1
|
Ding M, Jackson KM, Harris-Gordon M, Dileepan T, Meya DB, Nielsen K. The hypervirulent Type-1/Type-17 phenotype of Cryptococcus neoformans clinical isolates is specific to A/J mice. Infect Immun 2025; 93:e0058524. [PMID: 40029251 PMCID: PMC11977316 DOI: 10.1128/iai.00585-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Both host- and pathogen-specific factors are known to affect patient outcome, and recent studies showed that strain-specific differences in C. neoformans clinical isolates can influence virulence in A/J mice. However, it is unclear how the immunologic and genetic background of inbred mouse strains affects disease outcome during C. neoformans infection. In this study, we show that a hypervirulent phenotype is dependent on the host immune response and mouse genetic background. A/J mice intranasally infected with the hypervirulent isolates, UgCl247, UgCl422, and UgCl236, have increased neutrophil and T-cell recruitment when compared with infection with the reference strain KN99α. In addition, the cytokine profile of the hypervirulent isolates in A/J mice had a profound IFNγ and IL-17 response, and lung resident CD4 T-cells isolated from A/J mice expressed significantly increased Th1 (CXCR3, Tbet) and Th17 (RORγT) markers compared with KN99α infection. Intriguingly, when C57BL/6J mice were infected with these isolates, the hypervirulent phenotype was not evident, and all isolates had virulence comparable to the KN99α control. The immune response in C57BL/6J mice was also nearly identical in response to infections with the hypervirulent isolates and the KN99α control strain. Finally, we determined that the hypervirulent phenotype in A/J mice is not caused by known genetic mutations in the A/J inbred mouse background. Overall, this study demonstrates that an inbred mouse inhalation model can be used to identify host- and pathogen-specific factors that affect C. neoformans disease progression.
Collapse
Affiliation(s)
- Minna Ding
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katrina M. Jackson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Madeline Harris-Gordon
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David B. Meya
- Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Central Region, Uganda
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Biomedical Sciences and Pathology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Angers I, Akik W, Beauchamp A, King IL, Lands LC, Qureshi ST. Card9 Broadly Regulates Host Immunity against Experimental Pulmonary Cryptococcus neoformans 52D Infection. J Fungi (Basel) 2024; 10:434. [PMID: 38921420 PMCID: PMC11204891 DOI: 10.3390/jof10060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
The ubiquitous soil-associated fungus Cryptococcus neoformans causes pneumonia that may progress to fatal meningitis. Recognition of fungal cell walls by C-type lectin receptors (CLRs) has been shown to trigger the host immune response. Caspase recruitment domain-containing protein 9 (Card9) is an intracellular adaptor that is downstream of several CLRs. Experimental studies have implicated Card9 in host resistance against C. neoformans; however, the mechanisms that are associated with susceptibility to progressive infection are not well defined. To further characterize the role of Card9 in cryptococcal infection, Card9em1Sq mutant mice that lack exon 2 of the Card9 gene on the Balb/c genetic background were created using CRISPR-Cas9 genome editing technology and intratracheally infected with C. neoformans 52D. Card9em1Sq mice had significantly higher lung and brain fungal burdens and shorter survival after C. neoformans 52D infection. Susceptibility of Card9em1Sq mice was associated with lower pulmonary cytokine and chemokine production, as well as reduced numbers of CD4+ lymphocytes, neutrophils, monocytes, and dendritic cells in the lungs. Histological analysis and intracellular cytokine staining of CD4+ T cells demonstrated a Th2 pattern of immunity in Card9em1Sq mice. These findings demonstrate that Card9 broadly regulates the host inflammatory and immune response to experimental pulmonary infection with a moderately virulent strain of C. neoformans.
Collapse
Affiliation(s)
- Isabelle Angers
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Wided Akik
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Annie Beauchamp
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
| | - Irah L. King
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Microbiology and Immunology, McGill University, Montreal, QC H4A 3J1, Canada
| | - Larry C. Lands
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Salman T. Qureshi
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada; (I.A.); (W.A.); (A.B.); (I.L.K.); (L.C.L.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
3
|
Miyahara A, Umeki A, Sato K, Nomura T, Yamamoto H, Miyasaka T, Tanno D, Matsumoto I, Zong T, Kagesawa T, Oniyama A, Kawamura K, Yuan X, Yokoyama R, Kitai Y, Kanno E, Tanno H, Hara H, Yamasaki S, Saijo S, Iwakura Y, Ishii K, Kawakami K. Innate phase production of IFN-γ by memory and effector T cells expressing early activation marker CD69 during infection with Cryptococcus deneoformans in the lungs. Infect Immun 2024; 92:e0002424. [PMID: 38700335 PMCID: PMC11237684 DOI: 10.1128/iai.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.
Collapse
Grants
- 18H02851, 21H02965 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 19K17920, 21K16314 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19jm0210073, JP20jm0210073, JP21jm0210073 Japan Agency for Medical Research and Development (AMED)
- ID-014 MSD Life Science Foundation, Public Interest Incorporated Foundation (SD Life Science Foundation)
- 20-02, 21-04 medical mycology research center, chiba university
Collapse
Affiliation(s)
- Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomomitsu Miyasaka
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Translational Science for Nursing, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
4
|
Boucher MJ, Madhani HD. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol 2024; 32:435-447. [PMID: 37985333 DOI: 10.1016/j.tim.2023.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hiten D Madhani
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Roosen L, Maes D, Musetta L, Himmelreich U. Preclinical Models for Cryptococcosis of the CNS and Their Characterization Using In Vivo Imaging Techniques. J Fungi (Basel) 2024; 10:146. [PMID: 38392818 PMCID: PMC10890286 DOI: 10.3390/jof10020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Infections caused by Cryptococcus neoformans and Cryptococcus gattii remain a challenge to our healthcare systems as they are still difficult to treat. In order to improve treatment success, in particular for infections that have disseminated to the central nervous system, a better understanding of the disease is needed, addressing questions like how it evolves from a pulmonary to a brain disease and how novel treatment approaches can be developed and validated. This requires not only clinical research and research on the microorganisms in a laboratory environment but also preclinical models in order to study cryptococci in the host. We provide an overview of available preclinical models, with particular emphasis on models of cryptococcosis in rodents. In order to further improve the characterization of rodent models, in particular the dynamic aspects of disease manifestation, development, and ultimate treatment, preclinical in vivo imaging methods are increasingly used, mainly in research for oncological, neurological, and cardiac diseases. In vivo imaging applications for fungal infections are rather sparse. A second aspect of this review is how research on models of cryptococcosis can benefit from in vivo imaging methods that not only provide information on morphology and tissue structure but also on function, metabolism, and cellular properties in a non-invasive way.
Collapse
Affiliation(s)
- Lara Roosen
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Dries Maes
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Luigi Musetta
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Jackson KM, Ding M, Nielsen K. Importance of Clinical Isolates in Cryptococcus neoformans Research. J Fungi (Basel) 2023; 9:364. [PMID: 36983532 PMCID: PMC10056780 DOI: 10.3390/jof9030364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The human pathogenic fungus Cryptococcus neoformans is a global health concern. Previous research in the field has focused on studies using reference strains to identify virulence factors, generate mutant libraries, define genomic structures, and perform functional studies. In this review, we discuss the benefits and drawbacks of using reference strains to study C. neoformans, describe how the study of clinical isolates has expanded our understanding of pathogenesis, and highlight how studies using clinical isolates can further develop our understanding of the host-pathogen interaction during C. neoformans infection.
Collapse
Affiliation(s)
| | | | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Sato K, Kawakami K. Mouse Model of Latent Cryptococcal Infection and Reactivation. Methods Mol Biol 2023; 2667:87-98. [PMID: 37145277 DOI: 10.1007/978-1-0716-3199-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
AbstractCryptococcus neoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. This fungus, an intracellularly growing microbe, evades host immunity, leading to a latent infection (latent C. neoformans infection: LCNI), and cryptococcal disease is developed by its reactivation when host immunity is suppressed. Elucidation of the pathophysiology of LCNI is difficult due to the lack of mouse models. Here we show the established methods for LCNI and reactivation.
Collapse
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
8
|
Sato K, Kawakami K. PAMPs and Host Immune Response in Cryptococcal Infection. Med Mycol J 2022; 63:133-138. [DOI: 10.3314/mmj.22.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| |
Collapse
|
9
|
Menezes-Silva L, Catarino JDS, de Faria LC, Pizzolante BC, Andrade-Silva LE, da Silva MV, Rodrigues V, Sales-Campos H, Oliveira CJF. Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210124. [PMID: 35910486 PMCID: PMC9302513 DOI: 10.1590/1678-9199-jvatitd-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. METHODS We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. RESULTS Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. CONCLUSION These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.
