1
|
Su D, Liu Y, Chang J, Yang Y, He X, Bai X. Improved Antifouling and Anticorrosion Performance of CeO 2 Nanocoating Prepared by Mussel-Inspired Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3951-3960. [PMID: 39903511 DOI: 10.1021/acs.langmuir.4c04151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Biofouling, the accumulation of organisms on submerged surfaces, significantly impairs vessel performance and hinders maritime industry development. The development of effective coatings has become an efficient solution to this problem. Cerium oxide nanoparticles (CeO2NPs) were synthesized on dopamine-modified 5083 aluminum alloy (Al) surfaces by mussel-inspired chemistry. The CeO2NPs can be fully exposed to the coating surface using this method, and CeO2 nanocoating exhibited haloperoxidase-like activity. CeO2 nanocoatings have an excellent ability to inhibit the attachment of P. tricornutum, E. coli, and Bacillussp., and their numbers were reduced by 96.03%, 94.41%, and 88.44%, respectively. The outstanding antiadhesion capability of the coating was attributed to its potent antibacterial properties and quorum quenching effect. Furthermore, the CeO2 nanocoating demonstrated outstanding corrosion resistance, with an impedance modulus 46.9 times higher than that of the Al sample. This approach presents a sustainable and environmentally friendly surface modification model for enhancing the performance of antifouling and anticorrosion in aluminum materials.
Collapse
Affiliation(s)
- Dan Su
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Yuhan Liu
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Jiangfan Chang
- School of Marine Engineering, Jimei University, Xiamen 361021, China
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, U.K
| | - Xiaoyan He
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xiuqin Bai
- State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
2
|
Li Y, Zhou Y, Lin J, Liu H, Liu X. Antifouling Slippery Surface with Enhanced Stability for Marine Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5598. [PMID: 39597421 PMCID: PMC11595577 DOI: 10.3390/ma17225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling. SLIPSs have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. To address these issues, a novel slippery liquid-infused surface (STASL) was developed on TC4 through the integration of hydroxyl end-blocked dimethylsiloxane (OH-PDMS), a silane coupling agent (KH550), and nano-titanium dioxide loaded with silver particles (TiO2-Ag, anatase) and silicone oil, thereby ensuring stable performance in both dynamic and static conditions. The as-prepared surfaces exhibited excellent sliding capabilities for water, acidic, alkaline, and saline droplets, achieving speeds of up to 2.859 cm/s. Notably, the STASL demonstrated superior oil retention and slippery stability compared to SLIPS, particularly at increased rotational speeds. With remarkable self-cleaning properties, the STASL significantly reduced the adhesion of proteins (50.0%), bacteria (77.8%), and algae (78.8%) compared to the titanium alloy. With these outstanding properties, the STASL has emerged as a promising solution for mitigating marine biofouling and corrosion on titanium alloys.
Collapse
Affiliation(s)
| | | | | | | | - Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (Y.L.); (Y.Z.); (J.L.); (H.L.)
| |
Collapse
|
3
|
Bina M, Coats JP, Skowicki M, Malekovic M, Mihali V, Palivan CG. Hybrid Planar Copolymer Membranes with Dual Functionality against Bacteria Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23178-23188. [PMID: 39453821 DOI: 10.1021/acs.langmuir.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Antibacterial surfaces can be classified into two categories: passive surfaces, which repel bacteria by affecting surface wettability, and active surfaces, which have bactericidal properties that disrupt cell membranes upon contact. With the increasing demand for effective antibacterial solutions that combine these properties, advanced strategies are concentrating on developing surfaces with dual antimicrobial functionalities. Here, we present surfaces with nanotexture resulting from the phase separation of two different amphiphilic block copolymers displaying efficient dual functionality against bacteria growth. This approach combines the inherent antifouling properties of poly(ethylene oxide) as the hydrophilic domain of one copolymer with the antimicrobial effect of a peptide covalently attached to the hydrophilic domain of the second copolymer. The planar membranes are generated by self-assembly of the amphiphilic copolymer mixture deposited by Langmuir-Blodgett and Langmuir-Schaffer methods on a solid support, followed by covalent attachment of the antimicrobial peptides to one of the copolymers, specifically functionalized. Combining both copolymers, in terms of their properties and functionalities on the same surface, significantly limitsEscherichia colibiofilm formation and effectively eradicates bacteria during short-term incubation. While such multifunctional antimicrobial planar polymer membranes show promising potential in the design of fine coatings for small surgical or implantable devices, they are not limited to this application. Their use can be completely changed by attaching other active molecules or assemblies to induce specific multifunctionality for the targeted application.
Collapse
Affiliation(s)
- Maryame Bina
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - John P Coats
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Mirela Malekovic
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
| | - Voichita Mihali
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Basel 4002, Switzerland
- NCCR, Swiss National Centre of Competence in Research, Molecular Systems Engineering, Basel 4002, Switzerland
| |
Collapse
|
4
|
Cherif W, Ktari L, Hassen B, Ismail A, El Bour M. Epibiotic Bacteria Isolated from the Non-Indigenous Species Codium fragile ssp. fragile: Identification, Characterization, and Biotechnological Potential. Microorganisms 2024; 12:1803. [PMID: 39338477 PMCID: PMC11434462 DOI: 10.3390/microorganisms12091803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 09/30/2024] Open
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs.
Collapse
Affiliation(s)
| | - Leila Ktari
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| | | | | | - Monia El Bour
- National Institute of Marine Sciences and Technologies (INSTM), University of Carthage, Tunis 2025, Tunisia; (W.C.); (B.H.); (A.I.)
| |
Collapse
|
5
|
Chukwudulue UM, Barger N, Dubovis M, Luzzatto Knaan T. Natural Products and Pharmacological Properties of Symbiotic Bacillota (Firmicutes) of Marine Macroalgae. Mar Drugs 2023; 21:569. [PMID: 37999393 PMCID: PMC10672036 DOI: 10.3390/md21110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The shift from the terrestrial to the marine environment to discover natural products has given rise to novel bioactive compounds, some of which have been approved for human medicine. However, the ocean, which makes up nearly three-quarters of the Earth's surface, contains macro- and microorganisms whose natural products are yet to be explored. Among these underexplored marine organisms are macroalgae and their symbiotic microbes, such as Bacillota, a phylum of mostly Gram-positive bacteria previously known as Firmicutes. Macroalgae-associated Bacillota often produce chemical compounds that protect them and their hosts from competitive and harmful rivals. Here, we summarised the natural products made by macroalgae-associated Bacillota and their pharmacological properties. We discovered that these Bacillota are efficient producers of novel biologically active molecules. However, only a few macroalgae had been investigated for chemical constituents of their Bacillota: nine brown, five red and one green algae. Thus, Bacillota, especially from the marine habitat, should be investigated for potential pharmaceutical leads. Moreover, additional diverse biological assays for the isolated molecules of macroalgae Bacillota should be implemented to expand their bioactivity profiles, as only antibacterial properties were tested for most compounds.
