1
|
Amorim MDSDN, Batista JA, Junior FM, Fontes A, Santos-Oliveira R, Rebelo Alencar LM. New Insights into Hemolytic Anemias: Ultrastructural and Nanomechanical Investigation of Red Blood Cells Showed Early Morphological Changes. J Biomed Nanotechnol 2022; 18:405-421. [PMID: 35484760 DOI: 10.1166/jbn.2022.3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Several diseases are characterized by changes in the mechanical properties of erythrocytes. Hemolytic anemias are an example of these diseases. Among the hemolytic anemias, Sickle Cell Disease and Thalassemia are the most common, characterized by alterations in the structure of their hemoglobin. Sickle cell disease has a pathological origin in synthesizing abnormal hemoglobin, HbS. In contrast, thalassemia results in extinction or decreased synthesis of α and β hemoglobin chains. This work presents a detailed study of biophysical and ultrastructural early erythrocytes membrane alterations at the nanoscale using Atomic Force Microscopy (AFM). Cells from individuals with sickle cell anemia and thalassemia mutations were studied. The analysis methodology in the AFM was given by blood smear and exposure of the inner membrane for ghost analysis. A robust statistic was used with 65,536 force curves for each map, ten cells of each type, with three individuals for each sample group. The results showed significant differences in cell rigidity, adhesion, volume, and roughness at early morphological alterations, bringing new perspectives for understanding pathogenesis. The sickle cell trait (HbAS) results stand out. Significant alterations were observed in the membrane properties, bringing new perspectives for the knowledge of this mutation. This work presents ultrastructural and biomechanical signatures of sickle cell anemia and thalassemia genotypes, which may help determine a more accurate biophysical description and clinical prognosis for these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do N Amorim
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Jerias A Batista
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Francisco Maia Junior
- Department of Natural Sciences, Mathematics, and Statistics, Federal Rural University of the Semi-Arid, Mossoró, 59625-900, Rio Grande do Norte, Brazil
| | - Adriana Fontes
- Department of Biophysics and Radiobiology, Center for Biosciences, Federal University of Pernambuco, Recife, 52171-011, Brazil
| | - Ralph Santos-Oliveira
- Zona Oeste State University, Laboratory of Nanoradiopharmaceuticals and Radiopharmacy, Rio de Janeiro, 23070200, Brazil
| | - Luciana M Rebelo Alencar
- Federal University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| |
Collapse
|
2
|
Uhl FE, Vanherle L, Matthes F, Meissner A. Therapeutic CFTR Correction Normalizes Systemic and Lung-Specific S1P Level Alterations Associated with Heart Failure. Int J Mol Sci 2022; 23:866. [PMID: 35055052 PMCID: PMC8777932 DOI: 10.3390/ijms23020866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Heart failure (HF) is among the main causes of death worldwide. Alterations of sphingosine-1-phosphate (S1P) signaling have been linked to HF as well as to target organ damage that is often associated with HF. S1P's availability is controlled by the cystic fibrosis transmembrane regulator (CFTR), which acts as a critical bottleneck for intracellular S1P degradation. HF induces CFTR downregulation in cells, tissues and organs, including the lung. Whether CFTR alterations during HF also affect systemic and tissue-specific S1P concentrations has not been investigated. Here, we set out to study the relationship between S1P and CFTR expression in the HF lung. Mice with HF, induced by myocardial infarction, were treated with the CFTR corrector compound C18 starting ten weeks post-myocardial infarction for two consecutive weeks. CFTR expression, S1P concentrations, and immune cell frequencies were determined in vehicle- and C18-treated HF mice and sham controls using Western blotting, flow cytometry, mass spectrometry, and qPCR. HF led to decreased pulmonary CFTR expression, which was accompanied by elevated S1P concentrations and a pro-inflammatory state in the lungs. Systemically, HF associated with higher S1P plasma levels compared to sham-operated controls and presented with higher S1P receptor 1-positive immune cells in the spleen. CFTR correction with C18 attenuated the HF-associated alterations in pulmonary CFTR expression and, hence, led to lower pulmonary S1P levels, which was accompanied by reduced lung inflammation. Collectively, these data suggest an important role for the CFTR-S1P axis in HF-mediated systemic and pulmonary inflammation.
