1
|
Wei C, Zhang Y, Tang Z, Zhang C, Wu J, Wu B. Surface Reconstruction of Silicone-Based Amphiphilic Polymers for Mitigating Marine Biofouling. Polymers (Basel) 2024; 16:1570. [PMID: 38891516 PMCID: PMC11174759 DOI: 10.3390/polym16111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Poly(dimethylsiloxane) (PDMS) coatings are considered to be environmentally friendly antifouling coatings. However, the presence of hydrophobic surfaces can enhance the adhesion rate of proteins, bacteria and microalgae, posing a challenge for biofouling removal. In this study, hydrophilic polymer chains were synthesised from methyl methacrylate (MMA), Poly(ethylene glycol) methyl ether methacrylate (PEG-MA) and 3-(trimethoxysilyl) propyl methacrylate (TPMA). The crosslinking reaction between TPMA and PDMS results in the formation of a silicone-based amphiphilic co-network with surface reconstruction properties. The hydrophilic and hydrophobic domains are covalently bonded by condensation reactions, while the hydrophilic polymers migrate under water to induce surface reconstruction and form hydrogen bonds with water molecules to form a dense hydrated layer. This design effectively mitigates the adhesion of proteins, bacteria, algae and other marine organisms to the coating. The antifouling performance of the coatings was evaluated by assessing their adhesion rates to proteins (BSA-FITC), bacteria (B. subtilis and P. ruthenica) and algae (P. tricornutum). The results show that the amphiphilic co-network coating (e.g., P-AM-15) exhibits excellent antifouling properties against protein, bacterial and microalgal fouling. Furthermore, an overall assessment of its antifouling performance and stability was conducted in the East China Sea from 16 May to 12 September 2023, which showed that this silicon-based amphiphilic co-network coating remained intact with almost no marine organisms adhering to it. This study provides a novel approach for the development of high-performance silicone-based antifouling coatings.
Collapse
Affiliation(s)
| | | | | | | | - Jianhua Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| | - Bo Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| |
Collapse
|
2
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
3
|
Qiu H, Gapeeva A, Hölken I, Kaps S, Adelung R, Baum MJ. Polydimethylsiloxane Microdomains Formation at the Polythiourethane/Air Interface and Its Influence on Barnacle Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4545-4552. [PMID: 33459023 DOI: 10.1021/acsami.0c20058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, polydimethylsiloxane (PDMS)/polythiourethane (PTU) composite reinforced with tetrapodal shaped micro-nano ZnO particles (t-ZnO) was successfully produced by a versatile, industrially applicable polymer blending process. On the surface of this composite, PDMS is distributed in the form of microdomains embedded in a PTU matrix. The composite inherited not only good mechanical properties originating from PTU but also promising fouling-release (FR) properties due to the presence of PDMS on the surface. It was shown that the preferential segregation of PDMS domains at the polymer/air interface could be attributed to the difference in the surface free energy of PDMS and PTU. The PDMS microdomains at the PTU/air interface significantly reduced the barnacle adhesion strength on the composite. Both the pseudo- and natural barnacle adhesion strength on the composite was approximately 0.1 MPa, similar to that on pure PDMS. The pseudo-barnacle adhesion on reference surfaces AlMg3 and PTU reached approximately 4 and 6 MPa, respectively. Natural barnacles could not be removed intact from AlMg3 and PTU surfaces without breaking the shell, indicating that the adhesion strength was higher than the mechanical strength of a barnacle shell (approximately 0.4 MPa). The integrity of PDMS microdomains was maintained after 12 months of immersion in seawater and barnacle removal. No surface deteriorations were found. In short, the composite showed excellent potential as a long-term stable FR coating for marine applications.
Collapse
Affiliation(s)
- Haoyi Qiu
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, Kiel D-24143, Germany
- Phi-Stone AG, Kaiserstr. 2, Kiel D-24143, Germany
| | - Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, Kiel D-24143, Germany
| | - Iris Hölken
- Phi-Stone AG, Kaiserstr. 2, Kiel D-24143, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, Kiel D-24143, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, Kiel D-24143, Germany
| | - Martina J Baum
- Functional Nanomaterials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, Kiel D-24143, Germany
| |
Collapse
|
4
|
Gao H, Jian Y, Yan Y. The effects of bio-inspired micro/nano scale structures on anti-icing properties. SOFT MATTER 2021; 17:447-466. [PMID: 33403371 DOI: 10.1039/d0sm01683g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ice formation and accumulation have detrimental effects on commercial surfaces and people's lives. The ice adhesion strength decreases with increasing surface hydrophobicity, and the superhydrophobicity of a surface can be constructed by a combination of low surface free energy and high surface roughness. Conversely, the characteristics of biological surfaces have aroused wide attention as a result of the superhydrophobicity of plants and animals, deriving from the synergistic effects of chemical compositions and multi-scale hierarchical structures. Therefore, inspired by bio-mimetic studies on biological surfaces, a lot of artificial bio-inspired superhydrophobic surfaces have been broadly designed and constructed. Herein, we aim to summarize the fundamental theories of surface wettability and recent progress in the fabrication of bio-inspired surfaces. The bio-inspired surfaces prepared by different facile methods not only have superhydrophobicity, but also have anti-icing/icephobic properties. In the end, some challenges and problems in the future study and advancement of bio-inspired superhydrophobic surfaces are proposed.