Collapse
Affiliation(s)
| | | | | | - Tal Luzzatto Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 103301, Israel; (U.M.C.); (N.B.); (M.D.)
| |
Collapse
|
6
|
Nguyen D, Ovadia O, Guttman L. Temporal force governs the microbial assembly associated with Ulva fasciata (Chlorophyta) from an integrated multi-trophic aquaculture system. Front Microbiol 2023; 14:1223204. [PMID: 37869666 PMCID: PMC10585273 DOI: 10.3389/fmicb.2023.1223204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
Ulva spp., one of the most important providers of marine ecosystem services, has gained substantial attention lately in both ecological and applicational aspects. It is known that macroalgae and their associated microbial community form an inseparable unit whose intimate relationship can affect the wellbeing of both. Different cultivation systems, such as integrated multi-trophic aquaculture (IMTA), are assumed to impact Ulva bacterial community significantly in terms of compositional guilds. However, in such a highly dynamic environment, it is crucial to determine how the community dynamics change over time. In the current study, we characterized the microbiota associated with Ulva fasciata grown as a biofilter in an IMTA system in the Gulf of Aqaba (Eilat, Israel) over a developmental period of 5 weeks. The Ulva-associated microbial community was identified using the 16S rRNA gene amplicon sequencing technique, and ecological indices were further analyzed. The Ulva-associated microbiome revealed a swift change in composition along the temporal succession, with clusters of distinct communities for each timepoint. Proteobacteria, Bacteroidetes, Planctomycetes, and Deinococcus-Thermus, the most abundant phyla that accounted for up to 95% of all the amplicon sequence variants (ASVs) found, appeared in all weeks. Further analyses highlighted microbial biomarkers representing each timepoint and their characteristics. Finally, the presence of highly abundant species in Ulva microbiota yet underestimated in previous research (such as phyla Deinococcus-Thermus, families Saprospiraceae, Thiohalorhabdaceae, and Pirellulaceae) suggests that more attention should be paid to the temporal succession of the assembly of microbes inhabiting macroalgae in aquaculture, in general, and IMTA, in particular. Characterizing bacterial communities associated with Ulva fasciata from an IMTA system provided a better understanding of their associated microbial dynamics and revealed this macroalgae's adaptation to such a habitat.
Collapse
Affiliation(s)
- Dzung Nguyen
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat, Israel
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
| | - Ofer Ovadia
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Lior Guttman
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, Eilat, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
7
|
Kusmita L, Nur Prasetyo Edi A, Dwi Franyoto Y, Haryanti S, Dwi Retno Nurcahyanti A. Sun protection and antibacterial activities of carotenoids from the soft coral Sinularia sp. symbiotic bacteria from Panjang Island, North Java Sea. Saudi Pharm J 2023; 31:101680. [PMID: 37448846 PMCID: PMC10336683 DOI: 10.1016/j.jsps.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Carotenoids have shown beneficial applications in cosmetology, pharmacology, and medicine. However, environmental stress in the marine environment can trigger the production of unique secondary metabolites, such as carotenoids. These compounds can also be sustainably produced by symbiotic bacteria. We hypothesized that the soft corals in tropical regions may produce diverse biological secondary metabolites, including carotenoids, both by the host organism and their bacterial symbiont. The unique carotenoids may provide promising biological activity such as antioxidant, UV photoprotector, and antibacterial activities. To this end, we isolated and characterized the carotenoids isolated from the bacterial symbiont of Sinularia sp., a soft coral from Panjang Island, North Java Sea, strain 19. PP.Sc.13. Bacterial identification was performed using DNA barcoding of the 16S rRNA region. Identification of carotenoids was carried out using a spectrophotometer, High-Performance Liquid Chromatography (HPLC), and attenuated total reflection fourier-transformed infrared (ATR-FTIR) spectroscopy. The antioxidant activity was estimated using the diphenylpicrylhydrazyl (DPPH) method, while the Sun Protection Factor (SPF) and % transmission of erythema and pigmentation were determined based on colorimetric methods. The antibacterial activity assay was carried out using the agar diffusion method against two multidrug-resistant bacteria. The bacterial symbiont was identified as Virgibacillus sp. and the carotenoids isolated from this symbiont exhibited significant antioxidant activity and extra sun protection effect, thus categorized as UVA sunblock. Furthermore, the isolated carotenoids exhibited antibacterial activities against Methicillin Resistant-Staphylococcus aureus (MRSA) and Multidrug-resistant (MDR) Escherichia coli. This study provides evidence of the carotenoids produced by the soft coral bacterial symbiont Virgibacillus sp., which may be used as an antioxidant, sun protection, and antibacterial agent. Further investigation of the de novo biological production of carotenoids by Virgibacillus sp. is warranted.
Collapse
Affiliation(s)
- Lia Kusmita
- STIFAR Yayasan Pharmasi Semarang Letjend Sarwo Edhie Wibowo Km 1, Semarang, Indonesia
| | | | - Yuvianti Dwi Franyoto
- STIFAR Yayasan Pharmasi Semarang Letjend Sarwo Edhie Wibowo Km 1, Semarang, Indonesia
| | - Sri Haryanti
- STIFAR Yayasan Pharmasi Semarang Letjend Sarwo Edhie Wibowo Km 1, Semarang, Indonesia
| | - Agustina Dwi Retno Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
8
|
Valente S, Oliveira F, Ferreira IJ, Paiva A, Sobral RG, Diniz MS, Gaudêncio SP, Duarte ARC. Hydrophobic DES Based on Menthol and Natural Organic Acids for Use in Antifouling Marine Coatings. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9989-10000. [PMID: 37448722 PMCID: PMC10337252 DOI: 10.1021/acssuschemeng.3c01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Indexed: 07/15/2023]
Abstract
Marine biofouling negatively impacts industries with off-shore infrastructures, such as naval, oil, and aquaculture. To date, there are no ideal sustainable, economic, and environmentally benign solutions to deal with this phenomenon. The advances achieved in green solvents, as well as its application in different industries, such as pharmaceutical and biotechnology, have promoted the emergence of deep eutectic systems (DES). These eutectic systems have applications in various fields and can be revolutionary in the marine-based industrial sector. In this study, the main objective was to investigate the potential use of hydrophobic DES (HDES) based on menthol and natural organic acids for their use as marine antifouling coatings. Our strategy encompassed the physicochemical characterization of different formulations, which allowed us to identify the most appropriate molar ratio and intermolecular interactions for HDES formations. The miscibility of the resulting HDES with the marine coating has been evaluated and proven to be successful. The Men/OL (1:1) system proved to be the most promising in terms of cost-production and thus was the one used in subsequent antifouling tests. The cytotoxicity of this HDES was evaluated using an in vitro cell model (HaCat cells) showing no significant toxicity. Furthermore, the application of this system incorporated into coatings that are used in marine structures was also studied using marine species (Mytilus edulis mussels and Patella vulgata limpets) to evaluate both their antifouling and ecotoxicity effects. HDES Men/OL (1:1) incorporated in marine coatings was promising in reducing marine macrofouling and also proved to be effective at the level of microfouling without viability impairment of the tested marine species. It was revealed to be more efficient than using copper oxide, metallic copper, or ivermectin as antifouling agents. Biochemical assays performed on marine species showed that this HDES does not induce oxidative stress in the tested species. These results are a strong indication of the potential of this HDES to be sustainable and efficiently used in marine fouling control technologies.
