1
|
Alroba AAN, Aazam ES, Zaki M. Metal complexes containing vitamin B6-based scaffold as potential DNA/BSA-binding agents inducing apoptosis in hepatocarcinoma (HepG2) cells. Mol Divers 2024:10.1007/s11030-024-10986-7. [PMID: 39289257 DOI: 10.1007/s11030-024-10986-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
A ligand (HL) was synthesized from the pyridoxal hydrochloride (vitamin B6 form) and 1-(2-Aminoethyl)piperidine in one single step. The metal complexes [Zn(L)(Bpy)]NO3 (1), [Cu(L)(Bpy)]NO3 (2), and [Co(L)(Bpy)]NO3 (3) were prepared by tethering HL and 2,2'-bipyridine. The synthesized HL and metal complexes 1-3 were thoroughly characterized using spectroscopic techniques such as 1H NMR, 13C NMR, FTIR, EI-MS, molar conductance, and magnetic moment, in addition to CHN elemental analysis. The geometry of complexes was square pyramidal around the metal ions {Zn(II), Cu(II), and Co(II)}. The interaction of ligand and metal complexes with DNA and BSA macromolecules was accomplished by UV-Vis absorption and fluorescence spectroscopy in vitro. The hyperchromism in band at 303-325 with no shift supports the groove binding with some partial intercalation in grooves. Similarly, in BSA-binding studies, complex 2 shows greater binding potential in the hydrophobic core probably near the Trp-212 in the subdomain IIA. Furthermore, complex 2 shows excellent cytotoxicity on HepG2 cancer cells with IC50 = 25.0 ± 0.45 µM. The detailed analysis by cell-cycle studies shows cell arrest at the G2/M phase. The type of cell death was authenticated by an annexin V-FTIC dual staining experiment that reveals maximum death by apoptosis together with non-specific necrosis.
Collapse
Affiliation(s)
- Almuhrah A N Alroba
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Elham Shafik Aazam
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia
| | - Mehvash Zaki
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Cavalieri G, Marson D, Giurgevich N, Valeri R, Felluga F, Laurini E, Pricl S. Molecular Ballet: Investigating the Complex Interaction between Self-Assembling Dendrimers and Human Serum Albumin via Computational and Experimental Methods. Pharmaceutics 2024; 16:533. [PMID: 38675194 PMCID: PMC11054399 DOI: 10.3390/pharmaceutics16040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Dendrimers, intricate macromolecules with highly branched nanostructures, offer unique attributes including precise control over size, shape, and functionality, making them promising candidates for a wide range of biomedical applications. The exploration of their interaction with biological environments, particularly human serum albumin (HSA), holds significant importance for biomedical utilization. In this study, the interaction between HSA and a recently developed self-assembling amphiphilic dendrimer (AD) was investigated using various experimental techniques. Fluorescence spectroscopy and isothermal titration calorimetry revealed moderate interactions between the protein and the AD nanomicelles (NMs), primarily attributed to favorable enthalpic contributions arising from electrostatic interactions and hydrogen bonding. Structural analysis indicated minimal changes in HSA upon complexation with the AD NMs, which was further supported by computational simulations demonstrating stable interactions at the atomistic level. These findings provide valuable insights into the binding mechanisms and thermodynamic parameters governing HSA/AD NM interactions, thereby contributing to the understanding of their potential biomedical applications.
Collapse
Affiliation(s)
- Gabriele Cavalieri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
| | - Nicoletta Giurgevich
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
| | - Rachele Valeri
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences, DSCF, University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy;
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; (G.C.); (D.M.); (N.G.); (R.V.); (S.P.)
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Łódź, Poland
| |
Collapse
|
3
|
Du Y, Chen M, Wang B, Chai Y, Wang L, Li N, Zhang Y, Liu Z, Guo C, Jiang X, Ma B, Wang Z, Tian Z, Ou L. TiO 2/Polystyrene Nanocomposite Antibacterial Material as a Hemoperfusion Adsorbent for Efficient Bilirubin Removal and Prevention of Bacterial Infection. ACS Biomater Sci Eng 2024; 10:1494-1506. [PMID: 38414275 DOI: 10.1021/acsbiomaterials.3c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The use of hemoperfusion adsorbents for the removal of bilirubin in patients with liver failure has become a critical treatment. However, the insufficient clearance of bilirubin and the possibility of bacterial infection during hemoperfusion limit the application. In this work, we designed a novel antibacterial bilirubin adsorbent (PSVT) through the suspension polymerization reaction between double-bond functionalized TiO2 nanoparticles and styrene. PSVT showed an excellent bilirubin adsorption ability and antibacterial performance, ensuring efficient clearance of bilirubin in liver failure patients during hemoperfusion and preventing bacterial infection. The experimental results indicated that TiO2 was uniformly dispersed in the microspheres, which improved the mesoporous structure and increased the specific surface area. Composite adsorbent PSVT showed an exceptional bilirubin adsorption capacity, with the maximum adsorption capacity reaching 24.3 mg/g. In addition, the introduction of TiO2 endowed PSVT with excellent antibacterial ability; the ultimate antibacterial rates against Escherichia coli and Staphylococcus aureus reached 97.31 and 96.47%, respectively. In summary, PSVT served as a novel antibacterial bilirubin adsorbent with excellent bilirubin clearance capacity and antibacterial performance, providing excellent application prospects for treating liver failure patients.
Collapse
Affiliation(s)
- Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Nan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Boya Ma
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Shakibapour N, Asoodeh A, Saberi MR, Chamani J. Investigating the binding mechanism of temporin Rb with human serum albumin, holo transferrin, and hemoglobin using spectroscopic and molecular dynamics techniques. J Mol Liq 2023; 389:122833. [DOI: 10.1016/j.molliq.2023.122833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
|
5
|
Ali MS, Muthukumaran J, Jain M, Tariq M, Al-Lohedan HA, Al-Sanea ASS. Detailed Experimental and In Silico Investigation of Indomethacin Binding with Human Serum Albumin Considering Primary and Secondary Binding Sites. Molecules 2023; 28:molecules28072979. [PMID: 37049745 PMCID: PMC10095894 DOI: 10.3390/molecules28072979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The interaction of indomethacin with human serum albumin (HSA) has been studied here considering the primary and secondary binding sites. The Stern–Volmer plots were linear in the lower concentration range of indomethacin while a downward curvature was observed in the higher concentration range, suggesting the presence of more than one binding site for indomethacin inside HSA due to which the microenvironment of the fluorophore changed slightly and some of its fraction was not accessible to the quencher. The Stern–Volmer quenching constants (KSV) for the primary and secondary sites were calculated from the two linear portions of the Stern–Volmer plots. There was around a two-fold decrease in the quenching constants for the low-affinity site as compared to the primary binding site. The interaction takes place via a static quenching mechanism and the KSV decreases at both primary and secondary sites upon increasing the temperature. The binding constants were also evaluated, which show strong binding at the primary site and fair binding at the secondary site. The binding was thermodynamically favorable with the liberation of heat and the ordering of the system. In principle, hydrogen bonding and Van der Waals forces were involved in the binding at the primary site while the low-affinity site interacted through hydrophobic forces only. The competitive binding was also evaluated using warfarin, ibuprofen, hemin, and a warfarin + hemin combination as site markers. The binding profile remained unchanged in the presence of ibuprofen, whereas it decreased in the presence of both warfarin and hemin with a straight line in the Stern–Volmer plots. The reduction in the binding was at a maximum when both warfarin and hemin were present simultaneously with the downward curvature in the Stern–Volmer plots at higher concentrations of indomethacin. The secondary structure of HSA also changes slightly in the presence of higher concentrations of indomethacin. Molecular dynamics simulations were performed at the primary and secondary binding sites of HSA which are drug site 1 (located in the subdomain IIA of the protein) and the hemin binding site (located in subdomain IB), respectively. From the results obtained from molecular docking and MD simulation, the indomethacin molecule showed more binding affinity towards drug site 1 followed by the other two sites.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India
| | - Mohammad Tariq
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Saad S. Al-Sanea
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Calabrese A, Battistoni P, Ceylan S, Zeni L, Capo A, Varriale A, D’Auria S, Staiano M. An Impedimetric Biosensor for Detection of Volatile Organic Compounds in Food. BIOSENSORS 2023; 13:341. [PMID: 36979553 PMCID: PMC10046769 DOI: 10.3390/bios13030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The demand for a wide choice of food that is safe and palatable increases every day. Consumers do not accept off-flavors that have atypical odors resulting from internal deterioration or contamination by substances alien to the food. Odor response depends on the volatile organic compounds (VOCs), and their detection can provide information about food quality. Gas chromatography/mass spectrometry is the most powerful method available for the detection of VOC. However, it is laborious, costly, and requires the presence of a trained operator. To develop a faster analytic tool, we designed a non-Faradaic impedimetric biosensor for monitoring the presence of VOCs involved in food spoilage. The biosensor is based on the use of the pig odorant-binding protein (pOBP) as the molecular recognition element. We evaluated the affinity of pOBP for three different volatile organic compounds (1-octen-3-ol, trans-2-hexen-1-ol, and hexanal) related to food spoilage. We developed an electrochemical biosensor conducting impedimetric measurements in liquid and air samples. The impedance changes allowed us to detect each VOC sample at a minimum concentration of 0.1 μM.