Collapse
Affiliation(s)
- Luísa Menezes-Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jonatas da Silva Catarino
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Comparative Medicine, Yale University School of
Medicine, New Haven, CT, United States
| | - Laura Caroline de Faria
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bárbara Cristina Pizzolante
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Leonardo Eurípedes Andrade-Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helioswilton Sales-Campos
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Biosciences and Technology, Institute of Tropical
Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
10
|
Trevijano-Contador N, Roselletti E, García-Rodas R, Vecchiarelli A, Zaragoza Ó. Role of IL-17 in Morphogenesis and Dissemination of Cryptococcus neoformans during Murine Infection. Microorganisms 2022; 10:microorganisms10020373. [PMID: 35208830 PMCID: PMC8876707 DOI: 10.3390/microorganisms10020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cryptococcus neoformans is a pathogenic yeast that can form Titan cells in the lungs, which are fungal cells of abnormally large size. The factors that regulate Titan cell formation in vivo are still unknown, although an increased proportion of these fungal cells of infected mice correlates with induction of Th2-type responses. Here, we focused on the role played by the cytokine IL-17 in the formation of cryptococcal Titan cells using Il17a−/− knockout mice. We found that after 9 days of infection, there was a lower proportion of Titan cells in Il17a−/− mice compared to the fungal cells found in wild-type animals. Dissemination to the brain occurred earlier in Il17a−/− mice, which correlated with the lower proportion of Titan cells in the lungs. Furthermore, knockout-infected mice increased brain size more than WT mice. We also determined the profile of cytokines accumulated in the brain, and we found significant differences between both mouse strains. We found that in Il17a−/−, there was a modest increase in the concentrations of the Th1 cytokine TNF-α. To validate if the increase in this cytokine had any role in cryptococcal morphogenesis, we injected wild-type mice with TNF-α t and observed that fungal cell size was significantly reduced in mice treated with this cytokine. Our results suggest a compensatory production of cytokines in Il17a−/− mice that influences both cryptococcal morphology and dissemination.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28222 Madrid, Spain;
- Correspondence: (N.T.-C.); (Ó.Z.)
| | - Elena Roselletti
- Department of Experimental Medicine, Microbiology Section, University of Perugia, 06123 Perugia, Italy; (E.R.); (A.V.)
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28222 Madrid, Spain;
| | - Anna Vecchiarelli
- Department of Experimental Medicine, Microbiology Section, University of Perugia, 06123 Perugia, Italy; (E.R.); (A.V.)
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28222 Madrid, Spain;
- Correspondence: (N.T.-C.); (Ó.Z.)
| |
Collapse
|
11
|
Sato K, Matsumoto I, Suzuki K, Tamura A, Shiraishi A, Kiyonari H, Kasamatsu J, Yamamoto H, Miyasaka T, Tanno D, Miyahara A, Zong T, Kagesawa T, Oniyama A, Kawamura K, Kitai Y, Umeki A, Kanno E, Tanno H, Ishii K, Tsukita S, Kawakami K. Deficiency of lung-specific claudin-18 leads to aggravated infection with Cryptococcus deneoformans through dysregulation of the microenvironment in lungs. Sci Rep 2021; 11:21110. [PMID: 34702961 PMCID: PMC8548597 DOI: 10.1038/s41598-021-00708-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that infects the lungs via airborne transmission and frequently causes fatal meningoencephalitis. Claudins (Cldns), a family of proteins with 27 members found in mammals, form the tight junctions within epithelial cell sheets. Cldn-4 and 18 are highly expressed in airway tissues, yet the roles of these claudins in respiratory infections have not been clarified. In the present study, we analyzed the roles of Cldn-4 and lung-specific Cldn-18 (luCldn-18) in host defense against C. deneoformans infection. luCldn-18-deficient mice exhibited increased susceptibility to pulmonary infection, while Cldn-4-deficient mice had normal fungal clearance. In luCldn-18-deficient mice, production of cytokines including IFN-γ was significantly decreased compared to wild-type mice, although infiltration of inflammatory cells including CD4+ T cells into the alveolar space was significantly increased. In addition, luCldn-18 deficiency led to high K+ ion concentrations in bronchoalveolar lavage fluids and also to alveolus acidification. The fungal replication was significantly enhanced both in acidic culture conditions and in the alveolar spaces of luCldn-18-deficient mice, compared with physiological pH conditions and those of wild-type mice, respectively. These results suggest that luCldn-18 may affect the clinical course of cryptococcal infection indirectly through dysregulation of the alveolar space microenvironment.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan. .,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Koya Suzuki
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Research Institute for Diseases of Old Age and Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Aki Shiraishi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute of Research Promotion, Niigata University, Niigata, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Aya Umeki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science and Laboratory of Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Xu L, Xu Y, Zheng Y, Peng X, Yang Z, Cao Q, Xiang D, Zhao H. Differences in cytokine and chemokine profiles in cerebrospinal fluid caused by the etiology of cryptococcal meningitis and tuberculous meningitis in HIV patients. Clin Exp Immunol 2021; 206:82-90. [PMID: 34287847 DOI: 10.1111/cei.13644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/02/2023] Open
Abstract
The roles of cytokines and chemokines in HIV-associated cryptococcal meningitis (HCM) and HIV-associated tuberculous meningitis (HTBM) are debatable. In sum, 34 HIV-infected patients without meningitis, 44 HCM patients and 27 HTBM patients were enrolled for study. The concentrations of 22 cytokines/chemokines in cerebrospinal fluid (CSF) were assayed at admission. Principal component analysis (PCA), Pearson's and logistic regression analyses were used to assess the role of cytokines/chemokines in HCM and HTBM. We found the levels of T helper (Th)17, Th1 [interleukin (IL)-12p40, interferon (IFN)-γ, tumor necrosis factor (TNF)-α and TNF-β and Th2 (IL-2/4/5/6/10)] cytokines were elevated in patients with meningitis compared with those in HIV-infected patients without central nervous system (CNS) infection. Furthermore, the IL-1Ra, IL-12p40, IL-17α and monocyte chemotactic protein-1 (MCP-1) levels were higher in HCM patients, while the IFN-γ, regulated upon activation, normal T cell expressed and secreted (RANTES) and interferon-inducible protein-10 (IP)-10 levels were higher in HTBM patients. Elevated CSF concentrations of IL-17a, TNF-β, IL-5, IL-12p40 and IL-1Rα were closely related to meningitis, but elevated IP-10, MCP-1, RANTES and IFN-γ levels and CSF white blood cells (WBCs) were protective factors against HCM. Our study suggested that HIV-infected patients with low CSF WBCs have a high risk of HCM. Th1, Th2 and Th17 cytokines/chemokines mediate differences in the pathogenesis of HCM and TBM. Overexpressed proinflammatory MCP-1, RANTES, IFN-γ and IP-10 in CSF are protective factors against HCM but not HTBM.
Collapse
Affiliation(s)
- Lijun Xu
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yufan Xu
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Department of Pathology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yanghao Zheng
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Peng
- Department of Respiration, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zongxing Yang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Qing Cao
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dairong Xiang
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Handan Zhao
- National Clinical Research Center for Infectious Diseases, College of Medicine, the First Affiliated Hospital, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Role of Dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect Immun 2021; 89:e0033021. [PMID: 34251289 DOI: 10.1128/iai.00330-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2KO) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.
Collapse
|
14
|
Miyoshi S, Oda N, Gion Y, Taki T, Mitani R, Takata I, Taniguchi A, Sato Y, Miyahara N. Exacerbation of pulmonary cryptococcosis associated with enhancement of Th2 response in the postpartum period. J Infect Chemother 2021; 27:1248-1250. [PMID: 33840597 DOI: 10.1016/j.jiac.2021.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Cryptococcosis is an invasive mycosis that has become increasingly prevalent in immunocompromised patients. Pregnant women are also one of the risk populations for cryptococcosis. Reversal of Th2 to Th1 response following resolution of immunosuppression during the postpartum period can lead to overt clinical manifestations of a previously silent infection, resembling an immune reconstitution inflammatory syndrome. Here, we report a case of a 30-year-old woman who had an exacerbation of pulmonary cryptococcosis in the postpartum period mimicking an immune reconstitution inflammatory syndrome. In the present case, chest computed tomography showed multiple small nodules on the day of the delivery; however, pulmonary cryptococcosis, which was subclinical during pregnancy, rapidly worsened to mass-like consolidation at one month after the delivery. Pathohistological examination of the lung specimen showed lung parenchyma infiltration with histiocytes and numerous lymphocytes without granulomatous formations, and a small number of yeast-like organisms consistent with Cryptococcus without capillary involvement. Immunohistochemical staining showed predominance of CD3+ cells and CD4+ cells over CD8+ cells. In addition, GATA3+ cells dominated over T-bet + cells. These data suggested exacerbation of pulmonary cryptococcosis associated with enhancement of Th2 response in the postpartum period.
Collapse
Affiliation(s)
- Shota Miyoshi
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Naohiro Oda
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan.
| | - Yuka Gion
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Takahiro Taki
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Reo Mitani
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Ichiro Takata
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Akihiko Taniguchi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasuharu Sato
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Nobuaki Miyahara
- Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan; Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
15
|
Thanh LT, Toffaletti DL, Tenor JL, Giamberardino C, Sempowski GD, Asfaw Y, Phan HT, Van Duong A, Trinh NM, Thwaites GE, Ashton PM, Chau NVV, Baker SG, Perfect JR, Day JN. Assessing the virulence of Cryptococcus neoformans causing meningitis in HIV infected and uninfected patients in Vietnam. Med Mycol 2020; 58:1149-1161. [PMID: 32196550 PMCID: PMC7657091 DOI: 10.1093/mmy/myaa013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
We previously observed a substantial burden of cryptococcal meningitis in Vietnam atypically arising in individuals who are uninfected with human immunodeficiency virus (HIV). This disease was associated with a single genotype of Cryptococcus neoformans (sequence type [ST]5), which was significantly less common in HIV-infected individuals. Aiming to compare the phenotypic characteristics of ST5 and non-ST5 C. neoformans, we selected 30 representative Vietnamese isolates and compared their in vitro pathogenic potential and in vivo virulence. ST5 and non-ST5 organisms exhibited comparable characteristics with respect to in vitro virulence markers including melanin production, replication at 37°C, and growth in cerebrospinal fluid. However, the ST5 isolates had significantly increased variability in cellular and capsular sizing compared with non-ST5 organisms (P < .001). Counterintuitively, mice infected with ST5 isolates had significantly longer survival with lower fungal burdens at day 7 than non-ST5 isolates. Notably, ST5 isolates induced significantly greater initial inflammatory responses than non-ST5 strains, measured by TNF-α concentrations (P < .001). Despite being generally less virulent in the mouse model, we hypothesize that the significant within strain variation seen in ST5 isolates in the tested phenotypes may represent an evolutionary advantage enabling adaptation to novel niches including apparently immunocompetent human hosts.