Collapse
Affiliation(s)
- Franziska E. Uhl
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Lotte Vanherle
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden; (F.E.U.); (L.V.); (F.M.)
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
4
|
Flegel WA, Srivastava K, Sissung TM, Goldspiel BR, Figg WD. Pharmacogenomics with red cells: a model to study protein variants of drug transporter genes. Vox Sang 2021; 116:141-154. [PMID: 32996603 PMCID: PMC9108996 DOI: 10.1111/vox.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
The PharmacoScan pharmacogenomics platform screens for variation in genes that affect drug absorption, distribution, metabolism, elimination, immune adverse reactions and targets. Among the 1,191 genes tested on the platform, 12 genes are expressed in the red cell membrane: ABCC1, ABCC4, ABCC5, ABCG2, CFTR, SLC16A1, SLC19A1, SLC29A1, ATP7A, CYP4F3, EPHX1 and FLOT1. These genes represent 5 ATP-binding cassette proteins, 3 solute carrier proteins, 1 ATP transport protein and 3 genes associated with drug metabolism and adverse drug reactions. Only ABCG2 and SLC29A1 encode blood group systems, JR and AUG, respectively. We propose red cells as an ex vivo model system to study the effect of heritable variants in genes encoding the transport proteins on the pharmacokinetics of drugs. Altered pharmacodynamics in red cells could also cause adverse reactions, such as haemolysis, hitherto unexplained by other mechanisms.
Collapse
Affiliation(s)
- Willy Albert Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tristan Michael Sissung
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barry Ronald Goldspiel
- Clinical Trials Operations and Informatics Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William Douglas Figg
- Clinical Pharmacology Program, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Favia M, de Bari L, Bobba A, Atlante A. An Intriguing Involvement of Mitochondria in Cystic Fibrosis. J Clin Med 2019; 8:jcm8111890. [PMID: 31698802 PMCID: PMC6912654 DOI: 10.3390/jcm8111890] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) occurs when the cystic fibrosis transmembrane conductance regulator (CFTR) protein is not synthetized and folded correctly. The CFTR protein helps to maintain the balance of salt and water on many body surfaces, such as the lung surface. When the protein is not working correctly, chloride becomes trapped in cells, then water cannot hydrate the cellular surface and the mucus covering the cells becomes thick and sticky. Furthermore, a defective CFTR appears to produce a redox imbalance in epithelial cells and extracellular fluids and to cause an abnormal generation of reactive oxygen species: as a consequence, oxidative stress has been implicated as a causative factor in the aetiology of the process. Moreover, massive evidences show that defective CFTR gives rise to extracellular GSH level decrease and elevated glucose concentrations in airway surface liquid (ASL), thus encouraging lung infection by pathogens in the CF advancement. Recent research in progress aims to rediscover a possible role of mitochondria in CF. Here the latest new and recent studies on mitochondrial bioenergetics are collected. Surprisingly, they have enabled us to ascertain that mitochondria have a leading role in opposing the high ASL glucose level as well as oxidative stress in CF.
Collapse
Affiliation(s)
- Maria Favia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via E. Orabona 4, 70126 Bari, Italy
- Correspondence: (M.F.); (A.A.)
| | - Lidia de Bari
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
| | - Antonella Bobba
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
| | - Anna Atlante
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari—CNR, Via G. Amendola 122/O, 70126 Bari, Italy; (L.d.B.); (A.B.)
- Correspondence: (M.F.); (A.A.)
| |
Collapse
|
6
|
Bannon A, Zhang SD, Schock BC, Ennis M. Cystic Fibrosis from Laboratory to Bedside: The Role of A20 in NF-κB-Mediated Inflammation. Med Princ Pract 2015; 24:301-10. [PMID: 25925366 PMCID: PMC5588248 DOI: 10.1159/000381423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF.