Collapse
Affiliation(s)
- Alessia Calabrese
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | | | | | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
| | - Alessandro Capo
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Antonio Varriale
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
- URT-ISA, CNR at Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Sabato D’Auria
- Department of Biology, Agriculture, and Food Science, National Research Council of Italy (CNR-DISBA), 00185 Rome, Italy
| | - Maria Staiano
- Institute of Food Science, CNR Italy, 83100 Avellino, Italy
| |
Collapse
|
7
|
Szafraniec MJ. Interactions of chlorophyll-derived photosensitizers with human serum albumin are determined by the central metal ion. J Biomol Struct Dyn 2023; 41:479-492. [PMID: 34844514 DOI: 10.1080/07391102.2021.2007794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two structurally similar derivatives of chlorophyll a, chlorophyllide a (Chlide) and zinc-pheophorbide a (Zn-Pheide), differing only in central metal ion (Mg2+ or Zn2+, respectively) substituting the tetrapyrrole ring, were investigated with regard to their binding to human serum albumin (HSA). Chlide and Zn-Pheide are very promising photosensitizers with potential application in photodynamic therapy, therefore it is desirable to investigate their interactions with serum proteins. The studies included absorption and steady-state fluorescence spectroscopy, as well as molecular docking. It was found that both investigated compounds form complexes with HSA. Experimental data revealed two classes of binding sites for each compound. The affinities (Ka) for the first class were in the range of 105 and 106 M-1 for Chlide and Zn-Pheide, respectively, while the second class was characterized by the affinities of the order of 104 M-1 for both derivatives. Molecular docking simulations together with displacement studies revealed that the primary binding site of the studied compounds is the heme site, localized in the subdomain IB, however the best characterized binding sites of HSA, namely the Sudlow's sites I and II are also involved. The interactions between the derivatives of chlorophyll and HSA were found to be predominantly hydrophobic and to a lesser extent hydrogen bonding. Our results demonstrate that the centrally bound metal ion determines both the affinity and mode of binding to HSA, which may be a feature differentiating these compounds in terms of their pharmacokinetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Milena J Szafraniec
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| |
Collapse
|
8
|
A “traffic jam” of (+)-catechin caused by hyperglycemia — The interaction between (+)-catechin and human serum albumin (HSA) in high glucose environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Ovung A, Mavani A, Ghosh A, Chatterjee S, Das A, Suresh Kumar G, Ray D, Aswal VK, Bhattacharyya J. Heme Protein Binding of Sulfonamide Compounds: A Correlation Study by Spectroscopic, Calorimetric, and Computational Methods. ACS OMEGA 2022; 7:4932-4944. [PMID: 35187312 PMCID: PMC8851458 DOI: 10.1021/acsomega.1c05554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
Protein-ligand interaction studies are useful to determine the molecular mechanism of the binding phenomenon, leading to the establishment of the structure-function relationship. Here, we report the binding of well-known antibiotic sulfonamide drugs (sulfamethazine, SMZ; and sulfadiazine, SDZ) with heme protein myoglobin (Mb) using spectroscopic, calorimetric, ζ potential, and computational methods. Formation of a 1:1 complex between the ligand and Mb through well-defined equilibrium was observed. The binding constants obtained between Mb and SMZ/SDZ drugs were on the order of 104 M-1. SMZ with two additional methyl (-CH3) substitutions has higher affinity than SDZ. Upon drug binding, a notable loss in the helicity (via circular dichroism) and perturbation of the three-dimensional (3D) protein structure (via infrared and synchronous fluorescence experiments) were observed. The binding also indicated the dominance of non-polyelectrolytic forces between the amino acid residues of the protein and the drugs. The ligand-protein binding distance signified high probability of energy transfer between them. Destabilization of the protein structure upon binding was evident from differential scanning calorimetry results and ζ potential analyses. Molecular docking presented the best probable binding sites of the drugs inside protein pockets. Thus, the present study explores the potential binding characteristics of two sulfonamide drugs (with different substitutions) with myoglobin, correlating the structural and energetic aspects.
Collapse
Affiliation(s)
- Aben Ovung
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - A. Mavani
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - Ambarnil Ghosh
- UCD
Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabyasachi Chatterjee
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhi Das
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Jhimli Bhattacharyya
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| |
Collapse
|
10
|
Chai Y, Liu Z, Du Y, Wang L, Lu J, Zhang Q, Han W, Wang T, Yu Y, Sun L, Ou L. Hydroxyapatite reinforced inorganic-organic hybrid nanocomposite as high-performance adsorbents for bilirubin removal in vitro and in pig models. Bioact Mater 2021; 6:4772-4785. [PMID: 34095628 PMCID: PMC8144535 DOI: 10.1016/j.bioactmat.2021.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Highly efficient removal of bilirubin from whole blood directly by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity, poor mechanical strength and low biocompatibility of adsorbents. In this work, a new class of nanocomposite adsorbents was constructed through an inorganic-organic co-crosslinked nanocomposite network between vinyltriethoxysilane (VTES)-functionalized hydroxyapatite nanoparticles (V-Hap) and non-ionic styrene-divinylbenzene (PS-DVB) resins (PS-DVB/V-Hap) using suspension polymerization. Notably, our adsorbent demonstrated substantially improved mechanical performance compared to the pure polymer, with the hardness and modulus increasing by nearly 3 and 2.5 times, respectively. Moreover, due to the development of a mesoporous structure, the prepared PS-DVB/V-Hap3 exhibited an ideal adsorption capacity of 40.27 mg g-1. More importantly, the obtained adsorbent beads showed outstanding blood compatibility and biocompatibility. Furthermore, in vivo extracorporeal hemoperfusion verified the efficacy and biosafety of the adsorbent for directly removing bilirubin from whole blood in pig models, and this material could potentially prevent liver damage and improve clinical outcomes. Taken together, the results suggest that PS-DVB/V-Hap3 beads can be used in commercial adsorption columns to threat hyperbilirubinemia patients through hemoperfusion, thus replacing the existing techniques where plasma separation is initially required.