Collapse
Affiliation(s)
- Hongtao Gao
- Institute of Refrigeration & Cryogenics Engineering, Dalian Maritime University, 116026, Dalian, China.
| | - Yiming Jian
- Institute of Refrigeration & Cryogenics Engineering, Dalian Maritime University, 116026, Dalian, China.
| | - Yuying Yan
- Fluids & Thermal Engineering Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Guazzelli E, Perondi F, Criscitiello F, Pretti C, Oliva M, Casu V, Maniero F, Gazzera L, Galli G, Martinelli E. New amphiphilic copolymers for PDMS-based nanocomposite films with long-term marine antifouling performance. J Mater Chem B 2020; 8:9764-9776. [PMID: 33021610 DOI: 10.1039/d0tb01905d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic methacrylate copolymers (Si-co-EF) containing polysiloxane (Si) and mixed poly(oxyethylene)-perfluorohexyl (EF) side chains were synthesized with different compositions and used together with polysiloxane-functionalized nanoparticles as additives of condensation cured nanocomposite poly(siloxane) films. The mechanical properties of the nanocomposite films were consistent with the elastomeric behavior of the poly(siloxane) matrix without significant detriment from either the copolymer or the nanoparticles. Films were found to be markedly hydrophobic and liphophobic, with both properties being maximized at an intermediate content of EF units. The high enrichment in fluorine at the film surface was proven by angle-resolved X-ray photoelectron spectroscopy (AR-XPS). Long-term marine antifouling performance was evaluated in field immersion trials of test panels for up to 10 months of immersion. Both nanoparticles and amphiphilic copolymer were found to be highly effective in reducing the colonization of foulants, especially hard macrofoulants, when compared with control panels. Lowest percentage of surface coverage was 20% after 10 months of immersion (films with 4 wt% copolymer and 0.5 wt% nanoparticles), which was further decreased to less than 10% after exposure to a water jet for 10 s. The enhanced antifouling properties of coatings containing both nanoparticles and copolymer were confirmed by laboratory assays against the polychaete Ficopomatus enigmaticus and the diatom Navicula salinicola.
Collapse
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Federico Perondi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | | | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy and Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", 57128 Livorno, Italy
| | - Valentina Casu
- Dipartimento di Scienze Veterinarie, Università di Pisa, 56126 Pisa, Italy
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy.
| |
Collapse
|
6
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Gao S, Liu B, Peng J, Zhu K, Zhao Y, Li X, Yuan X. Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4654-4666. [PMID: 30600999 DOI: 10.1021/acsami.8b19666] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ice accretion poses a severe impact on diverse aspects of human life. Although great efforts have been dedicated to prevent or alleviate ice adhesion to the surface of substrates by developing various icephobic coatings, it is still needed to improve the integrated performance. Herein, we present a novel strategy to prepare poly(dimethylsiloxane) (PDMS) slippage coatings by combining a soft architecture-driven branched PDMS with partial short PDMS-functionalized polyhedral oligomeric silsesquioxane (POSS) as a co-cross-linker, in which silicone oil with certain viscosity was added as a lubricant. The chemical structure, surface morphology, and icephobic durability of the prepared coatings were investigated with concerns for the potential anti-icing uses. The PDMS slippage coating shed light on extraordinary icephobic durability with the ice shear strength at approximately 11.2 kPa and maintained low values below 14 kPa even after 50 icing/deicing cycles. Due to the elaborate control of the cross-link density, the side chains of the branched PDMS provided a rich storage space for entrapped silicone oil for the formation of the interfacial slippage. Moreover, the introduction of the functionalized POSS brought about significantly improved mechanical resistance in abrasion and elastic modulus. It is suggested that the branched PDMS slippage coating is a promising candidate in practical anti-icing applications.
Collapse
Affiliation(s)
- Shuhui Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Bo Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Jie Peng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Kongying Zhu
- Analysis and Measurement Center , Tianjin University , Tianjin 300072 , China
| | - Yunhui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Xiaohui Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
8
|
Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16505-16516. [PMID: 28429593 DOI: 10.1021/acsami.7b03168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.
Collapse
Affiliation(s)
- Brandon M Wenning
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Sophie Mieszkin
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - John A Finlay
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Daniel Fischer
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - James A Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Maureen E Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| |
Collapse
|
9
|
Patterson AL, Wenning B, Rizis G, Calabrese DR, Finlay JA, Franco SC, Zuckermann RN, Clare AS, Kramer EJ, Ober CK, Segalman RA. Role of Backbone Chemistry and Monomer Sequence in Amphiphilic Oligopeptide- and Oligopeptoid-Functionalized PDMS- and PEO-Based Block Copolymers for Marine Antifouling and Fouling Release Coatings. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02505] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - John A. Finlay
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Sofia C. Franco
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | - Ronald N. Zuckermann
- The
Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anthony S. Clare
- School
of Marine Science and Technology, Newcastle University, Newcastle
upon Tyne NE17RU, U.K
| | | | | | | |
Collapse
|
10
|
Rasulev B, Jabeen F, Stafslien S, Chisholm BJ, Bahr J, Ossowski M, Boudjouk P. Polymer Coating Materials and Their Fouling Release Activity: A Cheminformatics Approach to Predict Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1781-1792. [PMID: 27982587 DOI: 10.1021/acsami.6b12766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel cheminformatics-based approach has been employed to investigate a set of polymer coating materials designed to mitigate the accumulation of marine biofouling on surfaces immersed in the sea. Specifically, a set of 27 nontoxic, amphiphilic polysiloxane-based polymer coatings was synthesized using a combinatorial, high-throughput approach and characterized for fouling-release (FR) activity toward a number of relevant marine fouling organisms, including bacteria, microalgae, and adult barnacles. In order to model these complex systems adequately, a new computational technique was used in which all investigated polymer-based coating materials were considered as mixture systems comprising several compositional variables at a range of concentrations. By applying a combination of methodologies for mixture systems and a quantitative structure-activity relationship approach (QSAR), seven unique QSAR models were developed that were able to successfully predict the desired FR properties. Furthermore, the developed models identified several significant descriptors responsible for FR activity of investigated polymer-based coating materials, with correlation coefficients ranging from rtest2 = 0.63 to 0.94. The computational models derived from this study may serve as a powerful set of tools to predict optimal combinations of source components to produce amphiphilic polysiloxane-based coating systems with effective, broad-spectrum FR properties.
