1
|
Xu Y, Liu Z, Xu J, Xu L, He Z, Liu F, Wang Y. Role of brain-derived neurotrophic factor in frailty: From mechanisms to interventions. Biomed Pharmacother 2025; 186:118016. [PMID: 40187046 DOI: 10.1016/j.biopha.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Frailty is a common medical syndrome which largely increases the risk of disability, depression, falls, hospitalization and mortality. An increasing number of research suggests that frailty is reversible by medical interventions at its early stage. Therefore, efficient detection is utterly important for frail population. Since numerous biological processes have been indicated in frail population, the critical regulators in these biological processes could provide biomarkers for early detection or treatment for frailty. The brain-derived neurotrophic factor (BDNF) has been associated with several biological process ranging from cognitive function to inflammation, therefore it could be an important regulator for frailty. In this review, we would discuss the mechanism association between different indicators of frailty and BDNF. Furthermore, we summarize the approaches to interfere with BDNF in healthy and pathologic condition, which could lead to identification of potential interventional strategies for frailty.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ziyan Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China
| | - Jiao Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital,Army Medical University, Chongqing 400042, China
| | - Fang Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China.
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Elahinejad V, Khorasanian AS, Tehrani‐Doost M, Khosravi‐Darani K, Mirsepasi Z, Effatpanah M, Askari‐Rabori R, Tajadod S, Jazayeri S. Effects of Probiotics as Adjunctive Therapy to Fluoxetine on Depression Severity and Serum Brain-Derived Neurotrophic Factor, Cortisol, and Adrenocorticotropic Hormone in Patients With Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial. Food Sci Nutr 2025; 13:e4698. [PMID: 40177327 PMCID: PMC11961381 DOI: 10.1002/fsn3.4698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 04/05/2025] Open
Abstract
Probiotics may improve mood, but their role as adjunctive therapy for major depressive disorder (MDD) is not well understood. This study examines the effects of probiotics on depression severity, brain-derived neurotrophic factor (BDNF), adrenocorticotropic hormone (ACTH), and cortisol levels in MDD patients. Fifty medication-free MDD patients were randomized to receive probiotics with fluoxetine (n = 25) or placebo with fluoxetine (n = 25) for 8 weeks. Depression severity was assessed using the Hamilton Depression Rating Scale (HDRS-24), and fasting blood samples were collected at baseline and study conclusion. Forty-four patients completed the trial. The probiotic group showed a significant reduction in depression severity compared with the placebo group (p = 0.001). No significant differences were observed in serum cortisol (p = 0.46) and ACTH levels (p = 0.44). Plasma BDNF levels increased slightly in the probiotic group but were not statistically significant. Probiotic supplementation with fluoxetine significantly reduces depression severity in MDD patients.
Collapse
Affiliation(s)
- Vajihe Elahinejad
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Atie Sadat Khorasanian
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical SciencesTehranIran
| | - Mehdi Tehrani‐Doost
- Department of PsychiatryRoozbeh Hospital, Tehran University of Medical SciencesTehranIran
| | - Kianoush Khosravi‐Darani
- Research Department of Food Technology ResearchNational Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Mirsepasi
- Department of PsychiatryRoozbeh Hospital, Tehran University of Medical SciencesTehranIran
| | - Mohammad Effatpanah
- School of MedicineZiaeian Hospital, International Campus, Tehran University of Medical SciencesTehranIran
| | | | - Shirin Tajadod
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Shima Jazayeri
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
- Research Center for Nutritional SciencesIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Zhang J, He J, Hu J, Ji Y, Lou Z. Exploring the role of gut microbiota in depression: Pathogenesis and therapeutic insights. Asian J Psychiatr 2025; 105:104411. [PMID: 39999618 DOI: 10.1016/j.ajp.2025.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Depression is a common clinical mental disorder characterized by persistent low mood and anhedonia. It has become a major global public health issue due to its complex etiology and unclear mechanisms, resulting in limited diagnostic and therapeutic options. Recent studies indicate that dysbiosis of gut microbiota is closely related to the onset and progression of depression. This article systematically reviews the recent research on the 'microbiota-gut-brain axis' (MGBA), exploring the role and mechanisms of gut microbiota in preclinical and clinical studies. Additionally, it discusses the potential of modulating gut microbiota as a promising therapeutic approach for depression and suggests future research directions, aiming to provide a theoretical basis for research and clinical management of depression.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingkai He
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jieqiong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Yunxin Ji
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Zhongze Lou
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
4
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Pan B, Pan Y, Huang YS, Yi M, Hu Y, Lian X, Shi HZ, Wang M, Xiang G, Yang WY, Liu Z, Xia F. Efficacy and safety of gut microbiome-targeted treatment in patients with depression: a systematic review and meta-analysis. BMC Psychiatry 2025; 25:64. [PMID: 39838303 PMCID: PMC11753086 DOI: 10.1186/s12888-024-06438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND The study aimed to comprehensively analyze and establish a framework for evaluating the efficacy of microbiome-targeted treatment (MTT) for depression. METHODS We searched PubMed, Embase, Cochrane Library, Web of Science, and the Chinese National Knowledge Infrastructure database for randomized controlled trials (RCTs) on MTT in treating depression until October 19, 2023. A meta-analysis was conducted to evaluate the efficacy and safety of MTT. Comprehensive subgroup analyses were undertaken to explore factors influencing MTT's efficacy in treating depression. This study was registered with PROSPERO (CRD42023483649). RESULTS The study selection process identified 51,570 studies, of which 34 met the inclusion criteria. The overall pooled estimates showed that MTT significantly improved depression symptoms (SMD -0.26, 95% CI [-0.32, -0.19], I2 = 54%) with acceptable safety. Subgroup analyses by geography showed that effectiveness was demonstrated in Asia (SMD -0.46, 95% CI [-0.56, -0.36], I2 = 36%), while no evidence of effectiveness was found in Europe (SMD -0.07, 95% CI [-0.19, 0.05], I2 = 55%), America (SMD -0.33, 95% CI [-0.67, 0.02], I2 = 60%), and Oceania (SMD 0.00, 95% CI [-0.18, 0.18], I2 = 0%). Besides, the efficacy was shown in depressed patients without comorbidities (SMD -0.31, 95% CI [-0.40, -0.22], I2 = 0%), whereas effectiveness was poor in those with digestive disorders, such as irritable bowel syndrome (SMD -0.37, 95% CI [-0.89, 0.16], I2 = 74%), chronic diarrhea (SMD -0.34, 95% CI [-0.73, 0.05]), and chronic constipation (SMD -0.23, 95% CI [-0.57, 0.11], I2 = 0%). In perinatal depressed patients, MTT was not effective (SMD 0.16, 95% CI [0.01, 0.31], I2 = 0%). It was found that < 8 weeks (SMD -0.33, 95% CI [-0.45, -0.22], I2 = 0%) and 8-12 weeks (SMD -0.34, 95% CI [-0.44, -0.23], I2 = 57%) MTT were effective, while > 12 weeks (SMD 0.02, 95% CI [-0.12, 0.17], I2 = 68%) MTT was ineffective. CONCLUSIONS Despite the overall effectiveness of MTT in treating depression and its acceptable safety profile, caution is warranted in drawing this conclusion due to limitations posed by the small sample size of included studies and heterogeneity. The efficacy of MTT for depression exhibits variation influenced by geography, patient comorbidities, and duration of administration.
Collapse
Affiliation(s)
- Bo Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yiming Pan
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Yu-Song Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China
| | - Meng Yi
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
| | - Yuwei Hu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Xiaoyu Lian
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Hui-Zhong Shi
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China
| | - Mingwei Wang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
| | - Guifen Xiang
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd 100, Shanghai, 200080, China.
| | - Zhong Liu
- Institute of Blood Transfusion Institution, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Rd, Longtan Industry Zone, Chenghua District, Chengdu, Sichuan, China.
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, 610052, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Fangfang Xia
- Department of Anesthesiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
6
|
Randeni N, Xu B. Critical Review of the Cross-Links Between Dietary Components, the Gut Microbiome, and Depression. Int J Mol Sci 2025; 26:614. [PMID: 39859327 PMCID: PMC11765984 DOI: 10.3390/ijms26020614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The complex relationship between diet, the gut microbiota, and mental health, particularly depression, has become a focal point of contemporary research. This critical review examines how specific dietary components, such as fiber, proteins, fats, vitamins, minerals, and bioactive compounds, shape the gut microbiome and influence microbial metabolism in order to regulate depressive outcomes. These dietary-induced changes in the gut microbiota can modulate the production of microbial metabolites, which play vital roles in gut-brain communication. The gut-brain axis facilitates this communication through neural, immune, and endocrine pathways. Alterations in microbial metabolites can influence central nervous system (CNS) functions by impacting neuroplasticity, inflammatory responses, and neurotransmitter levels-all of which are linked to the onset and course of depression. This review highlights recent findings linking dietary components with beneficial changes in gut microbiota composition and reduced depressive symptoms. We also explore the challenges of individual variability in responses to dietary interventions and the long-term sustainability of these strategies. The review underscores the necessity for further longitudinal and mechanistic studies to elucidate the precise mechanisms through which diet and gut microbiota interactions can be leveraged to mitigate depression, paving the way for personalized nutritional therapies.