Collapse
Affiliation(s)
- Yamin Chai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lichun Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinyan Lu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenyan Han
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yameng Yu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lisha Sun
- General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Sahebi U, Gholami H, Ghalandari B, Badalkhani-khamseh F, Nikzamir A, Divsalar A. Evaluation of BLG ability for binding to 5-FU and Irinotecan simultaneously under acidic condition: A spectroscopic, molecular docking and molecular dynamic simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Liu X, Li X, Huang Z, Liao X, Shi B. Interaction mechanism of collagen peptides with four phenolic compounds in the ethanol-water solution. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00065-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractThis study demonstrated the interaction mechanism of collagen peptides (CPs) with 4-ethylphenol (4-EP), phenol, guaiacol, and 4-ethylguaiacol (4-EG) in the ethanol-water solution. The ultraviolet visible spectroscopy, zeta potential tests and hydrogen nuclear magnetic spectroscopy manifested that CPs interacted with the phenolic compounds. Meanwhile, Isothermal titration calorimetry determination indicated that the CPs was hydrogen bonded with 4-EP in 52 %(v/v) ethanol-water solution, while the hydrophobic forces played a major role in the interaction of CPs with guaiacol and 4-EG, respectively. Moreover, hydrogen and hydrophobic bonds were involved in the interaction between CPs and phenol. Finally, Head Space-solid Phase Microextraction Gas Chromatography Mass Spectrometry analysis indicated that the content of phenolic compounds in model solution efficiently decreased with the presence of CPs. In the real liquor, it was found that the content of volatile compounds (including phenolic compounds) was obviously decreased after CPs added.
Collapse
|
13
|
Ali MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS. Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021; 22:ijms22168411. [PMID: 34445120 PMCID: PMC8395139 DOI: 10.3390/ijms22168411] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Serum albumin physically interacts with fatty acids, small molecules, metal ions, and several other proteins. Binding with a plethora of bioactive substances makes it a critical transport molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival. These properties make albumin an excellent choice to promote cell growth and maintain a variety of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human serum albumin is mostly free from impurities and modifications, providing a perfect choice as an additive in cell and tissue culture media while avoiding any regulatory constraints. This review discusses key features of human serum albumin implicated in cell growth and survival under in vitro conditions.
Collapse
|
15
|
Mono- and bis-pyrazolophthalazines: Design, synthesis, cytotoxic activity, DNA/HSA binding and molecular docking studies. Bioorg Med Chem 2021; 30:115944. [PMID: 33352388 DOI: 10.1016/j.bmc.2020.115944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
In an attempt to find new potent cytotoxic compounds, several mono- and bis-pyrazolophthalazines 4a-m and 6a-h were synthesized through an efficient, one-pot, three- and pseudo five-component synthetic approach. All derivatives were evaluated for their in vitro cytotoxic activities against four human cancer cell lines of A549, HepG2, MCF-7, and HT29. Compound 4e showed low toxicity against normal cell lines (MRC-5 and MCF 10A, IC50 > 200 µM) and excellent cytotoxic activity against A549 cell line with IC50 value of 1.25 ± 0.19 µM, which was 1.8 times more potent than doxorubicin (IC50 = 2.31 ± 0.13 µM). In addition, compound 6c exhibited remarkable cytotoxic activity against A549 and MCF-7 cell lines (IC50 = 1.35 ± 0.12 and 0.49 ± 0.01 µM, respectively), more than two-fold higher than that of doxorubicin. The binding properties of the best active mono- and bis-pyrazolophthalazine (4e and 6c) with HSA and DNA were fully evaluated by various techniques including UV-Vis absorption, circular dichroism (CD), Zeta potential and dynamic light scattering analyses indicating interaction of the compounds with the secondary structure of HSA and significant change of DNA conformation, presumably via a groove binding mechanism. Additionally, molecular docking and site-selective binding studies confirmed the fundamental interaction of compounds 4e and 6c with base pairs of DNA. Compounds 4e and 6c showed promising features to be considered as potential lead structures for further studies in cancer therapy.
Collapse
|
16
|
de Barros WA, Silva MDM, Dantas MDDA, Santos JCC, Figueiredo IM, Chaves OA, Sant’Anna CMR, de Fátima Â. Recreational drugs 25I-NBOH and 25I-NBOMe bind to both Sudlow's sites I and II of human serum albumin (HSA): biophysical and molecular modeling studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00806d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
25I-NBOH and 25I-NBOMe simultaneously bind to sites I and II of HSA, which may affect their distribution and effects.
Collapse
Affiliation(s)
- Wellington Alves de Barros
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | | | | | | | | - Otávio Augusto Chaves
- Departamento de Química Fundamental
- Instituto de Química
- Universidade Federal Rural do Rio de Janeiro
- Seropédica
- Brazil
| | - Carlos Mauricio R. Sant’Anna
- Departamento de Química Fundamental
- Instituto de Química
- Universidade Federal Rural do Rio de Janeiro
- Seropédica
- Brazil
| | - Ângelo de Fátima
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
17
|
Patel A, Redinger N, Richter A, Woods A, Neumann PR, Keegan G, Childerhouse N, Imming P, Schaible UE, Forbes B, Dailey LA. In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. J Control Release 2020; 328:339-349. [PMID: 32827612 DOI: 10.1016/j.jconrel.2020.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 01/03/2023]
Abstract
The aim of this study was to investigate the potential of human serum albumin (HSA) as a solubilising agent/drug delivery vehicle for pulmonary administration of antimycobacterial benzothiazinone (BTZ) compounds. The solubility of four novel BTZ compounds (IR 20, IF 274, FG 2, AR 112) was enhanced 2 to 140-fold by incubation with albumin (0.38-134 μg/mL). Tryptophan 213 residue quenching studies indicated moderate binding strength to Sudlow's site I. Nanoparticle manufacture achieved 37-60% encapsulation efficiency in HSA particles (169 nm, zeta potential -31 mV). Drug release was triggered by proteases with >50% released in 4 h. The antimycobacterial activity of IR 20 and FG 2 loaded in HSA nanoparticles was enhanced compared to DMSO/phosphate buffered saline (PBS) or albumin/PBS solutions in an in vitro M. tuberculosis-infected macrophage model. Intranasal instillation was used to achieve pulmonary delivery daily over 10 days to M. tuberculosis infected mice for FG2 HSA nanoparticles (0.4 mg/kg), FG 2 DMSO/saline (0.4 and 8 mg/kg) and a reference compound, BTZ043, DMSO/saline (0.4 and 8 mg/kg). A lower lung M. tuberculosis burden was apparent for all BTZ cohorts, but only significant for BTZ043 at both doses. In conclusion, mechanisms of HSA nanoparticle loading and release of BTZ compounds were demonstrated, enhanced antimycobacterial activity of the nanoparticle formulations was demonstrated in a biorelevant in vitro bioassay and the effectiveness of BTZ by pulmonary delivery in vivo was established with pilot evidence for effectiveness when delivered by HSA nanoparticles. Finally, the feasibility of developing an inhaled nanoparticle-in-microparticle powder formulation was ascertained.