Collapse
Affiliation(s)
- Lam Tuan Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
| | - Dena L Toffaletti
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, North Carolina, USA
| | - Jennifer L Tenor
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, North Carolina, USA
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Regional Biocontainment Laboratory, Duke University, North Carolina, USA
| | - Yohannes Asfaw
- Division of Laboratory Animal Resources, Duke University, North Carolina, USA
| | - Hai Trieu Phan
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
| | - Anh Van Duong
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
| | - Nguyen Mai Trinh
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip M Ashton
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Stephen G Baker
- Cambridge Institute of Therapeutic immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine and Department of Molecular Genetics and Microbiology, Duke University, North Carolina, USA
| | - Jeremy N Day
- Oxford University Clinical Research Unit, Wellcome Trust Asia Africa Programme, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Limited Role of Mincle in the Host Defense against Infection with Cryptococcus deneoformans. Infect Immun 2020; 88:IAI.00400-20. [PMID: 32868343 DOI: 10.1128/iai.00400-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus deneoformans is an opportunistic fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired cell-mediated immune responses such as AIDS. Caspase-associated recruitment domain 9 (CARD9) plays a critical role in the host defense against cryptococcal infection, suggesting the involvement of one or more C-type lectin receptors (CLRs). In the present study, we analyzed the role of macrophage-inducible C-type lectin (Mincle), one of the CLRs, in the host defense against C. deneoformans infection. Mincle expression in the lungs of wild-type (WT) mice was increased in the early stage of cryptococcal infection in a CARD9-dependent manner. In Mincle gene-disrupted (Mincle KO) mice, the clearance of this fungus, pathological findings, Th1/Th2 response, and antimicrobial peptide production in the infected lungs were nearly comparable to those in WT mice. However, the production of interleukin-22 (IL-22), tumor necrosis factor alpha (TNF-α), and IL-6 and the expression of AhR were significantly decreased in the lungs of Mincle KO mice compared to those of WT mice. In in vitro experiments, TNF-α production by bone marrow-derived dendritic cells was significantly decreased in Mincle KO mice. In addition, the disrupted lysates of C. deneoformans, but not those of whole yeast cells, activated Mincle-triggered signaling in an assay with a nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Mincle may be involved in the production of Th22-related cytokines at the early stage of cryptococcal infection, although its role may be limited in the host defense against infection with C. deneoformans.
Collapse
|
17
|
Sakiyama Y, Matsuura E, Shigehisa A, Hamada Y, Dozono M, Nozuma S, Nakamura T, Higashi K, Hashiguchi A, Takahashi Y, Takashima H. Cryptococcus Meningitis Can Co-occur with Anti-NMDA Receptor Encephalitis. Intern Med 2020; 59:2301-2306. [PMID: 32522922 PMCID: PMC7578615 DOI: 10.2169/internalmedicine.4629-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
We herein report a 50-year-old man with alcoholic cirrhosis who developed loss of consciousness and tremor of the upper limbs. Magnetic resonance imaging findings were suggestive of limbic encephalitis with bilateral hippocampal damage, and a cerebrospinal fluid (CSF) examination confirmed anti-N-methyl-D-aspartate (NMDA) and anti-glutamate receptor antibodies. Despite initial corticosteroid therapy, meningeal irritation symptoms appeared, owing to the development of cryptococcal meningitis (CM), diagnosed by the detection of cryptococcal capsular polysaccharide antigen in the follow-up CSF analysis. Cerebral infarction with reversible stenosis of major cerebral arteries during the clinical course was also observed. Following administration of antifungals and corticosteroids, the number of cells in the CSF gradually declined, and NMDA receptor antibodies disappeared. Our study demonstrates the unique coexistence of CM with anti-NMDA receptor encephalitis in adults.
Collapse
Affiliation(s)
- Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Eiji Matsuura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Ayano Shigehisa
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yuki Hamada
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Mika Dozono
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Satoshi Nozuma
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Keiko Higashi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yukitoshi Takahashi
- Department of Pediatrics, National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| |
Collapse
|
18
|
Schrom EC, Levin SA, Graham AL. Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput Biol 2020; 16:e1008051. [PMID: 32730250 PMCID: PMC7392205 DOI: 10.1371/journal.pcbi.1008051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
In the animal kingdom, various forms of swarming enable groups of autonomous individuals to transform uncertain information into unified decisions which are probabilistically beneficial. Crossing scales from individual to group decisions requires dynamically accumulating signals among individuals. In striking parallel, the mammalian immune system is also a group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply techniques of understanding swarm behavior to a decision-making problem in the mammalian immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incorporating dynamic cytokine signaling into a simple model of Th differentiation comprehensively explains divergent observations of this process. The plasticity and heterogeneity of individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and the polarized yet updateable group effector commitment often observed in vivo are all explained by the same set of underlying molecular rules. These rules reveal that Th cells harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum sensing, in turn, may confer adaptive advantages on the mammalian immune system, especially during coinfection and during coevolution with manipulative parasites. This highlights a new way of understanding the mammalian immune system as a cellular swarm, and it underscores the power of collectives throughout nature.
Collapse
Affiliation(s)
- Edward C. Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
19
|
Cryptococcus neoformans Evades Pulmonary Immunity by Modulating Xylose Precursor Transport. Infect Immun 2020; 88:IAI.00288-20. [PMID: 32423915 DOI: 10.1128/iai.00288-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is a fungal pathogen that kills almost 200,000 people each year and is distinguished by abundant and unique surface glycan structures that are rich in xylose. A mutant strain of C. neoformans that cannot transport xylose precursors into the secretory compartment is severely attenuated in virulence in mice yet surprisingly is not cleared. We found that this strain failed to induce the nonprotective T helper cell type 2 (Th2) responses characteristic of wild-type infection, instead promoting sustained interleukin 12p40 (IL-12p40) induction and increased IL-17A (IL-17) production. It also stimulated dendritic cells to release high levels of proinflammatory cytokines, a behavior we linked to xylose expression. We further discovered that inducible bronchus-associated lymphoid tissue (iBALT) forms in response to infection with either wild-type cryptococci or the mutant strain with reduced surface xylose; although iBALT formation is slowed in the latter case, the tissue is better organized. Finally, our temporal studies suggest that lymphoid structures in the lung restrict the spread of mutant fungi for at least 18 weeks after infection, which is in contrast to ineffective control of the pathogen after infection with wild-type cells. These studies demonstrate the role of xylose in modulation of host response to a fungal pathogen and show that cryptococcal infection triggers iBALT formation.
Collapse
|
20
|
Dobashi-Okuyama K, Kawakami K, Miyasaka T, Sato K, Ishii K, Kawakami K, Masuda C, Suzuki S, Kasamatsu J, Yamamoto H, Tanno D, Kanno E, Tanno H, Kawano T, Takayanagi M, Takahashi T, Ohno I. Novel Toll-Like Receptor 9 Agonist Derived from Cryptococcus neoformans Attenuates Allergic Inflammation Leading to Asthma Onset in Mice. Int Arch Allergy Immunol 2020; 181:651-664. [PMID: 32585675 DOI: 10.1159/000508535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The enhanced type 2 helper (Th2) immune response is responsible for the pathogenesis of allergic asthma. To suppress the enhanced Th2 immune response, activation of the Th1 immune response has been an alternative strategy for anti-asthma therapy. In this context, effective Th1-inducing adjuvants that inhibit the development of allergic asthma but do not flare the side effects of the primary agent are required in clinical treatment and preventive medicine. OBJECTIVE In this study, we aimed to determine the regulation of the Th2 type immune response in asthma by a novel immunostimulatory oligodeoxynucleotide (ODN) derived from Cryptococcus neoformans, termed ODN112, which contains a cytosine-guanine (CG) sequence but not canonical CpG motifs. METHODS Using an ovalbumin-induced asthma mouse model, we assessed the effect of ODN112 on prototypical asthma-related features in the lung and on the Th1/Th2 profile in the lymph nodes and lung of mice treated with ODN112 during sensitization. RESULTS AND CONCLUSION ODN112 treatment attenuated asthma features in mice. In the bronchial lymph nodes of the lungs and in the spleen, ODN112 increased interferon-γ production and attenuated Th2 recall responses. In dendritic cells (DCs) after allergen sensitization, ODN112 enhanced cluster of differentiation (CD) 40 and CD80 expression but did not alter CD86 expression. Interleukin-12p40 production from DCs was also increased in a Th2-polarizing condition. Our results suggest that ODN112 is a potential Th1-inducing adjuvant during Th2 cell differentiation in the sensitization phase.