Collapse
Affiliation(s)
- Aidan Bannon
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Shu-Dong Zhang
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Bettina C. Schock
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Madeleine Ennis
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
- *Prof. Madeleine Ennis, Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Health Sciences Building, Lisburn Road, Belfast BT9 7AE (UK), E-Mail
| |
Collapse
|
7
|
Picas L, Rico F, Deforet M, Scheuring S. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability. ACS NANO 2013; 7:1054-63. [PMID: 23347043 DOI: 10.1021/nn303824j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
Collapse
Affiliation(s)
- Laura Picas
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France
| | | | | | | |
Collapse
|
8
|
Valdivieso AG, Santa-Coloma TA. CFTR activity and mitochondrial function. Redox Biol 2013; 1:190-202. [PMID: 24024153 PMCID: PMC3757715 DOI: 10.1016/j.redox.2012.11.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.
Collapse
Affiliation(s)
- Angel Gabriel Valdivieso
- Institute for Biomedical Research (BIOMED CONICET-UCA), Laboratory of Cellular and Molecular Biology, School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | | |
Collapse
|
9
|
Muanprasat C, Wongborisuth C, Pathomthongtaweechai N, Satitsri S, Hongeng S. Protection against oxidative stress in beta thalassemia/hemoglobin E erythrocytes by inhibitors of glutathione efflux transporters. PLoS One 2013; 8:e55685. [PMID: 23383265 PMCID: PMC3561311 DOI: 10.1371/journal.pone.0055685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
In beta thalassemia/hemoglobin E (Hb E), abnormally high levels of oxidative stress account for accelerated senescence and increased destruction of erythrocytes. The present study aimed to investigate the role of glutathione efflux transporters, namely cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein 1 (MRP1), in the control of glutathione levels and protection against oxidative challenges in beta thalassemia/Hb E erythrocytes. We found that CFTR protein was expressed in the erythrocytes of beta thalassemia/Hb E patients. Treatments with GlyH-101 (50 µM), a small molecule CFTR inhibitor, and MK571 (50 µM), an MRP1 inhibitor, reduced H2O2-induced free radical generation in the erythrocytes by ∼80% and 50%, respectively. Furthermore, combined treatment with GlyH-101 and MK571 completely abolished the induction of reactive oxygen radicals. Increased oxidative stress in the erythrocytes following H2O2 challenges was accompanied by a decrease in intracellular level of reduced glutathione (GSH), which was prevented by treatments with GlyH-101 and MK571. CMFDA-based assays revealed that GlyH-101 and MK571 reduced H2O2-induced glutathione efflux from the erythrocytes by 87% and 66%, respectively. Interestingly, H2O2-induced osmotic tolerance of erythrocytes, a sign of erythrocyte aging, was ameliorated by treatment with GlyH-101. Our study indicates that oxidative stress induces glutathione efflux via CFTR and MRP1 in beta thalassemia/Hb E erythrocytes. Pharmacological inhibition of glutathione efflux represents a potential therapy to delay aging and premature destruction of erythrocytes in beta thalassemia/Hb E.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail: (CM); (SH)
| | - Chokdee Wongborisuth
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saravut Satitsri
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail: (CM); (SH)
| |
Collapse
|
10
|
Wang H, Hao X, Shan Y, Jiang J, Cai M, Shang X. Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy 2010; 110:305-12. [DOI: 10.1016/j.ultramic.2009.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
|
11
|
Moskalenko AV, Yarova PL, Gordeev SN, Smirnov SV. Single protein molecule mapping with magnetic atomic force microscopy. Biophys J 2010; 98:478-87. [PMID: 20141762 PMCID: PMC2814202 DOI: 10.1016/j.bpj.2009.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/06/2009] [Accepted: 10/15/2009] [Indexed: 02/04/2023] Open
Abstract
Understanding the structural organization and distribution of proteins in biological cells is of fundamental importance in biomedical research. The use of conventional fluorescent microscopy for this purpose is limited due to its relatively low spatial resolution compared to the size of a single protein molecule. Atomic force microscopy (AFM), on the other hand, allows one to achieve single-protein resolution by scanning the cell surface using a specialized ligand-coated AFM tip. However, because this method relies on short-range interactions, it is limited to the detection of binding sites that are directly accessible to the AFM tip. We developed a method based on magnetic (long-range) interactions and applied it to investigate the structural organization and distribution of endothelin receptors on the surface of smooth muscle cells. Endothelin receptors were labeled with 50-nm superparamagnetic microbeads and then imaged with magnetic AFM. Considering its high spatial resolution and ability to "see" magnetically labeled proteins at a distance of up to 150 nm, this approach may become an important tool for investigating the dynamics of individual proteins both on the cell membrane and in the submembrane space.