Collapse
Affiliation(s)
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China;
| |
Collapse
|
7
|
Mallick R, Basak S, Das RK, Banerjee A, Paul S, Pathak S, Duttaroy AK. Roles of the gut microbiota in human neurodevelopment and adult brain disorders. Front Neurosci 2024; 18:1446700. [PMID: 39659882 PMCID: PMC11628544 DOI: 10.3389/fnins.2024.1446700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Growing evidence demonstrates the connection between gut microbiota, neurodevelopment, and adult brain function. Microbial colonization occurs before the maturation of neural systems and its association with brain development. The early microbiome interactions with the gut-brain axis evolved to stimulate cognitive activities. Gut dysbiosis can lead to impaired brain development, growth, and function. Docosahexaenoic acid (DHA) is critically required for brain structure and function, modulates gut microbiota, and impacts brain activity. This review explores how gut microbiota influences early brain development and adult functions, encompassing the modulation of neurotransmitter activity, neuroinflammation, and blood-brain barrier integrity. In addition, it highlights processes of how the gut microbiome affects fetal neurodevelopment and discusses adult brain disorders.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Ranjit K. Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Liu T, Zhou L, Dong R, Qu Y, Liu Y, Song W, Lv J, Wu S, Peng W, Shi L. Isomalto-Oligosaccharide Potentiates Alleviating Effects of Intermittent Fasting on Obesity-Related Cognitive Impairment during Weight Loss and the Rebound Weight Gain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23875-23892. [PMID: 39431286 DOI: 10.1021/acs.jafc.4c07351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Obesity-related cognitive dysfunction poses a significant threat to public health. The present study demonstrated mitigating effects of intermittent fasting (IF) and its combination with isomalto-oligosaccharides and IF (IF + IMO) on cognitive impairments induced by a high-fat-high-fructose (HFHF) diet in mice, with IF + IMO exhibiting superior effects. Transcriptomic analysis of the hippocampus revealed that the protective effects on cognition might be attributed to the suppression of toll-like receptor 4 (TLR4)/NFκB signaling, oxidative phosphorylation, and neuroinflammation. Moreover, both IF and IF + IMO modulated the gut microbiome and promoted the production of short-chain fatty acids, with IF + IMO displaying more pronounced effects. IF + IMO-modulated gut microbiota, metabolites, and molecular targets associated with cognitive impairments were further corroborated using human data from public databases Gmrepo and gutMgene. Furthermore, the fecal microbiome transplantation confirmed the direct impacts of IF + IMO-derived microbiota on improving cognition functions by suppressing TLR4/NFκB signaling and increasing BDNF levels. Notably, prior exposure to IF + IMO prevented weight-regain-induced cognitive decline, suppressed TLR4/NFκB signaling and inflammatory cytokines in the hippocampus, and mitigated weight regain-caused gut dysbacteriosis without altering body weight. Our study underscores that IMO-augmented alleviating effects of IF on obesity-related cognitive impairment particularly during weight-loss and weight-regain periods, presenting a novel nutritional strategy to tackle obesity-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Dong
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yizhe Qu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Song
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jiayao Lv
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Shan Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining 810016, Qinghai, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810016, Qinghai, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
9
|
Castro-Vidal ZA, Mathew F, Ibrahim AA, Shubhangi F, Cherian RR, Choi HK, Begum A, Ravula HK, Giri H. The Role of Gastrointestinal Dysbiosis and Fecal Transplantation in Various Neurocognitive Disorders. Cureus 2024; 16:e72451. [PMID: 39600755 PMCID: PMC11594437 DOI: 10.7759/cureus.72451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the critical role of the human microbiome in neurological and neurodegenerative disorders, focusing on gut-brain axis dysfunction caused by dysbiosis, an imbalance in gut bacteria. Dysbiosis has been linked to diseases such as Alzheimer's disease, Parkinson's disease (PD), multiple sclerosis (MS), and stroke. The gut microbiome influences the central nervous system (CNS) through signaling molecules, including short-chain fatty acids, neurotransmitters, and metabolites, impacting brain health and disease progression. Emerging therapies, such as fecal microbiota transplantation (FMT), have shown promise in restoring microbial balance and alleviating neurological symptoms, especially in Alzheimer's and PD. Additionally, nutritional interventions such as probiotics, prebiotics, and specialized diets are being investigated for their ability to modify gut microbiota and improve patient outcomes. This review highlights the therapeutic potential of gut microbiota modulation but emphasizes the need for further clinical trials to establish the safety and efficacy of these interventions in neurological and mental health disorders.
Collapse
Affiliation(s)
| | - Felwin Mathew
- Neurology, PK Das Institute of Medical Science, Ottapalam, IND
| | - Alia A Ibrahim
- Internal Medicine, Dr. Sulaiman Al-Habib Hospital - Al Sweidi Branch, Riyadh, SAU
| | - Fnu Shubhangi
- Internal Medicine, Nalanda Medical College and Hospital, Patna, IND
| | | | - Hoi Kei Choi
- Psychology/Neuroscience, University of Michigan, Ann Arbor, USA
| | - Afreen Begum
- Medicine, Employee State Insurance Corporation (ESIC) Medical College and Hospital, Hyderabad, IND
| | | | | |
Collapse
|
10
|
Vajdi M, Khorvash F, Askari G. A randomized, double-blind, placebo-controlled parallel trial to test the effect of inulin supplementation on migraine headache characteristics, quality of life and mental health symptoms in women with migraine. Food Funct 2024; 15:10088-10098. [PMID: 39291634 DOI: 10.1039/d4fo02796e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Migraine is a complex neurovascular disorder characterized by recurrent headache attacks that are often accompanied by symptoms such as vomiting, nausea, and sensitivity to sound or light. Preventing migraine attacks is highly important. Recent research has indicated that alterations in gut microbiota may influence the underlying mechanisms of migraines. This study aimed to investigate the effects of inulin supplementation on migraine headache characteristics, quality of life (QOL), and mental health symptoms in women with migraines. In a randomized double-blind placebo-controlled trial, 80 women with migraines aged 20 to 50 years were randomly assigned to receive 10 g day-1 of inulin or a placebo supplement for 12 weeks. Severity, frequency, and duration of migraine attacks, as well as depression, anxiety, stress, QOL, and headache impact test (HIT-6) scores, were examined at the start of the study and after 12 weeks of intervention. In this study, the primary outcome focused on the frequency of headache attacks, while secondary outcomes encompassed the duration and severity of headache attacks, QOL, and mental health. There was a significant reduction in severity (-1.95 vs. -0.84, P = 0.004), duration (-6.95 vs. -2.05, P = 0.023), frequency (-2.09 vs. -0.37, P < 0.001), and HIT-6 score (-10.30 vs. -6.52, P < 0.023) in the inulin group compared with the control. Inulin supplementation improved mental health symptoms, including depression (-4.47 vs. -1.45, P < 0.001), anxiety (-4.37 vs. -0.70, P < 0.001), and stress (-4.40 vs. -1.50, P < 0.001). However, no significant difference was observed between the two groups regarding changes in QOL score. This study provides evidence supporting the beneficial effects of inulin supplement on migraine symptoms and mental health status in women with migraines. Further studies are necessary to confirm these findings. Trial registration: Iranian Registry of Clinical Trials (https://www.irct.ir) (ID: IRCT20121216011763N58).
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Neurology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
12
|
Cho H, Park Y. Synergistic Antidepressant-like Effects of Biotics and n-3 Polyunsaturated Fatty Acids on Dopaminergic Pathway through the Brain-Gut Axis in Rats Exposed to Chronic Mild Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10332-1. [PMID: 39243350 DOI: 10.1007/s12602-024-10332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Probiotics, postbiotics, and n-3 polyunsaturated fatty acids (PUFA) have antidepressant-like effects. However, the underlying mechanisms of the dopaminergic pathway are unclear. The present study investigated the hypothesis that probiotics and postbiotics combined with n-3 PUFA synergistically improve depression by modulating the dopaminergic pathway through the brain-gut axis. Rats were randomly divided into seven groups: non-chronic mild stress (CMS) with n-6 PUFA, and CMS with n-6 PUFA, n-3 PUFA, probiotics, postbiotics, probiotics combined with n-3 PUFA, and postbiotics combined with n-3 PUFA. Probiotics, postbiotics, and n-3 PUFA improved depressive behaviors, decreased blood concentrations of interferon-γ, and interleukin-1β, and increased the brain and gut concentrations of short chain fatty acids and dopamine. Moreover, probiotics, postbiotics, and n-3 PUFA increased the brain and gut expression of glucocorticoid receptor and tyrosine hydroxylase; brain expression of l-type amino acid transporter 1 and dopamine receptor (DR) D1; and gut expression of DRD2. The expression of phosphorylated protein kinase A/protein kinase A and phosphorylated cAMP response element-binding protein/cAMP response element-binding protein increased in the brain, however, decreased in the gut by the supplementation of probiotics, postbiotics, and n-3 PUFA. There was synergistic effect of probiotics and postbiotics combined with n-3 PUFA on the depressive behaviors and dopaminergic pathway in blood, brain, and gut. Moreover, no significant difference in the dopaminergic pathways between the probiotics and postbiotics was observed. In conclusion, probiotics and postbiotics, combined with n-3 PUFA have synergistic antidepressant-like effects on the dopaminergic pathway through the brain-gut axis in rats exposed to CMS.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
13
|
Teng CY, Kao NJ, Nguyen NTK, Lin CI, Cross TWL, Lin SH. Effects of xylo-oligosaccharide on gut microbiota, brain protein expression, and lipid profile induced by high-fat diet. J Nutr Biochem 2024; 129:109640. [PMID: 38583497 DOI: 10.1016/j.jnutbio.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.