Collapse
Affiliation(s)
- Sara Valente
- LAQV-REQUIMTE,
Chemistry Department, NOVA School of Science
and Technology, 2829-516 Caparica, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- UCIBIO,
Chemistry and Life Sciences Departments, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Filipe Oliveira
- LAQV-REQUIMTE,
Chemistry Department, NOVA School of Science
and Technology, 2829-516 Caparica, Portugal
| | - Inês João Ferreira
- LAQV-REQUIMTE,
Chemistry Department, NOVA School of Science
and Technology, 2829-516 Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE,
Chemistry Department, NOVA School of Science
and Technology, 2829-516 Caparica, Portugal
| | - Rita G. Sobral
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- UCIBIO,
Chemistry and Life Sciences Departments, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Mário S. Diniz
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- UCIBIO,
Chemistry and Life Sciences Departments, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
- UCIBIO,
Chemistry and Life Sciences Departments, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Cruz Duarte
- LAQV-REQUIMTE,
Chemistry Department, NOVA School of Science
and Technology, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Experimental and theoretical investigation of structure-magnetic properties relationships in a new heteroleptic one-dimensional triple bridged azido/acetato/DMSO copper (II) coordination polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Alencar AAM, Delesposte JE, Mainier FB, Mattos LV. Industrial sustainability in architectural paints - a bibliometric research. INTERNATIONAL JOURNAL OF INNOVATION AND TECHNOLOGY MANAGEMENT 2022. [DOI: 10.1142/s0219877023500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett 2022; 25:1410-1420. [PMID: 35384221 DOI: 10.1111/ele.14006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Microorganisms mainly exist within complex networks of ecological interactions. Given that the growth and survival of community members frequently depend on an obligate exchange of essential metabolites, it is generally unclear how such communities can persist despite the destabilising force of ecological disturbance. Here we address this issue using a population dynamics model. In contrast to previous work that suggests the potential for obligate interaction networks to emerge is limited, we find the opposite pattern: ecological disturbance favours both specific network topologies and cooperative cross-feeding among community members. These results establish environmental perturbations as a key driver shaping the architecture of microbial interaction networks.
Collapse
Affiliation(s)
- Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
12
|
Seaweed-associated heterotrophic bacteria: are they future novel sources of antimicrobial agents against drug-resistant pathogens? Arch Microbiol 2022; 204:232. [PMID: 35355132 DOI: 10.1007/s00203-022-02835-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Emergence of multidrug-resistant microorganisms and requirements for novel antimicrobial compounds necessitate exploring newer habitats to develop potential bioactive leads. Culture-contingent analysis of heterotrophic bacterial flora from the seaweeds led to the isolation of bioactive strains possessing potential antibacterial properties against wide-ranging clinical pathogens viz., methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VREfs). Seven of the most active strains belonging to the phylum Firmicutes isolated from a brown seaweed (Phaeophyceae) Sargassum wightii exhibited spot-over-lawn assay guided inhibition zone of larger than 30 mm. Integrated phenotypic and genotypic studies have led to the characterization of the seaweed-associated bacteria particularly belonging to the phylum Firmicutes. The organic extracts of the studied bacteria exhibited promising antibacterial properties against MRSA and VREfs with minimum inhibitory concentration ranging between 6.25 and 12.50 μg/mL. Time-kill kinetic profiles of those bacteria displayed rapid bactericidal activity against both E. coli and MRSA, showing a ≥ 3log10 reduction in viable cell count than the initial. Among the studied bioactive Bacillus spp, B. tequilensis MTCC13043 and B. altiitudinis MTCC13046 were found to possess functional polyketide synthase (pks) gene (MW027664 and MW027660) that could be amplified. The outcome of amplified genes encrypting for polyketide synthase in conjunction with antibacterial activities unveiled the broad-spectrum antimicrobial activities of the marine heterotrophic Firmicutes, which could be further used against the emergent problem of antibiotic-resistant bacterial pathogens.
Collapse
|
13
|
Kordas G. Nanocontainers Against Biofouling and Corrosion Degradation of Materials: A Short Review With Prospects. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.813908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The current state of the art in active corrosion prevention is based on the use of macromolecular containers that can store and release corrosion inhibitors particularly to the surface when corrosion develops. These corrosion inhibitor-containing nano- or microcontainers are subsequently infused into coatings, allowing them to self-heal. Especially, nanocontainers for self-healing coatings with controlled corrosion inhibitors, energy storage, cement fracture repair, and antifouling metal protection have recently been developed. Incorporating these nanocontainers into materials in small amounts (e.g., 5–10 wt% in paints) provided anticorrosion protection that was incomparably better than the current approaches. Furthermore, the materials developed had multifunctional properties, including self-healing, antibacterial, and antimicrobial properties. The primary goal of this review was to compile the different research studies that have been published in a variety of publications so that the reader may better understand the potential of these new types of nanotechnology and the prospects for nanocontainers.
Collapse
|
14
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
15
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
16
|
Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules - a mini-review (2014-2020). BIOFOULING 2020; 36:1210-1226. [PMID: 33401982 DOI: 10.1080/08927014.2020.1864343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In the present review, 182 antifouling (AF) natural products from marine microorganisms, algae and marine invertebrates reported from August 2014 to May 2020 are presented. Amongst these compounds, over half were isolated from marine-derived microorganisms, including 70 compounds from fungi and 31 compounds from bacteria. The structure-relationship of some of these compounds is also briefly discussed. Based on the work reported, a general workflow was drafted to refine the procedures for the commercialization of any novel AF compounds. Finally, butenolide, which is considered a potential environmentally friendly antifoulant, is used as a case study to show the procedures involved in AF compound work from the aspect of discovery, structure optimization, toxicity, stability, AF mechanism and coating incorporation, which highlight the current challenges and future perspectives in AF compound research.
Collapse
Affiliation(s)
- Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuan-Hai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
17
|
Alemán-Vega M, Sánchez-Lozano I, Hernández-Guerrero CJ, Hellio C, Quintana ET. Exploring Antifouling Activity of Biosurfactants Producing Marine Bacteria Isolated from Gulf of California. Int J Mol Sci 2020; 21:E6068. [PMID: 32842499 PMCID: PMC7504147 DOI: 10.3390/ijms21176068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Biofouling causes major problems and economic losses to marine and shipping industries. In the search for new antifouling agents, marine bacteria with biosurfactants production capability can be an excellent option, due to the amphipathic surface-active characteristic that confers antimicrobial and antibiofilm activities. The aim of this study was to evaluate the antifouling activity of biosurfactants producing marine bacteria from the Gulf of California. The cell free culture supernatant (CFCS) of Bacillus niabensis (S-69), Ralstonia sp. (S-74) (isolated from marine sediment) and of B. niabensis (My-30) (bacteria associated to the sponge Mycale ramulosa) were screened for production of biosurfactants (using hemolysis and drop collapse test, oil displacement and emulsifying activity). The toxicity and antifouling activity were evaluated against biofoulers (bacteria forming biofilm and macrofoulers) both in laboratory and field assays. The results indicate that all bacteria were biosurfactant producers, but the higher capability was shown by B. niabensis (My-30) with high emulsifying properties (E24) of 71%. The CFCS showed moderate toxicity but were considered non-toxic against Artemia franciscana at low concentrations. In the antifouling assay, the CFCS of both strains of B. niabensis showed the best results for the reduction of the biofilm formation (up 50%) against all Gram-positive bacteria and most Gram-negative bacteria with low concentrations. In the field assay, the CFCS of B. niabensis (My-30) led to the reduction of 30% of biofouling compared to the control. The results indicate that the biosurfactant produced by B. niabensis (My-30) has promising antifouling activity.