Collapse
Affiliation(s)
| | - Polina L. Yarova
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | - Sergey V. Smirnov
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| |
Collapse
|
12
|
Jiang J, Hao X, Cai M, Shan Y, Shang X, Tang Z, Wang H. Localization of Na+-K+ ATPases in quasi-native cell membranes. NANO LETTERS 2009; 9:4489-4493. [PMID: 19807066 DOI: 10.1021/nl902803m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Na(+)-K(+) ATPases have been observed and located by in situ AFM and single molecule recognition technique, topography and recognition imaging (TREC) that is a unique technique to specifically identify single protein in complex during AFM imaging. Na(+)-K(+) ATPases were well distributed in the inner leaflet of cell membranes with about 10% aggregations in total recognized proteins. The height of Na(+)-K(+) ATPases measured by AFM is in the range of 12-14 nm, which is very consistent with the cryoelectron microscopy result. The unbinding force between Na(+)-K(+) ATPases in the membrane and anti-ATPases on the AFM tip is about 80 pN with the apparent loading rate at 40 nN/s. Our results show the first visualization of an essential membrane protein, Na(+)-K(+) ATPase, in quasi-native cell membranes and may be significant to reveal the interactions between Na(+)-K(+) ATPases and other membrane proteins at the molecular level.
Collapse
Affiliation(s)
- Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Allen BW, Stamler JS, Piantadosi CA. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation. Trends Mol Med 2009; 15:452-60. [PMID: 19781996 DOI: 10.1016/j.molmed.2009.08.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 01/30/2023]
Abstract
The protected transport of nitric oxide (NO) by hemoglobin (Hb) links the metabolic activity of working tissue to the regulation of its local blood supply through hypoxic vasodilation. This physiologic mechanism is allosterically coupled to the O(2) saturation of Hb and involves the covalent binding of NO to a cysteine residue in the beta-chain of Hb (Cys beta93) to form S-nitrosohemoglobin (SNO-Hb). Subsequent S-transnitrosation, the transfer of NO groups to thiols on the RBC membrane and then in the plasma, preserves NO vasodilator activity for delivery to the vascular endothelium. This SNO-Hb paradigm provides insight into the respiratory cycle and a new therapeutic focus for diseases involving abnormal microcirculatory perfusion. In addition, the formation of S-nitrosothiols in other proteins may regulate an array of physiological functions.
Collapse
Affiliation(s)
- Barry W Allen
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
14
|
Scambi C, De Franceschi L, Guarini P, Poli F, Siciliano A, Pattini P, Biondani A, La Verde V, Bortolami O, Turrini F, Carta F, D'Orazio C, Assael BM, Faccini G, Bambara LM. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial. PLoS One 2009; 4:e4782. [PMID: 19277125 PMCID: PMC2652076 DOI: 10.1371/journal.pone.0004782] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 01/20/2009] [Indexed: 11/19/2022] Open
Abstract
Background Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis. Methodology and Principal Findings A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K+ content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association. Conclusion and Significance 5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF. Trial Registration ClinicalTrials.gov NCT00730509
Collapse
Affiliation(s)
- Cinzia Scambi
- Department of Clinical and Experimental Medicine, Section of Rheumatology & Internal Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Riehemann K, Schneider S, Luger T, Godin B, Ferrari M, Fuchs H. Nanomedizin - Herausforderung und Perspektiven. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802585] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine--challenge and perspectives. Angew Chem Int Ed Engl 2009; 48:872-97. [PMID: 19142939 PMCID: PMC4175737 DOI: 10.1002/anie.200802585] [Citation(s) in RCA: 859] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of nanotechnology concepts to medicine joins two large cross-disciplinary fields with an unprecedented societal and economical potential arising from the natural combination of specific achievements in the respective fields. The common basis evolves from the molecular-scale properties relevant to the two fields. Local probes and molecular imaging techniques allow surface and interface properties to be characterized on a nanometer scale at predefined locations, while chemical approaches offer the opportunity to elaborate and address surfaces, for example, for targeted drug delivery, enhanced biocompatibility, and neuroprosthetic purposes. However, concerns arise in this cross-disciplinary area about toxicological aspects and ethical implications. This Review gives an overview of selected recent developments and applications of nanomedicine.