Collapse
Affiliation(s)
- Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ning-Jo Kao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Ngan Thi Kim Nguyen
- Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzu-Wen L Cross
- Departmen of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food Safety, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
15
|
Ferrari S, Mulè S, Parini F, Galla R, Ruga S, Rosso G, Brovero A, Molinari C, Uberti F. The influence of the gut-brain axis on anxiety and depression: A review of the literature on the use of probiotics. J Tradit Complement Med 2024; 14:237-255. [PMID: 38707924 PMCID: PMC11069002 DOI: 10.1016/j.jtcme.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
This review aims to argue how using probiotics can improve anxiety and depressive behaviour without adverse effects, also exploring the impact of postbiotics on it. Specifically, probiotics have drawn more attention as effective alternative treatments, considering the rising cost of antidepressant and anti-anxiety drugs and the high risk of side effects. Depression and anxiety disorders are among the most common mental illnesses in the world's population, characterised by low mood, poor general interest, and cognitive or motor dysfunction. Thus, this study analysed published literature on anxiety, depression, and probiotic supplementation from PubMed and Scopus, focusing on the last twenty years. This study focused on the effect of probiotics on mental health as they have drawn more attention because of their extensive clinical applications and positive impact on various diseases. Numerous studies have demonstrated how the gut microbiota might be critical for mood regulation and how probiotics can affect host health by regulating the gut-brain axis. By comparing the different works analysed, it was possible to identify a strategy by which they are selected and employed and, at the same time, to assess how the effect of probiotics can be optimised using postbiotics, an innovation to improve mental well-being in humans.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Francesca Parini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Sara Ruga
- Noivita srls, spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| | - Claudio Molinari
- Department for Sustainable Development and Ecological Transition, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via So-laroli 17, 28100, Novara, Italy
| |
Collapse
|
16
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
17
|
Lapmanee S, Supkamonseni N, Bhubhanil S, Treesaksrisakul N, Sirithanakorn C, Khongkow M, Namdee K, Surinlert P, Tipbunjong C, Wongchitrat P. Stress-induced changes in cognitive function and intestinal barrier integrity can be ameliorated by venlafaxine and synbiotic supplementations. PeerJ 2024; 12:e17033. [PMID: 38435986 PMCID: PMC10908264 DOI: 10.7717/peerj.17033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Stress profoundly impacts various aspects of both physical and psychological well-being. Our previous study demonstrated that venlafaxine (Vlx) and synbiotic (Syn) treatment attenuated learned fear-like behavior and recognition memory impairment in immobilized-stressed rats. In this study, we further investigated the physical, behavior, and cellular mechanisms underlying the effects of Syn and/or Vlx treatment on brain and intestinal functions in stressed rats. Adult male Wistar rats, aged 8 weeks old were subjected to 14 days of immobilization stress showed a decrease in body weight gain and food intake as well as an increase in water consumption, urinary corticosterone levels, and adrenal gland weight. Supplementation of Syn and/or Vlx in stressed rats resulted in mitigation of weight loss, restoration of normal food and fluid intake, and normalization of corticosterone levels. Behavioral analysis showed that treatment with Syn and/or Vlx enhanced depressive-like behaviors and improved spatial learning-memory impairment in stressed rats. Hippocampal dentate gyrus showed stress-induced neuronal cell death, which was attenuated by Syn and/or Vlx treatment. Stress-induced ileum inflammation and increased intestinal permeability were both effectively reduced by the supplementation of Syn. In addition, Syn and Vlx partly contributed to affecting the expression of the glial cell-derived neurotrophic factor in the hippocampus and intestines of stressed rats, suggesting particularly protective effects on both the gut barrier and the brain. This study highlights the intricate interplay between stress physiological responses in the brain and gut. Syn intervention alleviate stress-induced neuronal cell death and modulate depression- and memory impairment-like behaviors, and improve stress-induced gut barrier dysfunction which were similar to those of Vlx. These findings enhance our understanding of stress-related health conditions and suggest the synbiotic intervention may be a promising approach to ameliorate deleterious effects of stress on the gut-brain axis.
Collapse
Affiliation(s)
- Sarawut Lapmanee
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Nattapon Supkamonseni
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | - Sakkarin Bhubhanil
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok, Thailand
| | | | - Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Katawut Namdee
- National Nanotechnology Centre, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathumthani, Thailand
| | - Chittipong Tipbunjong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
18
|
Merkouris E, Mavroudi T, Miliotas D, Tsiptsios D, Serdari A, Christidi F, Doskas TK, Mueller C, Tsamakis K. Probiotics' Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014-2023 Clinical Trials. Microorganisms 2024; 12:411. [PMID: 38399815 PMCID: PMC10893170 DOI: 10.3390/microorganisms12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Changes in the gut microbiome can affect cognitive and psychological functions via the microbiota-gut-brain (MGB) axis. Probiotic supplements are thought to have largely positive effects on mental health when taken in sufficient amounts; however, despite extensive research having been conducted, there is a lack of consistent findings on the effects of probiotics on anxiety and depression and the associated microbiome alterations. The aim of our study is to systematically review the most recent literature of the last 10 years in order to clarify whether probiotics could actually improve depression and anxiety symptoms. Our results indicate that the majority of the most recent literature suggests a beneficial role of probiotics in the treatment of depression and anxiety, despite the existence of a substantial number of less positive findings. Given probiotics' potential to offer novel, personalized treatment options for mood disorders, further, better targeted research in psychiatric populations is needed to address concerns about the exact mechanisms of probiotics, dosing, timing of treatment, and possible differences in outcomes depending on the severity of anxiety and depression.
Collapse
Affiliation(s)
- Ermis Merkouris
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Theodora Mavroudi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Daniil Miliotas
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
- 3rd Neurology Department, Aristotle University, 54124 Thessaloniki, Greece
| | - Aspasia Serdari
- Department of Child and Adolescent Psychiatry, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Foteini Christidi
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupoli, Greece; (E.M.); (T.M.); (D.M.); (D.T.); (F.C.)
| | | | - Christoph Mueller
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London SE5 8AF, UK
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
| |
Collapse
|
19
|
Virk MS, Virk MA, He Y, Tufail T, Gul M, Qayum A, Rehman A, Rashid A, Ekumah JN, Han X, Wang J, Ren X. The Anti-Inflammatory and Curative Exponent of Probiotics: A Comprehensive and Authentic Ingredient for the Sustained Functioning of Major Human Organs. Nutrients 2024; 16:546. [PMID: 38398870 PMCID: PMC10893534 DOI: 10.3390/nu16040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.
Collapse
Affiliation(s)
- Muhammad Safiullah Virk
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | | | - Yufeng He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Tabussam Tufail
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Mehak Gul
- Department of Internal Medicine, Sheikh Zayed Hospital, Lahore 54000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (M.S.V.)
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
20
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
21
|
Lachmansingh DA, Lavelle A, Cryan JF, Clarke G. Microbiota-Gut-Brain Axis and Antidepressant Treatment. Curr Top Behav Neurosci 2024; 66:175-216. [PMID: 37962812 DOI: 10.1007/7854_2023_449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the treatment of depressive disorders, conventional antidepressant therapy has been the mainstay of clinical management, along with well-established nonpharmacological interventions such as various kinds of psychotherapy. Over the last 2 decades, there has been considerable interest in the role of the gastrointestinal system and its microbiota on brain function, behavior, and mental health. Components of what is referred to as the microbiota-gut-brain axis have been uncovered, and further research has elicited functional capabilities such as "gut-brain modules." Some studies have found associations with compositional alterations of gut microbiota in patients with depressive disorders and individuals experiencing symptoms of depression. Regarding the pathogenesis and neurobiology of depression itself, there appears to be a multifactorial contribution, in addition to the theories involving deficits in catecholaminergic and monoamine neurotransmission. Interestingly, there is evidence to suggest that antidepressants may play a role in modulating the gut microbiota, thereby possibly having an impact on the microbiota-gut-brain axis in this manner. The development of prebiotics, probiotics, and synbiotics has led to studies investigating not only their impact on the microbiota but also their therapeutic value in mental health. These psychobiotics have the potential to be used as therapeutic adjuncts in the treatment of depression. Regarding future directions, and in an attempt to further understand the role of the microbiota-gut-brain axis in depression, more studies such as those involving fecal microbiota transplantation will be required. In addition to recent findings, it is also suggested that more research will have to be undertaken to elicit whether specific strains of gut organisms are linked to depression. In terms of further investigation of the therapeutic potential of prebiotics, probiotics, and synbiotics as adjuncts to antidepressant treatment, we also expect there to be more research targeting specific microorganisms, as well as a strong focus on the effects of specific prebiotic fibers from an individualized (personalized) point of view.
