1
|
Khankari NK, Su T, Cai Q, Liu L, Jasper EA, Hellwege JN, Murff HJ, Shrubsole MJ, Long J, Edwards TL, Zheng W. Genetically Predicted Gene Expression Effects on Changes in Red Blood Cell and Plasma Polyunsaturated Fatty Acids. Genet Epidemiol 2025; 49:e22613. [PMID: 39812514 PMCID: PMC11734643 DOI: 10.1002/gepi.22613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers. Using colocalization, we identified shared variants associated with both increased gene expression and changes in RBC PUFA levels in relevant PUFA metabolism tissues (i.e., adipose, liver, muscle, and whole blood). We observed differences in RBC versus plasma PUFA levels for genetically predicted increase in FADS1 and FADS2 gene expression, primarily for omega-6 PUFAs linoleic acid (LA) and arachidonic acid (AA). The colocalization analysis identified rs102275 to be significantly associated with a 0.69% increase in total RBC membrane-bound LA levels (p = 5.4 × 10-12). Future PUFA genetic studies examining long-term PUFA biomarkers are needed to confirm our results.
Collapse
Affiliation(s)
- Nikhil K. Khankari
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleUSA
| | - Timothy Su
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Qiuyin Cai
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Lili Liu
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Elizabeth A. Jasper
- Division of Quantitative Sciences, Department of Obstetrics and GynecologyVanderbilt University Medical CenterNashvilleUSA
| | - Jacklyn N. Hellwege
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
- Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleUSA
| | - Harvey J. Murff
- Division of Geriatric Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Martha J. Shrubsole
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Jirong Long
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Todd L. Edwards
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| | - Wei Zheng
- Division of Epidemiology, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
| |
Collapse
|
2
|
Khankari NK, Su T, Cai Q, Liu L, Jasper EA, Hellwege JN, Murff HJ, Shrubsole MJ, Long J, Edwards TL, Zheng W. Genetically predicted gene expression effects on changes in red blood cell and plasma polyunsaturated fatty acids. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.17.24319171. [PMID: 39763515 PMCID: PMC11702734 DOI: 10.1101/2024.12.17.24319171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short-to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase ( FADS1 ), delta-6 desaturase ( FADS2 ), and elongase ( ELOVL2 ) on changes in RBC and plasma biomarkers. Using colocalization, we identified shared variants associated with both increased gene expression and changes in RBC PUFA levels in relevant PUFA metabolism tissues (i.e., adipose, liver, muscle, and whole blood). We observed differences in RBC versus plasma PUFA levels for genetically predicted increase in FADS1 and FADS2 gene expression, primarily for omega-6 PUFAs linoleic acid (LA) and arachidonic acid (AA). The colocalization analysis identified rs102275 to be significantly associated with a 0.69% increase in total RBC membrane-bound LA levels ( P =5.4×10 -12 ). Future PUFA genetic studies examining long-term PUFA biomarkers are needed to confirm our results.
Collapse
|
3
|
Ramos CDO, Sant'Ana MR, Gonçalves GR, Rios TDS, Nakandakari SCBR, Burger B, Fernandes LGR, Zollner RDL, de Oliveira AN, Ramos RC, da Silva ASR, Pauli JR, de Moura LP, Ropelle ER, Mansour E, Cintra DE. The Effects of High-Fat Diet and Flaxseed Oil-Enriched Diet on the Lung Parenchyma of Obese Mice. Mol Nutr Food Res 2024; 68:e2300050. [PMID: 39205544 DOI: 10.1002/mnfr.202300050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Omega-3 (ω3) fatty acids are widely investigated for their anti-inflammatory potential, however, there is little evidence regarding their action in the lung parenchyma in the context of obesity. The objective is to investigate the effects of flaxseed oil (FS), rich in α-linolenic (C18:3 - ω3), on the lungs of obese mice. Mice were fed a high-fat diet (HF) for 8 weeks to induce obesity. Subsequently, a part of these animals received HF containing FS oil for another 8 weeks. The HF consumption induced weight gain and hyperglycemia. The lung parenchyma shows a complete fatty acids profile, compared to the control group (CT). In the lung parenchyma, FS increases the ω3 content and, notwithstanding a reduction in the interleukins (IL) IL1β and IL18 contents compared to HF. However, FS promoted increased alveolar spaces, followed by MCP1 (Monocytes Chemoattractant Protein-1) positive cell infiltration and a dramatic reduction in the anti-inflammatory cytokine, IL10. Despite reducing the pulmonary inflammatory response, the consumption of a food source of ω3 was associated with alterations in the lipid profile and histoarchitecture of the lung parenchyma, which can lead to the development of pulmonary complications. This study brings an alert against the indiscriminate use of ω3 supplements, warranting caution.