Collapse
Affiliation(s)
- Bakhtiyor Rasulev
- Center for Computationally Assisted Science and Technology, North Dakota State University , Fargo, North Dakota, United States
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo, North Dakota, United States
| | - Farukh Jabeen
- Center for Computationally Assisted Science and Technology, North Dakota State University , Fargo, North Dakota, United States
| | - Shane Stafslien
- Research and Creative Activities, North Dakota State University , Fargo, North Dakota, United States
| | - Bret J Chisholm
- Department of Coatings and Polymeric Materials, North Dakota State University , Fargo, North Dakota, United States
| | - James Bahr
- Research and Creative Activities, North Dakota State University , Fargo, North Dakota, United States
| | - Martin Ossowski
- Center for Computationally Assisted Science and Technology, North Dakota State University , Fargo, North Dakota, United States
| | - Philip Boudjouk
- Center for Computationally Assisted Science and Technology, North Dakota State University , Fargo, North Dakota, United States
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota, United States
| |
Collapse
|
11
|
PDMS-based films containing surface-active amphiphilic block copolymers to combat fouling from barnacles B. amphitrite and B. improvisus. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Shivapooja P, Cao C, Orihuela B, Levering V, Zhao X, Rittschof D, López GP. Incorporation of silicone oil into elastomers enhances barnacle detachment by active surface strain. BIOFOULING 2016; 32:1017-1028. [PMID: 27560712 DOI: 10.1080/08927014.2016.1209186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Silicone-oil additives are often used in fouling-release silicone coatings to reduce the adhesion strength of barnacles and other biofouling organisms. This study follows on from a recently reported active approach to detach barnacles, which was based on the surface strain of elastomeric materials, by investigating a new, dual-action approach to barnacle detachment using Ecoflex®-based elastomers incorporated with poly(dimethylsiloxane)-based oil additives. The experimental results support the hypothesis that silicone-oil additives reduce the amount of substratum strain required to detach barnacles. The study also de-coupled the two effects of silicone oils (ie surface-activity and alteration of the bulk modulus) and examined their contributions in reducing barnacle adhesion strength. Further, a finite element model based on fracture mechanics was employed to qualitatively understand the effects of surface strain and substratum modulus on barnacle adhesion strength. The study demonstrates that dynamic substratum deformation of elastomers with silicone-oil additives provides a bifunctional approach towards management of biofouling by barnacles.
Collapse
Affiliation(s)
| | - Changyong Cao
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
| | - Beatriz Orihuela
- c Duke University Marine Laboratory , Nicholas School of the Environment , Beaufort , NC , USA
| | - Vrad Levering
- a Department of Biomedical Engineering , Duke University , Durham , NC , USA
| | - Xuanhe Zhao
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
- d Research Triangle Material Research Science & Engineering Center, Duke University , Durham , NC , USA
- e Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Daniel Rittschof
- c Duke University Marine Laboratory , Nicholas School of the Environment , Beaufort , NC , USA
| | - Gabriel P López
- a Department of Biomedical Engineering , Duke University , Durham , NC , USA
- b Department of Mechanical Engineering and Materials Science , Duke University , Durham , NC , USA
- d Research Triangle Material Research Science & Engineering Center, Duke University , Durham , NC , USA
- f Center for Biomedical Engineering, Department of Chemical and Biological Engineering , University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
13
|
Martinelli E, Gunes D, Wenning BM, Ober CK, Finlay JA, Callow ME, Callow JA, Di Fino A, Clare AS, Galli G. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films. BIOFOULING 2016; 32:81-93. [PMID: 26769148 DOI: 10.1080/08927014.2015.1131822] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite.
Collapse
Affiliation(s)
- Elisa Martinelli
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | - Deniz Gunes
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| | - Brandon M Wenning
- b Department of Materials Science and Engineering , Cornell University , Ithaca, New York , USA
| | - Christopher K Ober
- b Department of Materials Science and Engineering , Cornell University , Ithaca, New York , USA
| | - John A Finlay
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - Maureen E Callow
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - James A Callow
- c School of Biosciences, University of Birmingham , Birmingham , UK
| | - Alessio Di Fino
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Anthony S Clare
- d School of Marine Science and Technology , Newcastle University , Newcastle-upon-Tyne , UK
| | - Giancarlo Galli
- a Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM , Università di Pisa , Pisa , Italy
| |
Collapse
|
14
|
Calabrese DR, Wenning B, Finlay JA, Callow ME, Callow JA, Fischer D, Ober CK. Amphiphilic oligopeptides grafted to PDMS-based diblock copolymers for use in antifouling and fouling release coatings. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David R. Calabrese
- Department of Chemistry and Chemical Biology; Cornell University; Ithaca New York 14853 USA
| | - Brandon Wenning
- Department of Chemistry and Chemical Biology; Cornell University; Ithaca New York 14853 USA
| | - John A. Finlay
- School of Biosciences; The University of Birmingham; Birmingham B15 2TT UK
- School of Biosciences; Newcastle University; Newcastle NE17RU UK
| | - Maureen E. Callow
- School of Biosciences; The University of Birmingham; Birmingham B15 2TT UK
| | - James A. Callow
- School of Biosciences; The University of Birmingham; Birmingham B15 2TT UK
| | - Daniel Fischer
- National Institute for Standards and Technology; Gaithersburg Maryland 20899 USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering; Cornell University; Ithaca New York 14853 USA
| |
Collapse
|
15
|
Martinelli E, Guazzelli E, Bartoli C, Gazzarri M, Chiellini F, Galli G, Callow ME, Callow JA, Finlay JA, Hill S. Amphiphilic pentablock copolymers and their blends with PDMS for antibiofouling coatings. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Cristina Bartoli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Matteo Gazzarri
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; UdR Pisa INSTM, Università di Pisa; via G. Moruzzi 3 56124 Pisa Italy
| | - Maureen E. Callow
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - James A. Callow
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - John A. Finlay
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| | - Sophie Hill
- School of Biosciences, University of Birmingham; Birmingham B15 2TT United Kingdom
| |
Collapse
|
16
|
Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. Combinatorial materials research applied to the development of new surface coatings XVI: fouling-release properties of amphiphilic polysiloxane coatings. BIOFOULING 2015; 31:135-149. [PMID: 25647177 DOI: 10.1080/08927014.2014.1003295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput methods were used to prepare and characterize the fouling-release (FR) properties of an array of amphiphilic polysiloxane-based coatings possessing systematic variations in composition. The coatings were derived from a silanol-terminated polydimethylsiloxane, a silanol-terminated polytrifluorpropylmethylsiloxane (CF3-PDMS), 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane (TMS-PEG), methyltriacetoxysilane and hexamethyldisilazane-treated fumed silica. The variables investigated were the concentration of TMS-PEG and the concentration of CF3-PDMS. In general, it was found that the TMS-PEG and the CF3-PDMS had a synergist effect on FR properties with these properties being enhanced by combining both compounds into the coating formulations. In addition, reattached adult barnacles removed from coatings possessing both TMS-PEG and relatively high levels of CF3-PDMS displayed atypical base-plate morphologies. The majority of the barnacles removed from these coatings exhibited a cupped or domed base-plate as compared to the flat base-plate observed for the control coating that did not contain TMS-PEG or CF3-PDMS. Coating surface analysis using water contact angle measurements indicated that the presence of CF3-PDMS facilitated migration of TMS-PEG to the coating/air interface during the film formation/curing process. In general, coatings containing both TMS-PEG and relatively high levels of CF3-PDMS possessed excellent FR properties.
