1
|
Meng G, Wang F, Dong C. Chinese cordyceps products, geographic traceability and authenticity assessment: current status, challenges, and future directions. Crit Rev Biotechnol 2025:1-19. [PMID: 40368579 DOI: 10.1080/07388551.2025.2495280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/09/2024] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Chinese cordyceps, a medicinal fungus and nutritional supplement native to the Tibetan Plateau, is highly celebrated for its potential health benefits and significant economic value. The quality of wild Chinese cordyceps varies across different production regions, resulting in considerable price differences. While the successful artificial cultivation of Chinese cordyceps marks a major breakthrough, it also introduces the challenge of distinguishing wild products from cultivated ones on the market. The industry faces critical issues arising from widespread fraudulent activities, such as geographic mislabeling, the substitution of wild cordyceps with cultivated ones, and counterfeiting. This review provides a comprehensive overview of the Chinese cordyceps products available on the market, including both wild and cultivated in dried and fresh forms, as well as fermentation products. It details fraudulent practices like mislabeling, substitution, adulteration, and artificial enhancement, and outlines methodologies for tracing the geographic origins of wild Chinese cordyceps, differentiating it from substitutes, and assessing authenticity. Although various methods have been developed, there remains a significant gap in terms of accessibility and practical implementation. Future efforts should prioritize extensive sampling, the creation of a comprehensive database of chemical fingerprints for Chinese cordyceps and related products, and the establishment of standardized workflows. By integrating this database with artificial intelligence and hyperspectral imaging technologies, it would be possible to develop rapid, nondestructive methods for geographic tracing and authenticity verification of Chinese cordyceps.
Collapse
Affiliation(s)
- Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Krishna KV, Balasubramanian B, Park S, Bhattacharya S, Kadanthottu Sebastian J, Liu WC, Pappuswamy M, Meyyazhagan A, Kamyab H, Chelliapan S, Malaviya A. Conservation of Endangered Cordyceps sinensis Through Artificial Cultivation Strategies of C. militaris, an Alternate. Mol Biotechnol 2025; 67:1382-1397. [PMID: 38658470 DOI: 10.1007/s12033-024-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Cordyceps, an entomopathogenic fungus belonging to the Ascomycota phylum, is a familiar remedial mushroom that is extensively used in the traditional medicinal system, especially in South Asian nations. The significance of this genus' members in a range of therapeutic and biotechnological applications has long been acknowledged. The exceedingly valuable fungus Ophiocordyceps sinensis (Cordyceps sinensis) is found in the alpine meadows of Bhutan, Nepal, Tibet, and India, where it is severely harvested. Driven by market demand and ecological concerns, the study highlights challenges in natural C. sinensis collection and emphasizes the shift towards sustainable artificial cultivation methods. This in-depth review navigates Cordyceps cultivation strategies, focusing on C. sinensis and the viable alternative, C. militaris. The escalating demand for Cordyceps fruiting bodies and bioactive compounds prompts a shift toward sustainable artificial cultivation. While solid-state fermentation on brown rice remains a traditional method, liquid culture, especially submerged and surface/static techniques, emerges as a key industrial approach, offering shorter cultivation periods and enhanced cordycepin production. The review accentuates the adaptability and scalability of liquid culture, providing valuable insights for large-scale Cordyceps production. The future prospects of Cordyceps cultivation require a holistic approach, combining scientific understanding, technological innovation, and sustainable practices to meet the demand for bioactive metabolites while ensuring the conservation of natural Cordyceps populations.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Sukanta Bhattacharya
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Arun Meyyazhagan
- Department of Life Sciences, Christ University, Bangalore, India
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.
- Faculty of Social Sciences, Media and Communication, University of Religions and Denominations, Pardisan, Qom, Iran.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India.
- QuaLife Biotech Pvt. Ltd, Bangalore, India.
| |
Collapse
|
3
|
Tung C, Chan SC, Cheng P, Chen Y, Wu P, Lin W, Chen R, Huang B, Yang S. Exploring Cordycepin as a Neuroprotective Agent in Huntington's Disease: In Vitro and In Vivo Insights. Pharmacol Res Perspect 2025; 13:e70091. [PMID: 40202221 PMCID: PMC11979966 DOI: 10.1002/prp2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
Huntington's disease (HD) is a challenging neurodegenerative disorder linked to Huntingtin (HTT) gene mutation, lacking an effective cure despite numerous therapeutic attempts. Cordyceps sinensis, recognized for its health benefits, particularly its constituent cordycepin, exhibits neuroprotective effects in various neurodegenerative diseases. However, the neuroprotective potential of cordycepin in HD remains insufficiently explored. In this study, in vitro experiments using HD cell models demonstrate that cordycepin treatment enhances cell survival, slightly diminishes mutant HTT aggregates, and improves neuronal formation. In vivo investigations on R6/2 HD transgenic mice reveal a modest increase in body weight and a slight amelioration in pathological aggregates following cordycepin administration, although behavioral changes are not significant. While the underlying mechanisms remain unexplored, the findings suggest cordycepin's promise as a supplementary therapeutic for HD, providing neuroprotective effects and reducing mutant protein aggregates.
Collapse
Affiliation(s)
- Chih‐Wei Tung
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Siew Chin Chan
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Pei‐Hsun Cheng
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Yi‐Ching Chen
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Po‐Ming Wu
- Department of PediatricsNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Wei‐Chen Lin
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Microbiology and ImmunologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Rong‐Jane Chen
- Department of Food Safety/Hygiene and Risk ManagementCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| | - Bu‐Miin Huang
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Cell Biology and AnatomyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Department of Biomedical SciencesNational Chung Cheng UniversityChiayiTaiwan
| | - Shang‐Hsun Yang
- Department of PhysiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Basic Medical SciencesCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
4
|
Li W, Zhao B, Liu X, He Z, Xie L, Qian Z. Purification, structural characterization, and in vitro immunomodulatory activity of a low-molecular-weight polysaccharide from cultivated Chinese cordyceps. Int J Biol Macromol 2025; 301:140394. [PMID: 39880243 DOI: 10.1016/j.ijbiomac.2025.140394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/10/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Cultivated Chinese cordyceps, an optimal substitute for the endangered wild resource, has recently been produced on a large scale. This work sought to explore the structural features and immunomodulatory activity of a novel low-molecular-weight polysaccharide (CSP1a, 15.7 kDa) isolated from cultivated Chinese cordyceps. CSP1a was prepared with a multi-step process that encompassed hot water extraction, alcohol precipitation, and column chromatographic purification. The monosaccharide composition, infrared spectroscopy, methylation, and nuclear magnetic resonance results revealed that CSP1a was highly branched (with a branching degree of 49.21 %) and primarily constituted of galactose (30.60 %), glucose (12.87 %) and mannose (56.53 %), comprising 13 distinct types of glycosidic linkage fragments. The main chain of CSP1a consisted of different mannose residues, with several exposed β-d-Galf-(1→ residues in various side chains. The results from scanning electron microscopy and Congo red analyses revealed that CSP1a possessed a reticulated porous chain conformation, which enhanced its bioavailability and demonstrated its potential as a carrier. In vitro immunological investigations demonstrated that CSP1a significantly promoted splenic lymphocyte proliferation. Additionally, CSP1a increased RAW264.7 cell proliferation, improved phagocytic capacity, and stimulated the secretion of nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in a dose-dependent manner. Collectively, CSP1a, a novel low-molecular-weight polysaccharide galactoglucomannan with a high branching degree and reticulated porous chain conformation, was isolated for the first time from cultivated Chinese cordyceps and showed promise as a potential immunomodulator or drug carrier. These findings contribute to elucidating the polysaccharide material basis for the immune activity of Chinese cordyceps and promote its industrial development as a functional food product.
Collapse
Affiliation(s)
- Wenqing Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Biaoxi Zhao
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Xiaopeng Liu
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Zhuobin He
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China
| | - Liqiao Xie
- Qilin Middle School, Nanshan Experimental Education Group, Shenzhen, Guangdong 518000, China
| | - Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Dongguan HEC Cordyceps R&D Co., Ltd., Dongguan, Guangdong 523850, China; College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou, Hunan 423000, China.
| |
Collapse
|
5
|
Yi X, Liu CY, Yang ST, Zhu H, Zhang YY, Lv GP, Huang H. Decoding the difference of four species of Cordyceps based on polysaccharides and immunomodulation activity. Int J Biol Macromol 2025; 294:139424. [PMID: 39755302 DOI: 10.1016/j.ijbiomac.2024.139424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Nucleosides and polysaccharides are the main bioactive ingredients of Cordyceps genus. Nucleosides shows significant differences in different Cordyceps species. However, the differences of polysaccharides have not been decoded. Here, the structure characters of polysaccharides including molecular weight (Mw) distribution, compositional monosaccharides and glycosidic linkage types were compared in C. sinensis (CS), C. militaris (CM), silkworm-hosted C. militaris (SCM) and Cordyceps fermented products (CSF). Compositional monosaccharides including mannose, glucose and galactose, and 1,4-Glcp glycosidic linkage were found abundant in Cordyceps species. Chemometric analysis showed that Cordyceps exhibit significant differences in structural information especially glycosidic linkage types. Besides, polysaccharides in CS and CSF-4 had obviously strong capacity of stimulating phagocytic, NO production and cytokines secretion. Gray relational analysis and Pearson correlation analysis were performed to further investigate the relationship between key polysaccharide structure and immunomodulatory activities. The results indicated that polysaccharides with relatively large number of 1, 4-Glcp and Mw in range of 7.16 × 106 Da-7.99 × 107 Da and 1.43 × 104 D-6.94 × 105 Da probably contributed to its immunomodulatory activities. The chemical and biological evaluation of natural and various cultured cordyceps in this study is useful for understanding and regulating the quality of cultured Cordyceps.