Collapse
Affiliation(s)
- Kaori Dobashi-Okuyama
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan,
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaori Kawakami
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Chiaki Masuda
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Syugo Suzuki
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
21
|
Sato K, Yamamoto H, Nomura T, Kasamatsu J, Miyasaka T, Tanno D, Matsumoto I, Kagesawa T, Miyahara A, Zong T, Oniyama A, Kawamura K, Yokoyama R, Kitai Y, Ishizuka S, Kanno E, Tanno H, Suda H, Morita M, Yamamoto M, Iwakura Y, Ishii K, Kawakami K. Production of IL-17A at Innate Immune Phase Leads to Decreased Th1 Immune Response and Attenuated Host Defense against Infection with Cryptococcus deneoformans. THE JOURNAL OF IMMUNOLOGY 2020; 205:686-698. [PMID: 32561568 DOI: 10.4049/jimmunol.1901238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
IL-17A is a proinflammatory cytokine produced by many types of innate immune cells and Th17 cells and is involved in the elimination of extracellularly growing microorganisms, yet the role of this cytokine in the host defense against intracellularly growing microorganisms is not well known. Cryptococcus deneoformans is an opportunistic intracellular growth fungal pathogen that frequently causes fatal meningoencephalitis in patients with impaired immune responses. In the current study, we analyzed the role of IL-17A in the host defense against C. deneoformans infection. IL-17A was quickly produced by γδT cells at an innate immune phase in infected lungs. In IL-17A gene-disrupted mice, clearance of this fungal pathogen and the host immune response mediated by Th1 cells were significantly accelerated in infected lungs compared with wild-type mice. Similarly, killing of this fungus and production of inducible NO synthase and TNF-α were significantly enhanced in IL-17A gene-disrupted mice. In addition, elimination of this fungal pathogen, Th1 response, and expression of IL-12Rβ2 and IFN-γ in NK and NKT cells were significantly suppressed by treatment with rIL-17A. The production of IL-12p40 and TNF-α from bone marrow-derived dendritic cells stimulated with C. deneoformans was significantly suppressed by rIL-17A. In addition, rIL-17A attenuated Th1 cell differentiation in splenocytes from transgenic mice highly expressing TCR for mannoprotein 98, a cryptococcal Ag, upon stimulation with recombinant mannoprotein 98. These data suggest that IL-17A may be involved in the negative regulation of the local host defense against C. deneoformans infection through suppression of the Th1 response.
Collapse
Affiliation(s)
- Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan;
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Jun Kasamatsu
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tomomitsu Miyasaka
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-0905, Japan
| | - Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takafumi Kagesawa
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Anna Miyahara
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Akiho Oniyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shigenari Ishizuka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromasa Tanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hiromi Suda
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masanobu Morita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; and
| | - Yoichiro Iwakura
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuyoshi Kawakami
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.,Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
22
|
Chemokine and Cytokine Cascade Caused by Skewing of the Th1-Th2 Balance Is Associated with High Intracranial Pressure in HIV-Associated Cryptococcal Meningitis. Mediators Inflamm 2019; 2019:2053958. [PMID: 32082071 PMCID: PMC7012228 DOI: 10.1155/2019/2053958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Serum cytokines/chemokines play important roles in cryptococcal meningitis, but it is unclear whether cytokines/chemokines in cerebrospinal fluid (CSF) contribute to high intracranial pressure (HICP) in HIV-associated cryptococcal meningitis (HCM). Methods CSF cytokines/chemokines were assayed in 17 HIV-uninfected patients, 26 HIV-infected patients without CNS infection, and 39 HCM patients at admission. Principal component analysis and correlation and logistic regression analyses were used to assess the relationships between these parameters. Results The CSF Th1, Th2, and macrophage cytokines showed an obvious increase in HCM patients as compared to the HIV-uninfected patients and HIV-infected patients without CNS infection. CSF IL-6, GM-CSF, and IL-8 were positively correlated with CSF fungal burden. Serum CD4 count, CSF Th1 cytokines (TNF-α, TNF-β, IL-12, IL-1β, IL-12, IL-1α, TNF-α, TNF-β, IL-12, IL-1γ, and IL-12) and Th2 cytokines (IL-4 and IL-10) contribute to HICP. Conclusion Overall, the present findings indicated that both pro- and anti-inflammatory cytokines of Th1, Th2, and macrophage origin contributed to the development of HCM. Specifically, the chemokine and cytokine cascade caused by skewing of the Th1-Th2 balance and reduced CD4 count were found to be important contributors to HICP. Summary. Our research suggested that chemokine and cytokine cascade caused by skewing of the Th1-Th2 balance in HIV-infected patients played more important role than Cryptococcus numbers and size in CSF on the development of high intracranial pressure in HIV-associated cryptococcal meningitis, providing a new understanding of mechanisms of HCM.
Collapse
|
23
|
Tanno D, Yokoyama R, Kawamura K, Kitai Y, Yuan X, Ishii K, De Jesus M, Yamamoto H, Sato K, Miyasaka T, Shimura H, Shibata N, Adachi Y, Ohno N, Yamasaki S, Kawakami K. Dectin-2-mediated signaling triggered by the cell wall polysaccharides of Cryptococcus neoformans. Microbiol Immunol 2019; 63:500-512. [PMID: 31544981 DOI: 10.1111/1348-0421.12746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin-2 recognizes high-mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin-2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin-2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin-2-mediated activation of immune cells. In a NFAT-GFP reporter assay of the reported cells expressing Dectin-2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin-2-mediated signaling. This activity was detected in the supernatant of β-glucanase-treated Cap67 and more strongly in the semi-purified polysaccharides of this supernatant using ConA-affinity chromatography (ConA-bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA-bound fraction of the β-glucanase-treated Cap67 supernatant was bound to Dectin-2-Fc fusion protein in a dose-dependent manner and strongly induced the production of interleukin-12p40 and tumour necrosis factor-α by dendritic cells; this was abrogated under the Dectin-2-deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin-2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.
Collapse
Affiliation(s)
- Daiki Tanno
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Rin Yokoyama
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kotone Kawamura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yuki Kitai
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Xiaoliang Yuan
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Respiratory Medicine, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Center for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Niigata, Japan
| | - Ko Sato
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Shimura
- Department of Clinical Laboratory, Fukushima Medical University, Fukushima, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
24
|
Abstract
Respiratory fungal infection is a severe clinical problem, especially in patients with compromised immune functions. Aspergillus, Cryptococcus, Pneumocystis, and endemic fungi are major pulmonary fungal pathogens that are able to result in life-threatening invasive diseases. Growing data being reported have indicated that multiple cells and molecules orchestrate the host's response to a fungal infection in the lung. Upon fungal challenge, innate myeloid cells including macrophages, dendritic cells (DC), and recruited neutrophils establish the first line of defense through the phagocytosis and secretion of cytokines. Natural killer cells control the fungal expansion in the lung via the direct and indirect killing of invading organisms. Adaptive immune cells including Th1 and Th17 cells confer anti-fungal activity by producing their signature cytokines, interferon-γ, and IL-17. In addition, lung epithelial cells (LEC) also participate in the resistance against fungal infection by internalization, inflammatory cytokine production, or antimicrobial peptide secretion. In the host cells mentioned above, various molecules with distinct functions modulate the immune defense signaling: Pattern recognition receptors (PRRs) such as dectin-1 expressed on the cell surface are involved in fungal recognition; adaptor proteins such as MyD88 and TRAF6 are required for transduction of signals to the nucleus for transcriptional regulation; inflammasomes also play crucial roles in the host's defense against a fungal infection in the lung. Furthermore, transcriptional factors modulate the transcriptions of a series of genes, especially those encoding cytokines and chemokines, which are predominant regulators in the infectious microenvironment, mediating the cellular and molecular immune responses against a fungal infection in the lung.
Collapse
Affiliation(s)
- Zhi Li
- The Joint Center for Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
- The Joint Center for Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - Gen Lu
- The Joint Center for Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou, China
| | - Guangxun Meng
- The Joint Center for Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
25
|
Walsh NM, Botts MR, McDermott AJ, Ortiz SC, Wüthrich M, Klein B, Hull CM. Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathog 2019; 15:e1007777. [PMID: 31247052 PMCID: PMC6597114 DOI: 10.1371/journal.ppat.1007777] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
The majority of invasive human fungal pathogens gain access to their human hosts via the inhalation of spores from the environment into the lung, but relatively little is known about this infectious process. Among human fungal pathogens the most frequent cause of inhaled fatal fungal disease is Cryptococcus, which can disseminate from the lungs to other tissues, including the brain, where it causes meningoencephalitis. To determine the mechanisms by which distinct infectious particles of Cryptococcus cause disseminated disease, we evaluated two developmental cell types (spores and yeast) in mouse models of infection. We discovered that while both yeast and spores from several strains cause fatal disease, there was a consistently higher fungal burden in the brains of spore-infected mice. To determine the basis for this difference, we compared the pathogenesis of avirulent yeast strains with their spore progeny derived from sexual crosses. Strikingly, we discovered that spores produced by avirulent yeast caused uniformly fatal disease in the murine inhalation model of infection. We determined that this difference in outcome is associated with the preferential dissemination of spores to the lymph system. Specifically, mice infected with spores harbored Cryptococcus in their lung draining lymph nodes as early as one day after infection, whereas mice infected with yeast did not. Furthermore, phagocyte depletion experiments revealed this dissemination to the lymph nodes to be dependent on CD11c+ phagocytes, indicating a critical role for host immune cells in preferential spore trafficking. Taken together, these data support a model in which spores capitalize on phagocytosis by immune cells to escape the lung and gain access to other tissues, such as the central nervous system, to cause fatal disease. These previously unrealized insights into early interactions between pathogenic fungal spores and lung phagocytes provide new opportunities for understanding cryptococcosis and other spore-mediated fungal diseases.