Collapse
Affiliation(s)
- David Antoine Lachmansingh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
Wallace CJ, Audet MC. Diet and the gut microbiota-immune axis in the context of perinatal mental health: Protocol for a prospective cohort study. WOMEN'S HEALTH (LONDON, ENGLAND) 2024; 20:17455057241277072. [PMID: 39287570 PMCID: PMC11409294 DOI: 10.1177/17455057241277072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Physiological and psychosocial changes experienced by women during the perinatal period may put them at risk for postpartum mental health disturbances. Accumulating evidence suggests that dietary patterns may influence mental health through the modulation of the gut microbiota and its effects on host immune activity. Thus, targeting the gut microbiota via dietary intake could serve as both a preventative and therapeutic strategy in improving perinatal mental health. OBJECTIVES Here, we present a protocol for a prospective cohort study that primarily aims to determine if diet quality during pregnancy is protective against postpartum depression severity. Secondary objectives will examine if microbiota- and blood-based inflammatory markers may be associated with the relationship between prenatal diet quality and postpartum depression severity, as well as with associations between additional dietary and mental health outcomes. METHODS AND ANALYSIS Dietary patterns and mental health symptoms will be documented in 100 pregnant women at 4 time points during pregnancy and postpartum. Participants will also provide stool and blood samples at the same time points to determine microbiota composition and predicted function and inflammatory factors, respectively. Stool microbiota will be analyzed using 16S ribosomal RNA gene sequencing and bioinformatics tools (QIIME 2/PICRUSt2). Inflammatory factors will be determined using high-sensitivity antibody-based immunoassays. Statistical analyses will include linear mixed models and hierarchical linear mixed effect models. ETHICS The study was approved by the Research Ethics Boards of the Royal Ottawa Health Care Group (#2022002) and of the University of Ottawa (#H-06-22-8013). Informed consent will be obtained from all participants before their enrollment. DISCUSSION Findings from this study will help develop evidence-based dietary recommendations and potential interventions for women susceptible to or suffering from postpartum mental health issues that are accessible, noninvasive, and have potential to play a role in prevention and treatment.
Collapse
Affiliation(s)
- Caroline Jk Wallace
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canadaa
| | - Marie-Claude Audet
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canadaa
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
23
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
24
|
Şanli ME, Dinç M, Öner U, Buluş M, Çiçek İ, Doğan İ. The Role of Spirituality in Anxiety and Psychological Resilience of Hemodialysis Patients in Turkey. JOURNAL OF RELIGION AND HEALTH 2023; 62:4297-4315. [PMID: 37354376 DOI: 10.1007/s10943-023-01855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Chronic kidney disease (CKD) is a significant health problem that affects millions of people worldwide and its end-stage manifestation requires hemodialysis treatment, which can have a considerable impact on patients' mental health and quality of life. This study aims to examine the relationship between spirituality and anxiety, as well as spirituality and psychological resilience among hemodialysis patients using the iterative weighted least squares method. Participants included 91 hemodialysis patients, consisting of 49 females and 42 males, whose ages ranged from 20 to 82 years, with a mean age of 48 (SD = 14). The data were collected using the Beck Anxiety Inventory, Spirituality Scale, and Brief Psychological Resilience Scale. Results indicated a weak positive relationship between spirituality and psychological resilience (t = 1.35, P = .183) and a moderate negative relationship between spirituality and anxiety (t = -2.84, P = .006). Furthermore, spirituality accounted for a 1% variance in psychological resilience and a 5% of the variance in anxiety. Additionally, patients' education level, gender, and whom they live with were relatively stronger correlates of psychological resilience, while the patient's education level, gender, marital status, whom they live with, presence of another patient at home receiving hemodialysis treatment were strong correlates of anxiety. This study emphasizes the need for comprehensive care that addresses both physical and psychological aspects of CKD management to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
| | - Mahmut Dinç
- Batman University, Health College, Batman, Turkey
| | - Uğur Öner
- Batman University, Health College, Batman, Turkey
| | - Metin Buluş
- Faculty of Education, Dr. Adıyaman University, Adıyaman, Turkey
| | - İlhan Çiçek
- Batman University, Health College, Batman, Turkey.
| | - İdris Doğan
- Health Vocational School, Batman University, Batman, Turkey
| |
Collapse
|
25
|
Saravanan D, Khatoon B S, Winner G J. Unraveling the Interplay: Exploring the Links Between Gut Microbiota, Obesity, and Psychological Outcomes. Cureus 2023; 15:e49271. [PMID: 38143611 PMCID: PMC10746887 DOI: 10.7759/cureus.49271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This narrative review delves into the complex and intricate mechanisms of the gut-brain axis. Gut microbiota has gained immense importance in the treatment of various diseases. The therapeutic potential of gut-microbial modulation is slowly coming to light. With good preclinical evidence, some human studies shed light on the translation potential of gut-microbial modulation. The concept of gut-microbial modulation has been studied for over a few decades. The relationship between gut microbiota and various homeostatic mechanisms is fascinating. Over the years, we have started understanding the immense role of gut microbiota in various homeostatic mechanisms. There are a good number of clinical studies that have shown the therapeutic potential of gut-microbial modulation in obesity and psychological diseases, especially depression and anxiety. The gut-microbial modulation can be achieved by dietary factors or supplementation. In this review, we explore the mechanisms by which prebiotics, probiotics, and synbiotics alter the gut-brain axis. The review limits its discussion to the most recent clinical studies that have shown promise as therapeutic strategies.
Collapse
Affiliation(s)
- Divya Saravanan
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Suhana Khatoon B
- School of Public Health, SRM Institute of Science and Technology, Chengalpattu, IND
| | - Jefry Winner G
- Pharmacology and Therapeutics, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, IND
| |
Collapse
|
26
|
Cooper TE, Khalid R, Chan S, Craig JC, Hawley CM, Howell M, Johnson DW, Jaure A, Teixeira-Pinto A, Wong G. Synbiotics, prebiotics and probiotics for people with chronic kidney disease. Cochrane Database Syst Rev 2023; 10:CD013631. [PMID: 37870148 PMCID: PMC10591284 DOI: 10.1002/14651858.cd013631.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a major public health problem affecting 13% of the global population. Prior research has indicated that CKD is associated with gut dysbiosis. Gut dysbiosis may lead to the development and/or progression of CKD, which in turn may in turn lead to gut dysbiosis as a result of uraemic toxins, intestinal wall oedema, metabolic acidosis, prolonged intestinal transit times, polypharmacy (frequent antibiotic exposures) and dietary restrictions used to treat CKD. Interventions such as synbiotics, prebiotics, and probiotics may improve the balance of the gut flora by altering intestinal pH, improving gut microbiota balance and enhancing gut barrier function (i.e. reducing gut permeability). OBJECTIVES This review aimed to evaluate the benefits and harms of synbiotics, prebiotics, and probiotics for people with CKD. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 9 October 2023 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA We included randomised controlled trials (RCTs) measuring and reporting the effects of synbiotics, prebiotics, or probiotics in any combination and any formulation given to people with CKD (CKD stages 1 to 5, including dialysis and kidney transplant). Two authors independently assessed the retrieved titles and abstracts and, where necessary, the full text to determine which satisfied the inclusion criteria. DATA COLLECTION AND ANALYSIS Data extraction was independently carried out by two authors using a standard data extraction form. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes, and mean difference (MD) or standardised mean difference (SMD) and 95% CI for continuous outcomes. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Data entry was carried out by one author and cross-checked by another. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Forty-five studies (2266 randomised participants) were included in this review. Study participants were adults (two studies in children) with CKD ranging from stages 1 to 5, with patients receiving and not receiving dialysis, of whom half also had diabetes and hypertension. No studies investigated the same synbiotic, prebiotic or probiotic of similar strains, doses, or frequencies. Most studies were judged to be low risk for selection bias, performance bias and reporting bias, unclear risk for detection bias and for control of confounding factors, and high risk for attrition and other biases. Compared to prebiotics, it is uncertain whether synbiotics improve estimated glomerular filtration rate (eGFR) at four weeks (1 study, 34 participants: MD -3.80 mL/min/1.73 m², 95% CI -17.98 to 10.38), indoxyl sulfate at four weeks (1 study, 42 participants: MD 128.30 ng/mL, 95% CI -242.77 to 499.37), change in gastrointestinal (GI) upset (borborymgi) at four weeks (1 study, 34 participants: RR 15.26, 95% CI 0.99 to 236.23), or change in GI upset (Gastrointestinal Symptom Rating Scale) at 12 months (1 study, 56 participants: MD 0.00, 95% CI -0.27 to 0.27), because the certainty of the evidence was very low. Compared to certain strains of prebiotics, it is uncertain whether a different strain of prebiotics improves eGFR at 12 weeks (1 study, 50 participants: MD 0.00 mL/min, 95% CI -1.73 to 1.73), indoxyl sulfate at six weeks (2 studies, 64 participants: MD -0.20 μg/mL, 95% CI -1.01 to 0.61; I² = 0%) or change in any GI upset, intolerance or microbiota composition, because the certainty of the evidence was very low. Compared to certain strains of probiotics, it is