Collapse
Affiliation(s)
- Ayasha Patel
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Natalja Redinger
- Forschungszentrum Borstel - Leibniz Lung Center, PA Infections, Div. Cellular Microbiology, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | - Adrian Richter
- Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120 Halle, Germany
| | - Arcadia Woods
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Paul Robert Neumann
- Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120 Halle, Germany
| | - Gemma Keegan
- Vectura Group plc, One Prospect West, Chippenham SN14 6FH, United Kingdom
| | - Nick Childerhouse
- Vectura Group plc, One Prospect West, Chippenham SN14 6FH, United Kingdom
| | - Peter Imming
- Martin Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str.4, 06120 Halle, Germany
| | - Ulrich E Schaible
- Forschungszentrum Borstel - Leibniz Lung Center, PA Infections, Div. Cellular Microbiology, Parkallee 35, 23845 Borstel, Germany; German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Germany
| | - Ben Forbes
- Drug Delivery Research Group, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Lea Ann Dailey
- University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
18
|
Zhao R, Ma T, Cui F, Tian Y, Zhu G. Porous Aromatic Framework with Tailored Binding Sites and Pore Sizes as a High-Performance Hemoperfusion Adsorbent for Bilirubin Removal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001899. [PMID: 33304751 PMCID: PMC7709998 DOI: 10.1002/advs.202001899] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Indexed: 05/13/2023]
Abstract
Highly efficient removal of bilirubin from blood by hemoperfusion for liver failure therapy remains a challenge in the clinical field due to the low adsorption capacity and slow adsorption kinetics of currently used bilirubin adsorbents (e.g., activated carbon and ion-exchange resin). Recently, porous aromatic frameworks (PAFs) with high surface areas, tunable structures, and remarkable stability provide numerous possibilities to obtain satisfying adsorbents. Here, a cationic PAF with more mesopores, named iPAF-6, is successfully constructed via a de novo synthetic strategy for bilirubin removal. The prepared iPAF-6 exhibits a record-high adsorption capacity of 1249 mg g-1 and can adsorb bilirubin from 150 mg L-1 to normal concentration in just 5 min. Moreover, iPAF-6 shows a removal efficiency of 96% toward bilirubin in the presence of 50 g L-1 bovine serum albumin. It is demonstrated that positively charged aromatic frameworks and large pore size make a significant contribution to its excellent adsorption ability. More notably, iPAF-6/polyethersulfone composite fibers or beads are fabricated for practical hemoperfusion adsorption, which also show better removal performance than commercial adsorbents. This work can offer a new possibility for designing PAF-based bilirubin adsorbents with an appealing application prospect.
Collapse
Affiliation(s)
- Rui Zhao
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Tingting Ma
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Fengchao Cui
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Yuyang Tian
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| | - Guangshan Zhu
- Faculty of ChemistryNortheast Normal UniversityChangchun130024P. R. China
| |
Collapse
|
19
|
Xin X, Chen L, Li Y, Yu R, Fan H, Yan Z, Li S, Feng H. Study on the interaction of hyperoside and human serum albumin in V C and V C -free environments by spectroscopic and molecular docking techniques. LUMINESCENCE 2020; 36:595-605. [PMID: 33140531 DOI: 10.1002/bio.3978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 11/05/2022]
Abstract
The interaction between hyperoside and human serum albumin was studied in vitamin C (VC ) and VC -free environments using ultraviolet (UV)-vis absorption, fluorescence, circular dichroism spectra, and molecular docking techniques under simulated physiological conditions. The two environments had different influences on the secondary structure of human serum albumin (HSA). The α-helix content was slightly increased from 50% to 51% in the VC environment and increased from 50% to 55% in the VC -free environment. The thermodynamic parameters were ΔH° = -30.7 kJ⋅mol-1 and ΔS° = -23.4 mol-1 ⋅K-1 in the VC environment and ΔH° = -25.4 kJ⋅mol-1 and ΔS° = -11.4 J⋅mol-1 ⋅K-1 in the VC -free environment. Through thermodynamics parameters, hydrophobic force played a dominant role in the whole environment. The binding constants were calculated to be 7.25 × 105 mol⋅L-1 and 9.76 × 105 mol⋅L-1 at 298 K and they declined with the rise in temperature. The two binding distances were 2.6 nm and 2.5 nm respectively at 298 K, indicating that fluorescence energy transfer occurred. The UV-vis spectra indicated that fluorescence quenching of the HSA-hyperoside complex was a static quenching process. Hyperoside could spontaneously bind to HSA at site I (subdomain IIA). Molecular docking elucidated the way to binding basically through hydrophobic and van der Waals force interactions. Moreover, molecular docking showed that the VC environment could influence binding of HSA and hyperoside by more H-binding and less hydrophobic forces.
Collapse
Affiliation(s)
- Xiulan Xin
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Ye Li
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Ran Yu
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Haitao Fan
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Shuangshi Li
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| | - Hui Feng
- College of Bioengineering, Beijing Polytechnic, Beijing, China
| |
Collapse
|
20
|
Chaves OA, Calheiro TP, Netto-Ferreira JC, de Oliveira MC, Franceschini SZ, de Salles CMC, Zanatta N, Frizzo CP, Iglesias BA, Bonacorso HG. Biological assays of BF2-naphthyridine compounds: Tyrosinase and acetylcholinesterase activity, CT-DNA and HSA binding property evaluations. Int J Biol Macromol 2020; 160:1114-1129. [DOI: 10.1016/j.ijbiomac.2020.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
|
21
|
Liu Y, Huang L, Li D, Wang Y, Chen Z, Zou C, Liu W, Ma Y, Cao MJ, Liu GM. Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Synthetic ( E)-3-Phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium Chloride Derivatives as Promising Chemotherapy Agents on Cell Lines Infected with HTLV-1. Molecules 2020; 25:molecules25112537. [PMID: 32486038 PMCID: PMC7321218 DOI: 10.3390/molecules25112537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Synthesis of four compounds belonging to mesoionic class, (E)-3-phenyl-5-(phenylamino)-2-styryl-1,3,4-thiadiazol-3-ium chloride derivatives (5a–d) and their biological evaluation against MT2 and C92 cell lines infected with human T-cell lymphotropic virus type-1 (HTLV-1), which causes adult T-cell leukemia/lymphoma (ATLL), and non-infected cell lines (Jurkat) are reported. The compounds were obtained by convergent synthesis under microwave irradiation and the cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Results showed IC50 values of all compounds in the range of 1.51–7.70 μM in HTLV-1-infected and non-infected cells. Furthermore, it was observed that 5b could induce necrosis after 24 h for Jurkat and MT2 cell lines. The experimental (fluorimetric method) and theoretical (molecular docking) results suggested that the mechanism of action for 5b could be related to its capacity to intercalate into DNA. Moreover, the preliminary pharmacokinetic profile of the studied compounds (5a–d) was obtained through human serum albumin (HSA) binding affinity using multiple spectroscopic techniques (circular dichroism, steady-state and time-resolved fluorescence), zeta potential and molecular docking calculations. The interaction HSA:5a–d is spontaneous and moderate (Ka ~ 104 M−1) via a ground-state association, without significantly perturbing both the secondary and surface structures of the albumin in the subdomain IIA (site I), indicating feasible biodistribution in the human bloodstream.