Collapse
Affiliation(s)
- Xin Yi
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chun-Yao Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shu-Ting Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Hua Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying-Yue Zhang
- School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guang-Ping Lv
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
6
|
Li Y, He L, Song H, Bao X, Niu S, Bai J, Ma J, Yuan R, Liu S, Guo J. Cordyceps: Alleviating ischemic cardiovascular and cerebrovascular injury - A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118321. [PMID: 38735418 DOI: 10.1016/j.jep.2024.118321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps has a long medicinal history as a nourishing herb in traditional Chinese medicine (TCM). Ischemic cardio-cerebrovascular diseases (CCVDs), including cerebral ischemic/reperfusion injury (CI/RI) and myocardial ischemic/reperfusion injury (MI/RI), are major contributors to mortality and disability in humans. Numerous studies have indicated that Cordyceps or its artificial substitutes have significant bioactivity on ischemic CCVDs, however, there is a lack of relevant reviews. AIM OF THE STUDY This review was conducted to investigate the chemical elements, pharmacological effects, clinical application and drug safety of Cordycepson ischemic CCVDs. MATERIALS AND METHODS A comprehensive search was conducted on the Web of Science, PubMed, Chinese National Knowledge Infrastructure (CNKI), and Wanfang databases using the keywords "Cordyceps", "Cerebral ischemic/reperfusion injury", and "Myocardial ischemic/reperfusion injury" or their synonyms. The retrieved literature was then categorized and summarized. RESULTS The study findings indicated that Cordyceps and its bioactive components, including adenosine, cordycepin, mannitol, polysaccharide, and protein, have the potential to protect against CI/RI and MI/RI by improving blood perfusion, mitigating damage from reactive oxygen species, suppressing inflammation, preventing cellular apoptosis, and promoting tissue regeneration. Individually, Cordyceps could reduce neuronal excitatory toxicity and blood-brain barrier damage caused by cerebral ischemia. It can also significantly improve cardiac energy metabolism disorders and inhibit calcium overload caused by myocardial ischemia. Additionally, Cordyceps exerts a significant preventive or curative influence on the factors responsible for heart/brain ischemia, including hypertension, thrombosis, atherosclerosis, and arrhythmia. CONCLUSION This study demonstrates Cordyceps' prospective efficacy and safety in the prevention or treatment of CI/RI and MI/RI, providing novel insights for managing ischemic CCVDs.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Liying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Haoran Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xiuwen Bao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Shuqi Niu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jing Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Junhao Ma
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Run Yuan
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jinlin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Zhang M, Li Q, Nie L, Hai P, Zhang W, Caiji W, Liang W, Zhang H, Zang H. Nondestructive rapid identification of wild Cordyceps sinensis with portable instrument. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1540-1549. [PMID: 38035800 DOI: 10.1002/pca.3310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Cordyceps sinensis (CS) is a precious medicinal fungus. Wild CS (WCS) and artificial CS (ACS) are destroyed for their identification using traditional methods, which are time consuming and labor-intensive. Therefore, it is crucial to establish a nondestructive identification method to rapidly screen WCS. OBJECTIVE The aim of this study was to provide technical support for rapid screening of CS and evaluation of its quality. The applicability of the model was improved through model transfer. METHODS In this study, continuous wavelet transform was used to analyze the differences in moisture content and active components between WCS and ACS from the perspective of characteristic molecular groups. A portable instrument and a laboratory benchtop instrument were used to determine CS spectra. Partial least squares discrimination analysis was conducted for the identification of WCS and ACS while preserving the original shape of CS. Moreover, improved principal component analysis was utilized to transfer the model between the two types of near-infrared spectroscopy (NIRS) instruments. RESULTS The results demonstrated that three peaks, at 1443, 1941, and 2183 nm, were characteristic absorption peaks. The model based on NIRS could initially provide rapid differentiation between WCS and ACS. At the same time, the accuracy of the external test set was further improved to over 95% through forward transfer. CONCLUSION Therefore, this method could be used for rapid screening of WCS and provides technical support for the nondestructive identification of CS and initial assessment of CS quality.
Collapse
Affiliation(s)
- Mengqi Zhang
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qin Li
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Nie
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Hai
- Qinghai Key Laboratory of Modernization of Chinese and Tibetan Medicine, Key Laboratory of Chinese and Tibetan Medicine Quality Control of National Medical Products Administration, Qinghai Institute for Drug Control, Xining, China
| | - Wei Zhang
- Qinghai Key Laboratory of Modernization of Chinese and Tibetan Medicine, Key Laboratory of Chinese and Tibetan Medicine Quality Control of National Medical Products Administration, Qinghai Institute for Drug Control, Xining, China
| | - Wangmao Caiji
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenyan Liang
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Zhang
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hengchang Zang
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Glycoengineering Research Center, Shandong University, Jinan, China
- Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, China
| |
Collapse
|
8
|
Arora P, Bahuguna N, Anand J, Semwal P, Rai N. Ethnopharmacology and current conservational status of Cordyceps sinensis. Z NATURFORSCH C 2024:znc-2024-0130. [PMID: 39331691 DOI: 10.1515/znc-2024-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024]
Abstract
Cordyceps sinensis, known as the caterpillar fungus, constitutes an invaluable and irreplaceable part of traditional Chinese medicine (TCM) and is now gaining widespread global recognition and dedicated attention owing to both highly promising characteristics as well as grave dangers that are suggestive of an impending doom. C. sinensis possibly holds the key to the treatment of many human ailments with minimal side effects due to a wide array of biologically active chemical constituents. The powerful potential harbored by this fungus has led to a meteoric rise in its prices in the domestic and international markets which has caused the involvement of an increasing number of harvesters, traders, and buyers and unchecked overexploitation of this bioresource thus threatening its long-term survival in its natural habitat of the Himalayan region. This review focuses on the ethnopharmacology of C. sinensis, and various aspects related to its conservation, such as natural distribution, sale and revenue, decline in population density, and conservational practices prevalent in the current scenario of fungal depletion. The paper concludes with a comprehensive evaluation of the discrete therapeutic capabilities possessed by C. sinensis, the mechanistic insights into the remarkable treatment of chronic ailments using the fungus or its derivatives, and a suggested strategic roadmap that may be adopted for fruitful conservation of this natural miracle.
Collapse
Affiliation(s)
- Payas Arora
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India
| | - Nikita Bahuguna
- Department of Microbiology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India
- Research and Development Cell, Graphic Era Hill University, Society Area, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India
| |
Collapse
|
9
|
Chai W, Mao X, Li C, Zhu L, He Z, Wang B. Mannitol mediates the mummification behavior of Thitarodes xiaojinensis larvae infected with Ophiocordyceps sinensis. Front Microbiol 2024; 15:1411645. [PMID: 39224221 PMCID: PMC11368059 DOI: 10.3389/fmicb.2024.1411645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Parasites can facilitate their own spread and reproduction by manipulating insect hosts behavior, as seen in the interaction between Thitarodes xiaojinensis and Ophiocordyceps sinensis. Infection by O. sinensis leads to the mummification of T. xiaojinensis larvae, but the underlying mechanisms remain mysterious. Methods The morphology of O. sinensis infected larvae and fungal growth were first observed. Subsequently, the metabolite changes in the larvae before and after infection with the fungus were analyzed by LC/MS and targeted metabolomics. The expression of mannitol-related genes was detected using RT-qPCR, and morphological changes in larvae were observed after injection of different concentrations of mannitol into the O. sinensis-infected larvae. Results Significant changes were found in phenotype, fungal morphology in hemocoel, larval hardness, and mannitol metabolites in infected, mummified 0 h larvae and larvae 5 days after mummification behavior. Surprisingly, the occurrence of mummification behavior was accompanied by fungal dimorphism, as well as the absence of mannitol in both infected and non-infected larvae, until the initial accumulation of mannitol and the expression of mannitol-associated genes occurred at the time of mummification behavior. The presence of mannitol may promote fungal dimorphism to mediate changes in fungal toxicity or resistance, leading to the end of the fungus-insect coexistence period and the incidence of mummification behavior. Furthermore, mannitol injections increase the mummification rate of the infected larvae without significant difference from the normal mummification phenotype. Discussion This finding suggests the importance of mannitol in the mummification of host larvae infected with O. sinensis.
Collapse
Affiliation(s)
- Wenmin Chai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xianbing Mao
- Chongqing Xinstant Biotechnology Co., Ltd., Chongqing, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongyi He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
11
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
12
|
Xiao M, Wang T, Tang C, He M, Li Y, Li X. Effects of Drying Methods on Morphological Characteristics, Metabolite Content, and Antioxidant Capacity of Cordyceps sinensis. Foods 2024; 13:1639. [PMID: 38890867 PMCID: PMC11171906 DOI: 10.3390/foods13111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Cordyceps sinensis is a rare and endangered medicinal herb in China and a typical medicinal and food plant. Most of the research related to Cordyceps sinensis focuses on its pharmacological effects, artificial cultivation and clinical applications. However, there are few comprehensive evaluations on the quality of Cordyceps sinensis under different drying methods. In this study, the effects of vacuum freeze-drying (DG), oven-drying (HG) and air-drying (YG) on the morphological characteristics, microstructure, antioxidant activity and metabolites of Cordyceps sinensis were investigated using wild Cordyceps sinensis as the research object. The results showed that in their appearance and morphology, the YG- and HG-method Cordyceps sinensis samples were darker in color and wilted, while the DG- method Cordyceps sinensis samples were golden yellow in color and had better fullness. In terms of microstructure, the stomata of the YG and HG method Cordyceps sinensis samples were relatively small and irregularly shaped, whereas those of the DG method Cordyceps sinensis samples were larger and neat. In terms of antioxidant capacity, the HG-method samples were the lowest, followed by the YG group, and the DG group had the highest total antioxidant capacity. A correlation analysis revealed a significant relationship between antioxidant capacity and lipids, lipid molecules, nucleosides, nucleotides, and analogs. A metabolomics analysis identified 1937 metabolites from 18 superclasses, with lipids, lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and organic oxygen compounds being the predominant metabolites in Cordyceps sinensis. Differentially accumulated metabolites (DAMs) in DG samples showed higher levels of lipids and lipid molecules, organic oxygen compounds, organic acids and derivatives, and organoheterocyclic compounds compared to the other drying methods, suggesting DG as the optimal preservation method for Cordyceps sinensis. These findings offer insights for selecting appropriate drying methods and maintaining the post-drying quality of Cordyceps sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (M.X.); (T.W.); (C.T.); (M.H.); (X.L.)
