly independent of the TPAu concentration. The properties of the collagen-TPAu gel make it suitable for potential biomedical applications, such as delivery of small molecule drugs.
Collapse
|
46
|
Pozzolini M, Bruzzone F, Berilli V, Mussino F, Cerrano C, Benatti U, Giovine M. Molecular characterization of a nonfibrillar collagen from the marine sponge Chondrosia reniformis Nardo 1847 and positive effects of soluble silicates on its expression. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:281-293. [PMID: 22072047 DOI: 10.1007/s10126-011-9415-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
We report here the complete cDNA sequence of a nonfibrillar collagen (COLch) isolated from the marine sponge Chondrosia reniformis, Nardo 1847 using a PCR approach. COLch cDNA consists of 2,563 nucleotides and includes a 5' untranslated region (UTR) of 136 nucleotides, a 3' UTR of 198 nucleotides, and an open reading frame encoding for a protein of 743 amino acids with an estimated M (r) of 72.12 kDa. The phylogenetic analysis on the deduced amino acid sequence of C-terminal end shows that the isolated sequence belongs to the short-chain spongin-like collagen subfamily, a nonfibrillar group of invertebrate collagens similar to type IV collagen. In situ hybridization analysis shows higher expression of COLch mRNA in the cortical part than in the inner part of the sponge. Therefore, COLch seems to be involved in the formation of C. reniformis ectosome, where it could play a key role in the attachment to the rocky substrata and in the selective sediment incorporation typical of these organisms. qPCR analysis of COLch mRNA level, performed on C. reniformis tissue culture models (fragmorphs), also demonstrates that this matrix protein is directly involved in sponge healing processes and that soluble silicates positively regulate its expression. These findings confirm the essential role of silicon in the fibrogenesis process also in lower invertebrates, and they should give a tool for a sustainable production of marine collagen in sponge mariculture.
Collapse
Affiliation(s)
- Marina Pozzolini
- Department for the Study of Territory and its Resources, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Pallela R, Venkatesan J, Janapala VR, Kim SK. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. J Biomed Mater Res A 2011; 100:486-95. [DOI: 10.1002/jbm.a.33292] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/13/2011] [Accepted: 09/29/2011] [Indexed: 11/12/2022]
|