1
|
Li S, Zhu J, Zhang M, Zhang Y, Zhan A. Managing freshwater invasive mussel biofouling: Insights into byssal adhesion on underwater surfaces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124965. [PMID: 40086280 DOI: 10.1016/j.jenvman.2025.124965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Biofouling caused by mussel byssus adhesion to underwater surfaces poses significant ecological and economic challenges in freshwater ecosystems. However, effective management remains difficult due to limited understanding of how material properties influence byssus adhesion and the underlying mechanisms. In this study, we used the invasive golden mussel (Limnoperna fortunei) as a model fouling species to assess byssus adhesion on commonly used engineering materials, natural substrates, polymers, and marine antifouling materials. Adhesion tests revealed that golden mussels exhibited significantly stronger byssus adhesion - quantified by byssus production, adhesion rate, and adhesion strength - on engineering materials, natural substrates, and polymers compared to antifouling surfaces. Notably, marine antifouling materials such as silicone-oil-infused polydimethylsiloxane demonstrated potential antifouling properties in freshwater ecosystems. Surface characterization and regression analysis indicated that byssus adhesion correlated positively with metal content and surface charge (voltage potential) but negatively with hydrophobicity (contact angle). Additionally, transcriptome sequencing and mass spectrometry identified key adhesion-related proteins, including foot proteins (Fp-1, Fp-2, and Fp-14) and byssal protein Bp-3, as well as the metabolic pathway "protein digestion and absorption", which likely contribute to the observed differences in byssus adhesion. Based on these findings, we propose future antifouling strategies for freshwater ecosystems, including optimization of antifouling materials, surface modifications for underwater structures, molecular interventions targeting byssus adhesion, and tailored management approaches for different aquatic environments. Our study provides valuable insights into mussel-dominated freshwater biofouling and contributes to the development of sustainable antifouling strategies in broader aquatic ecosystems.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jialan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaolian Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Xu X, Guo S, Vancso GJ. Perceiving and Countering Marine Biofouling: Structure, Forces, and Processes at Surfaces in Sea Water Across the Length Scales. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7996-8018. [PMID: 40113572 PMCID: PMC11966768 DOI: 10.1021/acs.langmuir.5c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
In marine industries, severe economic losses are caused by accumulating organisms on surfaces in biofouling processes. Establishing a universal and nontoxic protocol to eliminate biofouling has been a notoriously difficult task due to the complexity of the marine organisms' interactions with surfaces and the chemical, mechanical, and morphological diversity of the surfaces involved. The tremendous variety of environmental parameters in marine environments further complicates this field. For efficient surface engineering to combat fouling, secretion, chemical structure, and properties of biobased adhesives and adhesion mechanisms must be understood. Advanced characterization techniques, like Atomic Force Microscopy (AFM), now allow one to study the three parameters determining surface adhesion and, eventually, fouling, i.e., morphology, chemistry, and surface mechanical modulus. By AFM, characterization can now be performed across length scales from nanometers to hundreds of micrometers. This review provides an up-to-date account of the most promising AFM-based approaches for imaging and characterizing natural adhesives provided by marine organisms. We summarize the current understanding of the molecular basis and the related relevant processes of marine fouling. We focus on applications of AFM "beyond imaging", i.e., to study interactions between adhesives and the surfaces involved. Additionally, we discuss the performance enhancement of polymer antifouling coatings using information derived from AFM. Knowledge and control of marine adhesion can be applied to prevent marine fouling, as well as to design bioadhesives to enhance potential medical applications. We present some milestone results and conclude with an outlook discussing novel possibilities for designing antifouling coatings and medical bioadhesives.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Shenzhen
Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shifeng Guo
- Shenzhen
Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong
Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute
of Advanced Technology, Chinese Academy
of Sciences, Shenzhen 518055, P.R. China
- The
Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Gyula Julius Vancso
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Sustainable
Polymer Chemistry & Materials Science and Technology of Polymers,
MESA+, Institute of Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Pennell SM, LeFevre TB, Bennett J, Chouyyok W, Daddona JD, Addleman RS, Larimer CJ, Bonheyo GT. An improved method for quantitatively measuring antifouling coating performance using a mussel single thread tensile adhesion test. BIOFOULING 2025; 41:300-311. [PMID: 40103291 DOI: 10.1080/08927014.2025.2476491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Surface biofouling reduces the efficiency and lifespan of equipment across many industries. The development of high-performance antifouling surfaces, such as foul release coatings, benefits from test methods that can quickly identify superior antifouling surfaces in the laboratory during material development. Existing test methods poorly discriminate between different foul release coatings. Here is presented a method to assess the ability of surfaces to resist mussel adhesion using a quantitative, controlled single thread adhesion test (STAT) method, allowing for meaningful comparisons between low adhesion foul release surfaces. This method provides greater accuracy and finer resolution than push-based mussel shear adhesion methods without the difficulties associated with mussel size, thread attachment angle, or harming the mussels. The single thread tensile method is demonstrated on a variety of standard and high-performance coatings, and it is shown that the method detects differentiation between commercial foul release coatings that could not be resolved using other methods.
Collapse
|
4
|
Ghattavi S, Homaei A, Kamrani E. Innovative CuO-melanin hybrid nanoparticles and polytetrafluoroethylene for enhanced antifouling coatings. Colloids Surf B Biointerfaces 2025; 246:114387. [PMID: 39577146 DOI: 10.1016/j.colsurfb.2024.114387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Based on current research, a highly effective, completely biocompatible, and eco-friendly antifouling method was developed. Sepia pharaonis was used to synthesize melanin nanoparticles from its ink. To improve the anti-biofouling characteristics, CuO nanoparticles were synthesized from Padina sp., and a CuO-melanin hybrid nanoparticle complex was created under reflux. The XRD spectrum of the hybrid nanoparticles revealed several prominent peaks, indicating the crystalline structure of the nanoparticles. An EDS analysis identified copper, carbon, and oxygen in the hybrid nanoparticles. According to FE-SEM analysis, CuO-melanin hybrid nanoparticles displayed spherical morphology, with sizes ranging from 15 nm to 55 nm. DLS analysis showed that the hydrodynamic diameter of CuO-melanin hybrid nanoparticles was 187.5 nm. The biological test showed that CuO-melanin nanoparticles had the highst effect on marine bacteria (Phaeobacter sp. (6.25 μg/mL), Alteromonas sp. (12.5 μg/mL)), and algae (Isochrysis galbana Parke) (99 %) after 48 h. The CuO-melanin (3 wt%) exhibited the lowest pseudo-barnacle adhesion strength at 0.021 MPa and the lowest surface free energy, measuring 14.22 mN/m. The field immersion study in a marine environment showed that among the panels tested, the one containing 3 wt% CuO-melanin hybrid nanoparticles with polytetrafluoroethylene yielded the most favorable and efficient outcome, since it led to the lowest measured weight of biofouling at 26.44 g. The findings of this study show that CuO-melanin hybrid nanoparticles combined with polytetrafluoroethylene exhibit highly promising characteristics, make them appealing for antifouling applications.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Ehsan Kamrani
- Fisheries Department, Faculty of Marine Sciences, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
5
|
Sakai D, Sensui N, Hirose E. Ascidian Larvae Discriminate Nano-Scale Difference in Surface Structures During Substrate Selection for Settlement. Zoolog Sci 2024; 41:564-569. [PMID: 39636140 DOI: 10.2108/zs240066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/12/2024] [Indexed: 12/07/2024]
Abstract
Planktonic larvae of sessile metazoans select substrates for settlement based on various factors. Phallusia philippinensis larvae (Ascidiacea: Phlebobranchia: Ascidiidae) showed a negative preference for nano-scale nipple arrays (dense arrays of papillae-like nanostructures approximately 100 nm in height). To clarify whether ascidian larvae discriminate between nano-structure sizes for substrate selection, three different sizes of periodic nano-folds were fabricated using two-beam interference exposure, and substrate selection assays were performed on the three types of nano-folds and flat surfaces made of the same material. The substrate selection assay with 500-2000 freshly hatched larvae was carried out in nine replicates. The ascidian larvae showed a positive preference for flat surfaces and a negative preference for substrates with a height of 120 nm and pitch of 600 nm. Manly's selection indices differed with the size of the periodic nano-folds, supporting the hypothesis that larvae directly or indirectly discriminate between nano-scale differences upon settlement. The present study is the first to show that differences in nanostructure size affect substrate selection during larval settlement of sessile animals. The evolutionary adaptive reasons for larvae to discriminate between nano-scale structures and select substrates for settlement are potentially important to effectively manage ascidian biofouling using non-toxic methods.
Collapse
Affiliation(s)
- Daisuke Sakai
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
| | - Noburu Sensui
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan,
| |
Collapse
|
6
|
Liu H, Jiang C, Chen J, Li H, Chen Y. Research Advances in Marine Aquaculture Net-Cleaning Robots. SENSORS (BASEL, SWITZERLAND) 2024; 24:7555. [PMID: 39686092 DOI: 10.3390/s24237555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
In the realm of marine aquaculture, the netting of cages frequently accumulates marine fouling, which impedes water circulation and poses safety hazards. Traditional manual cleaning methods are marked by inefficiency, high labor demands, substantial costs, and considerable environmental degradation. This paper initially presents the current utilization of net-cleaning robots in the cleaning, underwater inspection, and monitoring of aquaculture cages, highlighting their benefits in enhancing operational efficiency and minimizing costs. Subsequently, it reviews key technologies such as underwater image acquisition, visual recognition, adhesion-based movement, efficient fouling removal, motion control, and positioning navigation. Ultimately, it anticipates the future trajectory of net-cleaning robots, emphasizing their potential for intelligence and sustainability, which could drive the marine aquaculture industry towards a more efficient and eco-friendly era.