| | | |
Collapse
|
13
|
Wang Y, Tong L, Yang L, Ren B, Guo D. Metabolite profiling and antioxidant capacity of natural Ophiocordyceps gracilis and its cultures using LC-MS/MS-based metabolomics: Comparison with Ophiocordyceps sinensis. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:308-320. [PMID: 37779226 DOI: 10.1002/pca.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Ophiocordyceps gracilis is an entomopathogenic fungus and a precious traditional Chinese medicine with similar medicinal properties to Ophiocordyceps sinensis. However, information on the metabolite profiles of natural O. gracilis and its cultures is lacking, which limits their utilization. OBJECTIVE The metabolic variations and antioxidant activities of O. gracilis cultures and natural O. gracilis were analyzed to evaluate the nutritional and medicinal value of O. gracilis and its cultures. METHOD The metabolite profiles of O. gracilis cultures (fruiting bodies and aerial mycelia), natural O. gracilis, and natural O. sinensis were compared by LC-MS/MS coupled with multivariate data analysis. Furthermore, their antioxidant activities were evaluated based on their DPPH• , ABTS•+ , and • OH scavenging abilities. RESULTS A total of 612 metabolites were identified, and the metabolic compositions of the four Cordyceps samples were similar, with differences observed in the levels of some metabolites. There were 126 differential metabolites between natural O. gracilis and natural O. sinensis, among which fatty acids, carbohydrates, and secondary metabolites are predominant in natural O. gracilis. Furthermore, 116 differential metabolites between O. gracilis cultures and natural Cordyceps were identified, with generally higher levels in O. gracilis cultures than in natural Cordyceps. O. gracilis cultivated fruiting bodies exhibited the strongest antioxidant capacity among Cordyceps samples. Additionally, 46 primary and 24 secondary differential metabolites contribute to antioxidant activities. CONCLUSION This study provides a reference for the application of natural O. gracilis and its cultures in functional food and medicine from the perspective of metabolites and antioxidant capacity.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lingling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Linhui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
14
|
He L, Xiao F, Dou CX, Zhou B, Chen ZH, Wang JY, Wang CG, Xie F. Integrated Comparative Transcriptome and Weighted Gene Co-Expression Network Analysis Provide Valuable Insights into the Mechanisms of Pinhead Initiation in Chinese Caterpillar Mushroom Ophiocordyceps sinensis (Ascomycota). Int J Med Mushrooms 2024; 26:41-54. [PMID: 39171630 DOI: 10.1615/intjmedmushrooms.2024054674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The initiation and formation of the "pinhead" is the key node in growth process of Ophiocordyceps sinensis (Chinese Cordyceps). The research on the mechanism of changes in this growth stage is the basis for realizing the industrialization of its artificial cultivation. Clarifying the mechanisms of pinhead initiation is essential for its further application. Here, we performed a comprehensive transcriptome analysis of pinhead initiation process in O. sinensis. Comparative transcriptome analysis revealed remarkable variation in gene expression and enriched pathways at different pinhead initiation stages. Gene co-expression network analysis by WGCNA identified 4 modules highly relevant to different pinhead initiation stages, and 23 hub genes. The biological function analysis and hub gene annotation of these identified modules demonstrated that transmembrane transport and nucleotide excision repair were the topmost enriched in pre-pinhead initiation stage, carbohydrate metabolism and protein glycosylation were specially enriched in pinhead initiation stage, nucleotide binding and DNA metabolic process were over-represented after pinhead stage. These key regulators are mainly involved in carbohydrate metabolism, synthesis of proteins and nucleic acids. This work excavated the candidate pathways and hub genes related to the pinhead initiation stage, which will serve as a reference for realizing the industrialization of artificial cultivation in O. sinensis.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fan Xiao
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Chen Xi Dou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Bo Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, GanSu, P.R. China
| |
Collapse
|
15
|
Bao X, Song H, He L, Li Y, Niu S, Guo J. Histopathological observations and comparative transcriptome analysis of Ophiocordyceps sinensis infection of Hepialus xiaojinensis in the early stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105067. [PMID: 37797777 DOI: 10.1016/j.dci.2023.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.
Collapse
Affiliation(s)
- Xiuwen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haoran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
16
|
Tang C, Li X, Wang T, Wang J, Xiao M, He M, Chang X, Fan Y, Li Y. Characterization of Metabolite Landscape Distinguishes Medicinal Fungus Cordyceps sinensis and other Cordyceps by UHPLC-Q Exactive HF-X Untargeted Metabolomics. Molecules 2023; 28:7745. [PMID: 38067475 PMCID: PMC10708286 DOI: 10.3390/molecules28237745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cordyceps represent a valuable class of medicinal fungi with potential utilization. The overexploitation and resource scarcity of Cordyceps sinensis (CS) have led to the emergence of Cordyceps such as Cordyceps militaris (CM) and Cordyceps cicadae (CC) as substitutes. The medicinal value of CS is often considered superior to other Cordyceps, potentially owing to differences in active ingredients. This study aimed to evaluate the differences in the composition and abundance of the primary and secondary metabolites of CS and its substitutes by untargeted metabolomics. A total of 4671 metabolites from 18 superclasses were detected. CS and its substitutes were rich in amino acids, lipids, organic acids, and their derivatives. We statistically analyzed the metabolites and found a total of 285 differential metabolites (3'-Adenylic acid, O-Adipoylcarnitine, L-Dopachrome, etc.) between CS and CC, CS and CM, and CM and CC, which are potential biomarkers. L-glutamate and glycerophospholipids were differential metabolites. A KEGG enrichment analysis indicated that the tyrosine metabolic pathway and tryptophan metabolism pathway are the most differentially expressed pathways among the three Cordyceps. In contrast, CS was enriched in a higher abundance of most lipid metabolites when compared to CM and CC, which may be an indispensable foundation for the pharmacological functions of CS. In conclusion, systematic, untargeted metabolomics analyses for CS and other Cordyceps have delivered a precious resource for insights into metabolite landscapes and predicted potential components of disease therapeutics.
Collapse
Affiliation(s)
- Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Jie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China;
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Xiyun Chang
- Qinghai Institute of Health Sciences, Xining 810000, China;
| | - Yuejun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China; (C.T.); (X.L.); (T.W.); (M.X.); (M.H.)
| |
Collapse
|
17
|
Sharma A, Kaur E, Joshi R, Kumari P, Khatri A, Swarnkar MK, Kumar D, Acharya V, Nadda G. Systematic analyses with genomic and metabolomic insights reveal a new species, Ophiocordyceps indica sp. nov. from treeline area of Indian Western Himalayan region. Front Microbiol 2023; 14:1188649. [PMID: 37547690 PMCID: PMC10399244 DOI: 10.3389/fmicb.2023.1188649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Ophiocordyceps is a species-rich genus in the order Hypocreales (Sordariomycetes, Ascomycota) depicting a fascinating relationship between microbes and insects. In the present study, a new species, Ophiocordyceps indica sp. nov., is discovered infecting lepidopteran larvae from tree line locations (2,202-2,653 m AMSL) of the Kullu District, Himachal Pradesh, Indian Western Himalayan region, using combinations of morphological and molecular phylogenetic analyses. A phylogeny for Ophiocordyceps based on a combined multigene (nrSSU, nrLSU, tef-1α, and RPB1) dataset is provided, and its taxonomic status within Ophiocordycipitaceae is briefly discussed. Its genome size (~59 Mb) revealed 94% genetic similarity with O. sinensis; however, it differs from other extant Ophiocordyceps species based on morphological characteristics, molecular phylogenetic relationships, and genetic distance. O. indica is identified as the second homothallic species in the family Ophiocordycipitaceae, after O. sinensis. The presence of targeted marker components, viz. nucleosides (2,303.25 μg/g), amino acids (6.15%), mannitol (10.13%), and biological activity data, suggests it to be a new potential source of nutraceutical importance. Data generated around this economically important species will expand our understanding regarding the diversity of Ophiocordyceps-like taxa from new locations, thus providing new research avenues.
Collapse
Affiliation(s)
- Aakriti Sharma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ekjot Kaur
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Pooja Kumari
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Abhishek Khatri
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Mohit Kumar Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Vishal Acharya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
| | - Gireesh Nadda
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Cui L, He N, Yu S, Pang H, Zhang Z, Wang J, Hao J, Li S. Polysaccharides from Paecilomyces hepiali Prevent Acute Colitis in Association with Modulating Gut Microbiota and Treg/Th17 Immune Balance in Mice. Molecules 2023; 28:4984. [PMID: 37446646 DOI: 10.3390/molecules28134984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cordyceps exopolysaccharide (CEP) has shown emerging potential in adjustment of gut microbiota and immune cell function. In this study, a water-soluble CEP with a molecular weight of 58.14 kDa was extracted from the fermentation broth of Paecilomyces hepiali, an endophytic fungus of Cordyceps sinensis. Our results indicated that Paecilomyces hepiali polysaccharide (PHP) showed significantly preventive potential on dextran sulfate sodium (DSS)-induced colitis in mice, which can prevent colon shortening, reduce intestinal epithelial cell (IEC) destruction, suppress inflammatory cell infiltration, and regulate the balance between regulatory T (Treg) cells and T helper type 17 (Th17) cells. Meanwhile, the disturbed gut microbiota was partially restored after PHP treatment. Further Pearson correlation coefficient analyses exhibited that the alteration of the gut microbiota was significantly related to adjustment of the IEC barrier and Treg/Th17 balance. In conclusion, all findings proposed that purified PHP has the potential to develop into a promising agent for colitis prevention and adjuvant therapy via maintaining intestinal homeostasis of gut microbiota and immune system.