Collapse
Affiliation(s)
- Monserrat Alemán-Vega
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Ilse Sánchez-Lozano
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claudia J. Hernández-Guerrero
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico; (M.A.-V.); (I.S.-L.)
| | - Claire Hellio
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, Institut Universitaire Européen de la Mer, F-29280 Plouzané, France
| | - Erika T. Quintana
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Alcaldía Miguel Hidalgo, C.P. 11340 Ciudad de Mexico, Mexico;
| |
Collapse
|
18
|
Sharma H, Stephen NM, Gopal SS, Udayawara Rudresh D, Kavalappa YP, Haranahalli Shivarudrappa A, Gavirangappa H, Ponesakki G. Phenolic Extract of Seagrass, Halophila ovalis Activates Intrinsic Pathway of Apoptosis in Human Breast Cancer (MCF-7) Cells. Nutr Cancer 2020; 73:307-317. [PMID: 32238022 DOI: 10.1080/01635581.2020.1743874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The marine ecosystem is considered as a treasure of numerous novel biologically active molecules. We investigated the anticancer potential of the phenolic extract of Halophila ovalis in breast cancer (MCF-7) cells and characterized the possible underlying molecular mechanism. The phenolic extract (5 µl) of H. ovalis effectively inhibited the growth of MCF-7 cells. The results of DAPI staining indicated that this phenolic extract potently induces apoptosis in MCF-7 cells which was observed by increased chromatin condensation in the treated cells. An increased expression of the active fragments of an executioner caspase, caspase 3 in phenolic extract-treated MCF-7 cells further confirms this apoptosis induction. In consequence, the loss of mitochondrial membrane potential was noticed in treated cells. The protein expression analyzes show decreased expression of the anti-apoptotic protein, Bcl-2, and DNA repair enzyme, PARP in treated cells indicating the probable molecular targets of apoptosis. Further, the phenolic extract of H. ovalis blocked the antioxidant defense system in MCF-7 cells by down-regulating the protein expression of a major transcription factor, Nrf-2 and regulatory antioxidant enzymes, SOD-2 and HO-1. These results show the presence of chemopreventive compound(s) in the phenolic extract, which offers a platform for future studies to identify the active principles.
Collapse
Affiliation(s)
- Harshita Sharma
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India.,Department of Biotechnology and Microbiology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Nimish Mol Stephen
- Department of Fish Processing Technology, Fisheries College and Research Institute, Tamilnadu Fisheries University, Ponneri, Tamilnadu, India
| | - Sowmya Shree Gopal
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Deepika Udayawara Rudresh
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Yogendra Prasad Kavalappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | | | - Hithamani Gavirangappa
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Ganesan Ponesakki
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
19
|
Marine macroalgae-associated heterotrophic Firmicutes and Gamma-proteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch Microbiol 2020; 202:905-920. [DOI: 10.1007/s00203-019-01800-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 07/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
20
|
Liang Z, Liu F, Wang W, Zhang P, Sun X, Wang F, Kell H. High-throughput sequencing revealed differences of microbial community structure and diversity between healthy and diseased Caulerpa lentillifera. BMC Microbiol 2019; 19:225. [PMID: 31615401 PMCID: PMC6794861 DOI: 10.1186/s12866-019-1605-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Caulerpa lentillifera is one of the most important economic green macroalgae in the world. Increasing demand for consumption has led to the commercial cultivation of C. lentillifera in Japan and Vietnam in recent decades. Concomitant with the increase of C. lentillifera cultivation is a rise in disease. We hypothesise that epiphytes or other microorganisms outbreak at the C. lentillifera farm may be an important factor contributing to disease in C. lentillifera. The main aims are obtaining differences in the microbial community structure and diversity between healthy and diseased C. lentillifera and key epiphytes and other microorganisms affecting the differences through the results of high-throughput sequencing and bioinformatics analysis in the present study. Results A total of 14,050, 2479, and 941 operational taxonomic units (OTUs) were obtained from all samples using 16S rDNA, 18S rDNA, and internal transcribed spacer (ITS) high-throughput sequencing, respectively. 16S rDNA sequencing and 18S rDNA sequencing showed that microbial community diversity was higher in diseased C. lentillifera than in healthy C. lentillifera. Both PCoA results and UPGMA results indicated that the healthy and diseased algae samples have characteristically different microbial communities. The predominant prokaryotic phyla were Proteobacteria, Planctomycetes, Bacteroidetes, Cyanobacteria, Acidobacteria, Acidobacteria and Parcubacteria in all sequences. Chlorophyta was the most abundant eukaryotic phylum followed by Bacillariophyta based on 18S rDNA sequencing. Ascomycota was the dominant fungal phylum detected in healthy C. lentillifera based on ITS sequencing, whereas fungi was rare in diseased C. lentillifera, suggesting that Ascomycota was probably fungal endosymbiont in healthy C. lentillifera. There was a significantly higher abundance of Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis in diseased C. lentillifera than in healthy C. lentillifera. Disease outbreaks significantly change carbohydrate metabolism, environmental information processing and genetic information processing of prokaryotic communities in C. lentillifera through predicted functional analyses using the Tax4Fun tool. Conclusions Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis outbreak at the C. lentillifera farm sites was an important factor contributing to disease in C. lentillifera.
Collapse
Affiliation(s)
- Zhourui Liang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuli Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Wenjun Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Pengyan Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiutao Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feijiu Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heather Kell
- College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
21
|
Supardy NA, Ibrahim D, Mat Nor SR, Noordin WNM. Bioactive Compounds of Pseudoalteromonas sp. IBRL PD4.8 Inhibit Growth of Fouling Bacteria and Attenuate Biofilms of Vibrio alginolyticus FB3. Pol J Microbiol 2019; 68:21-33. [PMID: 31050250 PMCID: PMC7256726 DOI: 10.21307/pjm-2019-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2018] [Indexed: 02/04/2023] Open
Abstract
Biofouling is a phenomenon that describes the fouling organisms attached to man-made surfaces immersed in water over a period of time. It has emerged as a chronic problem to the oceanic industries, especially the shipping and aquaculture fields. The metal-containing coatings that have been used for many years to prevent and destroy biofouling are damaging to the ocean and many organisms. Therefore, this calls for the critical need of natural product-based antifoulants as a substitute for its toxic counterparts. In this study, the antibacterial and antibiofilm activities of the bioactive compounds of Pseudoalteromonas sp. IBRL PD4.8 have been investigated against selected fouling bacteria. The crude extract has shown strong antibacterial activity against five fouling bacteria, with inhibition zones ranging from 9.8 to 13.7 mm and minimal inhibitory concentrations of 0.13 to 8.0 mg/ml. Meanwhile, the antibiofilm study has indicated that the extract has attenuated the initial and pre-formed biofilms of Vibrio alginolyticus FB3 by 45.37 ± 4.88% and 29.85 ± 2.56%, respectively. Moreover, micrographs from light and scanning electron microscope have revealed extensive structural damages on the treated biofilms. The active fraction was fractionated with chromatographic methods and liquid chromatography-mass spectroscopy analyses has further disclosed the presence of a polyunsaturated fatty acid 4,7,10,13-hexadecatetraenoic acid (C16H24O2). Therefore, this compound was suggested as a potential bioactive compound contributing to the antibacterial property. In conclusion, Pseudoalteromonas sp. IBRL PD4.8 is a promising source as a natural antifouling agent that can suppress the growth of five fouling bacteria and biofilms of V. alginolyticus FB3.