Collapse
Affiliation(s)
- Heng Liu
- College of Science and Technology Ningbo University, Ningbo 315300, China
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chuhua Jiang
- College of Science and Technology Ningbo University, Ningbo 315300, China
| | - Junhua Chen
- College of Science and Technology Ningbo University, Ningbo 315300, China
| | - Hao Li
- College of Science and Technology Ningbo University, Ningbo 315300, China
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yongqi Chen
- College of Science and Technology Ningbo University, Ningbo 315300, China
| |
Collapse
|
7
|
Zaghari P, Özcan O, Islam MD, Black B, Liu S, Shovon SMN, Ware HOT, Rosenhahn A, Ryu JE. Fabrication and anti-fouling performance assessment of micro-textured CNT-PDMS nanocomposites through the scalable roll-coating process. BIOFOULING 2024; 40:1012-1025. [PMID: 39654354 DOI: 10.1080/08927014.2024.2438694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the micro-topographic surfaces as a benign anti-fouling/fouling-release method. The bio-inspired engineered surfaces were manufactured by controlling the viscoelastic instabilities of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) nanocomposites using a customized, scalable two-roll coating process. The effects of manufacturing conditions, i.e., roller speed and roller radius-to-gap ratio, on surface properties, such as Wenzel roughness factor, peak density, water contact angle, and the tensile testing of the nanocomposite, were studied. The results showed that decreasing roller gap distance would significantly increase the hydrophobicity of the samples. Moreover, a positive correlation was observed between surface peak density and roughness factor. A textured sample was manufactured that significantly outperformed the non-textured CNT-PDMS, indicating a correlation between surface roughness and diatom attachment density. The dynamic diatom attachment assay showed up to 35% reduction in surface coverage of textured samples by the Navicula perminuta diatom compared to the non-textured CNT-PDMS control samples.
Collapse
Affiliation(s)
- Pouria Zaghari
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Onur Özcan
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Md Didarul Islam
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin Black
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Sipan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - S M Naser Shovon
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Henry Oliver T Ware
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Jong Eun Ryu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Lee J, Kim I, Kang SM. Synergistic Effect of Multilayered Alginate/Poly(SBMA) Coatings on Marine Antifouling Property. Macromol Biosci 2024; 24:e2400130. [PMID: 38923390 DOI: 10.1002/mabi.202400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Alginate (Alg) coatings have attracted attention as protective layers on solid surfaces for marine antifouling applications due to their strong water binding capability and environmentally friendly characteristics. However, the effectiveness of Alg coatings in preventing marine fouling diminishes upon interaction with divalent cations present in seawater. To address this issue, post-modification of the Alg coating is conducted. The carboxyl groups of Alg, which are susceptible sites for interaction with divalent cations, are conjugated with polymerization initiators through metal-mediated coordination bond formation. Subsequently, poly(sulfobetaine methacrylate) (poly(SBMA)) brushes are grown from the initiator-immobilized Alg coatings, resulting in the formation of multilayered Alg/poly(SBMA) coatings. In marine diatom adhesion assays using Amphora Coffeaeformis, multilayered Alg/poly(SBMA) coatings exhibited superior antifouling performance compared to single-layered Alg or poly(SBMA) coating controls.
Collapse
Affiliation(s)
- Jinwoo Lee
- Department of Chemistry, Chungbuk National University, Chungbuk, 28644, Republic of Korea
| | - Inho Kim
- Department of Chemistry, Chungbuk National University, Chungbuk, 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk, 28644, Republic of Korea
| |
Collapse
|
9
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
10
|
Vinagre PA, Fonseca G, Vieira M. Experimental insights on biofouling growth in marine renewable structures. OPEN RESEARCH EUROPE 2024; 2:108. [PMID: 39157204 PMCID: PMC11329864 DOI: 10.12688/openreseurope.14854.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 08/20/2024]
Abstract
Background Marine biofouling is a threat to industries working in the marine environment, representing significant costs associated with equipment impairment and loss of performance. In the Marine Renewable Energy (MRE) and other maritime sectors which operate at sea for long periods, an important aspect of biofouling is related to the type and frequency of inspections and biofouling removal procedures. Methods This study investigated important parameters of macrofouling ( e.g. composition, including the presence of non-indigenous species, thickness, and weight) from communities growing on samples that emulate tubular components of marine renewable devices. The trials were performed during short periods of submersion (one to eight weeks) in the seasons when the colonisation process should be most intensive (spring, summer, and autumn). Furthermore, the frictional resistance forces generated during the scraping of biofouling from those components were investigated. Results Overall, results provide insights on the growth rates and removal requirements of biofouling in marine components. The results show that, while biofouling growth in early colonization stages might not present great detrimental effects to wave energy components, the consequent marine corrosion (fostered by biofouling) and the settlement of non-indigenous species (NIS) should be factors of concern. Conclusions Performing biofouling-related maintenance activities after the peak of maximum growth and reproduction (during the warmer seasons in temperate to cold environments) is suggested to reduce the number and frequency of activities. NIS can be detected at very early stages in the colonization process, highlighting the importance of biofouling monitoring and the implementation of biosecurity risk assessment plans early in the operational stage of MRE projects.
Collapse
Affiliation(s)
| | - Gonçalo Fonseca
- Engineering and Operations, WavEC Offshore Renewables, Lisbon, Portugal
| | - Mário Vieira
- Engineering and Operations, WavEC Offshore Renewables, Lisbon, Portugal
| |
Collapse
|
11
|
Bloecher N, Broch OJ, Davies EJ, Pedersen MO, Floerl O. Catch my drift? Between-farm dispersal of biofouling waste from salmon pen net cleaning: Potential risks for fish health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172464. [PMID: 38621535 DOI: 10.1016/j.scitotenv.2024.172464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Biofouling is a serious challenge for global salmon aquaculture and farmers have to regularly clean pen nets to avoid impacts on stock health and farms' structural integrity. The removed material is released into the surrounding environment. This includes cnidarian species such as hydroids, whose nematocyst-bearing fragments can impact gill health and fish welfare. There is also increasing evidence of the association of parasites and pathogens with biofouling organisms and cleaning fragments. It is unknown whether and how far local current regimes disperse biofouling material and whether this material reaches and interacts with adjacent pens or even neighbouring farms downstream, or wild fish populations in surrounding environments. We focussed on the cnidarian hydroid Ectopleura larynx, one of the most abundant biofouling species on Norwegian aquaculture installations. Using a 3D hydrodynamic model parameterised with physical and biological properties of hydroid particles (derived via field and laboratory studies), we simulated the dispersal of net cleaning waste from two Norwegian salmon farms. Our results demonstrate that net cleaning waste is extensively dispersed throughout neighbouring pens, and even to adjacent aquaculture facilities. Salmon were exposed to concentrations of biofouling particles up to 41-fold elevated compared to background concentrations, and for up to 30.5 h. Maximum dispersal distance of hydroid particles was 5.5 km from the point of release, achieved largely within 48 h. Least-cost distance calculations show that this distance exceeds the nearest-neighbour distance of 70 % of Norway's salmon farms (654 farms). Our study provides some evidence that actions taken to manage biofouling at salmon farms may affect neighbouring farms and surrounding natural environments. The results highlight the potential risks associated with net cleaning: the dispersal of harmful cnidarian particles, associated pathogens, and non-indigenous species, thus underlining the need for novel farming or net cleaning technologies that prevent the release of potentially harmful cleaning waste.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Floerl
- SINTEF Ocean, Trondheim, Norway; LWP Ltd., Christchurch, New Zealand
| |
Collapse
|
12
|
Romeu MJ, Miranda JM, de Jong ED, Morais J, Vasconcelos V, Sjollema J, Mergulhão FJ. Understanding the flow behavior around marine biofilms. Biofilm 2024; 7:100204. [PMID: 38948680 PMCID: PMC11214183 DOI: 10.1016/j.bioflm.2024.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
In vitro platforms capable of mimicking the hydrodynamic conditions prevailing in natural aquatic environments have been previously validated and used to predict the fouling behavior on different surfaces. Computational Fluid Dynamics (CFD) has been used to predict the shear forces occurring in these platforms. In general, these predictions are made for the initial stages of biofilm formation, where the amount of biofilm does not affect the flow behavior, enabling the estimation of the shear forces that initial adhering organisms have to withstand. In this work, we go a step further in understanding the flow behavior when a mature biofilm is present in such platforms to better understand the shear rate distribution affecting marine biofilms. Using 3D images obtained by Optical Coherence Tomography, a mesh was produced and used in CFD simulations. Biofilms of two different marine cyanobacteria were developed in agitated microtiter plates incubated at two different shaking frequencies for 7 weeks. The biofilm-flow interactions were characterized in terms of the velocity field and shear rate distribution. Results show that global hydrodynamics imposed by the different shaking frequencies affect biofilm architecture and also that this architecture affects local hydrodynamics, causing a large heterogeneity in the shear rate field. Biofilm cells located in the streamers of the biofilm are subjected to much higher shear values than those located on the bottom of the streamers and this dispersion in shear rate values increases at lower bulk fluid velocities. This heterogeneity in the shear force field may be a contributing factor for the heterogeneous behavior in metabolic activity, growth status, gene expression pattern, and antibiotic resistance often associated with nutrient availability within the biofilm.