Collapse
Affiliation(s)
- Luwen Cui
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Shengnan Yu
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hao Pang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zixuan Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jingyi Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
19
|
He L, Xie F, Zhou G, Chen ZH, Wang JY, Wang CG. Transcriptome and metabonomics combined analysis revealed the energy supply mechanism involved in fruiting body initiation in Chinese cordyceps. Sci Rep 2023; 13:9500. [PMID: 37308669 DOI: 10.1038/s41598-023-36261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Chinese cordyceps was one of most valuable traditional Chinese medicine fungi. To elucidate the molecular mechanisms related to energy supply mechanism involved in the initiation and formation of primordium in Chinese cordyceps, we performed the integrated metabolomic and transcriptomic analyses of it at pre-primordium period, primordium germination period and after-primordium period, respectively. Transcriptome analysis showed that many genes related to 'starch and sucrose metabolism', 'fructose and mannose metabolism', 'linoleic acid metabolism', 'fatty acids degradation' and 'glycerophospholipid metabolism' were highly up-regulated at primordium germination period. Metabolomic analysis showed many metabolites regulated by these genes in these metabolism pathways were also markedly accumulated at this period. Consequently, we inferred that carbohydrate metabolism and β-oxidation pathway of palmitic acid and linoleic acid worked cooperatively to generate enough acyl-CoA, and then entered TCA cycle to provide energy for fruiting body initiation. Overall, our finding provided important information for further exploring the energy metabolic mechanisms of realizing the industrialization of Chinese cordyceps artificial cultivation.
Collapse
Affiliation(s)
- Li He
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Fang Xie
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China.
| | - Gang Zhou
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Zhao He Chen
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Jing Yi Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| | - Cheng Gang Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
20
|
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M, Vongsangnak W. Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol 2023; 81:102939. [PMID: 37075529 DOI: 10.1016/j.copbio.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.
Collapse
Affiliation(s)
- Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattsarun Cheawchanlertfa
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center (FTRC), Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| |
Collapse
|
21
|
Tong C, Li T, Luo S, Chen R, Chen S, Wei J, Qing Y, Qin S, Pan G, Li C, Zhou Z. Detection of the pathogenic fungus Cordyceps farinosa in the Thitarodes armoricanus soil-rearing environment based on nucleic acid targets. Can J Microbiol 2023; 69:136-145. [PMID: 36638365 DOI: 10.1139/cjm-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cordyceps farinosa, an entomopathogenic fungus, infects and leads to high mortality of Thitarodes armoricanus larvae, which die soon after the infection of C. farinose, usually before the colonization of Ophiocordyceps sinensis owing to competitive inhibition and fruiting body formation. Therefore, monitoring C. farinosa in the O. sinensis cultivation environment is critical for minimizing the C. farinosa infection-induced losses. In this study, we initially designed a PCR primer pair (Tar-1F/Tar-1R) through open reading frame prediction and homology comparison of the C. farinosa genome sequence. This primer pair can detect both C. farinosa and Samsoniella hepiali. To further distinguish, primers (ITS5-172/ITS4-95) were then designed to selectively amplify the large ribosomal subunit sequences in the C. farinosa genome. All these primers were applied in combination for detection of C. farinosa in soil samples. The sensitivity reached a detection limit of 1 × 106 spores/g soil. In addition, these primers can detect the presence of C. farinosa in dead T. armoricanus larval samples. This newly established rapid detection method provides important information for C. farinosa control during O. sinensis cultivation.
Collapse
Affiliation(s)
- Chaoqun Tong
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Shisui Luo
- Taiji Medical Research Institute, Chongqing 401147, China
| | - Ruoni Chen
- Taiji Medical Research Institute, Chongqing 401147, China
| | - Shijiang Chen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Yuling Qing
- Taiji Medical Research Institute, Chongqing 401147, China
| | - Shaorong Qin
- Taiji Medical Research Institute, Chongqing 401147, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China.,College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
22
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
23
|
Xu M, Ashley NA, Vaghefi N, Wilkinson I, Idnurm A. Isolation of strains and their genome sequencing to analyze the mating system of Ophiocordyceps robertsii. PLoS One 2023; 18:e0284978. [PMID: 37130139 PMCID: PMC10153710 DOI: 10.1371/journal.pone.0284978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
The fungal genus Ophiocordyceps contains a number of insect pathogens. One of the best known of these is Ophiocordyceps sinensis, which is used in Chinese medicine and its overharvesting threatens sustainability; hence, alternative species are being sought. Ophiocordyceps robertsii, found in Australia and New Zealand, has been proposed to be a close relative to O. sinensis, but little is known about this species despite being also of historical significance. Here, O. robertsii strains were isolated into culture and high coverage draft genome sequences obtained and analyzed. This species has a large genome expansion, as also occurred in O. sinensis. The mating type locus was characterized, indicating a heterothallic arrangement whereby each strain has an idiomorphic region of two (MAT1-2-1, MAT1-2-2) or three (MAT1-1-1, MAT1-1-2, MAT1-1-3) genes flanked by the conserved APN2 and SLA2 genes. These resources provide a new opportunity for understanding the evolution of the expanded genome in the homothallic species O. sinensis, as well as capabilities to explore the pharmaceutical potential in a species endemic to Australia and New Zealand.
Collapse
Affiliation(s)
- Melvin Xu
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Darling Heights, Queensland, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian Wilkinson
- GhostMothLabs, 20 Lynch Drive, Echuca, Victoria, Australia
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
24
|
Zhang J, Wang N, Chen W, Zhang W, Zhang H, Yu H, Yi Y. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis. Food Res Int 2023; 163:112275. [PMID: 36596185 DOI: 10.1016/j.foodres.2022.112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Ophiocordyceps sinensis is a traditional medicinal fungus endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. The scarcity of the wild resource has led to increased attention to artificially cultivated O. sinensis. However, little is known about the metabolic differences and the regulatory mechanisms between cultivated and wild O. sinensis. This study exploited untargeted metabolomics and transcriptomics to uncover the differences in accumulated metabolites and expressed genes between wild and cultivated O. sinensis. Metabolomics results revealed that 368 differentially accumulated metabolites were mainly enriched in biosynthesis of amino acids, biosynthesis of plant secondary metabolites and purine nucleotide metabolism. Cultivated O. sinensis contained more amino acids and derivatives, carbohydrates and derivatives, and phenolic acids than wild O. sinensis, whereas the contents of most nucleosides and nucleotides in wild O. sinensis were significantly higher than in cultivated O. sinensis. Transcriptome analysis indicated that 4430 annotated differentially expressed genes were identified between two types. Integrated metabolomics and transcriptomics analyses suggested that IMPDH, AK, ADSS, guaA and GUK genes might be related to the synthesis of purine nucleotides and nucleosides. Our findings will provide a new insight into the molecular basis of metabolic variations of this medicinal fungus.
Collapse
Affiliation(s)
- Jianshuang Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Na Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wanxuan Chen
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Weiping Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Haoshen Zhang
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hao Yu
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| | - Yin Yi
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
25
|
Tong X, Peng T, Liu S, Zhang D, Guo J. Transcriptomic Analysis Insight into the Immune Modulation during the Interaction of Ophiocordyceps sinensis and Hepialus xiaojinensis. INSECTS 2022; 13:1119. [PMID: 36555029 PMCID: PMC9788539 DOI: 10.3390/insects13121119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Ophiocordyceps sinensis (Berk.) is an entomopathogenic fungus that can infect the larva of the ghost moth, Hepialus xiaojinensis, causing mummification after more than one year. This prolonged infection provides a valuable model for studying the immunological interplay between an insect host and a pathogenic fungus. A comparative transcriptome analysis of pre-infection (L) and one-year post-infection (IL) larvae was performed to investigate the immune response in the host. Here, a total of 59,668 unigenes were obtained using Illumina Sequencing in IL and L. Among the 345 identified immune-related genes, 83 out of 86 immune-related differentially expressed genes (DEGs) had a much higher expression in IL than in L. Furthermore, the immune-related DEGs were classified as pathogen recognition receptors (PRRs), signal modulators or transductors, and immune effector molecules. Serpins and protease inhibitors were found to be upregulated in the late phase of infection, suppressing the host’s immune response. Based on the above analysis, the expression levels of most immune-related genes would return to the baseline with the immune response being repressed in the late phase of infection, leading to the fungal immunological tolerance after prolonged infection. Meanwhile, the transcriptomes of IL and the mummified larva (ML) were compared to explore O. sinensis invasion. A total of 1408 novel genes were identified, with 162 of them annotated with putative functions. The gene families likely implicated in O. sinensis pathogenicity have been identified, primarily including serine carboxypeptidase, peroxidase, metalloprotease peptidase, aminopeptidases, cytochrome P450, and oxidoreductase. Furthermore, quantitative real-time PCR (qPCR) was used to assess the expression levels of some critical genes that were involved in immune response and fungal pathogenicity. The results showed that their expression levels were consistent with the transcriptomes. Taken together, our findings offered a comprehensive and precise transcriptome study to understand the immune defense in H. xiaojinensis and O. sinensis invasion, which would accelerate the large-scale artificial cultivation of this medicinal fungus.