Collapse
Affiliation(s)
- Camila de Oliveira Ramos
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Giovana Rios Gonçalves
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Thaiane da Silva Rios
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Susana Castelo Branco Ramos Nakandakari
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - Ricardo de Lima Zollner
- Laboratory of Translational Immunology, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Arthur Noin de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Rodrigo Catharino Ramos
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | | | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| | - Eli Mansour
- Department of Clinical Medicine, School of Medical Sciences, UNICAMP, São Paulo, 13484-350, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, 13484-350, Brazil
- OCRC - Obesity and Comorbidities Research Center, UNICAMP, São Paulo, 13484-350, Brazil
| |
Collapse
|
4
|
Strandvik B, Qureshi AR, Painer J, Backman-Johansson C, Engvall M, Fröbert O, Kindberg J, Stenvinkel P, Giroud S. Elevated plasma phospholipid n-3 docosapentaenoic acid concentrations during hibernation. PLoS One 2023; 18:e0285782. [PMID: 37294822 PMCID: PMC10256182 DOI: 10.1371/journal.pone.0285782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
Factors for initiating hibernation are unknown, but the condition shares some metabolic similarities with consciousness/sleep, which has been associated with n-3 fatty acids in humans. We investigated plasma phospholipid fatty acid profiles during hibernation and summer in free-ranging brown bears (Ursus arctos) and in captive garden dormice (Eliomys quercinus) contrasting in their hibernation patterns. The dormice received three different dietary fatty acid concentrations of linoleic acid (LA) (19%, 36% and 53%), with correspondingly decreased alpha-linolenic acid (ALA) (32%, 17% and 1.4%). Saturated and monounsaturated fatty acids showed small differences between summer and hibernation in both species. The dormice diet influenced n-6 fatty acids and eicosapentaenoic acid (EPA) concentrations in plasma phospholipids. Consistent differences between summer and hibernation in bears and dormice were decreased ALA and EPA and marked increase of n-3 docosapentaenoic acid and a minor increase of docosahexaenoic acid in parallel with several hundred percent increase of the activity index of elongase ELOVL2 transforming C20-22 fatty acids. The highest LA supply was unexpectantly associated with the highest transformation of the n-3 fatty acids. Similar fatty acid patterns in two contrasting hibernating species indicates a link to the hibernation phenotype and requires further studies in relation to consciousness and metabolism.
Collapse
Affiliation(s)
- Birgitta Strandvik
- Department of Biosciences and Nutrition, Karolinska Institutet NEO, Stockholm, Sweden
| | | | - Johanna Painer
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
- Department of Clinical Medicine, Aarhus University Health, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- StenoDiabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, University of Agricultural Sciences, Umeå, Sweden
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Peter Stenvinkel
- Division of Renal Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
5
|
Abolghasemi A, Carullo MP, Aguilera EC, Laroui A, Plantefeve R, Rojas D, Benachenhou S, Ramírez MV, Proteau-Lemieux M, Lepage JF, Corbin F, Plourde M, Farez M, Cogram P, Çaku A. Alteration of Fatty Acid Profile in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms231810815. [PMID: 36142726 PMCID: PMC9502195 DOI: 10.3390/ijms231810815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most prevalent monogenic cause of Autism Spectrum Disorders (ASDs). Despite a common genetic etiology, the affected individuals display heterogenous metabolic abnormalities including hypocholesterolemia. Although changes in the metabolism of fatty acids (FAs) have been reported in various neuropsychiatric disorders, it has not been explored in humans with FXS. In this study, we investigated the FA profiles of two different groups: (1) an Argentinian group, including FXS individuals and age- and sex-matched controls, and (2) a French-Canadian group, including FXS individuals and their age- and sex-matched controls. Since phospholipid FAs are an indicator of medium-term diet and endogenous metabolism, we quantified the FA profile in plasma phospholipids using gas chromatography. Our results showed significantly lower levels in various plasma FAs including saturated, monosaturated, ω-6 polyunsaturated, and ω-3 polyunsaturated FAs in FXS individuals compared to the controls. A decrease in the EPA/ALA (eicosapentaenoic acid/alpha linoleic acid) ratio and an increase in the DPA/EPA (docosapentaenoic acid/eicosapentaenoic acid) ratio suggest an alteration associated with desaturase and elongase activity, respectively. We conclude that FXS individuals present an abnormal profile of FAs, specifically FAs belonging to the ω-3 family, that might open new avenues of treatment to improve core symptoms of the disorder.