Collapse
Affiliation(s)
- Nor Afifah Supardy
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | - Darah Ibrahim
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | - Sharifah Radziah Mat Nor
- Industrial Biotechnology Research Laboratory (IBRL), School of Biological Sciences, Universiti Sains Malaysia , Penang , Malaysia
| | | |
Collapse
|
22
|
Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS One 2019; 14:e0213797. [PMID: 30875400 PMCID: PMC6420000 DOI: 10.1371/journal.pone.0213797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/28/2019] [Indexed: 01/22/2023] Open
Abstract
Tunicates (Ascidians, sea squirts) are marine protochordates, which live sedentary or sessile in colonial or solitary forms. These invertebrates have to protect themselves against predators and invaders. A most successful strategy, to not being eaten by predators and prevent pathogenic microorganisms to settle, is the usage of chemical molecules for defence. To accomplish this, tunicates take advantage of the specialized metabolites produced by the bacteria associated with them. Therefore, the microbiome of the tunicates can be regarded as a promising bioresource for bacterial strains producing compounds with antibacterial activity. The aim of this study was to test this hypothesis by (i) isolation of tunicate-associated bacteria, (ii) analysis of the antibacterial activities of these strains, and (iii) purification and structure elucidation of an active compound derived from this bioresource. In total, 435 bacterial strains were isolated and thereof 71 (16%) showed antibacterial activity against multidrug resistant (MDR) bacteria. Therefrom, the ethyl acetate crude extracts from liquid fermentations of 25 strains showed activity against MDR Extended-Spectrum Beta-Lactamase (MDR-ESBL) Escherichia coli, MDR Bacillus cereus, Micrococcus luteus, and Bacillus megaterium. Phenotypic analysis based on 16S rDNA sequencing revealed the active strains belonging to different genera and phyla, like Bacillus, Pantoea, Pseudoalteromonas, Salinicola, Streptomyces, Vibrio and Virgibacillus. To obtain first insights into the molecules responsible for the antibacterial activities observed, strain Pseudoalteromonas rubra TKJD 22 was selected for large-scale fermentation and the active compound was isolated. This allowed the purification and structure elucidation of isatin, a compound known for its strong biological effects, thereunder inhibition of Gram-positive and Gram-negative pathogens.
Collapse
|
23
|
Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Botana LM, Gaspar H, Pedrosa R. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Salta M, Dennington SP, Wharton JA. Biofilm Inhibition by Novel Natural Product- and Biocide-Containing Coatings Using High-Throughput Screening. Int J Mol Sci 2018; 19:ijms19051434. [PMID: 29748514 PMCID: PMC5983801 DOI: 10.3390/ijms19051434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
The use of natural products (NPs) as possible alternative biocidal compounds for use in antifouling coatings has been the focus of research over the past decades. Despite the importance of this field, the efficacy of a given NP against biofilm (mainly bacteria and diatoms) formation is tested with the NP being in solution, while almost no studies test the effect of an NP once incorporated into a coating system. The development of a novel bioassay to assess the activity of NP-containing and biocide-containing coatings against marine biofilm formation has been achieved using a high-throughput microplate reader and highly sensitive confocal laser scanning microscopy (CLSM), as well as nucleic acid staining. Juglone, an isolated NP that has previously shown efficacy against bacterial attachment, was incorporated into a simple coating matrix. Biofilm formation over 48 h was assessed and compared against coatings containing the NP and the commonly used booster biocide, cuprous oxide. Leaching of the NP from the coating was quantified at two time points, 24 h and 48 h, showing evidence of both juglone and cuprous oxide being released. Results from the microplate reader showed that the NP coatings exhibited antifouling efficacy, significantly inhibiting biofilm formation when compared to the control coatings, while NP coatings and the cuprous oxide coatings performed equally well. CLSM results and COMSTAT analysis on biofilm 3D morphology showed comparable results when the NP coatings were tested against the controls, with higher biofilm biovolume and maximum thickness being found on the controls. This new method proved to be repeatable and insightful and we believe it is applicable in antifouling and other numerous applications where interactions between biofilm formation and surfaces is of interest.
Collapse
Affiliation(s)
- Maria Salta
- Faculty of Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK.
| | - Simon P Dennington
- Faculty of Engineering and the Environment, National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Julian A Wharton
- Faculty of Engineering and the Environment, National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
25
|
Karthick P, Mohanraju R. Antimicrobial Potential of Epiphytic Bacteria Associated With Seaweeds of Little Andaman, India. Front Microbiol 2018; 9:611. [PMID: 29670590 PMCID: PMC5893765 DOI: 10.3389/fmicb.2018.00611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/16/2018] [Indexed: 11/17/2022] Open
Abstract
Seaweeds of the intertidal regions are a rich source of surface associated bacteria and are potential source of antimicrobial molecules. In the present study, 77 epiphytic isolates from eight different algae collected from Little Andaman were enumerated. On testing for their antimicrobial activities against certain pathogens twelve isolates showed positive and six of them showed significant antimicrobial inhibition zone against Shigella boydii type 1, Shigella flexneri type 2a, Shigella dysenteriae type 5, Enterotoxigenic Escherichia coli O115, Enteropathogenic E. coli serotype O114, Vibrio cholera; O1 Ogawa, Aeromonas hydrophila, Klebsiella pneumoniae, Staphylococcus aureus. Based on the activity these six isolates (G1C, G2C, G3C, UK, UVAD, and Tor1) were identified by 16S rRNA gene sequence and were found to belong to the phyla Firmicutes and Proteobacteria. Purified antimicrobial compounds obtained from these isolates were identified by GC-MS. Furan derivatives were identified from G2C Pseudomonas stutzeri KJ849834, UVAD Alcanivorax dieselolei KJ849833, UK Vibrio sp. KJ849837, Tor1 Exiguobacterium profundum KJ849838. While 2-Pyrrolidinone, Phenol, 2, 4-bis (1, 1-dimethylethyl) were from G3C Vibrio owensii KJ849836 and (1-Allylcyclopropyl) methanol from the extracts of G1C Bacillus sp. KJ849835. The results of the present study shows that these six potent isolates isolated from the seaweeds are found to be a source of antimicrobial compounds.