Collapse
Affiliation(s)
- Shane J Stafslien
- a Center for Nanoscale Science and Engineering , North Dakota State University , Fargo , USA
| | | | | | | | | | | |
Collapse
|
17
|
Zhou Z, Calabrese DR, Taylor W, Finlay JA, Callow ME, Callow JA, Fischer D, Kramer EJ, Ober CK. Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings. BIOFOULING 2014; 30:589-604. [PMID: 24730510 DOI: 10.1080/08927014.2014.897335] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw = 350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH). The resulting macromolecules were then used as side chains to covalently modify a pre-synthesized PS8 K-b-P(E/B)25 K-b-PI10 K (SEBI or K3) triblock copolymer, and the final polymers were applied to glass substrata through an established multilayer surface coating technique to prepare fouling resistant coatings. The coated surfaces were characterized with AFM, XPS and NEXAFS, and evaluated in laboratory assays with two important fouling algae, Ulva linza (a green macroalga) and Navicula incerta, a biofilm-forming diatom. The results suggest that these polymer-coated surfaces undergo surface reconstruction upon changing the contact medium (polymer/air vs polymer/water), due to the preferential interfacial aggregation of the PEG segment on the surface in water. The amphiphilic polymer-coated surfaces showed promising results as both AF and FR coatings. The sample with longer PEG chain lengths (Mw = 550 g mol(-1)) exhibited excellent properties against both algae, highlighting the importance of the chemical structures on ultimate biological performance. Besides reporting synthesis and characterization of this new type of amphiphilic surface material, this work also provides insight into the nature of PEG/hydrocarbon amphiphilic coatings, and this understanding may help in the design of future generations of fluorine-free, environmentally friendly AF/FR polymeric coatings.
Collapse
Affiliation(s)
- Zhaoli Zhou
- a Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Effect of a marine bacterial biofilm on adhesion and retention of pseudo barnacle to silicone coating surface. KOREAN J CHEM ENG 2013. [DOI: 10.1007/s11814-013-0218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Xu Q, Li M, Niu J, Xia Z. Dynamic enhancement in adhesion forces of microparticles on substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13743-13749. [PMID: 24117392 DOI: 10.1021/la4023757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report a dynamically induced enhancement in interfacial adhesion between microsized particles and substrates under dry and humid conditions. The adhesion force of soft (polystyrene) and hard (SiO2 and Al2O3) microparticles on soft (polystyrene) and hard (fused silica and sapphire) substrates was measured by using an atomic force microscope with retraction (z-piezo) speed ranging over 4 orders of magnitude. The adhesion is strongly enhanced by the dynamic effect. When the retraction speed varies from 0.02 to 156 μm/s, the adhesion force increases by 10% to 50% in dry nitrogen while it increases by 15% to 70% in humid air. Among the material systems tested, the soft-soft contact systems exhibit the smallest dynamic effect while the hard-hard contacts show the largest enhancement. A dynamic model was developed to predict this dynamic effect, which agrees well with the experimental results. The influence of dynamic factors related to the adhesion enhancement, such as particle inertia, viscoelastic deformations, and crack propagation, was discussed to understand the dynamic enhancement mechanisms.
Collapse
Affiliation(s)
- Quan Xu
- Department of Materials Science and Engineering, and Department of Chemistry, University of North Texas , Denton, Texas 76203, United States
| | | | | | | |
Collapse
|
20
|
Wang C, Zhang W, Wynne KJ. Hybrid networks incorporating fluorous polyoxetane soft blocks. Appl Organomet Chem 2013. [DOI: 10.1002/aoc.3022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyu Wang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - Wei Zhang
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| | - Kenneth J. Wynne
- Department of Chemical and Life Science Engineering; Virginia Commonwealth University; Richmond VA 23284 USA
| |
Collapse
|
21
|
Chakrabarty S, Wang C, Zhang W, Wynne KJ. Rigid Adherent-Resistant Elastomers (RARE): Nano-, Meso-, and Microscale Tuning of Hybrid Fluorous Polyoxetane–Polyurethane Blend Coatings. Macromolecules 2013. [DOI: 10.1021/ma4001995] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Souvik Chakrabarty
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Chenyu Wang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Wei Zhang
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| | - Kenneth J. Wynne
- Chemical
and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street,
Richmond, Virginia 23284, United States
| |
Collapse
|
22
|
Abstract
Barnacles are intriguing, not only with respect to their importance as fouling organisms, but also in terms of the mechanism of underwater adhesion, which provides a platform for biomimetic and bioinspired research. These aspects have prompted questions regarding how adult barnacles attach to surfaces under water. The multidisciplinary and interdisciplinary nature of the studies makes an overview covering all aspects challenging. This mini-review, therefore, attempts to bring together aspects of the adhesion of adult barnacles by looking at the achievements of research focused on both fouling and adhesion. Biological and biochemical studies, which have been motivated mainly by understanding the nature of the adhesion, indicate that the molecular characteristics of barnacle adhesive are unique. However, it is apparent from recent advances in molecular techniques that much remains undiscovered regarding the complex event of underwater attachment. Barnacles attached to silicone-based elastomeric coatings have been studied widely, particularly with respect to fouling-release technology. The fact that barnacles fail to attach tenaciously to silicone coatings, combined with the fact that the mode of attachment to these substrata is different to that for most other materials, indicates that knowledge about the natural mechanism of barnacle attachment is still incomplete. Further research on barnacles will enable a more comprehensive understanding of both the process of attachment and the adhesives used. Results from such studies will have a strong impact on technology aimed at fouling prevention as well as adhesion science and engineering.