Collapse
Affiliation(s)
- Maria J. Romeu
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - João M. Miranda
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- CEFT—Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Ed. D. de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 97 13 AV, Groningen, the Netherlands
| | - João Morais
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 97 13 AV, Groningen, the Netherlands
| | - Filipe J. Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
13
|
Chen J, Zheng X, Jian R, Bai W, Zheng G, Xie Z, Lin Q, Lin F, Xu Y. In Situ Reduction of Silver Nanoparticles/Urushiol-Based Polybenzoxazine Composite Coatings with Enhanced Antimicrobial and Antifouling Performances. Polymers (Basel) 2024; 16:1167. [PMID: 38675086 PMCID: PMC11054688 DOI: 10.3390/polym16081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Marine anti-fouling coatings represent an efficient approach to prevent and control the marine biofouling. However, a significant amount of antifouling agent is added to improve the static antifouling performance of the coatings, which leads to an issue whereby static antifouling performance conflicts with eco-friendly traits. Herein, this work reports an in situ reduction synthesis of silver nanoparticles (AgNPs) within polymers to produce composite coatings, aiming to solve the aforementioned issue. Firstly, urushiol-based benzoxazine monomers were synthesized by the Mannich reaction, using an eco-friendly natural product urushiol and n-octylamine and paraformaldehyde as the reactants. Additionally, AgNPs were obtained through the employment of free radicals formed by phenolic hydroxyl groups in the urushiol-based benzoxazine monomers, achieved by the in situ reduction of silver nitrate in benzoxazine. Then, the urushiol-based benzoxazine/AgNPs composite coatings were prepared by the thermosetting method. AgNPs exhibit broad-spectrum and highly efficient antimicrobial properties, with a low risk to human health and a minimal environmental impact. The composite coating containing a small amount of AgNPs (≤1 wt%) exhibits effective inhibition against various types of bacteria and marine microalgae in static immersion, thereby displaying outstanding antifouling properties. This organic polymer and inorganic nanoparticle composite marine antifouling coating, with its simple preparation method and eco-friendliness, presents an effective solution to the conflict between static antifouling effectiveness and environmental sustainability in marine antifouling coatings.
Collapse
Affiliation(s)
- Jipeng Chen
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361100, China;
| | - Xiaoxiao Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Rongkun Jian
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China; (R.J.); (W.B.)
| | - Weibin Bai
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China; (R.J.); (W.B.)
| | - Guocai Zheng
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Zhipeng Xie
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen 361100, China;
| | - Qi Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Fengcai Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| | - Yanlian Xu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (J.C.); (X.Z.); (G.Z.); (Q.L.)
| |
Collapse
|
14
|
Bach LT, Tamsitt V, Gower J, Hurd CL, Raven JA, Visch W, Boyd PW. Reply to: Rectifying misinformation on the climate intervention potential of ocean afforestation. Nat Commun 2024; 15:3011. [PMID: 38594242 PMCID: PMC11004015 DOI: 10.1038/s41467-024-47135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Affiliation(s)
- Lennart T Bach
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.
| | - Veronica Tamsitt
- College of Marine Science, University of South Florida, St Petersberg, FL, USA
| | - Jim Gower
- Fisheries and Oceans Canada, North Saanich, BC, Canada
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, UK
- Climate Change Cluster, University of Technology, Sydney, NSW, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Wouter Visch
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Wang Z, Yao S, Han Z, Li Z, Wu Z, Hao H, Feng D. Rapid discovery of a new antifoulant: From in silico studies targeting barnacle chitin synthase to efficacy against barnacle settlement. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116187. [PMID: 38460404 DOI: 10.1016/j.ecoenv.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Due to the adverse environmental impacts of toxic heavy metal-based antifoulants, the screening of environmentally friendly antifoulants has become important for the development of marine antifouling technology. Compared with the traditional lengthy and costly screening method, computer-aided drug design (CADD) offers a promising and efficient solution that can accelerate the screening process of green antifoulants. In this study, we selected barnacle chitin synthase (CHS, an important enzyme for barnacle settlement and development) as the target protein for docking screening. Three CHS genes were identified in the barnacle Amphibalanus amphitrite, and their encoded proteins were found to share a conserved glycosyltransferase domain. Molecular docking of 31,561 marine natural products with AaCHSs revealed that zoanthamine alkaloids had the best binding affinity (-11.8 to -12.6 kcal/mol) to AaCHSs. Considering that the low abundance of zoanthamine alkaloids in marine organisms would limit their application as antifoulants, a marine fungal-derived natural product, mycoepoxydiene (MED), which has a similar chemical structure to zoanthamine alkaloids and the potential for large-scale production by fermentation, was selected and validated for stable binding to AaCHS2L2 using molecular docking and molecular dynamics simulations. Finally, the efficacy of MED in inhibiting cyprid settlement of A. amphitrite was confirmed by a bioassay that demonstrated an EC50 of 1.97 μg/mL, suggesting its potential as an antifoulant candidate. Our research confirmed the reliability of using AaCHSs as antifouling targets and has provided insights for the efficient discovery of green antifoulants by CADD.
Collapse
Affiliation(s)
- Zhixuan Wang
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shanshan Yao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhaofang Han
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhuo Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Cahill PL, Moodie LWK, Hertzer C, Pinori E, Pavia H, Hellio C, Brimble MA, Svenson J. Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry. Acc Chem Res 2024; 57:399-412. [PMID: 38277792 DOI: 10.1021/acs.accounts.3c00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.
Collapse
Affiliation(s)
- Patrick L Cahill
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Lindon W K Moodie
- Drug Design and Discovery, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Cora Hertzer
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Emiliano Pinori
- RISE Research Institutes of Sweden, Division for Material and Production, 504 62 Borås, Sweden
| | - Henrik Pavia
- Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
17
|
Kim I, Kang SM. Formation of Amphiphilic Zwitterionic Thin Poly(SBMA- co-TFEMA) Brushes on Solid Surfaces for Marine Antifouling Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38314692 DOI: 10.1021/acs.langmuir.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Water molecules can bind to zwitterionic polymers, such as carboxybetaine and sulfobetaine, forming strong hydration layers along the polymer chains. Such hydration layers act as a barrier to impede the attachment of marine fouling organisms; therefore, zwitterionic polymer coatings have been of considerable interest as marine antifouling coatings. However, recent studies have shown that severe adsorption of marine sediments occurs on zwitterionic-polymer-coated surfaces, resulting in the degradation of their marine antifouling performance. Therefore, a novel approach for forming amphiphilic zwitterionic polymers using zwitterionic and hydrophobic monomers is being investigated to simultaneously inhibit both sediment adsorption and marine fouling. In this study, amphiphilic zwitterionic thin polymer brushes composed of sulfobetaine methacrylate (SBMA) and trifluoroethyl methacrylate (TFEMA) were synthesized on Si/SiO2 surfaces via surface-initiated atom transfer radical polymerization. For this, a facile metal-ion-mediated method was developed for immobilizing polymerization initiators on solid substrates to subsequently form poly(SBMA-co-TFEMA) brushes on the initiator-coated substrate surface. Poly(SBMA-co-TFEMA) brushes with various SBMA/TFEMA ratios were prepared to determine the composition at which both marine diatom adhesion and sediment adsorption can be prevented effectively. The results indicate that poly(SBMA-co-TFEMA) brushes prepared with an SBMA/TFEMA ratio of 3:7 effectively inhibit both sediment adsorption and marine diatom adhesion, thereby exhibiting balanced marine antifouling properties. Thus, the findings of this study provide important insights into the design of amphiphilic marine antifouling materials.
Collapse
Affiliation(s)
- Inho Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
18
|
Mougin J, Pavaux AS, Fanesi A, Lopez J, Pruvost E, Guihéneuf F, Sciandra A, Briandet R, Lopes F. Bacterial adhesion inhibition by microalgal EPSs from Cylindrotheca closterium and Tetraselmis suecica biofilms. Appl Microbiol Biotechnol 2024; 108:168. [PMID: 38261095 DOI: 10.1007/s00253-023-12960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 01/24/2024]
Abstract
In the food industry, successful bacterial pathogen colonization and persistence begin with their adhesion to a surface, followed by the spatial development of mature biofilm of public health concerns. Compromising bacterial settlement with natural inhibitors is a promising alternative to conventional anti-fouling treatments typically based on chemical biocides that contribute to the growing burden of antimicrobial resistance. In this study, three extracellular polymeric substance (EPS) fractions extracted from microalgae biofilms of Cylindrotheca closterium (fraction C) and Tetraselmis suecica (fraction Ta rich in insoluble scale structure and fraction Tb rich in soluble EPS) were screened for their anti-adhesive properties, against eight human food-borne pathogens belonging to Escherichia coli, Staphylococcus aureus, Salmonella enterica subsp. enterica, and Listeria monocytogenes species. The results showed that the fraction Ta was the most effective inducing statistically significant reduction for three strains of E. coli, S. aureus, and L. monocytogenes. Overall, EPSs coating on polystyrene surfaces of the different fractions increased the hydrophilic character of the support. Differences in bacterial adhesion on the different coated surfaces could be explained by several dissimilarities in the structural and physicochemical EPS compositions, according to HPLC and ATR-FTIR analysis. Interestingly, while fractions Ta and Tb were extracted from the same microalgal culture, distinct adhesion patterns were observed, highlighting the importance of the extraction process. Overall, the findings showed that EPS extracted from microalgal photosynthetic biofilms can exhibit anti-adhesive effects against food-borne pathogens and could help develop sustainable and non-toxic anti-adhesive surfaces for the food industry. KEY POINTS: •EPSs from a biofilm-based culture of C. closterium/T. suecica were characterized. •Microalgal EPS extracted from T. suecica biofilms showed bacterial anti-adhesive effects. •The anti-adhesive effect is strain-specific and affects both Gram - and Gram + bacteria.