Collapse
|
26
|
Enhancing polysaccharide production by Paraisaria dubia spores batch fermentation through a pH-shift strategy based on kinetic analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Guo S, Lin M, Xie D, Zhang W, Zhang M, Zhou L, Li S, Hu H. Comparative metabolic profiling of wild Cordyceps species and their substituents by liquid chromatography-tandem mass spectrometry. Front Pharmacol 2022; 13:1036589. [PMID: 36506548 PMCID: PMC9729555 DOI: 10.3389/fphar.2022.1036589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cordyceps is a genus of ascomycete fungi and used widely in fungal drugs. However, in-depth studies of the metabolites of wild Cordyceps species and their substituents are lacking. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics analysis was carried out to comprehensively profile the metabolites in wild Chinese Cordyceps species (Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones and Spatafora 2007) from Naqu (NCs) and Yushu (YCs) and their substituents including artificially cultivated Cordyceps species (CCs) and mycelia. A total of 901 metabolites were identified in these samples, including lipids, amino acids, nucleosides, carbohydrates, organic acids, coenzymes, vitamins, alkaloids and their derivatives. Univariate and multivariate statistical analyses revealed remarkable differences and significantly different metabolites among them. Seventy amino acid-relevant metabolites were analyzed quantitatively in four samples for the first time. The four samples contained abundant L-glutamic acid and oxidized glutathione as well as multiple unique amino acid-relevant metabolites (e.g., 3-chloro-L-tyrosine, 6-aminocaproic acid, L-theanine, anserine, γ-glutamyl-cysteine). Collectively, our study provides rich metabolic information of wild Cordyceps species and their substituents, which could facilitate their quality control and optimal utilization.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Manting Lin
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacy, Xiamen Maluan Bay Hospital, Xiamen, Fujian, China
| | - Di Xie
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenqing Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mi Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Wuhan, Hubei, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Tong C, Wei J, Pan G, Li C, Zhou Z. Study of Pathogenesis Using Fluorescent Strain of Cordyceps farinosa Revealed Infection of Thitarodes armoricanus Larvae via Digestive Tract. INSECTS 2022; 13:1039. [PMID: 36354862 PMCID: PMC9698661 DOI: 10.3390/insects13111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cordyceps farinosa is often utilized as a biocontrol agent because of its wide host range, strong lethality, and safety for mammals. Artificial rearing of Thitarodes armoricanus larvae is a prerequisite for the artificial cultivation of Chinese cordyceps, and C. farinosa is the most lethal pathogenic fungus during the rearing process. However, the infection process of C. farinosa is still unclear. In this study, we cloned the promoter of the C. farinosa glyceraldehyde 3-phosphate dehydrogenase gene, constructed the EGFP expression cassette, and integrated it into the C. farinosa genome via Agrobacterium transformation. We obtained a fluorescent strain for better observation of the infection process. Using two different inoculation methods of the fluorescent strain, we observed the traditional infection process through the body surface as well as through the digestive tract via feeding. Both infection modes can lead to larval death and mummification. Our findings demonstrated that during the artificial rearing of T. armoricanus, preventing C. farinosa pollution should be an important part of the disinfection of the rearing environment.
Collapse
Affiliation(s)
- Chaoqun Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Chunfeng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
29
|
Wu P, Qin Q, Zhang J, Zhang H, Li X, Wang H, Meng Q. The invasion process of the entomopathogenic fungus Ophiocordyceps sinensis into the larvae of ghost moths (Thitarodes xiaojinensis) using a GFP-labeled strain. Front Microbiol 2022; 13:974323. [PMID: 36118238 PMCID: PMC9479185 DOI: 10.3389/fmicb.2022.974323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Chinese cordyceps is a well-known and valuable traditional Chinese medicine that forms after Ophiocordyceps sinensis parasitizes ghost moth larvae. The low natural infection rate of O. sinensis limits large-scale artificial cultivation of Chinese cordyceps, and the invasion process is unclear. To investigate the temporal and spatial regulation when O. sinensis enters ghost moths, we constructed an O. sinensis transformant that stably expresses green fluorescent protein (GFP). Inoculating Thitarodes xiaojinensis larvae with a high concentration of GFP-labeled O. sinensis, we observed that O. sinensis conidia could adhere to the host cuticle within 2 days, germinate penetration pegs within 4 days, and produce blastospores in the host hemocoel within 6 days. The reconstructed three-dimensional (3D) structures of the invasion sites showed that penetration pegs germinated directly from O. sinensis conidia at the joining site with the larval cuticle. Differentiated appressoria or hyphae along the host epicuticle are not required for O. sinensis to invade ghost moths. Overall, the specific invasion process of O. sinensis into its host is clarified, and we provided a new perspective on the invasion process of entomopathogenic fungi.
Collapse
Affiliation(s)
- Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongtuo Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Qian Meng
| |
Collapse
|
30
|
Wu PP, Shu RH, Gao XX, Li MM, Zhang JH, Zhang H, Qin QL, Zou Z, Meng Q. Immulectin-2 from the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae), modulates cellular and humoral responses against fungal infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104429. [PMID: 35489421 DOI: 10.1016/j.dci.2022.104429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
C type-lectins constitute a large family of pattern recognition receptors, playing important roles in insect immune defenses. Thitarodes xiaojinensis larvae showed distinct immune features after Ophiocordyceps sinensis, Cordyceps militaris, or Beauveria bassiana infection. Based on transcriptome and immunoblot analysis, we found that immulectin-2 (IML2) was induced after T. xiaojinensis larvae were infected by C. militaris or B. bassiana but maintained at a low level after larvae injected with O. sinensis or Ringer's buffer. Recombinant IML2 (rIML2) could promote melanization, encapsulation, phagocytosis, and hemocyte aggregation in vitro. RNA interference with IML2 induced a significant reduction in the transcript levels of various antimicrobial peptides. Importantly, we found that the abundance of O. sinensis blastospores coated with rIML2 dramatically decreased in the host hemolymph. Overall, this study demonstrated that T. xiaojinensis IML2 modulates cellular and humoral responses to entomopathogenic fungi, broadening our view of the immune interaction between O. sinensis and its host.
Collapse
Affiliation(s)
- Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin-Xin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
31
|
Cao S, Xue J, Chen L, Hao Y, Lu M, Feng M, Wang H, Zhou J, Yao C. Effects of the Chinese herbal medicine Hong Huang decoction, on myocardial injury in breast cancer patients who underwent anthracycline-based chemotherapy. Front Cardiovasc Med 2022; 9:921753. [PMID: 35935647 PMCID: PMC9353583 DOI: 10.3389/fcvm.2022.921753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To assess the effects of Hong Huang Decoction (HHD), a Chinese herbal medicine, on myocardial injury in breast cancer patients who underwent anthracycline (ANT)-based chemotherapy. Methods A total of 51 patients with breast cancer who underwent an ANT-based chemotherapy program and met the inclusion/exclusion criteria were allocated to the treatment or placebo groups using a random number generation process. Patients in the treatment group received liquid HHD twice a day. Treatment was given from 1 day prior to chemotherapy up to the end of chemotherapy (after 6 months). Participants in the placebo group received a placebo over the same schedule. Left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), diagnostic markers of acute myocardial infarction [e.g., lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and B-type natriuretic peptide (BNP)], nitric oxide (NO), superoxide dismutase (SOD), as well as pro-inflammatory cytokines [e.g., tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and human C-reactive protein (CRP)], and anti-inflammatory cytokine interleukin-10 (IL-10), were outcome measures assessed before chemotherapy, 3 and 6 months after chemotherapy. Results Compared to the placebo group, the GLS value was significantly higher in the treatment group (19.95 ± 1.16 vs. 19.06 ± 1.64, P ≤ 0.001). Significant differences were also noted for levels of SOD (689.71 ± 203.60 vs. 807.88 ± 182.10, P < 0.05), IL-6 (58.04 ± 22.06 vs. 194.20 ± 40.14, P ≤ 0.001), IL-10 (237.90 ± 94.98 vs. 68.81 ± 32.92, P ≤ 0.001), NO (75.05 ± 26.39 vs. 55.83 ± 19.37, P ≤ 0.005), and TNF-α (301.80 ± 134.20 vs. 680.30 ± 199.60, P ≤ 0.001) in the patients before chemotherapy compared to 6 months after initiating chemotherapy. Conclusion HHD regulated the levels of IL-6, IL-10, SOD, NO, and TNF-α. The results demonstrated that GLS is a better indicator of early myocardial injury compared to LVEF, and HHD could modulate oxidative stress to protect against ANT cardio toxicity. Clinical trial registration Chinese Clinical Trial Registry, identifier ChiCTR1900022394. Date of registration: 2019-04-09.