Collapse
Affiliation(s)
- Perumal Karthick
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, India
| | - Raju Mohanraju
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, India
| |
Collapse
|
26
|
Park CH, Park MH, Kim KH, Park JH, Kwon DR, Kim NY, Lim BJ, Hwang SJ. Akinete germination chamber: An experimental device for cyanobacterial akinete germination and plankton emergence. HARMFUL ALGAE 2018; 72:74-81. [PMID: 29413386 DOI: 10.1016/j.hal.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Understanding how algal resting cells (e.g. akinetes) germinate and what factors influence their germination rate is crucial for elucidating the development of algal blooms and their succession. While laboratory studies have demonstrated algal germination rate and some key factors affecting the germination, the use of artificially induced akinetes and/or removal of the sediments are obviously limiting in simulating the natural environment when designing such controlled experiments. This study introduce a laboratory Akinete Germination Chamber (AGC) that facilitates research for cyanobacterial akinete germination and emergence in an environment similar to natural conditions while minimizing sediment disturbance. The fundamental difference between AGC method and the conventional microplate method is that AGC incorporates the substrate from the natural environment whereas the microplate method does not employ sediment. Therefore, authors of this study assume that the characteristics of akinete germination between the two methods differ because the sediment influences the germination environment. The present study developed the AGC method as an efficient tool to understand harmful cyanobacterial bloom formation. For validation of the AGC method, this study evaluated akinete germination of Dolichospermum circinale (Anabaena circinalis) with different temperature and nutrient condition and then compared the results with those generated by conventional methods The results showed a marked difference in the maximal germination rate between two methods (78% and 35% in the AGC and the microplate, respectively; p < 0.05) at optimum germination temperature (25 °C for both the AGC and the microplate). The nutrient effect also demonstrated clear difference (p < 0.01) in the germination rate between two methods; 88%, 68% and 78% in the AGC and 15%, 20% and 15% in the microplate with -N+P, +N-P, and +N+P condition of CB medium, respectively. Importantly, both DW and -N-P treatments in the AGC induced a little germination of akinete (4.2 ± 1.4% and 5.0 ± 7.1%, respectively), whereas no germination was occurred in the DW treatment in the microplate, suggesting a possible positive effect of sediment on akinete germination. With these results, this study suspects that these differences were largely attributable to natural sediment. Also sediment-accompanied properties, possibly such as nutrient availability, heat budget, micronutrients, and bacteria might have some potential effects on akinete germination. The AGC method can overcome the limitations of the conventional microplate method, and that it is applicable in studies on pelagic-benthic coupling.
Collapse
Affiliation(s)
- Chae-Hong Park
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Myung-Hwan Park
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Keun Hee Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung-Hwan Park
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dae-Ryul Kwon
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nan Young Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byung-Jin Lim
- Geum River Environment Research Center, National Institute Environmental Research, Okcheon, 29027, Republic of Korea
| | - Soon-Jin Hwang
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
27
|
Vilas-Boas C, Sousa E, Pinto M, Correia-da-Silva M. An antifouling model from the sea: a review of 25 years of zosteric acid studies. BIOFOULING 2017; 33:927-942. [PMID: 29171304 DOI: 10.1080/08927014.2017.1391951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Many studies have shown that natural marine compounds can prevent biofouling by a broad spectrum of organisms without toxic effects, encouraging their use in antifouling (AF) coatings. Studies over the past 25 years of the natural product zosteric acid (ZA) are systematically organized in this review. ZA is a sulfated phenolic acid produced by the seagrass Zostera marina that has very promising AF potential against several micro- and macrofouling organisms. ZA was shown to have appropriate environmental fate parameters such as high water solubility, a low log P, low bioaccumulation, and no ecotoxicity, which demonstrated the potential of ZA as a safe AF agent. This review also highlights that ZA has been successfully incorporated into several types of coatings. The synthesis of analogs is also considered in this review, and it has allowed a better understanding of ZA structure-AF activity relationships and clarified the mechanism of action of ZA.
Collapse
Affiliation(s)
- Cátia Vilas-Boas
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Emília Sousa
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| | - Madalena Pinto
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| | - Marta Correia-da-Silva
- a Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research , University of Porto , Porto , Portugal
| |
Collapse
|
28
|
Wang KL, Wu ZH, Wang Y, Wang CY, Xu Y. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs. Mar Drugs 2017; 15:E266. [PMID: 28846626 PMCID: PMC5618405 DOI: 10.3390/md15090266] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/02/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Ze-Hong Wu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou 510632, China.
| | - Yu Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
29
|
Dahms HU, Dobretsov S. Antifouling Compounds from Marine Macroalgae. Mar Drugs 2017; 15:md15090265. [PMID: 28846625 PMCID: PMC5618404 DOI: 10.3390/md15090265] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.
Collapse
Affiliation(s)
- Hans Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shin-Chuan 1st Road, Kaohsiung 80708, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Sergey Dobretsov
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, Muscat 123, Oman.
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman.
| |
Collapse
|
30
|
Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. CHEMOSPHERE 2017; 168:408-417. [PMID: 27810541 DOI: 10.1016/j.chemosphere.2016.10.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 05/24/2023]
Abstract
Marine biofouling is a worldwide problem affecting maritime industries. Global concerns about the high toxicity of antifouling paints have highlighted the need to develop less toxic antifouling coatings. Chitosan is a natural polymer with antimicrobial, antifungal and antialgal properties that is obtained from partial deacetylation of crustacean waste. In the present study, nanocomposite chitosan-zinc oxide (chitosan-ZnO) nanoparticle hybrid coatings were developed and their antifouling activity was tested. Chitosan-ZnO nanoparticle coatings showed anti-diatom activity against Navicula sp. and antibacterial activity against the marine bacterium Pseudoalteromonas nigrifaciens. Additional antifouling properties of the coatings were investigated in a mesocosm study using tanks containing natural sea water under controlled laboratory conditions. Each week for four weeks, biofilm was removed and analysed by flow cytometry to estimate total bacterial densities on the coated substrates. Chitosan-ZnO hybrid coatings led to better inhibition of bacterial growth in comparison to chitosan coatings alone, as determined by flow cytometry. This study demonstrates the antifouling potential of chitosan-ZnO nanocomposite hybrid coatings, which can be used for the prevention of biofouling.
Collapse
Affiliation(s)
- Laila Al-Naamani
- Department of Marine Science and Fisheries, Sultan Qaboos University, 123 Al-Khodh, Oman; School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, Sultan Qaboos University, 123 Al-Khodh, Oman; Center of Excellence in Marine Biotechnology, Sultan Qaboos University, 123 Al-Khodh, Oman.
| | - Joydeep Dutta
- Functional Materials Division, Materials and Nano Physics Department, ICT School, KTH Royal Institute of Technology, SE-164 40, Kista, Stockholm, Sweden.
| | - J Grant Burgess
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
31
|
Toor F, Miller JB, Davidson LM, Duan W, Jura MP, Yim J, Forziati J, Black MR. Metal assisted catalyzed etched (MACE) black Si: optics and device physics. NANOSCALE 2016; 8:15448-15466. [PMID: 27533490 DOI: 10.1039/c6nr04506e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal-assisted catalyzed etching (MACE) of silicon (Si) is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features, including nanowires (NWs), that can be tuned to achieve various useful engineering goals, in particular with respect to Si solar cells. In this review, we introduce the science and technology of MACE from the literature, and provide an in-depth analysis of MACE to enhance Si solar cells, including the outlook for commercial applications of this technology.