Collapse
Affiliation(s)
- Julia Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Anne-Sophie Pavaux
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Andrea Fanesi
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France
| | - Julien Lopez
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Eric Pruvost
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | | | - Antoine Sciandra
- Laboratoire d, Océanographie de Villefranche LOV, CNRS, Sorbonne Université, UMR 7093, BP 28, 06230, Villefranche-Sur-Mer, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Filipa Lopes
- Laboratoire Génie Des Procédés Et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
19
|
Lo LSH, Liu X, Qian PY, Häggblom MM, Cheng J. Microbial colonization and chemically influenced selective enrichment of bacterial pathogens on polycarbonate plastic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8061-8071. [PMID: 38175506 DOI: 10.1007/s11356-023-31752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic pollution in aquatic environments poses significant concerns due to its potential to serve as a refuge for aquatic pathogens. However, the role of plastic surfaces and microbial biofilm interfaces in facilitating pathogen development remains poorly understood. In this study, a microcosm setup was employed to investigate the interactions between plastics and the microbial community and examine the differences in bacterial community composition and potential pathogen occurrences between the plastisphere-biofilm and surrounding seawater. Community composition analysis combined with SEM observations over time indicated that biofilm extracellular polymeric substance formation over 14 days had a link with the relative abundance and succession patterns of pathogen taxa. Colony clusters were observed on biofilms from day 7 and coincided with higher bacterial pathogen dominance. On day 14, pathogen abundance overall decreased with a potentially degrading biofilm. Pseudomonas and Pseudoalteromonas were the dominant potential pathogen groups observed in the microcosm. When further subjected to chemical treatment as an imposed environmental stress over time, biofilm-associated Psuedoalteromonas sharply increased in abundance after three days of exposure, but quickly diminished by 14 days in favor of genera such as Acinetobacter, Pseudomonas, and Staphylococcus. These results suggest that environmental plastisphere-biofilms can promote the early selection, enrichment, and spread of pathogenic bacteria in the aquatic environment and could be later worsened under chemical and long-term pressure. This study provided new insights into the succession of pathogens in plastisphere biofilms, contributing to the understanding of pathogen risks involved in emerging plastisphere biofilms in light of global plastic pollution.
Collapse
Affiliation(s)
- Linus Shing Him Lo
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Xuan Liu
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Pei-Yuan Qian
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ, 08901-8525, USA
| | - Jinping Cheng
- Department of Science and Environmental Studies and State Key Laboratory of Marine Pollution, The Education University of Hong Kong, New Territories, Hong Kong, China.
| |
Collapse
|
20
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
21
|
Karyani TZ, Ghattavi S, Homaei A. Application of enzymes for targeted removal of biofilm and fouling from fouling-release surfaces in marine environments: A review. Int J Biol Macromol 2023; 253:127269. [PMID: 37804893 DOI: 10.1016/j.ijbiomac.2023.127269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Biofouling causes adverse issues in underwater structures including ship hulls, aquaculture cages, fishnets, petroleum pipelines, sensors, and other equipment. Marine constructions and vessels frequently are using coatings with antifouling properties. During the previous ten years, several alternative strategies have been used to combat the biofilm and biofouling that have developed on different abiotic or biotic surfaces. Enzymes have frequently been suggested as a cost-effective, substitute, eco-friendly, for conventional antifouling and antibiofilm substances. The destruction of sticky biopolymers, biofilm matrix disorder, bacterial signal interference, and the creation of biocide or inhibitors are among the catalytic reactions of enzymes that really can successfully prevent the formation of biofilms. In this review we presented enzymes that have antifouling and antibiofilm properties in the marine environment like α-amylase, protease, lysozymes, glycoside hydrolase, aminopeptidases, oxidase, haloperoxidase and lipases. We also overviewed the function, benefits and challenges of enzymes in removing biofouling. The reports suggest enzymes are good candidates for marine environment. According to the findings of a review of studies in this field, none of the enzymes were able to inhibit the development of biofilm by a site marine microbial community when used alone and we suggest using other enzymes or a mixture of enzymes for antifouling and antibiofilm purposes in the sea environment.
Collapse
Affiliation(s)
- Tayebeh Zarei Karyani
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
22
|
Aly SM, Elatta MA, ElBanna NI, El-Shiekh MA, Mabrok M, Kelany MS, Fathi M. Comprehensive analysis of Vibrio alginolyticus: Environmental risk factors in the cultured Gilthead seabream (Sparus aurata) under seasonal fluctuations and water parameter alterations. JOURNAL OF FISH DISEASES 2023; 46:1425-1437. [PMID: 37705253 DOI: 10.1111/jfd.13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
This study aimed to investigate the relationship between seasonal variations, water parameters and the prevalence of Vibriosis in Gilthead seabream. A total of 160 Gilthead seabream fish were sampled over the course of 1 year from private earthen pond farms in the Suez Canal area and examined for abnormalities and internal lesions. Vibrio alginolyticus, the causative agent of Vibriosis, was isolated and characterized from the sampled Gilthead seabream fish. The study revealed a significant correlation between different seasons and the prevalence of V. alginolyticus, with lower occurrence during autumn. Analysis of water parameters showed that toxic ammonia concentration was not effective in distinguishing between positive and negative cases of V. alginolyticus. Dissolved oxygen showed weak predictive ability for the occurrence of V. alginolyticus, while temperature demonstrated moderate potential as a predictor of its prevalence. pH values, organic matter concentrations and salinity showed no significant association with the occurrence of V. alginolyticus. Experimental challenges highlighted the vulnerability of Gilthead seabream to V. alginolyticus and emphasized the impact of environmental factors, such as pH and toxic ammonia, on their mortality and survival. The study emphasizes the importance of considering seasonal changes and water quality parameters in managing V. alginolyticus in mariculture. It underscores the need for careful monitoring and control of environmental factors to ensure the health and well-being of cultured fish populations. The findings contribute to our understanding of Vibriosis management and provide valuable insights for developing effective strategies in the aquaculture industry.
Collapse
Affiliation(s)
- Salah M Aly
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Elatta
- Department of Fish Health, Central Laboratory for Aquaculture Research, Sharkia, Egypt
| | - Noha I ElBanna
- Department of Aquaculture Diseases Control, Fish Farming and Technology Institute, Ismailia, Egypt
| | | | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud S Kelany
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed Fathi
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
23
|
Abdulrahman I, Jamal MT, Pugazhendi A, Dhavamani J, Al-Shaeri M, Al-Maaqar S, Satheesh S. Antibacterial and antibiofilm activity of extracts from sponge-associated bacterial endophytes. Prep Biochem Biotechnol 2023; 53:1143-1153. [PMID: 36840506 DOI: 10.1080/10826068.2023.2175366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sponges forms association with many bacteria that serve as sources of new bioactive compounds. The compounds are produced in response to environmental and nutritional conditions of the environment that enable them to protect their host from colonization. In this study, three sponge bacterial endophytes were isolated, identified, and subjected to solvent extraction processes. The identified bacteria are Bacillus amyloquifaciens, Bacillus paramycoides, and Enterobacter sp. The bacteria were cultured in two different fermentation media with varying nutritional composition for the extraction process. The extracts were evaluated for antibacterial and antibiofilm activity against microfouling bacteria and the chemical composition of each extract was analyzed via gas chromatography-mass spectrometry (GC-MS). The extract from the endophytes shows varying antibacterial and antibiofilm activity against the tested strains. Several compounds were detected from the extracts including some with known antibacterial/antibiofilm activity. The results showed variations in activity and secondary metabolite production between the extracts obtained under different nutritional composition of the media. In conclusion, this study indicated the role of nutrient composition in the activity and secondary metabolites production by bacteria associated with sponge Also, this study confirmed the role of sponge bacterial endophytes as producers of bioactive compounds with potential application as antifouling (AF) agents.
Collapse
Affiliation(s)
- Idris Abdulrahman
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Sciences, Kaduna State University, Kaduna, Nigeria
| | - Mamdoh Taha Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Jeyakumar Dhavamani
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saleh Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Sathianeson Satheesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Romeu MJ, Morais J, Vasconcelos V, Mergulhão F. Effect of Hydrogen Peroxide on Cyanobacterial Biofilms. Antibiotics (Basel) 2023; 12:1450. [PMID: 37760746 PMCID: PMC10525773 DOI: 10.3390/antibiotics12091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Although a range of disinfecting formulations is commercially available, hydrogen peroxide is one of the safest chemical agents used for disinfection in aquatic environments. However, its effect on cyanobacterial biofilms is poorly investigated. In this work, biofilm formation by two filamentous cyanobacterial strains was evaluated over seven weeks on two surfaces commonly used in marine environments: glass and silicone-based paint (Sil-Ref) under controlled hydrodynamic conditions. After seven weeks, the biofilms were treated with a solution of hydrogen peroxide (H2O2) to assess if disinfection could affect long-term biofilm development. The cyanobacterial biofilms appeared to be tolerant to H2O2 treatment, and two weeks after treatment, the biofilms that developed on glass by one of the strains presented higher biomass amounts than the untreated biofilms. This result emphasizes the need to correctly evaluate the efficiency of disinfection in cyanobacterial biofilms, including assessing the possible consequences of inefficient disinfection on the regrowth of these biofilms.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (J.M.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
25
|
Carvalho S, Shchepanik H, Aylagas E, Berumen ML, Costa FO, Costello MJ, Duarte S, Ferrario J, Floerl O, Heinle M, Katsanevakis S, Marchini A, Olenin S, Pearman JK, Peixoto RS, Rabaoui LJ, Ruiz G, Srėbalienė G, Therriault TW, Vieira PE, Zaiko A. Hurdles and opportunities in implementing marine biosecurity systems in data-poor regions. Bioscience 2023; 73:494-512. [PMID: 37560322 PMCID: PMC10408360 DOI: 10.1093/biosci/biad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.