Collapse
Affiliation(s)
- Naomi M. Walsh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael R. Botts
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew J. McDermott
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcel Wüthrich
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
26
|
Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Freire-de-Lima CG. Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Front Med (Lausanne) 2019; 6:129. [PMID: 31275938 PMCID: PMC6593061 DOI: 10.3389/fmed.2019.00129] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans. In immunocompetent patients, cryptococcal infection is often confined to the lungs. In immunocompromised individuals, C. neoformans may cause life-threatening illness, either from novel exposure or through reactivation of a previously acquired latent infection. For example, cryptococcal meningitis is a severe clinical disease that can manifest in people that are immunocompromised due to AIDS. The major constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM), and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal), are considered the primary virulence factors of Cryptococcus. Despite the predominance of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory effects on host cellular immunity. This review summarizes current knowledge regarding host-Crytococcus neoformans interactions and the role of capsular polysaccharides in host immunomodulation. Future studies will likely facilitate a better understanding of the mechanisms involved in antigenic recognition and host immune response to C. neoformans and lead to the development of new therapeutic pathways for cryptococcal infection.
Collapse
Affiliation(s)
- Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle O Nascimento
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
27
|
Dong RJ, Zhang YG, Zhu L, Liu HL, Liu J, Kuang YQ, Wang RR, Li YY. Innate Immunity Acts as the Major Regulator in Talaromyces marneffei Coinfected AIDS Patients: Cytokine Profile Surveillance During Initial 6-Month Antifungal Therapy. Open Forum Infect Dis 2019; 6:ofz205. [PMID: 31211154 PMCID: PMC6559339 DOI: 10.1093/ofid/ofz205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Talaromycosis caused by Talaromyces marneffei infection is a fatal systemic mycosis in immunosuppressed individuals, such as patients with AIDS. Cytokines and immunocytes play a central role against fungus infection. However, how the host immune system responds to infection and treatment has not been reported to date. Methods Forty-one Talaromyces marneffei coinfected AIDS patients were followed up, their immunocytes and cytokine profiles were obtained at different antifungal treatment stages, and data on clinical features and laboratory examinations were collected. Correlation analysis was used to identify factors associated with host immunity against Talaromyces marneffei infection in AIDS patients. Results Common diseases and conditions of these 41 patients were lymphadenopathy, hepatomegaly, and splenomegaly. CD4+ T cells were extremely low in all of them. Moreover, significant increases of proinflammatory cytokines (IL-12, IL-17A, TNF-α, IFN-γ, IL-18, and IL-1β), anti-inflammatory cytokines (IL-10), and chemokines (IP-10) were observed in talaromycosis before treatment (P < .05), comparing to both AIDS patients and healthy controls. The cytokines IL-6, IL-8, TNF-α, IL-18, IL-17A, IL-7, IP-10, and IL-1β reached peak levels 3 days after initial antifungal therapy, and then gradually decreased. The symptoms of the patients gradually decreased. Furthermore, patients who died showed the highest levels of IL-6, TNF-α, IL-8, IL-1β, and IP-10, which were 1.4- to 164-fold higher than in surviving patients. Conclusions Our findings indicate that innate immune-cell-derived cytokines are critical for host defense against AIDS-associated Talaromyces marneffei infection; furthermore, excessive inflammatory cytokines are associated with poor outcomes.
Collapse
Affiliation(s)
- Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun-Gui Zhang
- Yunnan Provincial Hospital of Infectious Disease/AIDS Care Center (YNACC), Anning, China
| | - Lei Zhu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Heng-Li Liu
- Yunnan Provincial Hospital of Infectious Disease/AIDS Care Center (YNACC), Anning, China
| | - Jun Liu
- Department of HIV/AIDS, The Third People's Hospital of Kunming, Kunming, China
| | - Yi-Qun Kuang
- Institute of Infection and Immunology, Henan University and Center for Translational Medicine, Huaihe Clinical College, Huaihe Hospital of Henan University, Kaifeng, China
| | - Rui-Rui Wang
- School of Pharmaceutial Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
28
|
Surawut S, Makjaroen J, Thim-Uam A, Wongphoom J, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. Increased susceptibility against Cryptococcus neoformans of lupus mouse models (pristane-induction and FcGRIIb deficiency) is associated with activated macrophage, regardless of genetic background. J Microbiol 2018; 57:45-53. [PMID: 30456753 DOI: 10.1007/s12275-019-8311-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/17/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
The severity of cryptococcosis in lupus from varying genetic-backgrounds might be different due to the heterogeneity of lupus-pathogenesis. This study explored cryptococcosis in lupus mouse models of pristane-induction (normal genetic-background) and FcGRIIb deficiency (genetic defect). Because the severity of lupus nephritis, as determined by proteinuria and serum creatinine, between pristane and FcGRIIb-/- mice were similar at 6-month-old, Cryptococcus neoformans was intravenously administered in 6-month-old mice and were age-matched with wild-type. Indeed, the cryptococcosis disease severity, as evaluated by mortality rate, internal-organ fungal burdens and serum cytokines, between pristane and FcGRIIb-/- mice was not different. However, the severity of cryptococcosis in wild-type was less severe than the lupus mice. On the other hand, phagocytosis activity of peritoneal macrophages from lupus mice (pristane and FcGRIIb-/-) was more predominant than the wild-type without the difference in macrophage killing-activity among these groups. In addition, the number of active T helper cells (Th-cell) in the spleen, including Th-cells with intracellular IFN-γ, from lupus mice (pristane and FcGRIIb-/-) was higher than wildtype. Moreover, these active Th-cells were even higher after 2 weeks of cryptococcal infection. These data support enhanced macrophage activation through prominent Th-cells in both lupus models. In conclusion, an increased susceptibility of cryptococcosis in both lupus models was independent to genetic background. This might due to Th-cell enhanced macrophage phagocytosis with the interference of macrophage killing activity from Cryptococcal immune-evasion properties.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Division of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand. .,Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
29
|
Garelnabi M, May RC. Variability in innate host immune responses to cryptococcosis. Mem Inst Oswaldo Cruz 2018; 113:e180060. [PMID: 29668826 PMCID: PMC5909084 DOI: 10.1590/0074-02760180060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Cryptococcosis is an invasive fungal disease caused by Cryptococcus neoformans and the closely related species C. gattii. The severe form of the disease, cryptococcal meningitis (CM), is rapidly fatal without treatment. Although typically a disease of immunocompromised (especially HIV-positive) individuals, there is growing awareness of cryptococcal disease amongst non-immunocompromised patients. Whilst substantial progress has been made in understanding the pathogenicity of C. neoformans in HIV patients, prospective data on cryptococcosis outside the context of HIV remains lacking. Below we review how innate immune responses vary between hosts depending on immunological status, and discuss risk factors and predictors of disease outcome in different groups.
Collapse
Affiliation(s)
- Mariam Garelnabi
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | - Robin C May
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
30
|
Wozniak KL. Interactions of Cryptococcus with Dendritic Cells. J Fungi (Basel) 2018; 4:jof4010036. [PMID: 29543719 PMCID: PMC5872339 DOI: 10.3390/jof4010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
The fungal pathogens Cryptococcus neoformans and Cryptococcus gattii can cause life-threatening infections in immune compromised and immune competent hosts. These pathogens enter the host via inhalation, and respiratory tract innate immune cells such as dendritic cells (DCs) are one of the first host cells they encounter. The interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease in the host. This review will focus specifically on the interactions between Cryptococcus and dendritic cells (DCs), including recognition/processing by DCs, effects of immune mediators on DC recruitment and activity, and the potential for DC vaccination against cryptococcosis.
Collapse
Affiliation(s)
- Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
31
|
Sato K, Kawakami K. Recognition of Cryptococcus neoformans by Pattern Recognition Receptors and its Role in Host Defense to This Infection. Med Mycol J 2018; 58:J83-J90. [PMID: 28855484 DOI: 10.3314/mmj.17.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cryptococcus neoformans is a yeast-type opportunistic fungal pathogen with a capsule structure consisting of polysaccharides, such as glucuronoxylomannan and galactoxylomannan, and infects the lungs via an air-borne route. Most healthy individuals undergo asymptomatic infection with granulomatous lesions in the lungs caused by C. neoformans. However, immunocompromised hosts with severely impaired cellular immunity, such as those with acquired immune deficiency syndrome (AIDS), often suffer from disseminated infection into the central nervous system, leading to life-threatening meningoencephalitis. The recognition of pathogen-associated molecular patterns (PAMPs) by macrophages and dendritic cells plays an important role as the first line of host defense in the elimination of pathogens. Recently, numerous pattern recognition receptors (PRRs) that recognize these PAMPs have been identified. Also, the involvement of these PRRs, such as Toll-like receptors (TLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs), in cryptococcal infection has been analyzed. In particular, TLR9, NLR family pyrin domain-containing 3 (NLRP3), Dectin-2, mannose receptor (MR), and DC-SIGN have been found to recognize the DNA, cell wall components, intracellular polysaccharides, and mannoproteins, respectively. Future studies are expected to promote elucidation of the mechanisms of host immune response to C. neoformans, which will lead to the development of new vaccines and therapies for cryptococcal infection.