Collapse
Affiliation(s)
- Kei Kamino
- Department of Biotechnology, National Institute of Technology and Evaluation, Kisarazu, Japan.
| |
Collapse
|
23
|
Coneski PN, Wynne JH. Zwitterionic polyurethane hydrogels derived from carboxybetaine-functionalized diols. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4465-4469. [PMID: 22974109 DOI: 10.1021/am301383z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The synthesis of novel zwitterionic polyurethane hydrogels with tunable water uptake via the polymerization of protected carboxybetaine-functionalized diols with polyisocyanate oligomers is presented. Post-polymerization hydrolysis of a diol-segment side chain establishes zwitterionic carboxybetaine functionalities that facilitate water uptake via the enhanced hydration capacities surrounding the opposing charges of the diol component. Tunable hydration of these materials, ranging from 24 to 250% solution uptake (based on the dry polymer weight), is achieved by controlling the structural characteristics of the diol precursor, such as ammonium/carboxylate spacing and ethyl ester hydrolysis conditions (i.e., exposure time to an aqueous base).
Collapse
Affiliation(s)
- Peter N Coneski
- Chemistry Division, Code 6124, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| | | |
Collapse
|
24
|
Xie LY, Hong F, He CX, Liu JH, Wu C. Fouling-release Property of Water-filled Porous Elastomers. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/03/330-334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Lejars M, Margaillan A, Bressy C. Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. Chem Rev 2012; 112:4347-90. [DOI: 10.1021/cr200350v] [Citation(s) in RCA: 786] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marlène Lejars
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - André Margaillan
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| | - Christine Bressy
- Laboratoire
MAtériaux Polymères Interfaces
Environnement Marin (MAPIEM, E.A. 4323), Université du Sud Toulon-Var, ISITV, Avenue Georges Pompidou, BP-56,
83162 La Valette-du-Var Cedex, France
| |
Collapse
|
26
|
Coneski PN, Fulmer PA, Wynne JH. Enhancing the fouling resistance of biocidal urethane coatings via surface chemistry modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7039-7048. [PMID: 22480389 DOI: 10.1021/la300749a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A group of novel cross-linked polyurethane materials with varying ratios of hydroxyl-terminated macrodiols and tethered quaternary ammonium biocides have been prepared. The resulting materials had a wide range of thermal, mechanical, and surface properties, dictated by the macrodiol composition and biocide concentration. The complex interplay between surface chemistry and biocide concentration was shown to have a profound effect on the fouling resistance of these materials. While the combination of quaternary ammonium salt (QAS) diols with poly(tetramethylene oxide) macrodiols did not result in any enhancement of fouling resistance, addition of biocides to poly(ethylene glycol)-containing urethanes resulted in up to a 90% increase in biocidal activity compared to control materials while reducing the ability for microbes to adhere to the surface by an additional 60%. Materials prepared with polybutadiene macrodiols underwent a thermally induced oxidation, resulting in partial decomposition of the quaternary ammonium salt biocide and joint antimicrobial activity arising from remaining QAS and peroxide compounds.
Collapse
Affiliation(s)
- Peter N Coneski
- Chemistry Division, Naval Research Laboratory, Washington, DC 20375, United States
| | | | | |
Collapse
|
27
|
|
28
|
Sokolova A, Bailey JJ, Waltz GT, Brewer LH, Finlay JA, Fornalik J, Wendt DE, Callow ME, Callow JA, Bright FV, Detty MR. Spontaneous multiscale phase separation within fluorinated xerogel coatings for fouling-release surfaces. BIOFOULING 2012; 28:143-157. [PMID: 22303880 DOI: 10.1080/08927014.2012.659244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four-component xerogel films consisting of 1 mole-% n-octadecyltrimethoxysilane (C18) and 50 mole-% tetraethoxysilane (TEOS) in combination with 1-24 mole-% tridecafluoro-1,1,2,2-tetrahydrooctyltriethoxysilane (TDF) and 25-48 mole-% n-octyltriethoxysilane (C8) and a 1:49:50 mole-% C18/TDF/TEOS were prepared. Settlement of barnacle cyprids and removal of juvenile barnacles, settlement of zoospores of the alga Ulva linza, and strength of attachment of 7-day sporelings (young plants) of Ulva were compared amongst the xerogel formulations. Several of the xerogel formulations were comparable to poly(dimethylsiloxane) elastomer with respect to removal of juvenile barnacles and removal of sporeling biomass. The 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogels displayed some phase segregation by atomic force microscopy (AFM) pre- and post-immersion in water. Imaging reflectance infrared microscopy showed the formation of islands of alkane-rich and perfluoroalkane-rich regions in these same xerogels both pre- and post-immersion in water. Surface energies were unchanged upon immersion in water for 48 h amongst the TDF-containing xerogel coatings. AFM measurements demonstrated that surface roughness on the 1:4:45:50 and 1:14:35:50 C18/TDF/C8/TEOS xerogel coatings decreased upon immersion in water.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tiwari A. Nanomechanical Analysis of Hybrid Silicones and Hybrid Epoxy Coatings—A Brief Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aces.2012.21005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Sokolova A, Cilz N, Daniels J, Stafslien SJ, Brewer LH, Wendt DE, Bright FV, Detty MR. A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro- and macrofouling organisms. BIOFOULING 2012; 28:511-523. [PMID: 22616756 DOI: 10.1080/08927014.2012.690197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Five non-biocidal xerogel coatings were compared to two commercial non-biocidal coatings and a silicone standard with respect to antifouling (AF)/fouling-release (FR) characteristics. The formation and release of biofilm of the marine bacterium Cellulophaga lytica, the attachment and release of the microalga Navicula incerta, and the fraction removal and critical removal stress of reattached adult barnacles of Amphibalanus amphitrite were evaluated in laboratory assays. Correlations of AF/FR performance with surface characteristics such as wettability, surface energy, elastic modulus, and surface roughness were examined. Several of the xerogel coating compositions performed well against both microfouling organisms while the commercial coatings performed less well toward the removal of microalgae. Reattached barnacle adhesion as measured by critical removal stress was significantly lower on the commercial coatings when compared to the xerogel coatings. However, two xerogel compositions showed release of 89-100% of reattached barnacles. These two formulations were also tested in the field and showed similar results.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Department of Chemistry and Materials Science and Engineering Program, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Martinelli E, Sarvothaman MK, Galli G, Pettitt ME, Callow ME, Callow JA, Conlan SL, Clare AS, Sugiharto AB, Davies C, Williams D. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. BIOFOULING 2012; 28:571-582. [PMID: 22702904 DOI: 10.1080/08927014.2012.697897] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.