Collapse
|
23
|
Gholami H, Divsalar A, Abbasalipourkabir R, Ziamajidi N, Saeidifar M. The simultaneous carrier ability of natural antioxidant of astaxanthin and chemotherapeutic drug of 5-fluorouracil by whey protein of β-lactoglobulin: spectroscopic and molecular docking study. J Biomol Struct Dyn 2020; 39:1004-1016. [DOI: 10.1080/07391102.2020.1733091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamid Gholami
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
24
|
Hekmat A, Salavati F, Hesami Tackallou S. The Effects of Paclitaxel in the Combination of Diamond Nanoparticles on the Structure of Human Serum Albumin (HSA) and Their Antiproliferative Role on MDA-MB-231cells. Protein J 2020; 39:268-283. [DOI: 10.1007/s10930-020-09882-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Gjuroski I, Girousi E, Meyer C, Hertig D, Stojkov D, Fux M, Schnidrig N, Bucher J, Pfister S, Sauser L, Simon HU, Vermathen P, Furrer J, Vermathen M. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J Control Release 2019; 316:150-167. [PMID: 31689463 DOI: 10.1016/j.jconrel.2019.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/02/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Encapsulation of porphyrinic photosensitizers (PSs) into polymeric carriers plays an important role in enhancing their efficiency as drugs in photodynamic therapy (PDT). Porphyrin aggregation and low solubility as well as the preservation of the advantageous photophysical properties pose a challenge on the design of efficient PS-carrier systems. Block copolymer micelles (BCMs) and polyvinylpyrrolidone (PVP) are promising drug delivery vehicles for physical entrapment of PSs. BCMs exhibit enhanced dynamics as compared to the less flexible PVP network. In the current work the question is addressed how these different dynamics affect PS encapsulation, release from the carrier, reaction with serum proteins, and cellular uptake. The porphyrinic compounds serine-amide of chlorin e6 (SerCE) and chlorin e4 (CE4) were used as model PSs with different lipophilicity and aggregation properties. 1H NMR and fluorescence spectroscopy were applied to study their interactions with PVP and BCMs consisting of Kolliphor P188 (KP). Both chlorins were well encapsulated by the carriers and had improved photophysical properties. Compared to SerCE, the more lipophilic CE4 exhibited stronger hydrophobic interactions with the BCM core, stabilizing the system and preventing exchange with the surrounding medium as was shown by NMR NOESY and DOSY experiments. PVP and BCMs protected the encapsulated chlorins against interaction with human transferrin (Tf). However, SerCE and CE4 were released from BCMs in favor of binding to human serum albumin (HSA) while PVP prevented interaction with HSA. Fluorescence spectroscopic studies revealed that HSA binds to the surface of PVP forming a protein corona. PVP and BCMs reduced cellular uptake of the chlorins. However, encapsulation into BCMs resulted in more efficient cell internalization for CE4 than for SerCE. HSA significantly lowered both, free and carrier-mediated cell uptake for CE4 and SerCE. In conclusion, PVP appears as the more universal delivery system covering a broad range of host molecules with respect to polarity, whereas BCMs require a higher drug-carrier compatibility. Poorly soluble hydrophobic PSs benefit stronger from BCM-type carriers due to enhanced bioavailability through disaggregation and solubilization allowing for more efficient cell uptake. In addition, increased PS-carrier hydrophobic interactions have a stabilizing effect. For more hydrophilic PSs, the main advantage of polymeric carriers like PVP or poloxamer micelles lies in their protection during the transport through the bloodstream. HSA binding plays an important role for drug release and cell uptake in carrier-mediated delivery to the target tissue.
Collapse
Affiliation(s)
- Ilche Gjuroski
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| | - Eleftheria Girousi
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Christoph Meyer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Damian Hertig
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland; Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Michaela Fux
- Institute of Clinical Chemistry, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Nicolas Schnidrig
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Jan Bucher
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Sara Pfister
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Luca Sauser
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern and Inselspital, CH-3010, Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, sitem-insel AG, Freiburgstrasse 3, CH-3010, Bern, Switzerland
| | - Julien Furrer
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Martina Vermathen
- University of Bern, Department of Chemistry and Biochemistry, Freiestrasse 3, CH-3012, Bern, Switzerland.
| |
Collapse
|
26
|
In vitro tyrosinase, acetylcholinesterase, and HSA evaluation of dioxidovanadium (V) complexes: An experimental and theoretical approach. J Inorg Biochem 2019; 200:110800. [DOI: 10.1016/j.jinorgbio.2019.110800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/07/2019] [Accepted: 08/11/2019] [Indexed: 12/16/2022]
|
27
|
Precupas A, Leonties AR, Neacsu A, Sandu R, Popa VT. Gallic acid influence on bovine serum albumin thermal stability. NEW J CHEM 2019. [DOI: 10.1039/c9nj00115h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A thermoanalytical approach reveals the dual action of GA on BSA thermal stability.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Anca Ruxandra Leonties
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Andreea Neacsu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Romica Sandu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy
- 060021 – Bucharest
- Romania
| |
Collapse
|
28
|
Smith WJ, Wang G, Gaikwad H, Vu VP, Groman E, Bourne DWA, Simberg D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS NANO 2018; 12:12523-12532. [PMID: 30516974 PMCID: PMC6472973 DOI: 10.1021/acsnano.8b07003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long blood half-life is one of the advantages of antibodies over small molecule drugs. At the same time, prolonged half-life is a problem for imaging applications or in the case of antibody-induced toxicities. There is a substantial need for antidotes that can quickly clear antibodies from systemic circulation and peripheral tissues. Engineered nanoparticles exhibit intrinsic affinity for clearance organs (mainly liver and spleen). trans-Cyclooctene (TCO) and methyltetrazine (MTZ) are versatile copper-free click chemistry components that are extensively being used for in vivo bioorthogonal couplings. To test the ability of nanoparticles to eliminate antibodies, we prepared a set of click-modified, clinically relevant antidotes based on several classes of drug carriers: phospholipid-PEG micelles, bovine serum albumin (BSA), and cross-linked dextran iron oxide (CLIO) nanoparticles. Mice were injected with IRDye 800CW-labeled, click-modified IgG followed by a click-modified antidote or PBS (control), and the levels of the IgG were monitored up to 72 h postinjection. Long-circulating lipid micelles produced a spike in IgG levels at 1 h, decreased IgG levels at 24 h, and did not decrease the area under the curve (AUC) and IgG accumulation in main organs. Long-circulating BSA decreased IgG levels at 1 and 24 h, decreased the AUC, but did not significantly decrease organ accumulation. Long-circulating CLIO nanoworms increased IgG levels at 1 h, decreased IgG levels at 24 h, did not decrease the AUC, and did not decrease the organ accumulation. On the other hand, short-circulating CLIO nanoparticles decreased IgG levels at 1 and 24 h, significantly decreasing the AUC and accumulation in the main organs. Multiple doses of CLIO and BSA were not able to completely eliminate the antibody from blood, despite the click reactivity of the residual IgG, likely due to exchange of IgG between blood and tissue compartments. Pharmacokinetic modeling suggests that short antidote half-life and fast click reaction rate should result in higher IgG depletion efficiency. Short-circulating click-modified nanocarriers are the most effective antidotes for elimination of antibodies from blood. This study sets a stage for future development of antidotes based on nanomedicine.