Collapse
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology,Tohoku University Graduate School of Medicine.,Virus Research Center, Clinical Research Division, Sendai Medical Center
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology,Tohoku University Graduate School of Medicine
| |
Collapse
|
32
|
Shourian M, Ralph B, Angers I, Sheppard DC, Qureshi ST. Contribution of IL-1RI Signaling to Protection against Cryptococcus neoformans 52D in a Mouse Model of Infection. Front Immunol 2018; 8:1987. [PMID: 29403476 PMCID: PMC5780350 DOI: 10.3389/fimmu.2017.01987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 alpha (IL-1α) and interleukin-1 beta (IL-1β) are pro-inflammatory cytokines that are induced after Cryptococcus neoformans infection and activate the interleukin-1 receptor type I (IL-1RI). To establish the role of IL-1RI signaling in protection against cryptococcal infection, we analyzed wild-type (WT) and IL-1RI-deficient (IL-1RI−/−) mice on the BALB/c background. IL-1RI−/− mice had significantly reduced survival compared to WT mice after intratracheal challenge with C. neoformans 52D. Microbiological analysis showed a significant increase in the lung and brain fungal burden of IL-1RI−/− compared to WT mice beginning at weeks 1 and 4 postinfection, respectively. Histopathology showed that IL-1RI−/− mice exhibit greater airway epithelial mucus secretion and prominent eosinophilic crystals that were absent in WT mice. Susceptibility of IL-1RI−/− mice was associated with significant induction of a Th2-biased immune response characterized by pulmonary eosinophilia, M2 macrophage polarization, and recruitment of CD4+ IL-13+ T cells. Expression of pro-inflammatory [IL-1α, IL-1β, TNFα, and monocyte chemoattractant protein 1 (MCP-1)], Th1-associated (IFNγ), and Th17-associated (IL-17A) cytokines was significantly reduced in IL-1RI−/− lungs compared to WT. WT mice also had higher expression of KC/CXCL1 and sustained neutrophil recruitment to the lung; however, antibody-mediated depletion of these cells showed that they were dispensable for lung fungal clearance. In conclusion, our data indicate that IL-1RI signaling is required to activate a complex series of innate and adaptive immune responses that collectively enhance host defense and survival after C. neoformans 52D infection in BALB/c mice.
Collapse
Affiliation(s)
- Mitra Shourian
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| | - Ben Ralph
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Angers
- Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Donald C Sheppard
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Salman T Qureshi
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.,Program in Translational Research in Respiratory Diseases, Department of Critical Care, The Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Abstract
The Cryptococcus neoformans/Cryptococcus gattii species complex is a group of fungal pathogens with different phenotypic and genotypic diversity that cause disease in immunocompromised patients as well as in healthy individuals. The immune response resulting from the interaction between Cryptococcus and the host immune system is a key determinant of the disease outcome. The species C. neoformans causes the majority of human infections, and therefore almost all immunological studies focused on C. neoformans infections. Thus, this review presents current understanding on the role of adaptive immunity during C. neoformans infections both in humans and in animal models of disease.
Collapse
|
34
|
Van Dyke MCC, Chaturvedi AK, Hardison SE, Leopold Wager CM, Castro-Lopez N, Hole CR, Wozniak KL, Wormley FL. Induction of Broad-Spectrum Protective Immunity against Disparate Cryptococcus Serotypes. Front Immunol 2017; 8:1359. [PMID: 29163469 PMCID: PMC5670106 DOI: 10.3389/fimmu.2017.01359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Cryptococcosis is a fungal disease caused by multiple Cryptococcus serotypes; particularly C. neoformans (serotypes A and D) and C. gattii (serotypes B and C). To date, there is no clinically available vaccine to prevent cryptococcosis. Mice given an experimental pulmonary vaccination with a C. neoformans serotype A strain engineered to produce interferon-γ, denoted H99γ, are protected against a subsequent otherwise lethal experimental infection with C. neoformans serotype A. Thus, we determined the efficacy of immunization with C. neoformans strain H99γ to elicit broad-spectrum protection in BALB/c mice against multiple disparate Cryptococcus serotypes. We observed significantly increased survival rates and significantly decreased pulmonary fungal burden in H99γ immunized mice challenged with Cryptococcus serotypes A, B, or D compared to heat-killed H99γ (HKH99γ) immunized mice. Results indicated that prolonged protection against Cryptococcus serotypes B or D in H99γ immunized mice was CD4+ T cell dependent and associated with the induction of predominantly Th1-type cytokine responses. Interestingly, immunization with H99γ did not elicit greater protection against challenge with the Cryptococcus serotype C tested either due to low overall virulence of this strain or enhanced capacity of this strain to evade host immunity. Altogether, these studies provide “proof-of-concept” for the development of a cryptococcal vaccine that provides cross-protection against multiple disparate serotypes of Cryptococcus.
Collapse
Affiliation(s)
- Marley C Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Ashok K Chaturvedi
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Sarah E Hardison
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Chrissy M Leopold Wager
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Natalia Castro-Lopez
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Camaron R Hole
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Karen L Wozniak
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States.,The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
35
|
Monocyte Phenotype and IFN-γ-Inducible Cytokine Responses Are Associated with Cryptococcal Immune Reconstitution Inflammatory Syndrome. J Fungi (Basel) 2017; 3:jof3020028. [PMID: 29371546 PMCID: PMC5715914 DOI: 10.3390/jof3020028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/11/2017] [Accepted: 05/27/2017] [Indexed: 01/14/2023] Open
Abstract
A third of adults with AIDS and cryptococcal meningitis (CM) develop immune reconstitution inflammatory syndrome (IRIS) after initiating antiretroviral therapy (ART), which is thought to result from exaggerated inflammatory antigen-specific T cell responses. The contribution of monocytes to the immunopathogenesis of cryptococcal IRIS remains unclear. We compared monocyte subset frequencies and immune responses in HIV-infected Ugandans at time of CM diagnosis (IRIS-Baseline) for those who later developed CM-IRIS, controls who did not develop CM-IRIS (Control-Baseline) at CM-IRIS (IRIS-Event), and for controls at a time point matched for ART duration (Control-Event) to understand the association of monocyte distribution and immune responses with cryptococcal IRIS. At baseline, stimulation with IFN-γ ex vivo induced a higher frequency of TNF-α- and IL-6-producing monocytes among those who later developed IRIS. Among participants who developed IRIS, ex vivo IFN-γ stimulation induced higher frequencies of activated monocytes, IL-6+, TNF-α+ classical, and IL-6+ intermediate monocytes compared with controls. In conclusion, we have demonstrated that monocyte subset phenotype and cytokine responses prior to ART are associated with and may be predictive of CM-IRIS. Larger studies to further delineate innate immunological responses and the efficacy of immunomodulatory therapies during cryptococcal IRIS are warranted.
Collapse
|
36
|
Surawut S, Ondee T, Taratummarat S, Palaga T, Pisitkun P, Chindamporn A, Leelahavanichkul A. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans. Sci Rep 2017; 7:40006. [PMID: 28074867 PMCID: PMC5225418 DOI: 10.1038/srep40006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/30/2016] [Indexed: 02/04/2023] Open
Abstract
Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb-/- mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb-/- mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb-/- mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb-/- macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb-/- mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb-/- macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb-/- mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb-/- macrophages were correlated with more severe cryptococcosis in FcγRIIb-/- mice.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thunnicha Ondee
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sujittra Taratummarat
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Bangkok, Thailand
| |
Collapse
|
37
|
Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in Fungal Diseases. Microorganisms 2016; 4:microorganisms4040047. [PMID: 27973396 PMCID: PMC5192530 DOI: 10.3390/microorganisms4040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
This review addresses specific regulatory mechanisms involved in the host immune response to fungal organisms. We focus on key cells and regulatory pathways involved in these responses, including a brief overview of their broader function preceding a discussion of their specific relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory T cells, with a focus on specific studies relating to their effects on immune responses to fungi. We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated protein 4 signaling pathways and emphasize interrelationships between these pathways and the regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify selected studies best illustrating the role of these cells and pathways in response to specific fungal pathogens to provide a contextual understanding of the tightly-controlled network of regulatory mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range of immunoregulatory mechanisms active in response to fungi.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Zhang L, Liu T, Kong W, Zhang W, Gu M, Chen Y, Deng A, Chen S. Decreased TLR2 signal expression in peripheral blood mononuclear cell from patients with cryptococcal meningitis. Microbiol Immunol 2016; 59:357-64. [PMID: 25951991 DOI: 10.1111/1348-0421.12264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/13/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
Toll-like receptors are the most important pattern recognition receptors that can recognize conserved molecular structures shared by large groups of pathogens. Here, the aim was to determine the expression and role of TLR2 in peripheral blood mononuclear cells (PBMCs) from patients with cryptococcal meningitis and healthy controls. TLR2 expression was measured using RT-PCR and western blotting. The role of TLR2 in cytokine production by PBMCs after Cryptococcus neoformans exposure was assessed in healthy controls prior to incubation with anti-TLR2. TLR2 mRNA and protein expression were both weaker in patients with cryptococcal meningitis than in healthy controls. Furthermore, pre-incubation of PBMCs from healthy donors with anti-TLR2 led to reduced expression of IFN-γ and IL-12p70, but not of IL-4 and IL-10, following C. neoformans stimulation. Our results suggest that impaired expression of TLR2 may be involved in defective host defense to C. neoformans through an attenuated Th1 response.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Tingting Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Wei Kong
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Weiwei Zhang
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Chen
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Anmei Deng
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Sunxiao Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| |
Collapse
|
39
|
Meya DB, Manabe YC, Boulware DR, Janoff EN. The immunopathogenesis of cryptococcal immune reconstitution inflammatory syndrome: understanding a conundrum. Curr Opin Infect Dis 2016; 29:10-22. [PMID: 26658650 PMCID: PMC4689618 DOI: 10.1097/qco.0000000000000224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Cryptococcal meningitis causes significant mortality among HIV-infected patients, despite antifungal therapy and use of antiretroviral therapy (ART). In patients with cryptococcal meningitis, ART is often complicated by immune reconstitution inflammatory syndrome (IRIS), manifesting as unmasking of previously unrecognized subclinical infection (unmasking CM-IRIS) or paradoxical worsening of symptoms in the central nervous system after prior improvement with antifungal therapy (paradoxical CM-IRIS). We review our current understanding of the pathogenesis of this phenomenon, focusing on unifying innate and adaptive immune mechanisms leading to the development of this often fatal syndrome. RECENT FINDINGS We propose that HIV-associated CD4 T-cell depletion, chemokine-driven trafficking of monocytes into cerebrospinal fluid in response to cryptococcal meningitis, and poor localized innate cytokine responses lead to inadequate cryptococcal killing and clearance of the fungus. Subsequent ART-associated recovery of T-cell signaling and restored cytokine responses, characterized by IFN-γ production, triggers an inflammatory response. The inflammatory response triggered by ART is dysregulated because of impaired homeostatic and regulatory mechanisms, culminating in the development of CM-IRIS. SUMMARY Despite our incomplete understanding of the immunopathogenesis of CM-IRIS, emerging data exploring innate and adaptive immune responses could be exploited to predict, prevent and manage CM-IRIS and associated morbid consequences.