Collapse
Affiliation(s)
- Fatima Toor
- Electrical and Computer Engineering Department, University of Iowa, Iowa City, IA 52242, USA and Physics and Astronomy Department, University of Iowa, Iowa City, IA 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, IA 52242, USA and University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA 52242, USA and Advanced Silicon Group, 173 Bedford Road, Lincoln, MA 01773, USA.
| | - Jeffrey B Miller
- Bandgap Engineering Inc., 13 Garabedian Drive, Salem, NH 03079, USA
| | - Lauren M Davidson
- Electrical and Computer Engineering Department, University of Iowa, Iowa City, IA 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, IA 52242, USA and University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Wenqi Duan
- Electrical and Computer Engineering Department, University of Iowa, Iowa City, IA 52242, USA and Optical Science and Technology Center, University of Iowa, Iowa City, IA 52242, USA and University of Iowa Informatics Initiative, University of Iowa, Iowa City, IA 52242, USA
| | - Michael P Jura
- Bandgap Engineering Inc., 13 Garabedian Drive, Salem, NH 03079, USA
| | - Joanne Yim
- Bandgap Engineering Inc., 13 Garabedian Drive, Salem, NH 03079, USA
| | - Joanne Forziati
- Advanced Silicon Group, 173 Bedford Road, Lincoln, MA 01773, USA. and Bandgap Engineering Inc., 13 Garabedian Drive, Salem, NH 03079, USA
| | - Marcie R Black
- Advanced Silicon Group, 173 Bedford Road, Lincoln, MA 01773, USA. and Bandgap Engineering Inc., 13 Garabedian Drive, Salem, NH 03079, USA
| |
Collapse
|
32
|
M.El Saeed A, Abd El-Fattah M, Azzam AM, Dardir M, Bader MM. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating. Int J Biol Macromol 2016; 89:190-7. [DOI: 10.1016/j.ijbiomac.2016.04.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/26/2022]
|
33
|
Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M. Antimicrobial Activities of Bacteria Associated with the Brown Alga Padina pavonica. Front Microbiol 2016; 7:1072. [PMID: 27462308 PMCID: PMC4940378 DOI: 10.3389/fmicb.2016.01072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
Macroalgae belonging to the genus Padina are known to produce antibacterial compounds that may inhibit growth of human- and animal pathogens. Hitherto, it was unclear whether this antibacterial activity is produced by the macroalga itself or by secondary metabolite producing epiphytic bacteria. Here we report antibacterial activities of epiphytic bacteria isolated from Padina pavonica (Peacocks tail) located on northern coast of Tunisia. Eighteen isolates were obtained in pure culture and tested for antimicrobial activities. Based on the 16S rRNA gene sequences the isolates were closely related to Proteobacteria (12 isolates; 2 Alpha- and 10 Gammaproteobacteria), Firmicutes (4 isolates) and Actinobacteria (2 isolates). The antimicrobial activity was assessed as inhibition of growth of 12 species of pathogenic bacteria (Aeromonas salmonicida, A. hydrophila, Enterobacter xiangfangensis, Enterococcus faecium, Escherichia coli, Micrococcus sp., Salmonella typhimurium, Staphylococcus aureus, Streptococcus sp., Vibrio alginoliticus, V. proteolyticus, V. vulnificus) and one pathogenic yeast (Candida albicans). Among the Firmicutes, isolate P8, which is closely related to Bacillus pumilus, displayed the largest spectrum of growth inhibition of the pathogenic bacteria tested. The results emphasize the potential use of P. pavonica associated antagonistic bacteria as producers of novel antibacterial compounds.
Collapse
Affiliation(s)
- Amel Ismail
- National Institute of Marine Sciences and Technologies Salammbô, Tunisia
| | - Leila Ktari
- National Institute of Marine Sciences and Technologies Salammbô, Tunisia
| | - Mehboob Ahmed
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht UniversityYerseke, Netherlands; Department of Microbiology and Molecular Genetics, University of the PunjabLahore, Pakistan
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht University Yerseke, Netherlands
| | - Abdellatif Boudabbous
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, Tunis El Manar University Tunis, Tunisia
| | - Lucas J Stal
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht UniversityYerseke, Netherlands; Department of Aquatic Microbiology, Institute of Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Mariana Silvia Cretoiu
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research and Utrecht University Yerseke, Netherlands
| | - Monia El Bour
- National Institute of Marine Sciences and Technologies Salammbô, Tunisia
| |
Collapse
|
34
|
Gopikrishnan V, Radhakrishnan M, Shanmugasundaram T, Pazhanimurugan R, Balagurunathan R. Antibiofouling potential of quercetin compound from marine-derived actinobacterium, Streptomyces fradiae PE7 and its characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13832-13842. [PMID: 27032633 DOI: 10.1007/s11356-016-6532-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
An attempt has been made to isolate, purify and characterize antifouling compound from Streptomyces fradiae PE7 isolated from Vellar estuarine sediment, Parangipettai, South India. The microbial identification was done at species level based on its phenotypic, cell wall and molecular characteristics. Strain PE7 produced high quantity of antifouling compounds in agar surface fermentation when compared to submerged fermentation. In fermentation optimization, wide range of sugars, amino acids, minerals, pH, temperature and NaCl concentration was found to influence the antifouling compound production from the strain PE7. Antifouling compound PE7-C was purified from the crude extract by preparative TLC, and its activity against biofouling bacteria was confirmed by bioautography. Based on the physico-chemical characteristics, the chemical structure of the antifouling compound PE7-C was identified as quercetin (C15H10O7), a flavonoid class of compound with the molecular weight 302.23 g/mol. The purified quercetin was active against 18 biofouling bacteria with MIC range between 1.6 and 25 μg/ml, algal spore germination and mollusc foot adherence found at 100 μg/ml and 306 ± 19.6 μg ml(-1) respectively. The present study, for the first time, reported quercetin from marine-derived Streptomyces sp. PE7 with antifouling activity. This also leads to the repurposing of quercetin for the development of antifouling agent.
Collapse
Affiliation(s)
- Venugopal Gopikrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, 600 119, Tamil Nadu, India
| | - Manikkam Radhakrishnan
- Centre for Drug Discovery and Development, Sathyabama University, Jeppiar Nagar, Chennai, 600 119, Tamil Nadu, India
| | - Thangavel Shanmugasundaram
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Raasaiyah Pazhanimurugan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India
| | - Ramasamy Balagurunathan
- Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India.
| |
Collapse
|
35
|
Satheesh S, Ba-akdah MA, Al-Sofyani AA. Natural antifouling compound production by microbes associated with marine macroorganisms — A review. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
36
|
Harizani M, Ioannou E, Roussis V. The Laurencia Paradox: An Endless Source of Chemodiversity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2016; 102:91-252. [PMID: 27380407 DOI: 10.1007/978-3-319-33172-0_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nature, the most prolific source of biological and chemical diversity, has provided mankind with treatments for health problems since ancient times and continues to be the most promising reservoir of bioactive chemicals for the development of modern drugs. In addition to the terrestrial organisms that still remain a promising source of new bioactive metabolites, the marine environment, covering approximately 70% of the Earth's surface and containing a largely unexplored biodiversity, offers an enormous resource for the discovery of novel compounds. According to the MarinLit database, more than 27,000 metabolites from marine macro- and microorganisms have been isolated to date providing material and key structures for the development of new products in the pharmaceutical, food, cosmeceutical, chemical, and agrochemical sectors. Algae, which thrive in the euphotic zone, were among the first marine organisms that were investigated as sources of food, nutritional supplements, soil fertilizers, and bioactive metabolites.Red algae of the genus Laurencia are accepted unanimously as one of the richest sources of new secondary metabolites. Their cosmopolitan distribution, along with the chemical variation influenced to a significant degree by environmental and genetic factors, have resulted in an endless parade of metabolites, often featuring multiple halogenation sites.The present contribution, covering the literature until August 2015, offers a comprehensive view of the chemical wealth and the taxonomic problems currently impeding chemical and biological investigations of the genus Laurencia. Since mollusks feeding on Laurencia are, in many cases, bioaccumulating, and utilize algal metabolites as chemical weaponry against natural enemies, metabolites of postulated dietary origin of sea hares that feed on Laurencia species are also included in the present review. Altogether, 1047 secondary metabolites, often featuring new carbocyclic skeletons, have been included.The chapter addresses: (1) the "Laurencia complex", the botanical description and the growth and population dynamics of the genus, as well as its chemical diversity and ecological relations; (2) the secondary metabolites, which are organized according to their chemical structures and are classified into sesquiterpenes, diterpenes, triterpenes, acetogenins, indoles, aromatic compounds, steroids, and miscellaneous compounds, as well as their sources of isolation which are depicted in tabulated form, and (3) the biological activity organized according to the biological target and the ecological functions of Laurencia metabolites.