Collapse
Affiliation(s)
- Susana Carvalho
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Hailey Shchepanik
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Eva Aylagas
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
- Red Sea Global, Riyadh 12382-6726, Saudi Arabia
| | - Michael L Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Moritz Heinle
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- International Centre for Water Resources and Global Change, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Sergej Olenin
- Marine Research Institute, Klaipeda University, Lithuania
| | | | - Raquel S Peixoto
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Lotfi J Rabaoui
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- National Center for Wildlife, Riyadh, Saudi Arabia
| | - Greg Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland
| | | | | | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E 2023; 108:014409. [PMID: 37583224 DOI: 10.1103/physreve.108.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.
Collapse
Affiliation(s)
- Md Elius
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Kenneth Boyle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Wei-Shun Chang
- Department of Chemistry & Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| |
Collapse
|
27
|
Soleimani S, Jannesari A, Etezad SM. Prevention of marine biofouling in the aquaculture industry by a coating based on polydimethylsiloxane-chitosan and sodium polyacrylate. Int J Biol Macromol 2023:125508. [PMID: 37356687 DOI: 10.1016/j.ijbiomac.2023.125508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In this study, a series of novel hydrophobic/hydrophilic hybrid (HHH) coatings with the feature of preventing the fouling phenomenon was fabricated based on polydimethylsiloxane (PDMS), as matrix and two hydrophilic polymers: chitosan and sodium polyacrylate, as dispersed phases. Antibacterial activity, pseudo-barnacle adhesion strength, surface free energy, water contact angle, and water absorption were performed for all samples. Evaluating field immersion of the samples was performed in the natural seawater. The results showed that the dispersed phase containing PDMS coatings showed simultaneously both of antibacterial activity and foul release behavior. Among the samples, the PCs4 coating containing 4 wt% Cs indicated the lowest pseudo barnacle adhesion strength (0.04 MPa), the lowest surface free energy (18.94 mN/m), the highest water contact angle (116.05°), and the percentage of fouling organisms 9.8 % after 30 days immersion. The HHH coatings can be considered as novel eco-friendly antifouling/foul release coatings for aquaculture applications.
Collapse
Affiliation(s)
- Soolmaz Soleimani
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Ali Jannesari
- Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Seyed Masoud Etezad
- Department of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
28
|
Wang T, Yang C, Wang C, Liao Y, Mkuye R, Deng Y. Bacterial community profiling associated with pearl culture facilities of Liusha Bay, the largest marine pearl culture base on the western Guangdong coast, South China. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106063. [PMID: 37385086 DOI: 10.1016/j.marenvres.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
A large number of aquaculture facilities produced during the farming process are made of plastics. These plastics can be a distinct habitat for bacteria due to their unique materials. Therefore, this paper focuses on plastic aquaculture facilities and investigates the impact of bacterial accumulation on plastic surfaces. In this study, the high-throughput sequencing of 16S rRNA was conducted to investigate bacterial community profiling associated with the pearl culture facilities (cultured net cages and foam buoys) and surrounding water of Liusha Bay. Alpha diversity analysis showed that the richness and diversity indexes of bacterial communities in pearl culture facilities were higher than those in the aquatic environment. The richness and diversity indexes of bacterial communities were different between cultured net cages and foam buoys. Spatially influenced bacterial communities attached to pearl culture facilities varied between aquaculture areas. Thus, plastic has become a habitat for bacteria, floating in the marine environment and providing a favorable living environment for marine microorganisms and specific preferences for different substrate types. The relative abundance of certain functions on the attached bacterial community of the culture facility was high, which suggested that plastics did not only alter community structure but also influenced bacterial function. In addition, we detected small amounts of pathogenic bacteria, such as Vibrio and Bruegeria, in pearl culture facilities and surrounding seawater, suggesting that plastics can act as vectors for potentially pathogenic bacteria that may have an impact on the development of aquaculture. Our understanding of plastic ecology has been enriched by the discovery of the various microbial assemblages that can occur in aquaculture facilities.
Collapse
Affiliation(s)
- Ting Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Cheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
29
|
Romeu MJ, Mergulhão F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023; 11:1568. [PMID: 37375070 DOI: 10.3390/microorganisms11061568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Marine biofouling is an undeniable challenge for aquatic systems since it is responsible for several environmental and ecological problems and economic losses. Several strategies have been developed to mitigate fouling-related issues in marine environments, including developing marine coatings using nanotechnology and biomimetic models, and incorporating natural compounds, peptides, bacteriophages, or specific enzymes on surfaces. The advantages and limitations of these strategies are discussed in this review, and the development of novel surfaces and coatings is highlighted. The performance of these novel antibiofilm coatings is currently tested by in vitro experiments, which should try to mimic real conditions in the best way, and/or by in situ tests through the immersion of surfaces in marine environments. Both forms present their advantages and limitations, and these factors should be considered when the performance of a novel marine coating requires evaluation and validation. Despite all the advances and improvements against marine biofouling, progress toward an ideal operational strategy has been slow given the increasingly demanding regulatory requirements. Recent developments in self-polishing copolymers and fouling-release coatings have yielded promising results which set the basis for the development of more efficient and eco-friendly antifouling strategies.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
30
|
Lins DM, Rocha RM. Marine aquaculture as a source of propagules of invasive fouling species. PeerJ 2023; 11:e15456. [PMID: 37334117 PMCID: PMC10269578 DOI: 10.7717/peerj.15456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Non-indigenous species tend to colonize aquaculture installations, especially when they are near international ports. In addition to the local environmental hazard that colonizing non-indigenous species pose, they can also take advantage of local transport opportunities to spread elsewhere. In this study, we examined the risk of the spread of eight invasive fouling species that are found in mussel farms in southern Brazil. We used ensemble niche models based on worldwide occurrences of these species, and environmental variables (ocean temperature and salinity) to predict suitable areas for each species with three algorithms (Maxent, Random Forest, and Support Vector Machine). As a proxy for propagule pressure, we used the tonnage transported by container ships from Santa Catarina (the main mariculture region) that travel to other Brazilian ports. We found that ports in the tropical states of Pernambuco, Ceará, and Bahia received the largest tonnage, although far from Santa Catarina and in a different ecoregion. The ascidians Aplidium accarense and Didemnum perlucidum are known from Bahia, with a high risk of invasion in the other states. The bryozoan Watersipora subtorquata also has a high risk of establishment in Pernambuco, while the ascidian Botrylloides giganteus has a medium risk in Bahia. Paraná, a state in the same ecoregion as Santa Catarina is likely to be invaded by all species. A second state in this region, Rio Grande do Sul, is vulnerable to A. accarense, the barnacle Megabalanus coccopoma, and the mussel Mytilus galloprovincialis. Climate change is changing species latitudinal distributions and most species will gain rather than lose area in near future (by 2050). As an ideal habitat for fouling organisms and invasive species, aquaculture farms can increase propagule pressure and thus the probability that species will expand their distributions, especially if they are close to ports. Therefore, an integrated approach of the risks of both aquaculture and nautical transport equipment present in a region is necessary to better inform decision-making procedures aiming at the expansion or establishment of new aquaculture farms. The risk maps provided will allow authorities and regional stakeholders to prioritize areas of concern for mitigating the present and future spread of fouling species.
Collapse
Affiliation(s)
- Daniel M. Lins
- Ecology and Conservation Graduate Program, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Rosana M. Rocha
- Zoology Department, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
31
|
Papadopoulos DK, Lattos A, Giantsis IA, Theodorou JA, Michaelidis B, Feidantsis K. The impact of ascidian biofouling on the farmed Mediterranean mussel Mytilus galloprovincialis physiology and welfare, revealed by stress biomarkers. BIOFOULING 2023:1-18. [PMID: 37144608 DOI: 10.1080/08927014.2023.2209015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In biofouling communities, ascidians are among the most damaging species, presenting severe threats, such as depressed growth rates and decreased chances of lower survival, to shellfish aquaculture. However, little is known concerning the fouled shellfish physiology. In an effort to obtain information for the magnitude of stress caused by ascidians to farmed Mytilus galloprovincialis, five seasonal samplings took place in a mussel aquaculture farm suffering from ascidian biofoulants, in Vistonicos Bay, Greece. The dominant ascidian species were recorded and several stress biomarkers, including Hsp gene expression at both mRNA and protein levels, as well as MAPKs levels, and enzymatic activities of intermediate metabolism were examined. Almost all investigated biomarkers revealed elevated stress levels in fouled mussels compared to non-fouled. This enhanced physiological stress seems to be season-independent and can be attributed to the oxidative stress and/or feed deprivation caused by ascidian biofouling, thus illuminating the biological impact of this phenomenon.