Collapse
Affiliation(s)
- David B Meya
- Infectious Disease Institute, Makerere University, Uganda
- Dept of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, USA
- School of Medicine, College of Health Sciences, Makerere University
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - David R Boulware
- Dept of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, USA
| | - Edward N Janoff
- Mucosal and Vaccine Research Program Colorado (MAVRC), University of Colorado Denver, Aurora, Colorado, USA; Denver Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
40
|
Azevedo MDCS, Rosa PS, Soares CT, Fachin LRV, Baptista IMFD, Woods WJ, Garlet GP, Trombone APF, Belone ADFF. Analysis of Immune Response Markers in Jorge Lobo's Disease Lesions Suggests the Occurrence of Mixed T Helper Responses with the Dominance of Regulatory T Cell Activity. PLoS One 2015; 10:e0145814. [PMID: 26700881 PMCID: PMC4689386 DOI: 10.1371/journal.pone.0145814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/09/2015] [Indexed: 01/18/2023] Open
Abstract
Jorge Lobo's disease (JLD) is a chronic infection that affects the skin and subcutaneous tissues. Its etiologic agent is the fungus Lacazia loboi. Lesions are classified as localized, multifocal, or disseminated, depending on their location. Early diagnosis and the surgical removal of lesions are the best therapeutic options currently available for JLD. The few studies that evaluate the immunological response of JLD patients show a predominance of Th2 response, as well as a high frequency of TGF-β and IL-10 positive cells in the lesions; however, the overall immunological status of the lesions in terms of their T cell phenotype has yet to be determined. Therefore, the objective of this study was to evaluate the pattern of Th1, Th2, Th17 and regulatory T cell (Treg) markers mRNA in JLD patients by means of real-time PCR. Biopsies of JLD lesions (N = 102) were classified according to their clinical and histopathological features and then analyzed using real-time PCR in order to determine the expression levels of TGF-β1, FoxP3, CTLA4, IKZF2, IL-10, T-bet, IFN-γ, GATA3, IL-4, IL-5, IL-13, IL-33, RORC, IL-17A, IL-17F, and IL-22 and to compare these levels to those of healthy control skin (N = 12). The results showed an increased expression of FoxP3, CTLA4, TGF-β1, IL-10, T-bet, IL-17F, and IL-17A in lesions, while GATA3 and IL-4 levels were found to be lower in diseased skin than in the control group. When the clinical forms were compared, TGF-β1 was found to be highly expressed in patients with a single localized lesion while IL-5 and IL-17A levels were higher in patients with multiple/disseminated lesions. These results demonstrate the occurrence of mixed T helper responses and suggest the dominance of regulatory T cell activity, which could inhibit Th-dependent protective responses to intracellular fungi such as L. loboi. Therefore, Tregs may play a key role in JLD pathogenesis.
Collapse
Affiliation(s)
- Michelle de C. S. Azevedo
- Departamento de Doenças Tropicais, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Patricia S. Rosa
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Cleverson T. Soares
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | - Luciana R. V. Fachin
- Departamento de Patologia, Instituto Lauro de Souza Lima, Bauru, São Paulo, Brazil
| | | | - William J. Woods
- Serviço Especializado em Dermatologia, Hospital das Clínicas do Acre, Rio Branco, São Paulo, Brazil
| | - Gustavo P. Garlet
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, São Paulo, Brazil
| | - Ana Paula F. Trombone
- Departamento de Ciências da Saúde, Universidade do Sagrado Coração, Bauru, São Paulo, Brazil
| | | |
Collapse
|
41
|
Wang J, Zeng Y, Luo W, Xie X, Li S. The Role of Cryptococcus in the Immune System of Pulmonary Cryptococcosis Patients. PLoS One 2015; 10:e0144427. [PMID: 26637129 PMCID: PMC4670196 DOI: 10.1371/journal.pone.0144427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/18/2015] [Indexed: 12/12/2022] Open
Abstract
Objectives To investigate the role of Cryptococcus in the immune system of immunocompetent patients with pulmonary cryptococcosis (PC) by analysing the dynamic changes of patients’ immune status before and after antifungal therapy. Methods The level of the serum interferon-γ (IFN-γ) and interleukin (IL)-2, -4, -10 and -12 was measured before and after 6-months of treatment. Peripheral blood samples were obtained from 30 immunocompetent PC patients and 30 age- and gender-matched healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated and incubated with recombinant human IL-12 (rhIL-12) for 48 h. Then the concentrations of IFN-γ and IL-4 in the supernatant were analysed. Results Baseline serum IFN-γ level was significantly lower in the PC patients as compared with the control group (P < 0.001). The serum IL-2 and IFN-γ of PC patients were significantly increased after appropriate treatments (P < 0.05 and P < 0.001 when compared to their baseline levels). The productions of IFN-γ in the culture supernatant of PBMCs showed no significant difference between the control and PC patients both before and after antifungal treatments. RhIL-12 is a potent stimulus for IFN-γ production. Culture PBMCs collected from PC patients before treatments had a smaller increase of IFN-γ production in the present of rhIL-12 than the control (P < 0.01); PBMCs from PC patients completing 6-months of treatment showed a comparable increase of IFN-γ production by rhIL-12 stimulation to the control group. Conclusions In apparently immunocompetent patients with PC, a normalization of serum IFN-γ was achieved after recovery from infection. This suggests that Cryptococcus infection per se can suppress the immune system and its elimination contributes to the reestablishment of an immune equilibrium.
Collapse
Affiliation(s)
- Jinlin Wang
- Department of Respiratory, The State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China
| | - Yunxiang Zeng
- Department of Respiratory, The State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China
| | - Weizhan Luo
- Department of Respiratory, The State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China
| | - Xiaohong Xie
- Department of Respiratory, The State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China
| | - Shiyue Li
- Department of Respiratory, The State Key Laboratory of Respiratory Disease, China Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
42
|
Ishii K, Kawakami K. [Up-to-date findings in the host defence mechanism to cryptococcus infection]. Med Mycol J 2015; 55:J107-14. [PMID: 25231225 DOI: 10.3314/mmj.55.j107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cryptococcus neoformans is a medically important opportunistic fungal pathogen with a polysaccharide capsule surrounding the yeast-like cells. In hosts with impaired cell-mediated immunity such as AIDS, uncontrolled infection causes life-threatening meningoencephalitis. In immunocompetent individuals, the host immune response usually limits the growth of the fungal pathogen at the primary infected site, where it may persist, without completely eradicated, in a latent state because of its ability to escape from killing by macrophages. Th1 response in adaptive immunity is essential for the host defense to cryptococcal infection, in which interferon (IFN)-γ polarizes innate macrophages into fungicidal M1 macrophages. Recently, we found that caspase recruitment domain family member (CARD9), an adaptor protein in a signal transduction triggered by C-type lectin receptors, plays a key role in the early production of IFN-γ at the site of infection by recruiting NK cells and CD4(+) and CD8(+) memory-phenotype T cells. We also found that IL-4 produced by Th2 cells stimulates broncoepithelial cells to secrete mucin, which may lead to promotion in the mucociliary clearance of C. neoformans. Here, we summarize the up-to-date findings in the host defense mechanism to this infection with focusing on our recent data.
Collapse
Affiliation(s)
- Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine
| | | |
Collapse
|
43
|
Sato K, Yamamoto H, Nomura T, Matsumoto I, Miyasaka T, Zong T, Kanno E, Uno K, Ishii K, Kawakami K. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs. PLoS One 2015; 10:e0138291. [PMID: 26384031 PMCID: PMC4575107 DOI: 10.1371/journal.pone.0138291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.