Collapse
Affiliation(s)
- Maria Harizani
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, 15771, Greece.
| |
Collapse
|
37
|
Wang KL, Xu Y, Lu L, Li Y, Han Z, Zhang J, Shao CL, Wang CY, Qian PY. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:624-632. [PMID: 26239187 DOI: 10.1007/s10126-015-9656-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/27/2015] [Indexed: 06/04/2023]
Abstract
In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Kai-Ling Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Busetti A, Thompson TP, Tegazzini D, Megaw J, Maggs CA, Gilmore BF. Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens. Mar Drugs 2015; 13:3581-605. [PMID: 26058011 PMCID: PMC4483646 DOI: 10.3390/md13063581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/27/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds.
Collapse
Affiliation(s)
- Alessandro Busetti
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| | - Thomas P Thompson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| | - Diana Tegazzini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| | - Julianne Megaw
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| | - Christine A Maggs
- School of Biological Sciences, Medical Biology Center, 97 Lisburn Road, BT9 7BL Belfast, UK.
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL Belfast, UK.
| |
Collapse
|
39
|
From broad-spectrum biocides to quorum sensing disruptors and mussel repellents: antifouling profile of alkyl triphenylphosphonium salts. PLoS One 2015; 10:e0123652. [PMID: 25897858 PMCID: PMC4405350 DOI: 10.1371/journal.pone.0123652] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/19/2015] [Indexed: 01/30/2023] Open
Abstract
'Onium' compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents.
Collapse
|
40
|
Luo Q, Hu H, Peng H, Zhang X, Wang W. Isolation and structural identification of two bioactive phenazines from Streptomyces griseoluteus P510. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv 2015; 33:343-57. [PMID: 25749324 DOI: 10.1016/j.biotechadv.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
Biofouling represents a major economic issue regarding maritime industries and also raise important environmental concern. International legislation is restricting the use of biocidal-based antifouling (AF) coatings, and increasing efforts have been applied in the search for environmentally friendly AF agents. A wide diversity of natural AF compounds has been described for their ability to inhibit the settlement of macrofouling species. However poor information on the specific AF targets was available before the application of different molecular approaches both on invertebrate settlement strategies and bioadhesive characterization and also on the mechanistic effects of natural AF compounds. This review focuses on the relevant information about the main invertebrate macrofouler species settlement and bioadhesive mechanisms, which might help in the understanding of the reported effects, attributed to effective and non-toxic natural AF compounds towards this macrofouling species. It also aims to contribute to the elucidation of promising biotechnological strategies in the development of natural effective environmentally friendly AF paints.
Collapse
|
42
|
Susilowati R, Sabdono A, Widowati I. Isolation and Characterization of Bacteria Associated with Brown Algae Sargassum spp. from Panjang Island and their Antibacterial Activities. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.01.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Abstract
Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology.
Collapse
|
44
|
Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull MK, Bradbury M, Murphy AB, (Ken) Ostrikov K. The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv 2015. [DOI: 10.1039/c4ra08187k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertically-aligned carbon nanotube arrays treated with inductively-coupled plasmas demonstrate selective support of biofilms of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Samuel Yick
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Anne Mai-Prochnow
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Igor Levchenko
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Jinghua Fang
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- School of Physics
| | - Michelle K. Bull
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Mark Bradbury
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Anthony B. Murphy
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Kostya (Ken) Ostrikov
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| |
Collapse
|
45
|
Putri DA, Radjasa OK, Pringgenies D. Effectiveness of Marine Fungal Symbiont Isolated from Soft Coral Sinularia sp. from Panjang Island as Antifungal. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proenv.2015.01.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Trepos R, Cervin G, Pile C, Pavia H, Hellio C, Svenson J. Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling. BIOFOULING 2015; 31:393-403. [PMID: 26057499 DOI: 10.1080/08927014.2015.1048238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
A series of 13 short synthetic amphiphilic cationic micropeptides, derived from the antimicrobial iron-binding innate defence protein lactoferrin, have been evaluated for their capacity to inhibit the marine fouling process. The whole biofouling process was studied and microfouling organisms such as marine bacteria and microalgae were included as well as the macrofouling barnacle Balanus improvisus. In total 19 different marine fouling organisms (18 microfoulers and one macrofouler) were included and both the adhesion and growth of the microfoulers were investigated. It was shown that the majority of the peptides inhibited barnacle cyprid settlement via a reversible nontoxic mechanism, with IC50 values as low as 0.5 μg ml(-1). Six peptides inhibited adhesion and growth of microorganisms. Two of these were particularly active against the microfoulers with MIC-values ranging between 0.01 and 1 μg ml(-1), which is comparable with the commercial reference antifoulant SeaNine.
Collapse
Affiliation(s)
- Rozenn Trepos
- a School of Biological Sciences , University of Portsmouth , Portsmouth , UK
| | | | | | | | | | | |
Collapse
|
47
|
Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 2014; 99:1571-86. [PMID: 25549621 DOI: 10.1007/s00253-014-6334-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
In recent decade, seaweeds-associated microbial communities have been significantly evaluated for functional and chemical analyses. Such analyses let to conclude that seaweeds-associated microbial communities are highly diverse and rich sources of bioactive compounds of exceptional molecular structure. Extracting bioactive compounds from seaweed-associated microbial communities have been recently increased due to their broad-spectrum antimicrobial activities including antibacterial, antifungal, antiviral, anti-settlement, antiprotozoan, antiparasitic, and antitumor. These allelochemicals not only provide protection to host from other surrounding pelagic microorganisms, but also ensure their association with the host. Antimicrobial compounds from marine sources are promising and priority targets of biotechnological and pharmaceutical applications. This review describes the bioactive metabolites reported from seaweed-associated bacterial and fungal communities and illustrates their bioactivities. Biotechnological application of metagenomic approach for identifying novel bioactive metabolites is also dealt, in view of their future development as a strong tool to discover novel drug targets from seaweed-associated microbial communities.
Collapse
|
48
|
Molina CA, Vilchez S. Cooperation and bacterial pathogenicity: an approach to social evolution. REVISTA CHILENA DE HISTORIA NATURAL 2014. [DOI: 10.1186/s40693-014-0014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Gao M, Su R, Wang K, Li X, Lu W. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm. MARINE POLLUTION BULLETIN 2013; 77:172-176. [PMID: 24210009 DOI: 10.1016/j.marpolbul.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/28/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | | | | | | | | |
Collapse
|
50
|
Garg N, Manchanda G, Kumar A. Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 2013; 105:289-305. [DOI: 10.1007/s10482-013-0082-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|