Collapse
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM, Università di Pisa, 56126, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang Y, Pitet LM, Finlay JA, Brewer LH, Cone G, Betts DE, Callow ME, Callow JA, Wendt DE, Hillmyer MA, DeSimonea JM. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings. BIOFOULING 2011; 27:1139-1150. [PMID: 22087876 DOI: 10.1080/08927014.2011.629344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.
Collapse
Affiliation(s)
- Yapei Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, 27514, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SEM, Callow ME, Callow JA. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. BIOFOULING 2010; 26:961-72. [PMID: 21058057 DOI: 10.1080/08927014.2010.531272] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Siloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk. Here, aminopropyl terminated PDMS macromers were prepared, where a single amine group anchors the PDMS in the coating. Coatings were prepared with four molecular weights (1000, 5000, 10,000, and 15,000 g mol⁻¹) and two levels of PDMS (5% and 10%). High water contact angles and low surface energies were observed for the coatings before and after water immersion, along with low pseudobarnacle removal forces. Laboratory bioassays showed reduced biofilm retention of marine bacteria, good removal of diatoms from coatings with low molecular weight PDMS, high removal of algal sporelings (young plants), and low removal forces of live barnacles.
Collapse
Affiliation(s)
- Stacy Sommer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Park D, Weinman CJ, Finlay JA, Fletcher BR, Paik MY, Sundaram HS, Dimitriou MD, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Fischer DA, Kramer EJ, Ober CK. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9772-9781. [PMID: 20359178 DOI: 10.1021/la100032n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M(n) approximately 550 g/mol (PEG550)] and a semifluorinated alcohol (CF(3)(CF(2))(9)(CH(2))(10)OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.
Collapse
Affiliation(s)
- Daewon Park
- Department of Materials Science & Engineering, Cornell University, Bard Hall, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, Dimitriou M, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Kramer EJ, Ober CK. ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12266-12274. [PMID: 19821626 DOI: 10.1021/la901654q] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An amphiphilic triblock surface-active block copolymer (SABC) possessing ethoxylated fluoroalkyl side chains was synthesized through the chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene polymer precursor. Bilayer coatings on glass slides consisting of a thin layer of the amphiphilic SABC spray coated on a thick layer of a polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) thermoplastic elastomer were prepared for biofouling assays with the green alga Ulva and the diatom Navicula. Dynamic water contact angle analysis and X-ray photoelectron spectroscopy (XPS) were used to characterize the surfaces. Additionally, the effect of the Young's modulus of the coating on the release properties of sporelings (young plants) of the green alga Ulva was examined through the use of two different SEBS thermoplastic elastomers possessing modulus values of an order of magnitude in difference. The amphiphilic SABC was found to reduce the settlement density of zoospores of Ulva as well as the strength of attachment of sporelings. The attachment strength of the sporelings was further reduced for the amphiphilic SABC on the "low"-modulus SEBS base layer. The weaker adhesion of diatoms, relative to a PDMS standard, further highlights the antifouling potential of this amphiphilic triblock hybrid copolymer.
Collapse
Affiliation(s)
- Craig J Weinman
- Department of Materials Science & Engineering, Cornell University, Bard Hall, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Piola RF, Dafforn KA, Johnston EL. The influence of antifouling practices on marine invasions. BIOFOULING 2009; 25:633-44. [PMID: 20183122 DOI: 10.1080/08927010903063065] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vessel hull-fouling is increasingly recognised as one of the major vectors for the transfer of marine non-indigenous species. For hundreds of years, copper (Cu) has been used as a primary biocide to prevent the establishment of fouling assemblages on ships' hulls. Some non-indigenous fouling taxa continue to be transferred via hull-fouling despite the presence of Cu antifouling biocides. In addition, several of these species appear to enjoy a competitive advantage over similar native taxa within metal-polluted environments. This metal tolerance may further assist their establishment and spread in new habitats. This review synthesises existing research on the links between Cu and the invasion of fouling species, and shows that, with respect to the vector of hull-fouling, tolerance to Cu has the potential to play a role in the transfer of non-indigenous fouling organisms. Also highlighted are the future directions for research into this important nexus between industry, ecology and environmental management.