Collapse
Affiliation(s)
- Ko Sato
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hideki Yamamoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiki Nomura
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ikumi Matsumoto
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomomitsu Miyasaka
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tong Zong
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuko Uno
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
44
|
Rella A, Mor V, Farnoud AM, Singh A, Shamseddine AA, Ivanova E, Carpino N, Montagna MT, Luberto C, Del Poeta M. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development. Front Microbiol 2015; 6:836. [PMID: 26322039 PMCID: PMC4531891 DOI: 10.3389/fmicb.2015.00836] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023] Open
Abstract
Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | | | - Elitza Ivanova
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nicholas Carpino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Maria T Montagna
- Department of Biomedical Science and Human Oncology, Hygiene Section, University of Bari Bari, Italy
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
45
|
Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun 2014; 83:671-81. [PMID: 25422263 DOI: 10.1128/iai.02835-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dectin-2 is a C-type lectin receptor that recognizes high mannose polysaccharides. Cryptococcus neoformans, a yeast-form fungal pathogen, is rich in polysaccharides in its cell wall and capsule. In the present study, we analyzed the role of Dectin-2 in the host defense against C. neoformans infection. In Dectin-2 gene-disrupted (knockout) (Dectin-2KO) mice, the clearance of this fungus and the inflammatory response, as shown by histological analysis and accumulation of leukocytes in infected lungs, were comparable to those in wild-type (WT) mice. The production of type 2 helper T (Th2) cytokines in lungs was higher in Dectin-2KO mice than in WT mice after infection, whereas there was no difference in the levels of production of Th1, Th17, and proinflammatory cytokines between these mice. Mucin production was significantly increased in Dectin-2KO mice, and this increase was reversed by administration of anti-interleukin 4 (IL-4) monoclonal antibody (MAb). The levels of expression of β1-defensin, cathelicidin, surfactant protein A (Sp-A), and Sp-D in infected lungs were comparable between these mice. In in vitro experiments, IL-12p40 and tumor necrosis factor alpha (TNF-α) production and expression of CD86 and major histocompatibility complex (MHC) class II by bone marrow-derived dendritic cells and alveolar macrophages were completely abrogated in Dectin-2KO mice. Finally, the disrupted lysates of C. neoformans, but not of whole yeast cells, activated Dectin-2-triggered signaling in an assay with nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Dectin-2 may oppose the Th2 response and IL-4-dependent mucin production in the lungs after infection with C. neoformans, and it may not be required for the production of Th1, Th17, and proinflammatory cytokines or for clearance of this fungal pathogen.
Collapse
|
46
|
Azevedo MID, Ferreiro L, Da Silva AS, Tonin AA, Ruchel JB, Rezer JF, França RT, Zimmermann CE, Leal DB, Duarte MM, Lopes ST, Flores MM, Fighera R, Santurio JM. E-NTPDase and E-ADA activities in rats experimental infected by Cryptococcus neoformans. Vet Microbiol 2014; 174:206-13. [DOI: 10.1016/j.vetmic.2014.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022]
|
47
|
Schulze B, Piehler D, Eschke M, von Buttlar H, Köhler G, Sparwasser T, Alber G. CD4(+) FoxP3(+) regulatory T cells suppress fatal T helper 2 cell immunity during pulmonary fungal infection. Eur J Immunol 2014; 44:3596-604. [PMID: 25187063 DOI: 10.1002/eji.201444963] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/11/2022]
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans causes lung inflammation and fatal meningitis in immunocompromised patients. Regulatory T (Treg) cells play an important role in controlling immunity and homeostasis. However, their functional role during fungal infection is largely unknown. In this study, we investigated the role of Treg cells during experimental murine pulmonary C. neoformans infection. We show that the number of CD4(+) FoxP3(+) Treg cells in the lung increases significantly within the first 4 weeks after intranasal infection of BALB/c wild-type mice. To define the function of Treg cells we used DEREG mice allowing selective depletion of CD4(+) FoxP3(+) Treg cells by application of diphtheria toxin. In Treg cell-depleted mice, stronger pulmonary allergic inflammation with enhanced mucus production and pronounced eosinophilia, increased IgE production, and elevated fungal lung burden were found. This was accompanied by higher frequencies of GATA-3(+) T helper (Th) 2 cells with elevated capacity to produce interleukin (IL)-4, IL-5, and IL-13. In contrast, only a mild increase in the Th1-associated immune response unrelated to the fungal infection was observed. In conclusion, the data demonstrate that during fungal infection pulmonary Treg cells are induced and preferentially suppress Th2 cells thereby mediating enhanced fungal control.
Collapse
Affiliation(s)
- Bianca Schulze
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Feretzaki M, Hardison SE, Wormley FL, Heitman J. Cryptococcus neoformans hyperfilamentous strain is hypervirulent in a murine model of cryptococcal meningoencephalitis. PLoS One 2014; 9:e104432. [PMID: 25093333 PMCID: PMC4122496 DOI: 10.1371/journal.pone.0104432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that causes lethal infections of the lung and central nervous system in immunocompromised individuals. C. neoformans has a defined bipolar sexual life cycle with a and α mating types. During the sexual cycle, which can occur between cells of opposite mating types (bisexual reproduction) or cells of one mating type (unisexual reproduction), a dimorphic transition from yeast to hyphal growth occurs. Hyphal development and meiosis generate abundant spores that, following inhalation, penetrate deep into the lung to enter the alveoli, germinate, and establish a pulmonary infection growing as budding yeast cells. Unisexual reproduction has been directly observed only in the Cryptococcus var. neoformans (serotype D) lineage under laboratory conditions. However, hyphal development has been previously associated with reduced virulence and the serotype D lineage exhibits limited pathogenicity in the murine model. In this study we show that the serotype D hyperfilamentous strain XL280α is hypervirulent in an animal model. It can grow inside the lung of the host, establish a pulmonary infection, and then disseminate to the brain to cause cryptococcal meningoencephalitis. Surprisingly, this hyperfilamentous strain triggers an immune response polarized towards Th2-type immunity, which is usually observed in the highly virulent sibling species C. gattii, responsible for the Pacific Northwest outbreak. These studies provide a technological advance that will facilitate analysis of virulence genes and attributes in C. neoformans var. neoformans, and reveal the virulence potential of serotype D as broader and more dynamic than previously appreciated.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sarah E. Hardison
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Peret G, Picard A, Corneloup O, Begueret H, Raherison-Semjen C. [Cryptococcal infection and sarcoidosis: a coincidence?]. REVUE DE PNEUMOLOGIE CLINIQUE 2014; 70:164-168. [PMID: 24210157 DOI: 10.1016/j.pneumo.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
INTRODUCTION We report a case of cryptococcal infection that underwent in a patient with a medical history of asymptomatic sarcoidosis. This finding seems to be not incidental. CASE REPORT A 35-years-old female was referred to hospital for a community-acquired pneumonia with pleural involvement. A physical examination showed a pleural syndrome. Chest imaging showed a parenchymal involvement with pleural effusion and numerous mediastinal nodes. Fiberoptic bronchoscopy revealed an obstruction of the right apical bronchus of the lower lobe. Biopsies and bronchoalveolar lavage confirmed a cryptococcal infection. The disease was considered as disseminated with a urinary and neurologic involvement. The outcome was fair under prolonged antifungal therapy. CONCLUSIONS Cryptococcal infection is generally associated with immunosuppression. We suggest that sarcoidosis, although non symptomatic, may be a condition that promote the onset of cryptococcal infection. Even rare, cryptococcal infection is the most frequent opportunistic infection recorded with sarcoidosis patients. Histologic similarities between sarcoidosis and cryptococcal infection and the role of the macrophages which phagocyte the Cryptococcus neoformans are one of the hypothesis to assess these pathologic findings. A register is warranted to recover all opportunistic infection related to sarcoidosis in order to better understand the pathogeny.
Collapse
Affiliation(s)
- G Peret
- Service des maladies respiratoires, CHU de Bordeaux, groupe hospitalier sud, hôpital Haut-Leveque, avenue de Magellan, 33604 Pessac cedex, France; Service de pneumologie, CHU Sud Réunion, GHSR, avenue Président-Mitterrand, 97410 Saint-Pierre, Réunion.
| | - A Picard
- Service des maladies respiratoires, CHU de Bordeaux, groupe hospitalier sud, hôpital Haut-Leveque, avenue de Magellan, 33604 Pessac cedex, France
| | - O Corneloup
- Unité d'imagerie thoracique et cardiovasculaire, service d'imagerie médicale-radiologie diagnostique et thérapeutique, CHU de Bordeaux, groupe hospitalier sud, hôpital Haut-Leveque, avenue de Magellan, 33604 Pessac cedex, France
| | - H Begueret
- Service d'anatomie et de cytologie pathologiques, CHU de Bordeaux, groupe hospitalier sud, hôpital Haut-Leveque, avenue de Magellan, 33604 Pessac cedex, France
| | - C Raherison-Semjen
- Service des maladies respiratoires, CHU de Bordeaux, groupe hospitalier sud, hôpital Haut-Leveque, avenue de Magellan, 33604 Pessac cedex, France
| |
Collapse
|
50
|
Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans. Infect Immun 2014; 82:1606-15. [PMID: 24470469 DOI: 10.1128/iai.01089-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported that Cryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection with C. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible to C. neoformans infection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection.
Collapse
|