Collapse
Affiliation(s)
- Kristina Riehemann
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| | | | | | | | | | - Harald Fuchs
- Dr. K. Riehemann, Prof. Dr. H. Fuchs, Center for Nanotechnology (CeNTech) and Physical Institute; WWU Münster, Wilhelm Klemm-Str. 10, 48149 Münster, Germany, Fax:+49 (251) 83 33602, , Homepage: http://www.uni-muenster.de/Physik.PI/Fuchs/
| |
Collapse
|
17
|
Grgic I, Kaistha BP, Paschen S, Kaistha A, Busch C, Si H, Köhler K, Elsässer HP, Hoyer J, Köhler R. Disruption of the Gardos channel (KCa3.1) in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly. Pflugers Arch 2008; 458:291-302. [DOI: 10.1007/s00424-008-0619-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 12/28/2022]
|
18
|
Ebner A, Nikova D, Lange T, Häberle J, Falk S, Dübbers A, Bruns R, Hinterdorfer P, Oberleithner H, Schillers H. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging. NANOTECHNOLOGY 2008; 19:384017. [PMID: 21832576 DOI: 10.1088/0957-4484/19/38/384017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl(-)) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.
Collapse
Affiliation(s)
- Andreas Ebner
- Institute for Biophysics, University of Linz, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Imaging CFTR in its native environment. Pflugers Arch 2007; 456:163-77. [DOI: 10.1007/s00424-007-0399-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022]
|
20
|
Bentzen PJ, Lang E, Lang F. Curcumin induced suicidal erythrocyte death. Cell Physiol Biochem 2007; 19:153-64. [PMID: 17310109 DOI: 10.1159/000099203] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2006] [Indexed: 12/21/2022] Open
Abstract
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.
Collapse
Affiliation(s)
- Peter J Bentzen
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
21
|
Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, Egée S, Ginsburg H, Hill DA, Huber SM, Kirk K, Lang F, Lisk G, Oteng E, Pillai AD, Rayavara K, Rouhani S, Saliba KJ, Shen C, Solomon T, Thomas SLY, Verloo P, Desai SA. Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 2007; 37:475-82. [PMID: 17292372 PMCID: PMC2746352 DOI: 10.1016/j.ijpara.2006.12.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/28/2022]
Abstract
The altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field. In an effort to unravel these issues, the groups involved recently came together for a week of discussion and experimentation. In this article, the various models for altered transport are reviewed, together with the areas of consensus in the field and those that require a better understanding.
Collapse
Affiliation(s)
- Henry M Staines
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, London SW17 0RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stumpf A, Almaca J, Kunzelmann K, Wenners-Epping K, Huber SM, Haberle J, Falk S, Duebbers A, Walte M, Oberleithner H, Schillers H. IADS, a decomposition product of DIDS activates a cation conductance in Xenopus oocytes and human erythrocytes: new compound for the diagnosis of cystic fibrosis. Cell Physiol Biochem 2007; 18:243-52. [PMID: 17167229 DOI: 10.1159/000097671] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2006] [Indexed: 11/19/2022] Open
Abstract
DIDS (4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid) is a commonly used blocker of plasma membrane anion channels and transporters. We observed that DIDS undergoes decomposition while stored in DMSO (dimethyl sulfoxide) forming a biologically active compound. One decomposition product, called IADS, was identified and synthesized. Voltage-clamp and patch clamp experiments on Xenopus laevis oocytes and human erythrocytes revealed that IADS is able to activate a plasma membrane cation conductance in both cell types. Furthermore, we found that IADS induces hemolysis in red blood cells of healthy donors but fails to hemolyze erythrocytes of donors with cystic fibrosis. Thus, IADS stimulated activation of a cation conductance could form the basis for a novel diagnostic test of cystic fibrosis.
Collapse
Affiliation(s)
- Astrid Stumpf
- Institute of Physiology II, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|