Collapse
|
37
|
Hu Z, Finlay JA, Chen L, Betts DE, Hillmyer MA, Callow ME, Callow JA, DeSimone JM. Photochemically Cross-Linked Perfluoropolyether-Based Elastomers: Synthesis, Physical Characterization, and Biofouling Evaluation. Macromolecules 2009. [DOI: 10.1021/ma901227k] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaokang Hu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - John A. Finlay
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Liang Chen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Douglas E. Betts
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Maureen E. Callow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - James A. Callow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Joseph M. DeSimone
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
38
|
Zhao Q, Su X, Wang S, Zhang X, Navabpour P, Teer D. Bacterial attachment and removal properties of silicon- and nitrogen-doped diamond-like carbon coatings. BIOFOULING 2009; 25:377-385. [PMID: 19283517 DOI: 10.1080/08927010902838426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Si- and N-doped diamond-like carbon (DLC) coatings with various Si and N contents were deposited on glass slides using magnetron sputter ion-plating and plasma-enhanced chemical vapour deposition. Surface energy analysis of the DLC coatings revealed that with increasing Si content, the electron acceptor gamma(s)(+) value decreased while the electron donor gamma(s)(-) value increased. The antifouling property of DLC coatings was evaluated with the bacterium, Pseudomonas fluorescens, which is one of the most common microorganisms forming biofilms on the surface of heat exchangers in cooling water systems. P. fluorescens had a high value of the gamma(s)(-) component (69.78 mN m(-1)) and a low value of the gamma(s)(+) component (5.97 mN m(-1)), and would be negatively charged with the zeta potential of -16.1 mV. The experimental results showed that bacterial removal by a standardised washing procedure increased significantly with increasing electron donor gamma(s)(-) values and with decreasing electron acceptor gamma(s)(+) values of DLC coatings. The incorporation of 2%N into the Si-doped DLC coatings further significantly reduced bacterial attachment and significantly increased ease of removal. The best Si-N-doped DLC coatings reduced bacterial attachment by 58% and increased removal by 41%, compared with a silicone coating, Silastic T2. Bacterial adhesion strength on the DLC coatings is explained in terms of thermodynamic work of adhesion.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Mechanical Engineering, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Tasso M, Pettitt ME, Cordeiro AL, Callow ME, Callow JA, Werner C. Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films. BIOFOULING 2009; 25:505-516. [PMID: 19387876 DOI: 10.1080/08927010902930363] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.
Collapse
Affiliation(s)
- Mariana Tasso
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Marabotti I, Morelli A, Orsini LM, Martinelli E, Galli G, Chiellini E, Lien EM, Pettitt ME, Callow ME, Callow JA, Conlan SL, Mutton RJ, Clare AS, Kocijan A, Donik C, Jenko M. Fluorinated/siloxane copolymer blends for fouling release: chemical characterisation and biological evaluation with algae and barnacles. BIOFOULING 2009; 25:481-493. [PMID: 19373571 DOI: 10.1080/08927010902913187] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS). X-ray photoelectron spectroscopy depth profiling analyses were performed on the coatings to establish the distribution of specific chemical constituents throughout the coatings, and proved enrichment in fluorine of the outermost layers of the coating surface. Addition of the fluorinated/siloxane copolymer to the PDMS matrix resulted in a concentration-dependent decrease in settlement of barnacle, Balanus amphitrite, cyprids. The release of young plants of Ulva, a soft fouling species, and young barnacles showed that adhesion strength on the fluorinated/siloxane copolymer was significantly lower than the siloxane control. However, differences in adhesion strength were not directly correlated with the concentration of copolymer in the blends.
Collapse
Affiliation(s)
- Ilaria Marabotti
- Dipartimento di Chimica e Chimica Industriale, UdR Pisa - INSTM, Universita di Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ribeiro E, Stafslien SJ, Cassé F, Callow JA, Callow ME, Pieper RJ, Daniels JW, Bahr JA, Webster DC. Automated Image-Based Method for Laboratory Screening of Coating Libraries for Adhesion of Algae and Bacterial Biofilms. ACTA ACUST UNITED AC 2008; 10:586-94. [DOI: 10.1021/cc800047s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eraldo Ribeiro
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Shane J. Stafslien
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Franck Cassé
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - James A. Callow
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Maureen E. Callow
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Robert J. Pieper
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Justin W. Daniels
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - James A. Bahr
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| | - Dean C. Webster
- Computer Sciences, Florida Institute of Technology, Melbourne, Florida 32901, Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota 58102, and School of Biosciences, The University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
42
|
Chen Z, Chisholm B, Kim J, Stafslien S, Wagner R, Patel S, Daniels J, Wal LV, Li J, Ward K, Callow M, Thompson S, Siripirom C. UV-curable, oxetane-toughened epoxy-siloxane coatings for marine fouling-release coating applications. POLYM INT 2008. [DOI: 10.1002/pi.2422] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Kim J, Nyren-Erickson E, Stafslien S, Daniels J, Bahr J, Chisholm BJ. Release characteristics of reattached barnacles to non-toxic silicone coatings. BIOFOULING 2008; 24:313-319. [PMID: 18568668 DOI: 10.1080/08927010802199945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Release mechanisms of barnacles (Amphibalanus amphitrite or Balanus amphitrite) reattached to platinum-cured silicone coatings were studied as a function of coating thickness (210-770 microm), elastic modulus (0.08-1.3 MPa), and shear rate (2-22 microm s(-1)). It was found that the shear stress of the reattached, live barnacles necessary to remove from the silicone coatings was controlled by the combined term (E/t)(0.5) of the elastic modulus (E) and thickness (t). As the ratio of the elastic modulus to coating thickness decreased, the barnacles were more readily removed from the silicone coatings, showing a similar release behavior to pseudobarnacles (epoxy glue). The barnacle mean shear stress ranged from 0.017 to 0.055 MPa whereas the pseudobarnacle mean shear stress ranged from 0.022 to 0.095 MPa.
Collapse
Affiliation(s)
- Jongsoo Kim
- Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, North Dakota, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Rittschof D, Orihuela B, Stafslien S, Daniels J, Christianson D, Chisholm B, Holm E. Barnacle reattachment: a tool for studying barnacle adhesion. BIOFOULING 2008; 24:1-9. [PMID: 18058300 DOI: 10.1080/08927010701784920] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Standard approaches for measuring adhesion strength of fouling organisms use barnacles, tubeworms or oysters settled and grown in the field or laboratory, to a measurable size. These approaches suffer from the vagaries of larval supply, settlement behavior, predation, disturbance and environmental stress. Procedures for reattaching barnacles to experimental surfaces are reported. When procedures are followed, adhesion strength measurements on silicone substrata after 2 weeks are comparable to those obtained using standard methods. Hydrophilic surfaces require reattachment for 2-4 weeks. The adhesion strength of barnacles in reattachment assays was positively correlated to results obtained from field testing a series of experimental polysiloxane fouling-release coatings (r = 0.89). The reattachment method allows for precise barnacle orientation, enabling the use of small surfaces and the potential for automation. The method enables down-selection of coatings from combinatorial approaches to manageable levels for definitive field testing. Reattachment can be used with coatings that combine antifouling and fouling-release technologies.