Collapse
Affiliation(s)
- Sihan Cao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingxian Xue
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Chen
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Hao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meijuan Lu
- Department of Echocardiography, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Feng
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Wang
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Zhou
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chang Yao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Hong YH, Mai ZH, Li CJ, Zheng QY, Guo LX. Microbial Diversity Analyses of Fertilized Thitarodes Eggs and Soil Provide New Clues About the Occurrence of Chinese Cordyceps. Curr Microbiol 2022; 79:229. [PMID: 35767080 DOI: 10.1007/s00284-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Chinese cordyceps is a well-known fungus-larva complex with medicinal and economic importance. At present the occurrence of Chinese cordyceps has not been fully illuminated. In this study, the microbial diversities of fertilized Thitarodes eggs from sites A (high occurrence rates of Chinese cordyceps), B (low occurrence rates), and C (no Chinese cordyceps) were analyzed using 16S rRNA and ITS gene-sequencing technique. The previous sequencing data of soil from the same sites were conjointly analyzed. The results showed that bacterial communities among the eggs were significantly different. The bacterial diversity and evenness were much higher on site A. Wolbachia was overwhelmingly predominant in the eggs of sites B and C, while Spiroplasma showed preference on site A. The fungal between-group differences in the eggs were not as significant as that of bacteria. Purpureocillium in Cordyceps-related families showed preference on site A. Wolbachia, Spiroplasma, and Purpureocillium were inferred to be closely related to Chinese cordyceps occurrence. Intra-kingdom and inter-kingdom network analyses suggest that closer correlations of microbial communities (especially closer fungal positive correlations) in fertilized eggs might promote Chinese cordyceps occurrence. Besides, metabolic pathway analysis showed that in fertilized eggs or soil the number of bacterial metabolic pathways with significant differences in every comparison between two sites was greater than that of fungi. Collectively, this study provides novel information about the occurrence of Chinese cordyceps, contributing to the large-scale artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Yue-Hui Hong
- School of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Zhan-Hua Mai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Cheng-Ji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qiu-Yi Zheng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
33
|
Lin M, Guo S, Xie D, Li S, Hu H. Lipidomic profiling of wild cordyceps and its substituents by liquid chromatography-electrospray ionization-tandem mass spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Liu QB, Lu JG, Jiang ZH, Zhang W, Li WJ, Qian ZM, Bai LP. In situ Chemical Profiling and Imaging of Cultured and Natural Cordyceps sinensis by TOF-SIMS. Front Chem 2022; 10:862007. [PMID: 35402389 PMCID: PMC8987775 DOI: 10.3389/fchem.2022.862007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a sensitive surface analytical technology, which can simultaneously acquire diverse chemical components and their precise locations on the surfaces of samples without any requirements for chemical damage pretreatments or additional matrices. Commonly, the quality control of TCMs (traditional Chinese medicines) is limited by the qualitative and quantitative evaluations of the specifically extractive constituents. In this study, a practical sample preparation strategy named two-layered media embedding sample preparation was developed to obtain ideal freezing sections of dried materials of Cordyceps sinensis. Meanwhile, the well-established sample preparation method was applied for in situ chemical profiling and imaging of natural (NCS) and cultured Cordyceps sinensis (CCS) by using TOF-SIMS. More than 200 components were tentatively identified and imaged in NCS and CCS at the same time. Mass spectrometry imaging revealed that most components have even distributions in caterpillars of Cordyceps sinensis, while TAGs, DAGs, MAGs, and FAs only have distributions outside caterpillars’ digestive chambers. This is the first time that components were in situ imaged for Cordyceps sinensis to exhibit the chemical distributions which have never been achieved by other analytical techniques so far. In addition, chemometrics was used to simplify and explain the massive TOF-SIMS mass data sets, which revealed the high chemical similarity between CCS and NCS. Furthermore, the relative quantification of TOF-SIMS data showed that CCS has comparable proportions of amino acids, nucleosides, monosaccharides, sphingolipids, sterols and other principles to NCS except for fatty acids, glycerides and glycerophospholipids. The higher amounts of TAGs and DAGs in CCS were confirmed by quantitative 1H-NMR, indicating reliable relative quantification of TOF-SIMS. In general, our research developed a novel approach of TOF-SIMS for in situ chemical analysis of TCMs, and its successful application in comparative study of CCS and NCS suggested that TOF-SIMS is an advanced and promising analytical technology for the research of TCMs.
Collapse
Affiliation(s)
- Qian-Bao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wen-Jia Li
- Dongguan HEC Cordyceps R and D Co., Ltd., Dongguan, China
| | | | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| |
Collapse
|
35
|
Improvement in the Blood Urea Nitrogen and Serum Creatinine Using New Cultivation of Cordyceps militaris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4321298. [PMID: 35368765 PMCID: PMC8967507 DOI: 10.1155/2022/4321298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Background Chronic kidney disease (CKD) is a critical public health issue with a huge financial burden for both patients and society worldwide. Unfortunately, there are currently no efficacious therapies to prevent or delay the progression of end-stage renal disease (ESRD). Traditional Chinese medicine practices have shown that Cordyceps militaris (C. militaris) mycelia have a variety of pharmacologically useful properties, including antitumor, immunomodulation, and hepatoprotection. However, the effect of mycelial C. militaris on CKD remains unclear. Methods Here, we investigated the effects of C. militaris mycelia on mice with CKD using four types of media: HKS, HKS with vitamin A (HKS + A), CM, and CM with vitamin A (CM + A). Results The results at day 10 revealed that the levels of blood urea nitrogen (BUN) were significantly lower in the HKS (41%), HKS + A (41%), and CM + A (34%) groups compared with those in the corresponding control groups (nephrectomic mice). The level of serum creatinine in the HKS + A group decreased by 35% at day 10, whereas the levels in the HKS and CM + A groups decreased only by 14% and 13%, respectively, on day 30. Taken together, this is the first report using four new media (HKS, HKS + A, CM, and CM + A medium) for C. militaris mycelia. Each medium of mycelial C. militaris on CKD exhibits specific effect on BUN, serum creatinine, body weight, total protein, and uric acid. Conclusions Taken together, this is the first report using four new media (HKS, HKS + A, CM, and CM + A medium) for C. militaris mycelia. Each medium of mycelial C. militaris on CKD exhibits specific effects on BUN, serum creatinine, body weight, total protein, and uric acid. We concluded that treatment with C. militaris mycelia cultured in HKS or CM + A medium could potentially prevent the deterioration of kidney function in mice with CKD.
Collapse
|
36
|
Long L, Liu Z, Deng C, Li C, Wu L, Hou B, Lin Q. Genomic Sequence and Transcriptome Analysis of the Medicinal Fungus Keithomyces neogunnii. Genome Biol Evol 2022; 14:evac033. [PMID: 35201278 PMCID: PMC8907406 DOI: 10.1093/gbe/evac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
The filamentous fungus Keithomyces neogunnii can infect the larvae of Lepidoptera (Hepialus sp.) and form an insect-fungi complex, which is utilized as an important traditional Chinese medicine. As a valuable medicinal fungus, K. neogunnii produces diverse bioactive substances (e.g., polysaccharide, vitamins, cordycepic acid, and adenosine) under cultivation conditions. Herein, we report the first high-quality genome of the K. neogunnii single-spore isolate Cg7.2a using single-molecule real-time sequencing technology in combination with Illumina sequencing. The assembled genome was 32.6 Mb in size, containing 8,641 predicted genes and having a GC content of 52.16%. RNA sequencing analysis revealed the maximum number of differentially expressed genes in the fungus during the stroma formation stage compared with those during the mycelium stage. These data are valuable to enhance our understanding of the biology, development, evolution, and physiological metabolism of K. neogunnii.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, China
- Jiangsu Key Lab for the Chemistry & Utilisation of Agricultural and Forest Biomass, Nanjing, China
| | - Zhen Liu
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, China
| | - Chunying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Chuanhua Li
- Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, National Engineering Research Centre of Edible Fungi, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, China
| | - Liangliang Wu
- Nanjing Institute for the Comprehensive Utilisation of Wild Plants, China
| | - Beiwei Hou
- Nanjing Institute for the Comprehensive Utilisation of Wild Plants, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilisation of Wild Plants, China
| |
Collapse
|
37
|
Zhang Y, Liu J, Wang Y, Sun C, Li W, Qiu J, Qiao Y, Wu F, Huo X, An Y, Zhang B, Ma S, Zheng J, Ma X. Nucleosides and amino acids, isolated from Cordyceps sinensis, protected against cyclophosphamide-induced myelosuppression in mice. Nat Prod Res 2022; 36:6056-6059. [PMID: 35188001 DOI: 10.1080/14786419.2022.2043307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yu Zhang
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jie Liu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Chengpeng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Wenjia Li
- Dongguan Dongyangguang Cordyceps R&D Co., Ltd, Dongguan, China
| | - Jianjian Qiu
- Dongguan Dongyangguang Cordyceps R&D Co., Ltd, Dongguan, China
| | - Yanling Qiao
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fan Wu
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue An
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Baojing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuangcheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Jian Zheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Tong LL, Wang Y, Yuan L, Liu MZ, Du YH, Mu XY, Yang QH, Wei SX, Li JY, Wang M, Guo DS. Enhancement of polysaccharides production using microparticle enhanced technology by Paraisaria dubia. Microb Cell Fact 2022; 21:12. [PMID: 35090444 PMCID: PMC8796560 DOI: 10.1186/s12934-021-01733-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Polysaccharides are important active ingredients in Ophiocordyceps gracilis with many physiological functions. It can be obtained from the submerged fermentation by the anamorph (Paraisaria dubia) of Ophiocordyceps gracilis. However, it was found that the mycelial pellets of Paraisaria dubia were dense and increased in volume in the process of fermentation, and the center of the pellets was autolysis due to the lack of nutrient delivery, which extremely reduced the yield of polysaccharides. Therefore, it is necessary to excavate a fermentation strategy based on morphological regulation for Paraisaria dubia to promote polysaccharides accumulation. Results In this study, we developed a method for enhancing polysaccharides production by Paraisaria dubia using microparticle enhanced technology, talc microparticle as morphological inducer, and investigated the enhancement mechanisms by transcriptomics. The optimal size and dose of talc were found to be 2000 mesh and 15 g/L, which resulted in a high polysaccharides yield. It was found that the efficient synthesis of polysaccharides requires an appropriate mycelial morphology through morphological analysis of mycelial pellets. And, the polysaccharides synthesis was found to mainly rely on the ABC transporter-dependent pathway revealed by transcriptomics. This method was also showed excellent robustness in 5-L bioreactor, the maximum yields of intracellular polysaccharide and exopolysaccharides were 83.23 ± 1.4 and 518.50 ± 4.1 mg/L, respectively. And, the fermented polysaccharides were stable and showed excellent biological activity. Conclusions This study provides a feasible strategy for the efficient preparation of cordyceps polysaccharides via submerged fermentation with talc microparticles, which may also be applicable to similar macrofungi. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01733-w.
Collapse
Affiliation(s)
- Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xin-Ya Mu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Qing-Hao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shi-Xiang Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Jun-Ya Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Mian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
39
|
Tong LL, Wang Y, Du YH, Yuan L, Liu MZ, Mu XY, Chen ZL, Zhang YD, He SJ, Li XJ, Guo DS. Transcriptomic Analysis of Morphology Regulatory Mechanisms of Microparticles to Paraisaria dubia in Submerged Fermentation. Appl Biochem Biotechnol 2022; 194:4333-4347. [PMID: 35083705 DOI: 10.1007/s12010-022-03820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 11/25/2022]
Abstract
Liquid submerged fermentation is an effective strategy to achieve large-scale production of active ingredients by macrofungi, and controlling mycelium morphology is a key factor restricting the development of this technology. Mining for superior morphological regulatory factors and elucidation of their regulatory mechanisms are vital for the further development of macrofungal fermentation technology. In this study, microparticles were used to control the morphology of Paraisaria dubia (P. dubia) in submerged fermentation, and the underlying regulatory mechanisms were revealed by transcriptomic. The relative frequency of S-type pellet diameter increased significantly from 7.14 to 88.31%, and biomass increased 1.54 times when 15 g/L talc was added. Transcriptome analysis showed that the morphological regulation of filamentous fungi was a complex biological process, which involved signal transduction, mycelium polar growth, cell wall synthesis and cell division, etc. It also showed a positive impact on the basic and secondary metabolism of P. dubia. We provided a theoretical basis for controlling the mycelium morphology of P. dubia in submerged fermentation, which will promote the development of macrofungal fermentation technology.