Collapse
Affiliation(s)
- Armita Abolghasemi
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Maria Paulina Carullo
- Department of Child Neurology, Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires C1428AQK, Argentina
| | - Ester Cisneros Aguilera
- Centre de Recherche sur le Vieillissement, Departments of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Asma Laroui
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Rosalie Plantefeve
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Daniela Rojas
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Serine Benachenhou
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - María Victoria Ramírez
- Department of Child Neurology, Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires C1428AQK, Argentina
| | - Mélodie Proteau-Lemieux
- Department of Pediatrics and Centre de Recherche du CHUS, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-François Lepage
- Department of Pediatrics and Centre de Recherche du CHUS, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - François Corbin
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Departments of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Mauricio Farez
- Department of Child Neurology, Raúl Carrea Institute for Neurological Research (FLENI), Buenos Aires C1428AQK, Argentina
| | - Patricia Cogram
- Biomedicine Division, Centre for Systems Biotechnology, Fraunhofer Chile Research Foundation, Santiago 7500588, Chile
| | - Artuela Çaku
- Centre de Recherche du CHUS, Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
6
|
Menzel J, Longree A, Abraham K, Schulze MB, Weikert C. Dietary and Plasma Phospholipid Profiles in Vegans and Omnivores-Results from the RBVD Study. Nutrients 2022; 14:nu14142900. [PMID: 35889855 PMCID: PMC9320578 DOI: 10.3390/nu14142900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last few years, the vegan diet has become increasingly popular in Germany. It has been proposed that this diet is generally lower in fat, but less is known about the impact on fatty acid (FA) profiles. Therefore, the cross-sectional “Risks and Benefits of a Vegan Diet” (RBVD) study (n = 72) was used to investigate dietary FA intake as well as plasma phospholipid FA in vegans (n = 36) compared to omnivores (n = 36). Vegans had a significantly lower dietary intake of total fat (median 86 g/day, IQR 64−111) in comparison to omnivores (median 104 g/day, IQR 88−143, p = 0.004). Further, vegans had a lower intake of saturated fatty acids (SFA) (p < 0.0001) and monounsaturated fatty acids (MUFA) (p = 0.001) compared to omnivores. Vegans had a higher intake in total polyunsaturated fatty acids (PUFA), omega-3 and omega-6 PUFA compared to omnivores, but without statistical significance after Bonferroni correction. According to plasma phospholipid profiles, relatively lower proportions of SFA (p < 0.0001), total trans fatty acids (TFA) (p = 0.0004) and omega-3-FA (p < 0.0001), but higher proportions of omega-6-FA (p < 0.0001) were observed in vegans. With the exception of omega-3 PUFA, a vegan diet is associated with a more favorable dietary fat intake and more favorable plasma FA profiles and therefore may reduce cardiovascular risk.
Collapse
Affiliation(s)
- Juliane Menzel
- Department of Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (A.L.); (K.A.); (C.W.)
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-18412-55001
| | - Alessa Longree
- Department of Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (A.L.); (K.A.); (C.W.)
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (A.L.); (K.A.); (C.W.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam–Rehbruecke, 14558 Nuthetal, Germany;
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (A.L.); (K.A.); (C.W.)
| |
Collapse
|
7
|
Macronutrient Proportions and Fat Type Impact Ketogenicity and Shape the Circulating Lipidome in Dogs. Metabolites 2022; 12:metabo12070591. [PMID: 35888715 PMCID: PMC9324443 DOI: 10.3390/metabo12070591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022] Open
Abstract
Many physiological processes including ketogenesis are similar in dogs and humans, but there is little information available on the effect of carbohydrate restriction in dogs. Here, the ketogenicity and serum metabolic profiles of dogs were assessed after they had consumed high carbohydrate (HiCHO); high protein, low carbohydrate (PROT_LoCHO); or high fat, low carbohydrate (FAT_LoCHO) foods. Thirty-six dogs were fed HiCHO for 4 weeks, then randomized to PROT_LoCHO or FAT_LoCHO for 5 weeks. Dogs then crossed over to the other food for an additional 5 weeks. Generally, reduction of dietary carbohydrate by replacement with either protein or fat increased the energy required to maintain body weight, and fat had a greater effect. Postabsorptive energy availability derived mainly from glucose and triglycerides with HiCHO, from gluconeogenic amino acids and fatty acids with PROT_LoCHO, and from fatty acids and β-hydroxybutyrate with FAT_LoCHO. This study demonstrated that the reduction of carbohydrate in canine foods is potentially beneficial to dogs based on improvements in metabolism and supports the use of low-carbohydrate foods as safe and effective for healthy adult dogs.