Collapse
Affiliation(s)
- Dimitrios K Papadopoulos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - John A Theodorou
- Department of Fisheries & Aquaculture, University of Patras, Mesolonghi, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
32
|
Santos PM, Venâncio E, Dionísio MA, Heumüller J, Chainho P, Pombo A. Comparison of the Efficiency of Different Eradication Treatments to Minimize the Impacts Caused by the Invasive Tunicate Styela plicata in Mussel Aquaculture. Animals (Basel) 2023; 13:ani13091541. [PMID: 37174578 PMCID: PMC10177385 DOI: 10.3390/ani13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In 2017, aquaculture producers of the Albufeira lagoon, Portugal, reported an invasion of tunicates that was disrupting mussel production, particularly the tunicate Styela plicata (Lesueur, 1823). A totally effective eradication method still does not exist, particularly for S. plicata, and the effects of the eradication treatments on bivalves' performance are also poorly understood. Our study examined the effectiveness of eradication treatments using three laboratory trials and five treatments (air exposure, freshwater immersion, sodium hypochlorite, hypersaline solution and acetic acid) for S. plicata, as well as their effects on survival and growth of blue mussel Mytilus edulis Linnaeus, 1758. While air exposure and freshwater immersion caused a 27% mortality rate in S. plicata, the acetic acid treatment was the most effective in eliminating this species (>90% mortality). However, a 33-40% mortality rate was registered in mussels. Both species were not affected by the hypersaline treatment in the last trial, but the sodium hypochlorite treatment led to a 57% mortality rate in mussels. Differences in mussels' growth rates were not detected. These trials represent a step forward in responding to the needs of aquaculture producers. However, further studies are needed to investigate the susceptibility of tunicates to treatments according to sexual maturation, as well as to ensure minimum mussel mortality in the most effective treatments, and to better understand the effects on mussel physiological performance in the long-term.
Collapse
Affiliation(s)
- Pedro M Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| | - Eliana Venâncio
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| | - Maria Ana Dionísio
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
| | - Joshua Heumüller
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
| | - Paula Chainho
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
- CINEA and ESTS, IPS-Energy and Environment Research Center, Polytechnic Institute of Setúbal, Estefanilha, 2910-761 Setúbal, Portugal
| | - Ana Pombo
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
33
|
Singh D, Rehman N, Pandey A. Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04274-z. [PMID: 36689156 DOI: 10.1007/s12010-022-04274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
Biofouling is a global issue in aquaculture industries. It adversely affects marine infrastructure (ship's hulls, mariculture cages and nets, underwater pipes and filters, building materials, probes, and sensor devices). The estimated cost of managing marine biofouling accounts for 5-10% of production cost. Non-toxic foul-release coating and biocide-based coating are the two current approaches. Recent innovation and development of a surface coating with nanoparticles such as photocatalytic zinc oxide nanocoating on fishing nets, copper oxide nanocoating on the water-cooling system, and silver nanoparticle coating to inhibit microalgal adhesion on submerged surfaces under natural light (photoperiod) could present meaningful anti-biofouling application. Nanocoating of zinc, copper, and silver oxide is an environmentally friendly surface coating strategy that avoid surface adhesion of bacteria, diatoms, algal, protozoans, and fungal species. Such nanocoating could also provide a solution to strains tolerant to Cu, Zn, and Ag. This draft of the special issue demonstrates the anti-biofouling potential of various metal and metal oxide nanoparticle coating to combat aquaculture industry biofouling problems.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nahid Rehman
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
34
|
Sousa-Cardoso F, Teixeira-Santos R, Campos AF, Lima M, Gomes LC, Soares OSGP, Mergulhão FJ. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:381. [PMID: 36770342 PMCID: PMC9919625 DOI: 10.3390/nano13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating.
Collapse
Affiliation(s)
- Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Francisca Campos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
35
|
Corrigan S, Brown AR, Tyler CR, Wilding C, Daniels C, Ashton IGC, Smale DA. Development and Diversity of Epibiont Assemblages on Cultivated Sugar Kelp ( Saccharina latissima) in Relation to Farming Schedules and Harvesting Techniques. Life (Basel) 2023; 13:life13010209. [PMID: 36676158 PMCID: PMC9865293 DOI: 10.3390/life13010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Seaweed farming in Europe is growing and may provide environmental benefits, including habitat provisioning, coastal protection, and bioremediation. Habitat provisioning by seaweed farms remains largely unquantified, with previous research focused primarily on the detrimental effects of epibionts, rather than their roles in ecological functioning and ecosystem service provision. We monitored the development and diversity of epibiont assemblages on cultivated sugar kelp (Saccharina latissima) at a farm in Cornwall, southwest UK, and compared the effects of different harvesting techniques on epibiont assemblage structure. Increases in epibiont abundance (PERMANOVA, F4,25 = 100.56, p < 0.001) and diversity (PERMANOVA, F4,25 = 27.25, p < 0.001) were found on cultivated kelps over and beyond the growing season, reaching an average abundance of >6000 individuals per kelp plant with a taxonomic richness of ~9 phyla per kelp by late summer (August). Assemblages were dominated by crustaceans (mainly amphipods), molluscs (principally bivalves) and bryozoans, which provide important ecological roles, despite reducing crop quality. Partial harvesting techniques maintained, or increased, epibiont abundance and diversity beyond the farming season; however, these kelp plants were significantly fouled and would not be commercially viable in most markets. This paper improves understanding of epibiont assemblage development at European kelp farms, which can inform sustainable, ecosystem-based approaches to aquaculture.
Collapse
Affiliation(s)
- Sophie Corrigan
- Faculty of Health and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- Correspondence: (S.C.); (D.A.S.)
| | - A. Ross Brown
- Faculty of Health and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK
| | - Charles R. Tyler
- Faculty of Health and Life Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Sustainable Aquaculture Futures, University of Exeter, Exeter EX4 4QD, UK
| | - Catherine Wilding
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Carly Daniels
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Ian G. C. Ashton
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| | - Dan A. Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
- Correspondence: (S.C.); (D.A.S.)
| |
Collapse
|
36
|
Faria Braga E, Monteiro de Rezende Ayroza DM, de Macedo Silva MC, Santiago Nascimento T, Gomes Sanches E, Ferreira do Carmo C, Faria Pereira LP, Mazzei Albert AL, Romão Batista W, Lopes RS, Lopes CC. Synthesis of Lysoglycerophosphocholines from Crude Soybean Lecithins as Sustainable and Non-toxic Antifouling Agents against the Golden Mussel Limnoperna fortunei. ACS OMEGA 2022; 7:45197-45207. [PMID: 36530239 PMCID: PMC9753535 DOI: 10.1021/acsomega.2c05645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
This research aimed to produce, on a multigram scale, a new class of non-toxic, halogen- and metal-free antifouling agents from the abundant lecithin byproducts of industrial soybean oil extraction. Three glycerophospholipid analogues were prepared by a facile methanolysis of crude soybean lecithins and a subsequent solvent-free O-alkylation: lysoglycerophosphocholines (LGPCs) and its ether derivatives O-alkyl lysoglycerophosphocholines (ALPCs). As efficient antiproliferative agents, LGPCs and ALPCs are an eco-friendly alternative to current commercial antifoulants which possess significant toxicity to aquatic life. In situ immersion tests of coated stainless-steel nets with previously incorporated automotive paint products, LGPCs and ALPCs (1-O-octadecyl-2-O-acyl-sn-glycero-3-phosphocholine, ALPC18, and 1-O-hexadecyl-2-O-acyl-sn-glycero-3-phosphocholine, ALPC16), in an aquaculture reservoir in SP-Brazil revealed significant growth inhibition against macrofouling species, especially the epibiotic golden mussel (Limnoperna fortunei), when compared with the control. These results promise a more sustainable and ecologically innocuous approach to combating the biofouling phenomenon and the deeply concerning dissemination of the golden mussel which has provoked an economic crisis in the energy and aquaculture sectors.
Collapse
Affiliation(s)
- Esther Faria Braga
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Daercy Maria Monteiro de Rezende Ayroza
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Maria Clara de Macedo Silva
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Thiana Santiago Nascimento
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Eduardo Gomes Sanches
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Clovis Ferreira do Carmo
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - Lilian Paula Faria Pereira
- Instituto
de Pesca, Agência Paulista de Tecnologia
dos Agronegócios, Av Francisco Matarazzo, 455, Parque da Água Branca, São Paulo05001-900, São Paulo, Brazil
| | - André Luís Mazzei Albert
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - William Romão Batista
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Rosangela Sabbatini
Capella Lopes
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| | - Claudio Cerqueira Lopes
- Laboratório
de Síntese e Análise de Produtos Estratégicos, Universidade Federal do Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149,
Bloco A, s.508, Cidade Universitária, Rio de Janeiro, Rio de Janeiro21941-909, Brazil
| |
Collapse
|
37
|
Grant TM, Rennison D, Arabshahi HJ, Brimble MA, Cahill P, Svenson J. Effect of regio- and stereoisomerism on antifouling 2,5-diketopiperazines. Org Biomol Chem 2022; 20:9431-9446. [PMID: 36408605 DOI: 10.1039/d2ob01864k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Marine biofouling is a problem that plagues all maritime industries at vast economic and environmental cost. Previous and current methods to prevent biofouling have employed the use of heavy metals and other toxic or highly persistent chemicals, and these methods are now coming under immense regulatory pressure. Recent studies have illustrated the potential of nature-inspired tetrasubstituted 2,5-diketopiperazines (2,5-DKPs) as eco-friendly marine biocides for biofouling control. These highly active symmetrically substituted 2,5-DKPs can be generated by combining structural motifs from cationic innate defence peptides and natural marine antifoulants. A balance between a threshold hydrophobic contribution and sufficient cationic charge has been established as key for bioactivity, and our current study further increases understanding of the antifouling mechanism by investigating the effect of both regio- and stereochemistry. Novel synthetic routes for the generation of unsymmetrical 2,5-DKPs were developed and a library of nine compounds was prepared. The compounds were screened against a series of four model macrofouling organisms (Ciona savignyi, Mytilus galloprovincialis, Spirobranchus cariniferus, and Undaria pinnatifida). Several of the evaluated compounds displayed inhibitory activity at sub-micromolar concentrations. The structural contributions to antifouling bioactivity were studied using NMR spectroscopy and molecular modelling, revealing a strong dependence on a stable amphiphilic solution structure regardless of substitution pattern.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Homayon J Arabshahi
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand.