Collapse
Affiliation(s)
- Weston J. Smith
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Vivian P. Vu
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Ernest Groman
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David W. A. Bourne
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author: .
| |
Collapse
|
29
|
Tanzadehpanah H, Mahaki H, Samadi P, Karimi J, Moghadam NH, Salehzadeh S, Dastan D, Saidijam M. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J Biomol Struct Dyn 2018; 37:2789-2800. [DOI: 10.1080/07391102.2018.1497543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hanie Mahaki
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | - Dara Dastan
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, IranCommunicated by Ramaswamy H. Sarma
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Huijuan Y, Xiaohu D, Ze L, Wei C, Jian Z, Lei M, Shaohui S, Weidong L, Guoyang L. Role of phenol red in the stabilization of the Sabin type 2 inactivated polio vaccine at various pH values. J Med Virol 2018; 91:22-30. [DOI: 10.1002/jmv.25289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Huijuan
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Dai Xiaohu
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liu Ze
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Cai Wei
- Fourth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Zhou Jian
- Sixth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Ma Lei
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Song Shaohui
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Li Weidong
- Department of Production AdministrationInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| | - Liao Guoyang
- Fifth Department of Biological ProductsInstitute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical CollegeKunming Yunnan China
| |
Collapse
|
31
|
Capo A, Pennacchio A, Varriale A, D'Auria S, Staiano M. The porcine odorant-binding protein as molecular probe for benzene detection. PLoS One 2018; 13:e0202630. [PMID: 30183769 PMCID: PMC6124761 DOI: 10.1371/journal.pone.0202630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
In recent years, air pollution has been a subject of great scientific and public interests for the strong impact on human health. Air pollution is due to the presence in the atmosphere of polluting substances, such as carbon monoxide, sulfur and nitrogen oxides, particulates and volatile organic compounds (VOCs), derived predominantly from various combustion processes. Benzene is a VOC belonging to group-I carcinogens with a toxicity widely demonstrated. The emission limit values and the daily exposure time to benzene (TLV-TWA) are 5μg/m3 (0.00157 ppm) and 1.6mg/m3 (0.5 ppm), respectively. Currently, expensive and time-consuming analytical methods are used for detection of benzene. These methods require to perform a few preliminary steps such as sampling, and matrices pre-treatments. In addition, it is also needed the support of specialized personnel. Recently, single-walled carbon nanotube (SWNTs) gas sensors with a limit detection (LOD) of 20 ppm were developed for benzene detection. Other innovative bioassay, called bio-report systems, were proposed. They use a whole cell (Pseudomona putida or Escherichia coli) as molecular recognition element and exhibit a LOD of about 10 μM. Here, we report on the design of a highly sensitive fluorescence assay for monitoring atmospheric level of benzene. For this purpose, we used as molecular recognition element the porcine odorant-binding protein (pOBP). 1-Aminoanthracene was selected as extrinsic fluorescence probe for designing a competitive fluorescence resonance energy transfer (FRET) assay for benzene detection. The detection limit of our assay was 3.9μg/m3, a value lower than the actual emission limit value of benzene as regulated by European law.
Collapse
Affiliation(s)
- Alessandro Capo
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Angela Pennacchio
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Antonio Varriale
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Sabato D'Auria
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| | - Maria Staiano
- Institute of Food Science, Consiglio Nazionale delle Ricerche, Avellino, Italy
| |
Collapse
|
32
|
Multi-Spectroscopic and Theoretical Analysis on the Interaction between Human Serum Albumin and a Capsaicin Derivative-RPF101. Biomolecules 2018; 8:biom8030078. [PMID: 30142945 PMCID: PMC6164054 DOI: 10.3390/biom8030078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The interaction between the main carrier of endogenous and exogenous compounds in the human bloodstream (human serum albumin, HSA) and a potential anticancer compound (the capsaicin analogue RPF101) was investigated by spectroscopic techniques (circular dichroism, steady-state, time-resolved, and synchronous fluorescence), zeta potential, and computational method (molecular docking). Steady-state and time-resolved fluorescence experiments indicated an association in the ground state between HSA:RPF101. The interaction is moderate, spontaneous (ΔG° < 0), and entropically driven (ΔS° = 0.573 ± 0.069 kJ/molK). This association does not perturb significantly the potential surface of the protein, as well as the secondary structure of the albumin and the microenvironment around tyrosine and tryptophan residues. Competitive binding studies indicated Sudlow’s site I as the main protein pocket and molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces.
Collapse
|
33
|
Mocanu MN, Yan F. Ultrasound-assisted interaction between chlorin-e6 and human serum albumin: pH dependence, singlet oxygen production, and formulation effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:208-214. [PMID: 28926772 DOI: 10.1016/j.saa.2017.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/21/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The interaction between chlorin e6 (Ce6) and human serum albumin (HSA) in the presence and absence of ultrasound have been investigated by ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. Ce6 is found to bind strongly to HSA at or near physiological pH conditions, but the strength of the binding is significantly weakened at lower pHs. The intrinsic fluorescence of HSA is incrementally quenched with increasing concentration of Ce6, and the quenching is enhanced after exposure to high-frequency ultrasound. Our experimental results suggest that Ce6-induced sonodynamic oxidation of HSA is mainly mediated by singlet oxygen. The formulation of Ce6 by high molecular weight polyvinylpyrrolidone (PVP) increased its stability in aqueous solutions and its quantum yield of singlet oxygen under ultrasound irradiation.
Collapse
Affiliation(s)
- Mihaela N Mocanu
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, USA
| | - Fei Yan
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
34
|
Sengupta B, Acharyya A, Sen P. Elucidation of the local dynamics of domain-III of human serum albumin over the ps-μs time regime using a new fluorescent label. Phys Chem Chem Phys 2018; 18:28548-28555. [PMID: 27711622 DOI: 10.1039/c6cp05743h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ps-μs dynamics of domain-III of human serum albumin (HSA) has been investigated using a new fluorescent marker selectively labeled to the Tyr-411 residue. The location of the marker has been confirmed using Förster resonance energy transfer (FRET) study. Steady state, time-resolved and single molecular level fluorescence techniques have been employed to understand the dynamics within the domain-III of HSA. It is found that solvent reorganization dynamics in domain-III is 1.7 times faster than that in domain-I. The timescale of the local rotational dynamics of domain-III is found to be 2.3 times faster than that of domain-I. Fluorescence correlation spectroscopic experiments reveal that domain-III of HSA has more conformational flexibility than domain-I. Together, the results deliver useful details of the local environment around the domain-III of HSA, which have not been explored earlier, mainly because of a lack of a suitable fluorescent marker for domain-III. The newly synthesized probe serves well as a site specific fluorescent marker for HSA, and can be used for further investigation of the ligand binding properties and enzymatic activity of domain-III of HSA.
Collapse
Affiliation(s)
- Bhaswati Sengupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, UP, India.
| | - Arusha Acharyya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, UP, India.