Collapse
|
8
|
Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, B Hu F, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O'Brien DM, Ordovás JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv Nutr 2020; 11:200-215. [PMID: 31386148 PMCID: PMC7442414 DOI: 10.1093/advances/nmz075] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers and producing robust, reproducible biomarkers that can be used in public health and clinical research.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David S Wishart
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dinesh Barupal
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Deirdra N Chester
- Division of Nutrition, Institute of Food Safety and Nutrition at the National Institute of Food and Agriculture, USDA, Washington, DC, USA
| | - Dylan Dodd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yannick Djoumbou-Feunang
- Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Lars O Dragsted
- Department of Nutrition, Exercise, and Sports, Section of Preventive and Clinical Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - John Draper
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Linda C Duffy
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Johanna T Dwyer
- National Institutes of Health, Office of Dietary Supplements, Bethesda, MD, USA
| | - Nancy J Emenaker
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Departments of Nutrition; Epidemiology and Statistics, Harvard TH Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert W Karp
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety/Quality, USDA—Agricultural Research Service, Beltsville, MD, USA
| | - Maren R Laughlin
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - A Roger Little
- National Institutes of Health, National Institute on Drug Abuse, Bethesda, MD, USA
| | - Christopher J Lynch
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Steven C Moore
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Holly L Nicastro
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Diane M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer–USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Stavroula K Osganian
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Mary Playdon
- Department of Nutrition and Integrative Physiology, University of Utah and Division of Cancer Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Daniel Raftery
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Sharon A Ross
- National Institutes of Health, National Cancer Institute, Rockville, MD, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Section, Biomarkers Group, Lyon, France
| | - Pothur R Srinivas
- National Institutes of Health, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Steven H Zeisel
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA
| |
Collapse
|
9
|
Zhang Y, Guo S, Xie C, Wang R, Zhang Y, Zhou X, Wu X. Short-Term Oral UMP/UR Administration Regulates Lipid Metabolism in Early-Weaned Piglets. Animals (Basel) 2019; 9:ani9090610. [PMID: 31461833 PMCID: PMC6770922 DOI: 10.3390/ani9090610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Uridine monophosphate (UMP) and uridine (UR) are rich in sow’s milk. The results from this study showed that UMP and UR affect the lipid profile and lipid metabolism in weanling piglets. It is suggested that UMP and UR improve the energy status in early-weaned piglets. Abstract As a main ingredient of milk, the nucleotides content is about 12–58 mg/g, which plays a critical role in maintaining cellular function and lipid metabolism. This study was conducted to evaluate the effects of short-term uridine monophosphate (UMP) and uridine (UR) administration on lipid metabolism in early-weaned piglets. Twenty-one weaned piglets (7 d of age; 3.32 ± 0.20 kg average body weight) were randomly assigned into three groups: The control (CON), UMP, and UR group, and oral administered UMP or UR for 10 days, respectively. The results showed that supplementation with UMP significantly increased (p < 0.05) serum low density lipoprotein (LDL) and tended to increase (p = 0.062) serum total cholesterol (TC) content of piglets when compared with the other two groups. Oral administration with UMP and UR significantly decreased (p < 0.05) the serum total bile acid (TBA) and plasma free fatty acids (FFA) of piglets, and significantly reduced the fatty acid content of C12:0 (p < 0.01) and C14:0 (p < 0.05) in liver. Experiments about key enzymes that are involved in de novo synthesis of fatty acid showed that the gene expression of liver X receptors (LXRα), sterol regulatory element-binding transcription factor 1 (SREBP1c), fatty acid desaturase 2 (FADS2), and fatty acid elongase 5 (ELOVL5) were remarkably down-regulated (p < 0.05) with UMP and UR treatment, and key factors of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and carnitine palmitoyl transferase 1 (CPT-1α) involved in fatty acid catabolism were also decreased (p < 0.05). Additionally, the protein expression of phosphorylated-mTOR was not affected while phosphorylation of AKT was repressed (p < 0.05). In conclusion, short-term oral UMP or UR administration could regulate fatty acid composition and lipid metabolism, thus providing energy for early-weaned piglets.
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songge Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Chunyan Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Ruxia Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yan Zhang
- Meiya Hai'an pharmaceutical Co., Ltd., Hai'an 226600, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
10
|
Wolf C, Gredig N, Ulbrich SE, Kreuzer M, Berard J, Giller K. Partitioning of Rumen-Protected n-3 and n-6 Fatty Acids is Organ-Specific in Growing Angus Heifers. Lipids 2019; 54:503-517. [PMID: 31410851 DOI: 10.1002/lipd.12183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented.
Collapse
Affiliation(s)
- Christina Wolf
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Nicole Gredig
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Institute of Agricultural Sciences, Animal Physiology, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Joel Berard
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315, Lindau, Switzerland
| | - Katrin Giller
- ETH Zurich, Institute of Agricultural Sciences, Animal Nutrition, Universitaetstrasse 2, 8092, Zurich, Switzerland
| |
Collapse
|