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|
38
|
García-Abad L, Soriano-Jerez Y, Cerón-García MDC, Muñoz-Bonilla A, Fernández-García M, García-Camacho F, Molina-Grima E. Adsorption Analysis of Exopolymeric Substances as a Tool for the Materials Selection of Photobioreactors Manufacture. Int J Mol Sci 2022; 23:ijms232213924. [PMID: 36430401 PMCID: PMC9697444 DOI: 10.3390/ijms232213924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
An improved method that allows the robust characterization of surfaces is necessary to accurately predict the biofouling formation on construction materials of photobioreactors (PBR). Exopolymeric substances (EPS), such as proteins and polysaccharides, have been demonstrated to present a similar behavior to cells in terms of surface adhesion. In this work, these EPS were used to optimize parameters, such as EPS concentration or adsorption time, to evaluate accurately the adsorption capacity of surfaces and, with it, predict the biofouling formation in contact with microalgae cultures. Once the method was optimized, the characterization of seven commercial polymeric surfaces was submitted to different abrasive particles sizes, which modified the roughness of the samples, as well as protein and polysaccharide lawns, which were prepared and carried out in order to evaluate the characteristics of these substances. The characterization consisted of the determination of surface free energy, water adhesion tension, and critical tension determined from the measurement of the contact angle, roughness, surface zeta potential, and the EPS adhesion capacity of each material. This will be useful to understand the behavior of the surface in the function of its characteristics and the interaction with the solutions of EPS, concluding that the hydrophobic and smooth surfaces present good anti-biofouling characteristics.
Collapse
Affiliation(s)
- Lucía García-Abad
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - Yolanda Soriano-Jerez
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - María del Carmen Cerón-García
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
- Correspondence: (M.d.C.C.-G.); (M.F.-G.)
| | | | - Marta Fernández-García
- Institute of Polymer Science and Technology (ICTP-CSIC), 28006 Madrid, Spain
- Correspondence: (M.d.C.C.-G.); (M.F.-G.)
| | - Francisco García-Camacho
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| | - Emilio Molina-Grima
- Chemical Engineering Department, University of Almería, 04120 Almería, Spain
- Research Center in Agrifood Biotechnology (CIAMBITAL), University of Almería, 04120 Almería, Spain
| |
Collapse
|
39
|
Dang M, Nguyen HTT, Ngo VM, Dien TD, Thang TN, Thao NTP, Dang BT, Dong HT. Acute death in farmed marine fishes caused by sea anemone (Bunodeopsis sp.) in Central Vietnam. JOURNAL OF FISH DISEASES 2022; 45:1799-1803. [PMID: 35932484 DOI: 10.1111/jfd.13701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Mai Dang
- Institute for Veterinary Research and Development of Central Vietnam, Nha Trang, Vietnam
| | - Hai Thanh T Nguyen
- Institute for Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Van Manh Ngo
- Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Tran Duc Dien
- Coastal Branch, Vietnam - Russia Tropical Center, Nha Trang, Vietnam
| | - Tran Ngoc Thang
- Institute of Aquaculture, Nha Trang University, Nha Trang, Vietnam
| | - Nguyen Thi Phương Thao
- South Research Sub-Institute for Marine Fisheries, Research Institute for Marine Fisheries, Vung Tau, Vietnam
| | - Binh Thuy Dang
- Institute for Biotechnology and Environment, Nha Trang University, Nha Trang, Vietnam
| | - Ha Thanh Dong
- AARM/FAB, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| |
Collapse
|
40
|
Cahill PL, Davidson IC, Atalah JA, Cornelisen C, Hopkins GA. Toward integrated pest management in bivalve aquaculture. PEST MANAGEMENT SCIENCE 2022; 78:4427-4437. [PMID: 35759345 DOI: 10.1002/ps.7057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Pests of bivalve aquaculture are a challenging problem that can reduce productivity, profitability and sustainability. A range of pest management approaches have been developed for bivalve aquaculture, but a general absence of guiding frameworks has limited the scale and permanency of implementation. Applying principles of 'integrated pest management' (IPM) could change this paradigm to improve economic and environmental outcomes. We reviewed existing research and tools for pest management in bivalve aquaculture, with studies grouped under five pillars of IPM: pest ecology (25 studies), bioeconomic cost-benefits (4 studies), continual monitoring (17 studies), proactive prevention (32 studies) and reactive control (65 studies). This body of knowledge, along with insights from terrestrial agriculture, provide a strong foundation for developing and implementing IPM in bivalve aquaculture. For example, IPM principles have been applied by a regional collective of oyster farmers in the US Pacific Northwest to optimize pesticide application and search for other options to control problematic burrowing shrimps. However, IPM has not yet been broadly applied in aquaculture, and data gaps and barriers to implementation need to be addressed. Priorities include establishing meaningful pest-crop bioeconomic relationships for various bivalve farming systems and improving the efficacy and operational scale of treatment approaches. An IPM framework also could guide potential step-change improvements through directing selective breeding for resistance to pests, development of bespoke chemical control agents, applying emerging technologies for remote surveillance and farm management, and regional alignment of management interventions. © 2022 Society of Chemical Industry.
Collapse
|
41
|
Védie E, Barry-Martinet R, Senez V, Berglin M, Stenlund P, Brisset H, Bressy C, Briand JF. Influence of Sharklet-Inspired Micropatterned Polymers on Spatio-Temporal Variations of Marine Biofouling. Macromol Biosci 2022; 22:e2200304. [PMID: 36153836 DOI: 10.1002/mabi.202200304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Indexed: 12/25/2022]
Abstract
This article aims to show the influence of surface characteristics (microtopography, chemistry, mechanical properties) and seawater parameters on the settlement of marine micro- and macroorganisms. Polymers with nine microtopographies, three distinct mechanical properties, and wetting characteristics are immersed for one month into two contrasting coastal sites (Toulon and Kristineberg Center) and seasons (Winter and Summer). Influence of microtopography and chemistry on wetting is assessed through static contact angle and captive air bubble measurements over 3-weeks immersion in artificial seawater. Microscopic analysis, quantitative flow cytometry, metabarcoding based on the ribulose biphosphate carboxylase (rbcL) gene amplification, and sequencing are performed to characterize the settled microorganisms. Quantification of macrofoulers is done by evaluating the surface coverage and the type of organism. It is found that for long static in situ immersion, mechanical properties and non-evolutive wettability have no major influence on both abundance and diversity of biofouling assemblages, regardless of the type of organisms. The apparent contradiction with previous results, based on model organisms, may be due to the huge diversity of marine environments, both in terms of taxa and their size. Evolutive wetting properties with wetting switching back and forth over time have shown to strongly reduce the colonization by macrofoulers.
Collapse
Affiliation(s)
- Elora Védie
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Raphaëlle Barry-Martinet
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Vincent Senez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Mattias Berglin
- RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, Göteborg, SE-413 46, Sweden
| | - Patrik Stenlund
- RISE Research Institutes of Sweden AB, Arvid Wallgrens backe 20, Göteborg, SE-413 46, Sweden
| | - Hugues Brisset
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Christine Bressy
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| | - Jean-François Briand
- Laboratoire MAPIEM, E.U. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS 60584, Toulon, 83041 Cedex 9, France
| |
Collapse
|
42
|
Kim Y, Jeong Y, Kang SM. Surface Coating with Naphthalene Trisulfonate/Hafnium(IV) Complexes: Versatility and Post-Functionalization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12711-12716. [PMID: 36209435 DOI: 10.1021/acs.langmuir.2c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naphthalene trisulfonate is found to have versatile surface coating capability when combined with hafnium(IV) ions, thereby forming complexes. Solid substrates such as titanium/titanium dioxide, glass, and nylon immersed in a solution of naphthalene trisulfonate and HfIV produces naphthalene trisulfonate/HfIV complex coating. The coating is not produced when the HfIV ions are absent or when naphthalene monosulfonate replaces naphthalene trisulfonate; this indicates the significance of HfIV ions and multiple sulfonates in this coating system. The versatile surface coating property of naphthalene trisulfonate/HfIV complexes is attributed to the coexistence of hydrophobic aromatic and hydrophilic side groups in naphthalene trisulfonate. Additionally, HfIV ion-mediated cross-linking reactions between naphthalene trisulfonate molecules induce molecular assembly, facilitating versatile surface coating. Post-functionalization of the coating is accomplished through additional HfIV-mediated coordinate bond formation; alginate and λ-carrageenan are successfully grafted onto the coating for nonbiofouling applications.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
43
|
Głowacki M, Mazurkiewicz A, Słomion M, Skórczewska K. Resistance of 3D-Printed Components, Test Specimens and Products to Work under Environmental Conditions-Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6162. [PMID: 36079539 PMCID: PMC9458170 DOI: 10.3390/ma15176162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 05/27/2023]
Abstract
The development of additive manufacturing methods known as "3D printing" started in the 1980s. In these methods, spatial models are created from a semi-finished product such as a powder, filament or liquid. The model is most often created in layers, which are created from the semi-finished product, which is most often subjected to thermal treatment or using light or ultraviolet rays. The technology of additive manufacturing has both advantages and disadvantages when compared to the traditionally used methods of processing thermoplastic materials, such as, for example, injection or extrusion. The most important advantages are low cost, flexibility and speed of manufacturing of elements with different spatial shapes. From the point of view of the user of the product, the most important disadvantages are the lower mechanical properties and lower resistance to environmental factors that occur during the use of the manufactured products. The purpose of this review is to present current information and a compilation of features in the field of research on the effects of the interactions of different types of environments on the mechanical properties of 3D-manufactured thermoplastic products. Changes in the structure and mechanical properties of the material under the influence of factors such as humidity, salt, temperature, UV rays, gasoline and the environment of the human body are presented. The presented article enables the effects of environmental conditions on common materials used in 3D printing technology to be collated in one place.