uncertain whether a different strain of probiotic improves eGFR at eight weeks (1 study, 30 participants: MD -0.64 mL/min, 95% CI -9.51 to 8.23; very low certainty evidence). Compared to placebo or no treatment, it is uncertain whether synbiotics improve eGFR at six or 12 weeks (2 studies, 98 participants: MD 1.42 mL/min, 95% CI 0.65 to 2.2) or change in any GI upset or intolerance at 12 weeks because the certainty of the evidence was very low. Compared to placebo or no treatment, it is uncertain whether prebiotics improves indoxyl sulfate at eight weeks (2 studies, 75 participants: SMD -0.14 mg/L, 95% CI -0.60 to 0.31; very low certainty evidence) or microbiota composition because the certainty of the evidence is very low. Compared to placebo or no treatment, it is uncertain whether probiotics improve eGFR at eight, 12 or 15 weeks (3 studies, 128 participants: MD 2.73 mL/min, 95% CI -2.28 to 7.75; I² = 78%), proteinuria at 12 or 24 weeks (1 study, 60 participants: MD -15.60 mg/dL, 95% CI -34.30 to 3.10), indoxyl sulfate at 12 or 24 weeks (2 studies, 83 participants: MD -4.42 mg/dL, 95% CI -9.83 to 1.35; I² = 0%), or any change in GI upset or intolerance because the certainty of the evidence was very low. Probiotics may have little or no effect on albuminuria at 12 or 24 weeks compared to placebo or no treatment (4 studies, 193 participants: MD 0.02 g/dL, 95% CI -0.08 to 0.13; I² = 0%; low certainty evidence). For all comparisons, adverse events were poorly reported and were minimal (flatulence, nausea, diarrhoea, abdominal pain) and non-serious, and withdrawals were not related to the study treatment. AUTHORS' CONCLUSIONS We found very few studies that adequately test biotic supplementation as alternative treatments for improving kidney function, GI symptoms, dialysis outcomes, allograft function, patient-reported outcomes, CVD, cancer, reducing uraemic toxins, and adverse effects. We are not certain whether synbiotics, prebiotics, or probiotics are more or less effective compared to one another, antibiotics, or standard care for improving patient outcomes in people with CKD. Adverse events were uncommon and mild.
Collapse
Affiliation(s)
- Tess E Cooper
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Rabia Khalid
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Jonathan C Craig
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Martin Howell
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Allison Jaure
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Armando Teixeira-Pinto
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Germaine Wong
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Centre for Transplant and Renal Research, Westmead Hospital, Westmead, Australia
| |
Collapse
|
27
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
28
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
29
|
Varesi A, Campagnoli LIM, Chirumbolo S, Candiano B, Carrara A, Ricevuti G, Esposito C, Pascale A. The Brain-Gut-Microbiota Interplay in Depression: a key to design innovative therapeutic approaches. Pharmacol Res 2023; 192:106799. [PMID: 37211239 DOI: 10.1016/j.phrs.2023.106799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Depression is the most prevalent mental disorder in the world associated with huge socio-economic consequences. While depressive-related symptoms are well known, the molecular mechanisms underlying disease pathophysiology and progression remain largely unknown. The gut microbiota (GM) is emerging as a key regulator of the central nervous system homeostasis by exerting fundamental immune and metabolic functions. In turn, the brain influences the intestinal microbial composition through neuroendocrine signals, within the so-called gut microbiota-brain axis. The balance of this bidirectional crosstalk is important to ensure neurogenesis, preserve the integrity of the blood-brain barrier and avoid neuroinflammation. Conversely, dysbiosis and gut permeability negatively affect brain development, behavior, and cognition. Furthermore, although not fully defined yet, changes in the GM composition in depressed patients are reported to influence the pharmacokinetics of common antidepressants by affecting their absorption, metabolism, and activity. Similarly, neuropsychiatric drugs may shape in turn the GM with an impact on the efficacy and toxicity of the pharmacological intervention itself. Consequently, strategies aimed at re-establishing the correct homeostatic gut balance (i.e., prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions) represent an innovative approach to improve the pharmacotherapy of depression. Among these, probiotics and the Mediterranean diet, alone or in combination with the standard of care, hold promise for clinical application. Therefore, the disclosure of the intricate network between GM and depression will give precious insights for innovative diagnostic and therapeutic approaches towards depression, with profound implications for drug development and clinical practice.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy
| | - Beatrice Candiano
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Adelaide Carrara
- Child Neurology and Psychiatric Unit, IRCCS Mondino, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
30
|
Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 2023; 16:ph16040565. [PMID: 37111321 PMCID: PMC10146621 DOI: 10.3390/ph16040565] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome-gut-brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
| | - Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior 474001, India
| | - Nandani Goyal
- Department of Skill Agriculture, Shri Vishwakarma Skill University, Gurugram 122003, India
| | - Dimple Chauhan
- School of Bio-Engineering and Food Technology, Shoolini University, Solan 173229, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
31
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
32
|
Cho H, Jo M, Oh H, Lee Y, Park Y. Synergistic antidepressant-like effect of n-3 polyunsaturated fatty acids and probiotics through the brain-gut axis in rats exposed to chronic mild stress. J Nutr Biochem 2023; 116:109326. [PMID: 36963732 DOI: 10.1016/j.jnutbio.2023.109326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
N-3 polyunsaturated fatty acids (PUFA) and probiotics have antidepressant-like effects, but the underlying mechanisms are unclear. We hypothesized that n-3 PUFA combined with live and dead probiotics synergistically improves depression by modulating the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic pathways through the brain-gut axis. Rats were randomly divided into seven groups (n = 8/group): non-chronic mild stress (CMS) with n-6 PUFA, CMS with n-3 PUFA, n-6 PUFA, live probiotics, dead probiotics, n-3 PUFA and live probiotics, and n-3 PUFA and dead probiotics. Diets of n-6 and n-3 PUFA and oral supplementation of live and dead probiotics were provided for 12 weeks, and CMS was performed for the last 5 weeks. N-3 PUFA and probiotics improved depressive behaviors and modulated the brain and gut HPA axis by synergistically increasing glucocorticoid receptor expression and decreasing corticotropin-releasing factor expression and blood levels of adrenocorticotropic hormone and corticosterone. N-3 PUFA and probiotics upregulated the brain serotonergic pathway through serotonin levels and expression of brain-derived neurotrophic factor, phosphorylated cAMP response binding protein, and 5-hydroxytryptamine 1A receptor while downregulating the gut serotonergic pathway. Furthermore, n-3 PUFA and probiotics increased the abundance of Ruminococcaceae, brain and gut short chain fatty acid levels, and occludin expression while decreasing the expression of tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 and blood lipopolysaccharides levels. There was no significant difference between the live and dead probiotics. In conclusion, n-3 PUFA and probiotics had synergistic antidepressant-like effects on the HPA axis and serotonergic pathways of the brain and gut through the brain-gut axis.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Miyea Jo
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Haemin Oh
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
33
|
Li B, Xu M, Wang Y, Feng L, Xing H, Zhang K. Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116038. [PMID: 36529248 DOI: 10.1016/j.jep.2022.116038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE The causes of depression are complex. Many factors are involved in its pathogenesis, including the individual's biological and social environment. Although numerous studies have reported that the gut microbiota plays a significant role in depression, drugs that regulate the gut microbiota to treat depression have not yet been comprehensively reviewed. At the same time, more and more attention has been paid to the characteristics of traditional Chinese medicine (TCM) in improving depression by regulating gut microbiota. In ancient times, fecal microbiota transplantation was recorded in TCM for the treatment of severe diseases. There are also records in Chinese ancient books about the use of TCM to adjust gut microbiota to treat diseases, which has opened up a unique research field in TCM. Therefore, this article focuses on the pharmacological effects, targets, and mechanisms of TCM in improving depression by mediating the influence of gut microbiota. AIM OF THIS REVIEW To summarize the role the gut microbiota plays in depression, highlight potential regulatory targets, and elucidate the anti-depression mechanisms of TCMs through regulation of the gut microbiota. METHODS A systematic review of 256 clinical trials and pharmaceutical studies published until June 2022 was conducted in eight electronic databases (Web of Science, PubMed, SciFinder, Research Gate, ScienceDirect, Google Scholar, Scopus, and China Knowledge Infrastructure), according to the implemented PRISMA criteria, using the search terms "traditional Chinese medicine," "depression," and "gut microbiota." RESULTS Numerous studies reported the effects of different gut bacteria on depression and that antidepressants work through the gut microbiota. TCM preparations based on compound Chinese medicine, the Chinese Materia Medica, and major bioactive components exerted antidepressant-like effects by improving levels of neurotransmitters, short-chain fatty acids, brain-derived neurotrophic factor, kynurenine, and cytokines via regulation of the gut microbiota. CONCLUSION This review summarized the anti-depression effects of TCM on the gut microbiota, providing evidence that TCMs are safe and effective in the treatment of depression and may provide a new therapeutic approach.