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208 016, UP, India.
| |
Collapse
|
35
|
Rahmani S, Mogharizadeh L, Attar F, Rezayat SM, Mousavi SE, Falahati M. Probing the interaction of silver nanoparticles with tau protein and neuroblastoma cell line as nervous system models. J Biomol Struct Dyn 2017; 36:4057-4071. [PMID: 29173031 DOI: 10.1080/07391102.2017.1407673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interestingly pharmaceutical sciences are using nanoparticles (NPs) to design and develop nanomaterials-based drugs. However, up to recently, it has not been well realized that NPs themselves may impose risks to the biological systems. In this study, the interaction of silver nanoparticles (AgNPs) with tau protein and SH-SY5Y neuroblastoma cell line, as potential nervous system models, was examined with a range of techniques including intrinsic fluorescence spectroscopy, circular dichroism (CD) spectroscopy, 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and acridine orange/ethidium bromide (AO/EB) dual staining method. Fluorescence study showed that AgNPs with a diameter of around 10-20 nm spontaneously form a static complex with tau protein via hydrogen bonds and van der Waals interactions. CD experiment revealed that AgNPs did not change the random coil structure of tau protein. Moreover, AgNPs showed to induce SH-SY5Y neuroblastoma cell mortality through fragmentation of DNA which is a key feature of apoptosis. In conclusion, AgNPs may induce slight changes on the tau protein structure. Also, the concentration of AgNPs is the main factor which influences their cytotoxicity. Since, all adverse effects of NPs are not well detected, so probably additional more specific testing would be needed.
Collapse
Affiliation(s)
- Sara Rahmani
- a Faculty of Advance Science and Technology, Department of Cell and Molecular Biology , Islamic Azad University, Pharmaceutical Sciences Branch (IAUPS) , Tehran , Iran
| | - Leila Mogharizadeh
- b Department of Cell and Molecular Biology , Islamic Azad University, Central Tehran Branch , Tehran , Iran
| | - Farnoosh Attar
- c Department of Biology, Faculty of Food Industry & Agriculture , Standard Research Institute (SRI) , Karaj , Iran
| | - Seyed Mahdi Rezayat
- d Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,e Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Seyyedeh Elaheh Mousavi
- d Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mojtaba Falahati
- f Faculty of Advance Science and Technology, Department of Nanotechnology , Islamic Azad University, Pharmaceutical Sciences Branch (IAUPS) , Tehran , Iran
| |
Collapse
|
36
|
Xu L, Hu YX, Li YC, Liu YF, Zhang L, Ai HX, Liu HS. Study on the interaction of paeoniflorin with human serum albumin (HSA) by spectroscopic and molecular docking techniques. Chem Cent J 2017; 11:116. [PMID: 29150749 PMCID: PMC5691829 DOI: 10.1186/s13065-017-0348-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022] Open
Abstract
The interaction of paeoniflorin with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption, circular dichroism (CD) spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by paeoniflorin was a static quenching process and energy transfer as a result of a newly formed complex (1:1). Paeoniflorin spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = − 9.98 kJ mol−1, ΔS° = 28.18 J mol−1 K−1). The binding constant was calculated to be 1.909 × 103 L mol−1 at 288 K and it decreased with the increase of the temperature. The binding distance was estimated to be 1.74 nm at 288 K, showing the occurrence of fluorescence energy transfer. The results of CD and three-dimensional fluorescence spectra showed that paeoniflorin induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that paeoniflorin could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.
Collapse
Affiliation(s)
- Liang Xu
- College of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yan-Xi Hu
- College of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yan-Cheng Li
- College of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Yu-Feng Liu
- College of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China. .,Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang, 110036, People's Republic of China.
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Hai-Xin Ai
- School of Life Science, Liaoning University, Shenyang, 110036, People's Republic of China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, People's Republic of China.,Liaoning Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules, Shenyang, 110036, People's Republic of China
| | - Hong-Sheng Liu
- School of Life Science, Liaoning University, Shenyang, 110036, People's Republic of China. .,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang, 110036, People's Republic of China. .,Liaoning Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules, Shenyang, 110036, People's Republic of China.
| |
Collapse
|
37
|
Dehkhodaei M, Sahihi M, Amiri Rudbari H. Spectroscopic and molecular docking studies on the interaction of Pd(II) & Co(II) Schiff base complexes with β-lactoglobulin as a carrier protein. J Biomol Struct Dyn 2017; 36:3130-3136. [DOI: 10.1080/07391102.2017.1380537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Monireh Dehkhodaei
- Department of Physical Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mehdi Sahihi
- Department of Physical Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hadi Amiri Rudbari
- Department of Physical Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
38
|
Chanphai P, Tajmir-Riahi H. Probing the binding of resveratrol, genistein and curcumin with chitosan nanoparticles. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Zhang HX, Ding YF, Liu E, Li LW. Fluorometric and molecular modeling deciphering the non-covalent interaction between cyromazine and human serum albumin. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0754-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Chaves OA, Mathew B, Cesarin-Sobrinho D, Lakshminarayanan B, Joy M, Mathew GE, Suresh J, Netto-Ferreira JC. Spectroscopic, zeta potential and molecular docking analysis on the interaction between human serum albumin and halogenated thienyl chalcones. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
T PL, Mondal M, Ramadas K, Natarajan S. Molecular interaction of 2,4-diacetylphloroglucinol (DAPG) with human serum albumin (HSA): The spectroscopic, calorimetric and computational investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:90-102. [PMID: 28441541 DOI: 10.1016/j.saa.2017.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Drug molecule interaction with human serum albumin (HSA) affects the distribution and elimination of the drug. The compound, 2,4-diacetylphloroglucinol (DAPG) has been known for its antimicrobial, antiviral, antihelminthic and anticancer properties. However, its interaction with HSA is not yet reported. In this study, the interaction between HSA and DAPG was investigated through steady-state fluorescence, time-resolved fluorescence (TRF), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulation (MDS). Fluorescence spectroscopy results showed the strong quenching of intrinsic fluorescence of HSA due to interaction with DAPG, through dynamic quenching mechanism. The compound bound to HSA with reversible and moderate affinity which explained its easy diffusion from circulatory system to target tissue. The thermodynamic parameters from fluorescence spectroscopic data clearly revealed the contribution of hydrophobic forces but, the role of hydrogen bonds was not negligible according to the ITC studies. The interaction was exothermic and spontaneous in nature. Binding with DAPG reduced the helical content of protein suggesting the unfolding of HSA. Site marker fluorescence experiments revealed the change in binding constant of DAPG in the presence of site I (warfarin) but not site II marker (ibuprofen) which confirmed that the DAPG bound to site I. ITC experiments also supported this as site I marker could not bind to HSA-DAPG complex while site II marker was accommodated in the complex. In silico studies further showed the lowest binding affinity and more stability of DAPG in site I than in site II. Thus the data presented in this study confirms the binding of DAPG to the site I of HSA which may help in further understanding of pharmacokinetic properties of DAPG.
Collapse
Affiliation(s)
- Pragna Lakshmi T
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Moumita Mondal
- Department of Biotechnology, Pondicherry University, Pondicherry, India
| | - Krishna Ramadas
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India.
| | | |
Collapse
|
42
|
Kumar S, Basappa Chidananda VK, Hosakere Doddarevanna R, Hamse Kameshwar V, Kaur M, Jasinski JP. 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis and BSA binding studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Kuperman MV, Losytskyy MY, Bykov AY, Yarmoluk SM, Zhizhin KY, Kuznetsov NT, Varzatskii OA, Gumienna-Kontecka E, Kovalska VB. Effective binding of perhalogenated closo -borates to serum albumins revealed by spectroscopic and ITC studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Chanphai P, Agudelo D, Tajmir-Riahi HA. PEG and mPEG-anthracene conjugate with trypsin and trypsin inhibitor: hydrophobic and hydrophilic contacts. J Biomol Struct Dyn 2017; 35:2257-2268. [PMID: 27434220 DOI: 10.1080/07391102.2016.1214621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
The conjugation of trypsin (try) and trypsin inhibitor (tryi) with poly(ethylene glycol) (PEG) and methoxypoly(ethylene glycol) anthracene (mPEG-anthracene) was investigated in aqueous solution, using multiple spectroscopic methods, thermodynamic analysis, and molecular modeling. Thermodynamic parameters ΔS, ΔH, and ΔG showed protein-PEG bindings occur via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As polymer size increased more stable PEG-protein conjugate formed, while hydrophobic mPEG-anthracene forms less stable protein complexes. Modeling showed the presence of several H-bonding contacts between polymer and amino acids that stabilize protein-polymer conjugation. Polymer complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase in random structures, indicating protein structural destabilization.