Collapse
Affiliation(s)
- Marcin Głowacki
- Department of Mechanical Engineering, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Adam Mazurkiewicz
- Department of Mechanical Engineering, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Małgorzata Słomion
- Department of Management, Bydgoszcz University of Sciences and Technology, Kaliskiego 7 Street, 85-789 Bydgoszcz, Poland
| | - Katarzyna Skórczewska
- Faculty of Technology and Chemical Engineering, University of Sciences and Technology, Seminaryjna 3, Street, 85-326 Bydgoszcz, Poland
| |
Collapse
|
44
|
Lins DM, Rocha RM. Invasive species fouling Perna perna (Bivalvia: Mytilidae) mussel farms. MARINE POLLUTION BULLETIN 2022; 181:113829. [PMID: 35709680 DOI: 10.1016/j.marpolbul.2022.113829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Invasive, fouling species increase management costs and reduce mussel growth, which jeopardizes mariculture. We studied the distribution of eight invasive species in Santa Catarina, the leading mussel producer in Brazil. Our goals were to determine their spatial distribution and prevalence on farm structures (buoys, long lines, and mussel socks), as well as understand the relevance of propagule pressure (recruitment), port distance, and area of the farm in this distribution. Although present in all sites, adult and recruits distribution were spatially restricted, showing that species might have a metapopulation structure. The most prevalent species were the ascidian Styela plicata, the barnacle Megabalanus coccopoma, the bryozoan Schizoporella errata, and the polychaete Branchiomma luctuosum. Recruitment was the main driver of three species distribution while distance to port explained only one species distribution. Based on those results, we discuss policy options, management, and regulation enforcement, that can be used in the mussel aquaculture elsewhere.
Collapse
Affiliation(s)
- Daniel M Lins
- Ecology and Conservation Graduate Program, Universidade Federal do Paraná, Brazil.
| | - Rosana M Rocha
- Zoology Department, Universidade Federal do Paraná, Brazil
| |
Collapse
|
45
|
Tesler AB, Prado LH, Thievessen I, Mazare A, Schmuki P, Virtanen S, Goldmann WH. Nontoxic Liquid-Infused Slippery Coating Prepared on Steel Substrates Inhibits Corrosion and Biofouling Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29386-29397. [PMID: 35696316 DOI: 10.1021/acsami.2c04960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wetting of surfaces plays a vital role in many biological and industrial processes. There are several phenomena closely related to wetting such as biofouling and corrosion that cause the deterioration of materials, while the efforts to prevent the degradation of surface functionality have spread over several millennia. Antifouling coatings have been developed to prevent/delay both corrosion and biofouling, but the problems remain unsolved, influencing the everyday life of the modern society in terms of safety and expenses. In this study, liquid-infused slippery surfaces (LISSs), a recently developed nontoxic repellent technology, that is, a flat variation of omniphobic slippery liquid-infused porous surfaces (SLIPSs), were studied for their anti-corrosion and marine anti-biofouling characteristics on metallic substrates under damaged and plain undamaged conditions. Austenitic stainless steel was chosen as a model due to its wide application in aquatic environments. Our LISS coating effectively prevents biofouling adhesion and decays corrosion of metallic surfaces even if they are severely damaged. The mechanically robust LISS reported in this study significantly extends the SLIPS technology, prompting their application in the marine environment due to the synergy between the facile fabrication process, rapid binding kinetics, nontoxic, ecofriendly, and low-cost applied materials together with excellent repellent characteristics.
Collapse
Affiliation(s)
- Alexander B Tesler
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Lucia H Prado
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Ingo Thievessen
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| | - Anca Mazare
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Patrik Schmuki
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
- Chemistry Department, Faculty of Sciences, King Abdul-Aziz University, Jeddah 80203, Saudi Arabia
- Regional Centre of Advanced Technologies and Materials, Palacky University, Listopadu 50A, Olomouc 772 07, Czech Republic
| | - Sannakaisa Virtanen
- Faculty of Engineering, Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, Erlangen 91052, Germany
| |
Collapse
|
46
|
Bosch-Belmar M, Giacoletti A, Giommi C, Girons A, Milisenda G, Sarà G. Short-term exposure to concurrent biotic and abiotic stressors may impair farmed molluscs performance. MARINE POLLUTION BULLETIN 2022; 179:113724. [PMID: 35537306 DOI: 10.1016/j.marpolbul.2022.113724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Global warming, through increasing temperatures, may facilitate the spread and proliferation of outbreak-forming species which may find favourable substrate conditions on artificial aquaculture structures. The presence of stinging organisms (cnidarian hydroids) in the facilities fouling community are a source of pollution that can cause critical problems when in-situ underwater cleaning processes are performed. Multiple stressor experiments were carried out to investigate the cumulative effect on farmed mussels' functional traits when exposed to realistic stressful conditions, including presence of harmful cnidarian cells and environmental conditions of increasing temperature and short-term hypoxia. Exposure to combined stressors significantly altered mussels' performance, causing metabolic depression and low filtering activity, potentially delaying, or inhibiting their recovery ability and ultimately jeopardizing organisms' fitness. Further research on the stressors properties and occurrence is needed to obtain more realistic responses from organisms to minimize climate change impacts and increase ecosystem and marine economic activities resilience to multiple stressors.
Collapse
Affiliation(s)
- Mar Bosch-Belmar
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy.
| | - Antonio Giacoletti
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Center, Amendolara, Italy
| | | | - Giacomo Milisenda
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Center, Palermo, Italy.
| | - Gianluca Sarà
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| |
Collapse
|
47
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
48
|
Hao H, Chen S, Wu Z, Su P, Ke C, Feng D. The degradation and environmental risk of camptothecin, a promising marine antifoulant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153384. [PMID: 35085640 DOI: 10.1016/j.scitotenv.2022.153384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Given the adverse environmental impacts of the antifoulants currently used in marine antifouling paints, such as copper and booster biocides, it is urgent to identify potential substitutes that are environmentally benign. Here, we examined the degradation of camptothecin (a natural product previously identified as an efficient antifoulant in the laboratory and in the field) under various conditions and evaluated the environmental risks associated with its use as a marine antifoulant. We found that camptothecin was rapidly photolyzed in seawater: the half-life of camptothecin was less than 1 d under a light intensity of 1000-20,000 lx and was approximately 0.17 d under sunlight irradiation. At pH 4 and pH 7, camptothecin had half-lives of 30.13 and 16.90 d, respectively; at 4 °C, 25 °C, and 35 °C, the half-lives of camptothecin were 23.90, 21.66, and 26.65 d, respectively. Camptothecin biodegradation in seawater was negligible. The predicted no-effect concentration (PNEC) of camptothecin was 2.19 × 10-1 μg L-1, while the average predicted environmental concentrations (PECs) in open seas, shipping lanes, commercial harbors, and marinas were 6.14 × 10-7, 9.39 × 10-7, 6.80 × 10-3, and 5.03 × 10-2 μg L-1, respectively. The PEC/PNEC ratio of camptothecin was much lower than 1 (i.e., 2.80 × 10-6, 4.29 × 10-6, 3.11 × 10-2, and 2.30 × 10-1 for open seas, shipping lanes, commercial harbors, and marinas, respectively), indicating that the use of camptothecin as a marine antifoulant posed little environmental risk.
Collapse
Affiliation(s)
- Huanhuan Hao
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Siyu Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiwen Wu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Pei Su
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Caihuan Ke
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Danqing Feng
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
49
|
Zhang X, Boderskov T, Bruhn A, Thomsen M. Blue growth and bioextraction potentials of Danish Saccharina latissima aquaculture — A model of eco-industrial production systems mitigating marine eutrophication and climate change. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Grant TM, Rennison D, Cervin G, Pavia H, Hellio C, Foulon V, Brimble MA, Cahill P, Svenson J. Towards eco-friendly marine antifouling biocides - Nature inspired tetrasubstituted 2,5-diketopiperazines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152487. [PMID: 34953845 DOI: 10.1016/j.scitotenv.2021.152487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling plagues all maritime industries at vast economic and environmental cost. Previous and most current methods to control biofouling have employed highly persistent toxins and heavy metals, including tin, copper, and zinc. These toxic methods are resulting in unacceptable environmental harm and are coming under immense regulatory pressure. Eco-friendly alternatives are urgently required to effectively mitigate the negative consequence of biofouling without causing collateral harm. Amphiphilic micropeptides have recently been shown to exhibit excellent broad-spectrum antifouling activity, with a non-toxic mode of action and innate biodegradability. The present work focused on incorporating the pharmacophore derived from amphiphilic micropeptides into a 2,5-diketopiperazine (DKP) scaffold. This privileged structure is present in a vast number of natural products, including marine natural product antifoulants, and provides advantages of synthetic accessibility and adaptability. A novel route to symmetrical tetrasubstituted DKPs was developed and a library of amphiphilic 2,5-DKPs were subsequently synthesised. These biodegradable compounds were demonstrated to be potent marine antifoulants displaying broad-spectrum activity in the low micromolar range against a range of common marine fouling organisms. The outcome of planned coating and field trials will dictate the future development of the lead compounds.
Collapse
Affiliation(s)
- Thomas M Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - David Rennison
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE-452 96 Strömstad, Sweden
| | - Claire Hellio
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Valentin Foulon
- Univ. Brest, Laboratoire des Sciences de l'Environnement MARin (LEMAR), CNRS, IRD, IFREMER, Brest 29285, France
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street, Nelson, New Zealand.
| |
Collapse
|