Collapse
Affiliation(s)
- Boru Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meijing Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lijin Feng
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hang Xing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Jiangsu Kanion Pharmaceutical Co, Ltd, Lianyungang, 222001, China.
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China; Tianjin UBasio Biotechnology Group, Tianjin, 300457, China.
| |
Collapse
|
34
|
Brierley MEE, Albertella L, Christensen E, Rotaru K, Jacka FN, Segrave RA, Richardson KE, Lee RS, Kayayan E, Hughes S, Yücel M, Fontenelle LF. Lifestyle risk factors for obsessive-compulsive symptoms and related phenomena: What should lifestyle interventions target? Aust N Z J Psychiatry 2023; 57:379-390. [PMID: 35362326 DOI: 10.1177/00048674221085923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Understanding the impact of lifestyle on mental illness symptoms is important for informing psycho-education and developing interventions which target mental and physical comorbidities. Obsessive-compulsive and related disorders can have a significant impact on health-related quality of life and physical health. However, our understanding of the impact of lifestyle on obsessive-compulsive symptoms and broader compulsive and impulsive problematic repetitive behaviours is limited. AIMS We investigated whether lifestyle factors predicted change in obsessive-compulsive symptoms and problematic repetitive behaviours in a general population sample over a 3-month period. METHODS Eight hundred thirty-five participants completed an online questionnaire battery assessing lifestyle and mental health. Of these, 538 participants completed the same battery 3 months later. We conducted negative binomial regressions to analyse the association of lifestyle factors at baseline with future (1) obsessive-compulsive symptoms, (2) compulsive problematic repetitive behaviours and (3) impulsive problematic repetitive behaviours, adjusting for baseline obsessive-compulsive symptoms and problematic repetitive behaviours. RESULTS Lower vegetable (p = 0.020) and oily fish (p = 0.040) intake and lower moderate intensity physical activity (p = 0.008) predicted higher obsessive-compulsive symptoms at follow-up. Higher intake of high-fat foods (p < 0.001) predicted higher compulsive problematic repetitive behaviours at follow-up. No lifestyle factors significantly predicted impulsive problematic repetitive behaviours at follow-up. CONCLUSION Our results speak to the potential importance of lifestyle quality screening, education and lifestyle interventions (e.g. an anti-inflammatory diet) for individuals experiencing compulsivity-related behaviours and/or symptoms. Further research into potential mechanisms of action will allow for more targeted approaches to lifestyle interventions for transdiagnostic compulsive behaviours.
Collapse
Affiliation(s)
- Mary-Ellen E Brierley
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Lucy Albertella
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Erynn Christensen
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Kristian Rotaru
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.,Monash Business School, Monash University, Caulfield, VIC, Australia
| | - Felice N Jacka
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Food and Mood Centre, Deakin University, Geelong, VIC, Australia
| | - Rebecca A Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Karyn E Richardson
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Rico Sc Lee
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Edouard Kayayan
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Sam Hughes
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia
| | - Leonardo F Fontenelle
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging Facility, Monash University, Clayton, VIC, Australia.,Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The "Gut Feelings" randomised controlled trial. Front Neurosci 2023; 16:1097278. [PMID: 36815026 PMCID: PMC9940791 DOI: 10.3389/fnins.2022.1097278] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Background Preliminary evidence supports the use of dietary interventions and gut microbiota-targeted interventions such as probiotic or prebiotic supplementation for improving mental health. We report on the first randomised controlled trial (RCT) to examine the effects of a high-prebiotic dietary intervention and probiotic supplements on mental health. Methods "Gut Feelings" was an 8-week, 2 × 2 factorial RCT of 119 adults with moderate psychological distress and low prebiotic food intake. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). The primary outcome was assessment of total mood disturbance (TMD; Profile of Mood States Short Form) from baseline to 8 weeks. Secondary outcomes included anxiety, depression, stress, sleep, and wellbeing measures. Results A modified intention-to-treat analysis using linear mixed effects models revealed that the prebiotic diet reduced TMD relative to placebo at 8 weeks [Cohen's d = -0.60, 95% confidence interval (CI) = -1.18, -0.03; p = 0.039]. There was no evidence of symptom improvement from the probiotic (d = -0.19, 95% CI = -0.75, 0.38; p = 0.51) or synbiotic treatments (d = -0.03, 95% CI = -0.59, 0.53; p = 0.92). Improved anxiety, stress, and sleep were noted in response to the prebiotic diet while the probiotic tentatively improved wellbeing, relative to placebo. No benefit was found in response to the synbiotic intervention. All treatments were well tolerated with few adverse events. Conclusion A high-prebiotic dietary intervention may improve mood, anxiety, stress, and sleep in adults with moderate psychological distress and low prebiotic intake. A synbiotic combination of high-prebiotic diet and probiotic supplement does not appear to have a beneficial effect on mental health outcomes, though further evidence is required. Results are limited by the relatively small sample size. Clinical trial registration https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372753, identifier ACTRN12617000795392.
Collapse
Affiliation(s)
- Tanya M. Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rachelle S. Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Felice N. Jacka
- School of Medicine, Food and Mood Centre, IMPACT Strategic Research Centre, Deakin University, Melbourne, VIC, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC, Australia,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, OLD, Australia
| | - Jason A. Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia,Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, United States
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia,*Correspondence: Jerome Sarris,
| |
Collapse
|
36
|
Ramezani M, Reisian M, Sajadi Hezaveh Z. The effect of synbiotic supplementation on hypothyroidism: A randomized double-blind placebo controlled clinical trial. PLoS One 2023; 18:e0277213. [PMID: 36745650 PMCID: PMC9901790 DOI: 10.1371/journal.pone.0277213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We hypothesize that synbiotic supplementation could modulate the intestinal microbiota and subsequently, improve the condition of hypothyroid patients. METHODS Fifty-six adult hypothyroid patients were recruited to this double-blind, placebo-controlled, randomized clinical trial. The intervention was 10 weeks of synbiotic (500 mg of 109 CFU/g probiotics plus fructo-oligosaccharide, n = 28) compared to placebo (lactose, magnesium stearate, talc, and silicon dioxide, n = 28). Randomization and allocation to trial groups were carried out using random number sequences drawn from https://sealedenvelope.com/. Primary outcomes were serum thyroid stimulating hormone (TSH) and free thyroxine (FT4), and secondary outcomes were depression, quality of life, and blood pressure (BP). P-values< 0.05 were considered statistically significant. RESULTS Analysis on 51 patients who completed the trial showed that TSH and depression (p> 0.05) did not change significantly, while serum FT4 significantly increased in both groups (p = 0.03 and p = 0.02 in symbiotic and placebo respectively). A significant decrease in systolic BP occurred only in the synbiotic group (p = 0.05). Significant improvements occurred regarding different domains and areas of quality of life in the crude and adjusted analysis, including perceived mental health (p = 0.02), bodily pain (p = 0.02), general health perception (p = 0.002), and wellbeing (p = 0.002), which were significantly higher in the synbiotic group. CONCLUSIONS Ten-week supplementation with synbiotic had no favorable effect on depression and TSH, but it improved blood pressure and quality of life in patients with hypothyroidism. More trials are needed to support or reject these findings. TRIAL REGISTRATION IRCT20210926052583N1, Iranian Registry of Clinical Trials (IRCT), registered October 1st, 2021.