Collapse
Affiliation(s)
- P Chanphai
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| | - D Agudelo
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| | - H A Tajmir-Riahi
- a Department of Chemistry-Biochemistry and Physics , University of Québec at Trois-Rivières , C. P. 500, Trois-Rivieres G9A 5H7 , Quebec , Canada
| |
Collapse
|
45
|
Chaves OA, de Barros LS, de Oliveira MC, Sant’Anna CMR, Ferreira AB, da Silva FA, Cesarin-Sobrinho D, Netto-Ferreira JC. Biological interactions of fluorinated chalcones: Stimulation of tyrosinase activity and binding to bovine serum albumin. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Xu L, Hu YX, Li J, Liu YF, Zhang L, Ai HX, Liu HS. Probing the binding reaction of cytarabine to human serum albumin using multispectroscopic techniques with the aid of molecular docking. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:187-195. [PMID: 28595073 DOI: 10.1016/j.jphotobiol.2017.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/22/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Abstract
Cytarabine is a kind of chemotherapy medication. In the present study, the molecular interaction between cytarabine and human serum albumin (HSA) was investigated via fluorescence, UV-vis absorption, circular dichroism (CD) spectroscopy and molecular docking method under simulative physiological conditions. It was found that cytarabine could effectively quench the intrinsic fluorescence of HSA through a static quenching process. The apparent binding constants between drug and HSA at 288, 293 and 298K were estimated to be in the order of 103L·mol-1. The thermodynamic parameters ΔH°, ΔG°and ΔS° were calculated, in which the negative ΔG°suggested that the binding of cytarabine to HSA was spontaneous, moreover the negative ΔS°and negative ΔH°revealed that van der Waals force and hydrogen bonds were the major forces to stabilize the protein-cytarabine (1:1) complex. The competitive binding experiments showed that the primary binding site of cytarabine was located in the site I (subdomain IIA) of HSA. In addition, the binding distance was calculated to be 3.4nm according to the Förster no-radiation energy transfer theory. The analysis of CD and three-dimensional (3D) fluorescence spectra demonstrated that the binding of drug to HSA induced some conformational changes in HSA. The molecular docking study also led to the same conclusion obtained from the spectral results.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang 110036, PR China
| | - Yan-Xi Hu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China
| | - Jin Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China
| | - Yu-Feng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, PR China; Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang 110036, PR China.
| | - Li Zhang
- School of Life Science, Liaoning University, Shenyang 110036, PR China
| | - Hai-Xin Ai
- School of Life Science, Liaoning University, Shenyang 110036, PR China
| | - Hong-Sheng Liu
- School of Life Science, Liaoning University, Shenyang 110036, PR China.
| |
Collapse
|
47
|
Kongot M, Maurya N, Dohare N, Parray MUD, Maurya JK, Kumar A, Patel R. Enthalpy-driven interaction between dihydropyrimidine compound and bovine serum albumin: a spectroscopic and computational approach. J Biomol Struct Dyn 2017; 36:1161-1170. [DOI: 10.1080/07391102.2017.1314834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mehraj ud din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
48
|
Chavoshpour-Natanzi Z, Sahihi M, Gharaghani S. Structural stability of β-lactoglobulin in the presence of cetylpyridinum bromide: spectroscopic and molecular docking studies. J Biomol Struct Dyn 2017; 36:753-760. [DOI: 10.1080/07391102.2017.1297254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mehdi Sahihi
- Department Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Liu Y, Zhang G, Zeng N, Hu S. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:188-195. [PMID: 27653277 DOI: 10.1016/j.saa.2016.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
8-Methoxypsoralen (8-MOP) is a naturally occurring furanocoumarin with various biological activities. However, there is little information on the binding mechanism of 8-MOP with trypsin. Here, the interaction between 8-MOP and trypsin in vitro was determined by multi-spectroscopic methods combined with the multivariate curve resolution-alternating least squares (MCR-ALS) chemometrics approach. An expanded UV-vis spectral data matrix was analysed by MCR-ALS, the concentration profiles and pure spectra for the three reaction species (trypsin, 8-MOP and 8-MOP-trypsin) were obtained to monitor the interaction between 8-MOP and trypsin. The fluorescence data suggested that a static type of quenching mechanism occurred in the binding of 8-MOP to trypsin. Hydrophobic interaction dominated the formation of the 8-MOP-trypsin complex on account of the positive enthalpy and entropy changes, and trypsin had one high affinity binding site for 8-MOP with a binding constant of 3.81×104Lmol-1 at 298K. Analysis of three dimensional fluorescence, UV-vis absorption and circular dichroism spectra indicated that the addition of 8-MOP induced the rearrangement of the polypeptides carbonyl hydrogen-bonding network and the conformational changes in trypsin. The molecular docking predicted that 8-MOP interacted with the catalytic residues His57, Asp102 and Ser195 in trypsin. The binding patterns and trypsin conformational changes may result in the inhibition of trypsin activity. This study has provided insights into the binding mechanism of 8-MOP with trypsin.
Collapse
Affiliation(s)
- Yingying Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ni Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
50
|
Guo M, Lu X, Wang Y, Brodelius PE. Comparison of the interaction between lactoferrin and isomeric drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:593-607. [PMID: 27776314 DOI: 10.1016/j.saa.2016.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The binding properties of pentacyclic triterpenoid isomeric drugs, i.e. ursolic acid (UA) and oleanolic acid (OA), to bovine lactoferrin (BLF) have been studied by molecule modeling, fluorescence spectroscopy, UV-visible absorbance spectroscopy and infrared spectroscopy (IR). Molecular docking, performed to reveal the possible binding mode or mechanism, suggested that hydrophobic interaction and hydrogen bonding play important roles to stabilize the complex. The results of spectroscopic measurements showed that the two isomeric drugs both strongly quenched the intrinsic fluorescence of BLF through a static quenching procedure although some differences between UA and OA binding strength and non-radiation energy transfer occurred within the molecules. The number of binding sites was 3.44 and 3.10 for UA and OA, respectively, and the efficiency of Förster energy transfer provided a distance of 0.77 and 1.21nm for UA and OA, respectively. The conformation transformation of BLF affected by the drugs conformed to the "all-or-none" pattern. In addition, the changes of the ratios of α-helices, β-sheets and β-turns of BLF during the process of the interaction were obtained. The results of the experiments in combination with the calculations showed that there are two modes of pentacyclic triterpenoid binding to BLF instead of one binding mode only governed by the principle of the lowest bonding energy.
Collapse
Affiliation(s)
- Ming Guo
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China.
| | - Xiaowang Lu
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China
| | - Yan Wang
- Department of Chemistry, Zhejiang Agricultural & Forestry University, Lin'an 311300, Zhejiang, China
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82 Kalmar, Sweden.
| |
Collapse
|