Collapse
Affiliation(s)
- Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Meng-Zhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xin-Ya Mu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Zi-Lei Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Yi-Dan Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Shao-Jie He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China
| | - Xiu-Juan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1, Wenyuan Road, Nanjing, 210023, People's Republic of China.
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, No. 80, Changjiang Road, Nanyang, 210023, People's Republic of China.
| |
Collapse
|
40
|
High Throughput Identification of the Potential Antioxidant Peptides in Ophiocordyceps sinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020438. [PMID: 35056752 PMCID: PMC8780859 DOI: 10.3390/molecules27020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Ophiocordyceps sinensis, an ascomycete caterpillar fungus, has been used as a Traditional Chinese Medicine owing to its bioactive properties. However, until now the bio-active peptides have not been identified in this fungus. Here, the raw RNA sequences of three crucial growth stages of the artificially cultivated O. sinensis and the wild-grown mature fruit-body were aligned to the genome of O. sinensis. Both homology-based prediction and de novo-based prediction methods were used to identify 8541 putative antioxidant peptides (pAOPs). The expression profiles of the cultivated mature fruiting body were similar to those found in the wild specimens. The differential expression of 1008 pAOPs matched genes had the highest difference between ST and MF, suggesting that the pAOPs were primarily induced and play important roles in the process of the fruit-body maturation. Gene ontology analysis showed that most of pAOPs matched genes were enriched in terms of ‘cell redox homeostasis’, ‘response to oxidative stresses’, ‘catalase activity’, and ‘ integral component of cell membrane’. A total of 1655 pAOPs was identified in our protein-seqs, and some crucial pAOPs were selected, including catalase, peroxiredoxin, and SOD [Cu–Zn]. Our findings offer the first identification of the active peptide ingredients in O. sinensis, facilitating the discovery of anti-infectious bio-activity and the understanding of the roles of AOPs in fungal pathogenicity and the high-altitude adaptation in this medicinal fungus.
Collapse
|
41
|
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S, Ruan H. New Insights Into the Biosynthesis of Typical Bioactive Components in the Traditional Chinese Medicinal Fungus Cordyceps militaris. Front Bioeng Biotechnol 2022; 9:801721. [PMID: 34976991 PMCID: PMC8719641 DOI: 10.3389/fbioe.2021.801721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Cordyceps militaris, a traditional medicinal ingredient with a long history of application in China, is regarded as a high-value fungus due to its production of various bioactive ingredients with a wide range of pharmacological effects in clinical treatment. Several typical bioactive ingredients, such as cordycepin, D-mannitol, cordyceps polysaccharides, and N6-(2-hydroxyethyl)-adenosine (HEA), have received increasing attention due to their antitumor, antioxidant, antidiabetic, radioprotective, antiviral and immunomodulatory activities. Here, we systematically sorted out the latest research progress on the chemical characteristics, biosynthetic gene clusters and pathways of these four typical bioactive ingredients. This summary will lay a foundation for obtaining low-cost and high-quality bioactive ingredients in large amounts using microbial cell factories in the future.
Collapse
Affiliation(s)
- Xiuyun Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Ailin Huang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuanyuan Shen
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuanyu Zhang
- New College, University of Toronto, Toronto, ON, Canada
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
42
|
Chen J, Li HF, Zhao G, Lin JM, He X. Matrix-assisted laser desorption ionization mass spectrometry based quantitative analysis of cordycepin from Cordyceps militaris. J Pharm Anal 2021; 11:499-504. [PMID: 34513126 PMCID: PMC8424359 DOI: 10.1016/j.jpha.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022] Open
Abstract
Cordycepin, which has great immunomodulatory activities such as anticancer, antifungal, antivirus, antileukemia and lipid-lowering ones, is the secondary metabolite of Cordyceps militaris (C. militaris). Liquid submerged fermentation is the common cultivation process to produce cordycepin. To optimize the fermentation process and improve production, monitoring the cordycepin secretion in the fermentation is essential. The measurement based on chromatography-mass spectrometry methods is generally involved in the complex sample pretreatments and time-consuming separation, so more rapid and convenient methods are required. Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is more attractive for faster and direct detection. Therefore, MALDI-MS detection combined with isotope-labeled internal standard was applied to the measurement of cordycepin content in the fermentation broth and mycelium. This method made accurate quantification of cordycepin in the range of 5–400 μg/mL with a relative standard deviation of 5.6%. The recovery rates of fermentation samples after the 1, 13, and 25 days were 90.15%, 94.27%, and 95.06%, respectively. The contents of cordycepin in the mycelium and fermentation broth were 136 mg/g and 148.39 mg/mL on the 20th culture day, respectively. The cordycepin secretion curve of the liquid fermentation of C. militaris was real-time traced over 25 days. A rapid quantification method of cordycepin based on MALDI-MS is proposed. The quantification relies on the stable isotope standard method. Rapid determination of the cordycepin content in the liquid fermentation broth of Cordyceps militaris without pre-treatment. Monitoring the fermentation state of C. militaris fermentation broth is benefit to improve the yield of cordycepin.
Collapse
Affiliation(s)
- Jian Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Guozhu Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Xiangwei He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
43
|
Feng M, Wang H, Zhu Z, Yao B, Li Y, Xue J, Cao S, Shao X, Xu Y, Sohn KC, Shin IH, Yao C. Sanhuang Decoction Controls Tumor Microenvironment by Ameliorating Chronic Stress in Breast Cancer: A Report of Ninety Cases. Front Oncol 2021; 11:677939. [PMID: 34485118 PMCID: PMC8416106 DOI: 10.3389/fonc.2021.677939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
Long-term endocrine treatment which results in estrogen deprivation causes chronic stress associated with a series of uncomfortable symptoms leading not only to a decrease in quality of life but also to cancer recurrence, which may be mediated primarily through the enhanced expression of angiogenic factors, as well as a series of inflammatory microenvironmental changes that favor tumor progression. In this study, we designed a clinical trial and aimed to explore the effects of Sanhuang Decoction (SHD) treatment on chronic stress, inflammatory factors, and breast cancer recovery. A total of 90 patients with breast cancer who met the inclusion/exclusion criteria were randomly allocated to a treatment or control group. The treatment group received the standard endocrine treatment and the traditional Chinese medicine decoction known as SHD. The control group received the standard endocrine treatment only. The treatment period was 6 months. The modified Kupperman Menopausal Index, the self-rating anxiety scale, and the self-rating depression scale were evaluated once per month. The body microenvironment plasma indices related to chronic stress, such as oxidative and antioxidative stress markers, inflammatory factors, hemorheology, coagulation, lipid and D-dimer, immunologic functions, tumor biomarkers, and angiogenic factors of the vascular endothelial growth factor (VEGF) were measured before and after 6 months of treatment. After treatment for 5 months, the scores in the treatment group decreased to nearly normal levels and the control group showed no significant improvement. After treatment for 6 months, all indices related to the body microenvironment, as well as the tumor biomarkers and carcinoembryonic antigen, carbohydrate antigen 153, and angiogenic factor VEGF levels improved significantly to normal levels in the treatment group. Our primary research showed that treatment with SHD effectively improved the quality of life of breast cancer patients by facilitating a change in the body microenvironment that controlled tumor growth and prevented drug resistance.
Collapse
Affiliation(s)
- Ming Feng
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Wang
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyuan Zhu
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Yao
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yongfei Li
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingxian Xue
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Sihan Cao
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Shao
- The First Clinical college, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanlei Xu
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ki Cheul Sohn
- School of Medicine, Catholic University of Daegu, Gyeongsan, South Korea
| | - Im Hee Shin
- School of Medicine, Catholic University of Daegu, Gyeongsan, South Korea
| | - Chang Yao
- Department of Breast Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
The Role of Autophagy in Anti-Cancer and Health Promoting Effects of Cordycepin. Molecules 2021; 26:molecules26164954. [PMID: 34443541 PMCID: PMC8400201 DOI: 10.3390/molecules26164954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Cordycepin is an adenosine derivative isolated from Cordyceps sinensis, which has been used as an herbal complementary and alternative medicine with various biological activities. The general anti-cancer mechanisms of cordycepin are regulated by the adenosine A3 receptor, epidermal growth factor receptor (EGFR), mitogen-activated protein kinases (MAPKs), and glycogen synthase kinase (GSK)-3β, leading to cell cycle arrest or apoptosis. Notably, cordycepin also induces autophagy to trigger cell death, inhibits tumor metastasis, and modulates the immune system. Since the dysregulation of autophagy is associated with cancers and neuron, immune, and kidney diseases, cordycepin is considered an alternative treatment because of the involvement of cordycepin in autophagic signaling. However, the profound mechanism of autophagy induction by cordycepin has never been reviewed in detail. Therefore, in this article, we reviewed the anti-cancer and health-promoting effects of cordycepin in the neurons, kidneys, and the immune system through diverse mechanisms, including autophagy induction. We also suggest that formulation changes for cordycepin could enhance its bioactivity and bioavailability and lower its toxicity for future applications. A comprehensive understanding of the autophagy mechanism would provide novel mechanistic insight into the anti-cancer and health-promoting effects of cordycepin.