Collapse
Affiliation(s)
- Majid Ramezani
- Department of Internal Medicine, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahnaz Reisian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
37
|
Sikorska M, Antosik-Wójcińska AZ, Dominiak M. Probiotics as a Tool for Regulating Molecular Mechanisms in Depression: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Int J Mol Sci 2023; 24:ijms24043081. [PMID: 36834489 PMCID: PMC9963932 DOI: 10.3390/ijms24043081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Depression is one of the main mental disorders. Pharmacological treatment of depression is often associated with delayed effects or insufficient efficacy. Consequently, there is a need to discover new therapeutic methods to cope with depression faster and more effectively. Several lines of evidence indicate that the use of probiotic therapy reduces depressive symptoms. Nonetheless, the exact mechanisms linking the gut microbiota and the central nervous system, as well as the potential mechanisms of action for probiotics, are still not entirely clarified. The aim of this review was to systematically summarize the available knowledge according to PRISMA guidelines on the molecular mechanisms linking probiotics and healthy populations with subclinical depression or anxiety symptoms, as well as depressed patients with or without comorbid somatic illnesses. The standardized mean difference (SMD) with 95% confidence intervals (CI) was calculated. Twenty records were included. It has been found that probiotic administration is linked to a significant increase in BDNF levels during probiotic treatment compared to the placebo (SMD = 0.37, 95% CI [0.07, 0.68], p = 0.02) when considering the resolution of depressive symptoms in depressed patients with or without comorbid somatic illnesses. CRP levels were significantly lower (SMD = -0.47, 95% CI [0.75, -0.19], p = 0.001), and nitric oxide levels were significantly higher (SMD = 0.97, 95% CI [0.58, 1.36], p < 0.0001) in probiotic-treated patients compared to the placebo, however, only among depressed patients with somatic co-morbidities. There were no significant differences in IL-1β, IL-6, IL-10, TNF-α, and cortisol levels after probiotic administration between the intervention and control groups (all p > 0.05). Firm conclusions on the effectiveness of probiotics and their possible association with inflammatory markers in the healthy population (only with subclinical depressive or anxiety symptoms) cannot be drawn. The advent of clinical trials examining the long-term administration of probiotics could evaluate the long-term effectiveness of probiotics in treating depression and preventing its recurrence.
Collapse
Affiliation(s)
- Michalina Sikorska
- Medical Center of Postgraduate Education, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Anna Z. Antosik-Wójcińska
- Department of Psychiatry, Faculty of Medicine, Collegium Medicum, Cardinal Wyszynski University in Warsaw, Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
- Correspondence:
| |
Collapse
|
38
|
Vasiliu O. The current state of research for psychobiotics use in the management of psychiatric disorders-A systematic literature review. Front Psychiatry 2023; 14:1074736. [PMID: 36911130 PMCID: PMC9996157 DOI: 10.3389/fpsyt.2023.1074736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The need to find new therapeutic interventions in patients diagnosed with psychiatric disorders is supported by the data suggesting high rates of relapse, chronic evolution, therapeutic resistance, or lack of adherence and disability. The use of pre-, pro-, or synbiotics as add-ons in the therapeutic management of psychiatric disorders has been explored as a new way to augment the efficacy of psychotropics and to improve the chances for these patients to reach response or remission. This systematic literature review focused on the efficacy and tolerability of psychobiotics in the main categories of psychiatric disorders and it has been conducted through the most important electronic databases and clinical trial registers, using the PRISMA 2020 guidelines. The quality of primary and secondary reports was assessed using the criteria identified by the Academy of Nutrition and Diabetics. Forty-three sources, mostly of moderate and high quality, were reviewed in detail, and data regarding the efficacy and tolerability of psychobiotics was assessed. Studies exploring the effects of psychobiotics in mood disorders, anxiety disorders, schizophrenia spectrum disorders, substance use disorders, eating disorders, attention deficit hyperactivity disorder (ADHD), neurocognitive disorders, and autism spectrum disorders (ASD) were included. The overall tolerability of the interventions assessed was good, but the evidence to support their efficacy in specific psychiatric disorders was mixed. There have been identified data in favor of probiotics for patients with mood disorders, ADHD, and ASD, and also for the association of probiotics and selenium or synbiotics in patients with neurocognitive disorders. In several domains, the research is still in an early phase of development, e.g., in substance use disorders (only three preclinical studies being found) or eating disorders (one review was identified). Although no well-defined clinical recommendation could yet be formulated for a specific product in patients with psychiatric disorders, there is encouraging evidence to support further research, especially if focused on the identification of specific sub-populations that may benefit from this intervention. Several limitations regarding the research in this field should be addressed, i.e., the majority of the finalized trials are of short duration, there is an inherent heterogeneity of the psychiatric disorders, and the diversity of the explored Philae prevents the generalizability of the results from clinical studies.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila University Emergency Central Military Hospital, Bucharest, Romania
| |
Collapse
|
39
|
Mehrabani S, Khorvash F, Heidari Z, Tajabadi-Ebrahimi M, Amani R. The effects of synbiotic supplementation on oxidative stress markers, mental status, and quality of life in patients with Parkinson’s disease: A double-blind, placebo-controlled, randomized controlled trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Abstract
PURPOSE OF REVIEW The gut microbiome is in constant bidirectional communication with the brain through the microbiota-gut-brain-axis. Mood disorders are among the most common psychiatric disorders and include major depressive disorder and bipolar disorder. The gut microbiome is altered in individuals with mood disorders and has a role in its inflammatory pathophysiology. In this article, we performed a narrative review of clinical studies, randomized controlled trials and meta-analyses addressing advances in gut microbiome research in mood disorders and included articles that were published between 2021 and 2022. RECENT FINDINGS Studies highlight transdiagnostic alterations of microbiota in mood disorders, with reductions of butyrate-producing bacteria. Participants with major depressive disorder showed altered beta-diversity, while participants with bipolar disorder showed reduced alpha-diversity. Both disorders exhibit alterations in the metabolome. Early pilot studies addressed the possibility of using the gut microbiome for the prediction of treatment response and the blood microbiome for the diagnosis of psychiatric disorders. Findings from clinical trials support the use of probiotics as an add-on therapy for major depressive disorder. The second published case report in the literature reported a favourable outcome of a patient with bipolar disorder after faecal microbiota transplantation. SUMMARY Gut microbiome modulations allow new treatment strategies including the use of psychobiotics for the treatment and prevention of mood disorders. Well designed clinical trials aiming for personalized medicine are needed to investigate the efficacy and safety of psychobiotic interventions.
Collapse
|
41
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
42
|
Agnihotri N, Mohajeri MH. Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor. Int J Mol Sci 2022; 23:ijms232415934. [PMID: 36555576 PMCID: PMC9783874 DOI: 10.3390/ijms232415934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Growing evidence suggests a possible involvement of the intestinal microbiota in generating new neurons, but a detailed breakdown of the microbiota composition is lacking. In this report, we systematically reviewed preclinical rodent reports addressing the connection between the composition of the intestinal microbiota and neurogenesis and neurogenesis-affecting neurotrophins in the hippocampus. Various changes in bacterial composition from low taxonomic resolution at the phylum level to high taxonomic resolution at the species level were identified. As for neurogenesis, studies predominantly used doublecortin (DCX) as a marker of newly formed neurons or bromodeoxyuridine (BrdU) as a marker of proliferation. Brain-derived neurotrophic factor (BDNF) was the only neurotrophin found researched in relation to the intestinal microbiota. Phylum Actinobacteria, genus Bifidobacterium and genus Lactobacillus found the strongest positive. In contrast, phylum Firmicutes, phylum Bacteroidetes, and family Enterobacteriaceae, as well as germ-free status, showed the strongest negative correlation towards neurogenesis or BDNF mRNA expression. Age, short-chain fatty acids (SCFA), obesity, and chronic stress were recurring topics in all studies identified. Overall, these findings add to the existing evidence of a connection between microbiota and processes in the brain. To better understand this interaction, further investigation based on analyses of higher taxonomic resolution and clinical studies would be a gain to the matter.
Collapse
|
43
|
Yang J, Deng Y, Cai Y, Liu Y, Peng L, Luo Z, Li D. Mapping trends and hotspot regarding gastrointestinal microbiome and neuroscience: A bibliometric analysis of global research (2002-2022). Front Neurosci 2022; 16:1048565. [PMID: 36466165 PMCID: PMC9714683 DOI: 10.3389/fnins.2022.1048565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Scholars have long understood that gastrointestinal microorganisms are intimately related to human disorders. The literature on research involving the gut microbiome and neuroscience is emerging. This study exposed the connections between gut microbiota and neuroscience methodically and intuitively using bibliometrics and visualization. This study's objectives were to summarize the knowledge structure and identify emerging trends and potential hotspots in this field. MATERIALS AND METHODS On October 18, 2022, a literature search was conducted utilizing the Web of Science Core Collection (WoSCC) database for studies on gut microbiota and neuroscience studies from 2002 to 2022 (August 20, 2022). VOSviewer and CiteSpace V software was used to conduct the bibliometrics and visualization analysis. RESULTS From 2002 to 2022 (August 20, 2022), 2,275 publications in the WoSCC database satisfied the criteria. The annual volume of publications has rapidly emerged in recent years (2016-2022). The most productive nation (n = 732, 32.18%) and the hub of inter-country cooperation (links: 38) were the United States. University College Cork had the most research papers published in this area, followed by McMaster University and Harvard Medical School. Cryan JF, Dinan TG, and Clarke G were key researchers with considerable academic influence. The journals with the most publications are "Neurogastroenterology and Motility" and "Brain Behavior and Immunity." The most cited article and co-cited reference was Cryan JF's 2012 article on the impact of gut microbiota on the brain and behavior. The current research hotspot includes gastrointestinal microbiome, inflammation, gut-brain axis, Parkinson's disease (PD), and Alzheimer's disease (AD). The research focus would be on the "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases." Burst detection analysis showed that schizophrenia, pathology, and psychiatric disorder may continue to be the research frontiers. CONCLUSION Research on "gastrointestinal microbiome, inflammation: a link between obesity, insulin resistance, and cognition" and "the role of two important theories of the gut-brain axis and microbial-gut-brain axis in diseases" will continue to be the hotspot. Schizophrenia and psychiatric disorder will be the key research diseases in the field of gut microbiota and neuroscience, and pathology is the key research content, which is worthy of scholars' attention.