Collapse
Affiliation(s)
- D Rittschof
- Duke University Marine Laboratory, Beaufort, North Carolina, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ramsay DB, Dickinson GH, Orihuela B, Rittschof D, Wahl KJ. Base plate mechanics of the barnacle Balanus amphitrite (=Amphibalanus amphitrite). BIOFOULING 2008; 24:109-118. [PMID: 18247205 DOI: 10.1080/08927010701882112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mechanical properties of barnacle base plates were measured using a punch test apparatus, with the purpose of examining the effect that the base plate flexural rigidity may have on adhesion mechanics. Base plate compliance was measured for 43 Balanus amphitrite (=Amphibalanus amphitrite) barnacles. Compliance measurements were used to determine flexural rigidity (assuming a fixed-edge circular plate approximation) and composite modulus of the base plates. The barnacles were categorized by age and cement type (hard or gummy) for statistical analyses. Barnacles that were 'hard' (> or =70% of the base plate thin, rigid cement) and 'gummy' (>30% of the base plate covered in compliant, tacky cement) showed statistically different composite moduli but did not show a difference in base plate flexural rigidity. The average flexural rigidity for all barnacles was 0.0020 Nm (SEM +/- 0.0003). Flexural rigidity and composite modulus did not differ significantly between 3-month and 14-month-old barnacles. The relatively low flexural rigidity measured for barnacles suggests that a rigid punch approximation is not sufficient to account for the contributions to adhesion mechanics due to flexing of real barnacles during release.
Collapse
Affiliation(s)
- David B Ramsay
- U.S. Naval Research Laboratory, Washington, District of Columbia, USA
| | | | | | | | | |
Collapse
|
46
|
Conlan SL, Mutton RJ, Aldred N, Clare AS. Evaluation of a fully automated method to measure the critical removal stress of adult barnacles. BIOFOULING 2008; 24:471-481. [PMID: 18726746 DOI: 10.1080/08927010802353716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A computer-controlled force gauge designed to measure the adhesive strength of barnacles on test substrata is described. The instrument was evaluated with adult barnacles grown in situ on Silastic T2(R)-coated microscope slides and epoxy replicas adhered to the same substratum with synthetic adhesive. The force per unit area required to detach the barnacles (critical removal stress) using the new automated system was comparable to that obtained with ASTM D5618 (1994) (0.19 and 0.28 MPa compared with 0.18 and 0.27 MPa for two batches of barnacles). The automated method showed a faster rate of force development compared with the manual spring force gauge used for ASTM D5618 (1994). The new instrument was as accurate and precise at determining surface area as manual delineation used with ASTM D5618 (1994). The method provided significant advantages such as higher throughput speed, the ability to test smaller barnacles (which took less time to grow) and to control the force application angle and speed. The variability in measurements was lower than previously reported, suggesting an improved ability to compare the results obtained by different researchers.
Collapse
Affiliation(s)
- Sheelagh L Conlan
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
47
|
Aldred N, Clare AS. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. BIOFOULING 2008; 24:351-63. [PMID: 18597201 DOI: 10.1080/08927010802256117] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Over the last decade, approaches to the development of surfaces that perturb settlement and/or adhesion by barnacles have diversified substantially. Although, previously, coatings research focussed almost exclusively on biocidal technologies and low modulus, low surface-free-energy 'fouling-release' materials, novel strategies to control surface colonisation are now receiving significant attention. It is timely, therefore, to review the current 'state of knowledge' regarding fouling-resistant surface characteristics and their mechanisms of action against settling larvae of barnacles. The role of the barnacle in marine fouling is discussed here in the context of its life cycle and the behavioural ecology of its cypris larva. The temporary and permanent adhesion mechanisms of cyprids are covered in detail and an overview of adult barnacle adhesion is presented. Recent legislation has directed academic research firmly towards environmentally inert marine coatings, so the actions of traditional biocides on barnacles are not described here. Instead, the discussion is restricted to those surface modifications that interfere with settlement-site selection and adhesion of barnacle cypris larvae; specifically, textural engineering of surfaces, development of inert 'non-fouling' surfaces and the use of enzymes in antifouling.
Collapse
Affiliation(s)
- Nick Aldred
- School of Marine Science and Technology, Newcastle University, Newcastle, UK.
| | | |
Collapse
|
48
|
Majumdar P, Lee E, Patel N, Ward K, Stafslien SJ, Daniels J, Chisholm BJ, Boudjouk P, Callow ME, Callow JA, Thompson SEM. Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. BIOFOULING 2008; 24:185-200. [PMID: 18368587 DOI: 10.1080/08927010801894660] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polysiloxane coatings containing chemically-bound ("tethered") quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.
Collapse
Affiliation(s)
- Partha Majumdar
- Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. BIOFOULING 2008; 24:291-302. [PMID: 18568667 DOI: 10.1080/08927010802162885] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This article reports on the preparation and partial characterisation of silicone-based coatings filled with low levels of either synthetic multiwall carbon nanotubes (MWCNTs) or natural sepiolite (NS). The antifouling and fouling-release properties of these coatings were explored through laboratory assays involving representative soft-fouling (Ulva) and hard-fouling (Balanus) organisms. The bulk mechanical properties of the coatings appeared unchanged by the addition of low amounts of filler, in contrast to the surface properties, which were modified on exposure to water. The release of Ulva sporelings (young plants) was improved by the addition of low amounts of both NS and MWCNTs. The most profound effect recorded was the significant reduction of adhesion strength of adult barnacles growing on a silicone elastomer containing a small amount (0.05%) of MWCNTs. All the data indicate that independent of the bulk properties, the surface properties affect settlement, and more particularly, the fouling-release behaviour, of the filled materials.
Collapse
Affiliation(s)
- Alexandre Beigbeder
- Laboratory of Polymeric and Composite Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Hainaut, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|