Collapse
|
45
|
Stage- and Rearing-Dependent Metabolomics Profiling of Ophiocordyceps sinensis and Its Pipeline Products. INSECTS 2021; 12:insects12080666. [PMID: 34442232 PMCID: PMC8396551 DOI: 10.3390/insects12080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 07/04/2021] [Indexed: 11/17/2022]
Abstract
Cordyceps, a parasitic complex of the fungus Ophiocordyceps sinensis (Berk.) (Hypocreales: Ophiocordycipitaceae) and the ghost moth Thitarodes (Lepidoptera: Hepialidae), is a historical ethnopharmacological commodity in China. Recently, artificial cultivation of Chinese cordyceps has been established to supplement the dwindling natural resources. However, much is unknown between the natural and cultivated products in terms of nutritional aspect, which may provide essential information for quality evaluation. The current study aims to determine the metabolic profiles of 17 treatments from 3 sample groups including O. sinensis fungus, Thitarodes insect and cordyceps complex, using Gas Chromatography - Quadrupole Time-of-Flight Mass Spectrometry. A total of 98 metabolites were detected, with 90 of them varying in concentrations among groups. The tested groups could be separated, except that fungal fruiting body was clustered into the same group as Chinese cordyceps. The main distinguishing factors for the groups studied were the 24 metabolites involved in numerous different metabolic pathways. In conclusion, metabolomics of O. sinensis and its related products were determined mainly by the fruiting bodies other than culture methods. Our results suggest that artificially cultured fruiting bodies and cordyceps may share indistinguishable metabolic functions as the natural ones.
Collapse
|
46
|
Zhang H, Yue P, Tong X, Gao T, Peng T, Guo J. Comparative analysis of fatty acid metabolism based on transcriptome sequencing of wild and cultivated Ophiocordyceps sinensis. PeerJ 2021; 9:e11681. [PMID: 34249512 PMCID: PMC8255070 DOI: 10.7717/peerj.11681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Ophiocordyceps sinensis is a species endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. Although O. sinensis has been cultivated since the past few years, whether cultivated O. sinensis can completely replace wild O. sinensis remains to be determined. Methods To explore the differences of O. sinensis grown in varied environments, we conducted morphological and transcriptomic comparisons between wild and cultivated samples who with the same genetic background. Results The results of morphological anatomy showed that there were significant differences between wild and cultivated O. sinensis, which were caused by different growth environments. Then, a total of 9,360 transcripts were identified using Illumina paired-end sequencing. Differential expression analysis revealed that 73.89% differentially expressed genes (DEGs) were upregulated in O. sinensis grown under natural conditions compared with that grown under artificial conditions. Functional enrichment analysis showed that some key DEGs related to fatty acid metabolism, including acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-ketoacyl-CoA thiolase, and acetyl-CoA acetyltransferase, were upregulated in wild O. sinensis. Furthermore, gas chromatography-mass spectrometry results confirmed that the fatty acid content of wild O. sinensis was significantly higher than that of cultivated O. sinensis and that unsaturated fatty acids accounted for a larger proportion. Conclusion These results provide a theoretical insight to the molecular regulation mechanism that causes differences between wild and cultivated O. sinensis and improving artificial breeding.
Collapse
Affiliation(s)
- Han Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Yue
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinxin Tong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tinghui Gao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Wang Y, Yang Z, Bao D, Li B, Yin X, Wu Y, Chen H, Tang G, Li N, Zou G. Improving Hypoxia Adaption Causes Distinct Effects on Growth and Bioactive Compounds Synthesis in an Entomopathogenic Fungus Cordyceps militaris. Front Microbiol 2021; 12:698436. [PMID: 34239513 PMCID: PMC8258390 DOI: 10.3389/fmicb.2021.698436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cordyceps militaris is an entomopathogenic fungus producing a variety of bioactive compounds. To meet the huge demand for medicinal and edible products, industrialized fermentation of mycelia and cultivation of stromata have been widely developed in China. The content of bioactive metabolites of C. militaris, such as cordycepin, is higher when cultivated on silkworm pupae than on rice or in broth. However, compared with other cultivation methods, C. militaris grows more slowly and accumulates less biomass. The hypoxic environment in pupa hemocoel is one of environmental factor which is not existed in other cultivation methods. It is suggested that hypoxia plays an important role on the growth and the synthesis of bioactive compounds in C. militaris. Here, we demonstrated that the distinct effects on the growth and synthesis of bioactive compounds employing different strategies of improving hypoxia adaption. The introduction of Vitreoscilla hemoglobin enhanced growth, biomass accumulation, and crude polysaccharides content of C. militaris. However, cordycepin production was decreased to 9-15% of the control group. Meanwhile, the yield of adenosine was increased significantly. Nonetheless, when the predicted bHLH transcription factor of sterol regulatory element binding proteins (SREBPs) was overexpressed in C. militaris to improve the hypoxia adaption of fungal cells, cordycepin content was significantly increased more than two-fold. These findings reveal the role of SREBPs on growth and bioactive compounds synthesis. And it also provides a scientific basis for rationally engineering strains and optimization strategies of air supply in cultivation and fermentation.
Collapse
Affiliation(s)
- Ying Wang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhanshan Yang
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Dapeng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bo Li
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin Yin
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Wu
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Chen
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guirong Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nanyi Li
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin'an, China
| | - Gen Zou
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
48
|
Zhang H, Yue P, Tong X, Bai J, Yang J, Guo J. mRNA-seq and miRNA-seq profiling analyses reveal molecular mechanisms regulating induction of fruiting body in Ophiocordyceps sinensis. Sci Rep 2021; 11:12944. [PMID: 34155233 PMCID: PMC8217512 DOI: 10.1038/s41598-021-91718-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Ophiocordyceps sinensis has been a source of valuable materials in traditional Asian medicine for over two thousand years. With recent global warming and overharvest, however, the availability of these wild fungi has decreased dramatically. While fruiting body of O. sinensis has been artificially cultivated, the molecular mechanisms that govern the induction of fruiting body at the transcriptional and post-transcriptional levels are unclear. In this study, we carried out both mRNA and small RNA sequencing to identify crucial genes and miRNA-like RNAs (milRNAs) involved in the development of fruiting body. A total of 2875 differentially expressed genes (DEGs), and 71 differentially expressed milRNAs (DEMs) were identified among the mycoparasite complex, the sclerotium (ST) and the fruiting body stage. Functional enrichment and Gene Set Enrichment Analysis indicated that the ST had increased oxidative stress and energy metabolism and that mitogen-activated protein kinase signaling might induce the formation of fruiting body. Integrated analysis of DEGs and DEMs revealed that n_os_milR16, n_os_milR21, n_os_milR34, and n_os_milR90 could be candidate milRNAs that regulate the induction of fruiting body. This study provides transcriptome-wide insight into the molecular basis of fruiting body formation in O. Sinensis and identifies potential candidate genes for improving induction rate.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingyan Yang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded By Sichuan Province and MOST, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
49
|
Tong X, Wang F, Zhang H, Bai J, Dong Q, Yue P, Jiang X, Li X, Wang L, Guo J. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2021; 9:e10940. [PMID: 33717691 PMCID: PMC7936569 DOI: 10.7717/peerj.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, using an isobaric tags for relative and absolute quantitation (iTRAQ ) approach coupled with LC-MS / MS and bioinformatics, the proteomes were analyzed for the crucial three stages covering the fruiting body development of Ophiocordyceps sinensis, including sclerotium (ST), primordium (PR) and mature fruiting body (MF), with a focus on fruiting body development-related proteins and the potential mechanisms of the development. A total of 1,875 proteins were identified. Principal Component Analysis (PCA) demonstrated that the protein patterns between PR and MF were more similar than ST. Differentially accumulated proteins (DAPs) analysis showed that there were 510, 173 and 514 DAPs in the comparisons of ST vs. PR, PR vs. MF and ST vs. MF, respectively. A total of 62 shared DAPs were identified and primarily enriched in proteins related to ‘carbon transport and mechanism’, ‘the response to oxidative stress’, ‘antioxidative activity’ and ‘translation’. KEGG and GO databases showed that the DAPs were enriched in terms of ‘primary metabolisms (amino acid/fatty acid/energy metabolism)’, ‘the response to oxidative stress’ and ‘peroxidase’. Furthermore, 34 DAPs involved in reactive oxygen species (ROS) metabolism were identified and clustered across the three stages using hierarchical clustering implemented in hCluster R package . It was suggested that their roles and the underlying mechanisms may be stage-specific. ROS may play a role in fungal pathogenicity in ST, the fruit-body initiation in PR, sexual reproduction and highland adaptation in MF. Crucial ROS-related proteins were identified, such as superoxide dismutase (SOD, T5A6F1), Nor-1 (T5AFX3), electron transport protein (T5AHD1), histidine phosphotransferase (HPt, T5A9Z5) and Glutathione peroxidase (T5A9V1). Besides, the accumulation of ROS at the three stages were assayed using 2,7-dichlorofuorescin diacetate (DCFH-DA) stanning. A much stronger ROS accumulation was detected at the stage MF, compared to the stages of PR and ST. Sections of ST and fruit-body part of MF were stained by DCFH-DA and observed under the fluorescencemicroscope, showing ROS was distributed within the conidiospore and ascus. Besides, SOD activity increased across the three stages, while CAT activity has a strong increasement in MF compared to the stages of ST and PR. It was suggested that ROS may act in gradient-dependent manner to regulate the fruiting body development. The coding region sequences of six DAPs were analyzed at mRNA level by quantitative real-time PCR (qRT-PCR). The results support the result of DAPs analysis and the proteome sequencing data. Our findings offer the perspective of proteome to understand the biology of fruiting body development and highland adaptation in O. sinensis, which would inform the big industry of this valuable fungus.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiang Dong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Li
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
50
|
Anyu AT, Zhang WH, Xu QH. Cultivated Cordyceps: A Tale of Two Treasured Mushrooms. CHINESE MEDICINE AND CULTURE 2021. [DOI: 10.4103/cmac.cmac_41_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|