Collapse
Affiliation(s)
- Jingjing Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- Hunan University of Chinese Medicine, Changsha, China
| | - Yuzhe Cai
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yixuan Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Lanyu Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zheng Luo
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dingxiang Li
- Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
44
|
Zhang S, Li N, Wang J, Wang L, Yu Z. Correlation Between Sleep Electroencephalogram, Brain-Derived Neurotrophic Factor, AVPR1B Gene Polymorphism, and Suicidal Behavior in Patients with Depression. Appl Biochem Biotechnol 2022; 195:2767-2785. [PMID: 36367618 DOI: 10.1007/s12010-022-04197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/13/2022]
Abstract
The purpose of this article was to investigate the level of serum brain-derived neurotrophic factor and its relationship with suicidal symptoms and severity in mentally ill suicide attempt patients, and to explore the possible role of serum brain-derived neurotrophic factor (BDNF) in the occurrence of psychotic suicidal behavior. A retrospective analysis was performed on patients with depression in the neurology department of a hospital. General physical examination, neurological specialist examination, and cranial magnetic resonance imaging (MRI) examination were performed on any selected group. We applied the 24-item Hamilton Depression Scale, Hamilton Anxiety Scale, and Mini-Intelligence Mental State Scale, and performed polysomnography and electroencephalography (EEG) monitoring to conduct statistical analysis on sleep indicators. The amplitude of low-frequency fluctuation (ALFF) values of the right frontal gyrus, left posterior cerebellar lobe, right anterior cerebellar lobe, and right occipital lingual gyrus of the patient group were significantly lower than those of the control group. The ReHo values of the right superior parietal lobule, the left precuneus, and the right occipital lingual gyrus were significantly higher than those of the control group. The genotype and allele frequency distribution of FKBP5, AVPR1B, and CRHR2 gene SNPs had no significant difference between the case group and the control group (P > 0.05). The ReHo value of the precuneus is significantly correlated with the proportion of N3 sleep, and the dysfunction of the precuneus or default network may be related to the altered sleep structure in patients with depression. The GT and TT genotypes at rs9324924 of the NR3C1 gene are associated with suicide attempts.
Collapse
|
45
|
Brain-derived neurotrophic factor (BDNF): a multifaceted marker in chronic kidney disease. Clin Exp Nephrol 2022; 26:1149-1159. [DOI: 10.1007/s10157-022-02268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022]
|
46
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
47
|
Alizadeh K, Moghimi H, Golbabaei A, Alijanpour S, Rezayof A. Post-Weaning Treatment with Probiotic Inhibited Stress-Induced Amnesia in Adulthood Rats: The Mediation of GABAergic System and BDNF/c-Fos Signaling Pathways. Neurochem Res 2022; 47:2357-2372. [PMID: 35618945 DOI: 10.1007/s11064-022-03625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The current study aimed to examine the effect of post-weaning treatment with probiotics on memory formation under stress during the adult period in male Wistar rats. Considering GABA is a potential mediator between probiotics and the host, the present study also investigated the involvement of the GABAergic system in the probiotic response. The hippocampal and prefrontal cortical (PFC) expression levels of BDNF and c-Fos were also assessed to show whether the treatments affect the memory-related signaling pathway. Three weeks after birth, the post-weaning rats were fed with probiotic water (PW) or tap water (TW) for 2, 3, 4, or 5 weeks. Exposure to acute stress impaired memory formation in a passive avoidance learning task. Feeding the post-weaning animals with probiotic strains (3, 4, or 5 weeks) inhibited stress-induced amnesia of the adult period. Post-training intracerebroventricular (ICV) microinjection of muscimol improved stress-induced amnesia in the animals fed with TW. ICV microinjection of muscimol inhibited probiotic treatment's significant effect on the stress response in the memory task. The expression levels of BDNF and c-Fos in the PFC and the hippocampus were significantly decreased in the stress animal group. The levels of BDNF and c-Fos were increased in the PW/stress animal group. The muscimol response was compounded with the decreased levels of BDNF and c-Fos in the PFC and the hippocampus. Thus, the GABA-A receptor mechanism may mediate the inhibitory effect of this probiotic mixture on stress-induced amnesia, which may be associated with the PFC and hippocampal BDNF/c-Fos signaling changes.
Collapse
Affiliation(s)
- Kimia Alizadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Hamid Moghimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Golbabaei
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, P. O. Box, Tehran, 4155-6455, Iran.
| |
Collapse
|
48
|
Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, Tiwari RR, Kumar M, Nagpal R. Impact of Environmental Pollutants on Gut Microbiome and Mental Health via the Gut–Brain Axis. Microorganisms 2022; 10:microorganisms10071457. [PMID: 35889175 PMCID: PMC9317668 DOI: 10.3390/microorganisms10071457] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Over the last few years, the microbiome has emerged as a high-priority research area to discover missing links between brain health and gut dysbiosis. Emerging evidence suggests that the commensal gut microbiome is an important regulator of the gut–brain axis and plays a critical role in brain physiology. Engaging microbiome-generated metabolites such as short-chain fatty acids, the immune system, the enteric nervous system, the endocrine system (including the HPA axis), tryptophan metabolism or the vagus nerve plays a crucial role in communication between the gut microbes and the brain. Humans are exposed to a wide range of pollutants in everyday life that impact our intestinal microbiota and manipulate the bidirectional communication between the gut and the brain, resulting in predisposition to psychiatric or neurological disorders. However, the interaction between xenobiotics, microbiota and neurotoxicity has yet to be completely investigated. Although research into the precise processes of the microbiota–gut–brain axis is growing rapidly, comprehending the implications of environmental contaminants remains challenging. In these milieus, we herein discuss how various environmental pollutants such as phthalates, heavy metals, Bisphenol A and particulate matter may alter the intricate microbiota–gut–brain axis thereby impacting our neurological and overall mental health.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (P.S.); (N.P.); (M.K.); (S.S.); (D.K.S.); (R.R.T.)
- Correspondence: (M.K.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (M.K.); (R.N.)
| |
Collapse
|
49
|
Schaub AC, Schneider E, Vazquez-Castellanos JF, Schweinfurth N, Kettelhack C, Doll JPK, Yamanbaeva G, Mählmann L, Brand S, Beglinger C, Borgwardt S, Raes J, Schmidt A, Lang UE. Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Transl Psychiatry 2022; 12:227. [PMID: 35654766 PMCID: PMC9163095 DOI: 10.1038/s41398-022-01977-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022] Open
Abstract
A promising new treatment approach for major depressive disorder (MDD) targets the microbiota-gut-brain (MGB) axis, which is linked to physiological and behavioral functions affected in MDD. This is the first randomized controlled trial to determine whether short-term, high-dose probiotic supplementation reduces depressive symptoms along with gut microbial and neural changes in depressed patients. Patients with current depressive episodes took either a multi-strain probiotic supplement or placebo over 31 days additionally to treatment-as-usual. Assessments took place before, immediately after and again four weeks after the intervention. The Hamilton Depression Rating Sale (HAM-D) was assessed as primary outcome. Quantitative microbiome profiling and neuroimaging was used to detect changes along the MGB axis. In the sample that completed the intervention (probiotics N = 21, placebo N = 26), HAM-D scores decreased over time and interactions between time and group indicated a stronger decrease in the probiotics relative to the placebo group. Probiotics maintained microbial diversity and increased the abundance of the genus Lactobacillus, indicating the effectivity of the probiotics to increase specific taxa. The increase of the Lactobacillus was associated with decreased depressive symptoms in the probiotics group. Finally, putamen activation in response to neutral faces was significantly decreased after the probiotic intervention. Our data imply that an add-on probiotic treatment ameliorates depressive symptoms (HAM-D) along with changes in the gut microbiota and brain, which highlights the role of the MGB axis in MDD and emphasizes the potential of microbiota-related treatment approaches as accessible, pragmatic, and non-stigmatizing therapies in MDD. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Collapse
Affiliation(s)
| | - Else Schneider
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Jorge F Vazquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - Nina Schweinfurth
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Cedric Kettelhack
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Jessica P K Doll
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | | | - Laura Mählmann
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| | - Serge Brand
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6719851115, Iran
- Substance Abuse Prevention Research Center, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
- Department of Sport, Exercise and Health, Division of Sport Science and Psychosocial Health, University of Basel, 4052, Basel, Switzerland
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | | | - Stefan Borgwardt
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
- VIB Center for Microbiology, Leuven, Belgium
| | - André Schmidt
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland.
| | - Undine E Lang
- University of Basel, Department of Psychiatry (UPK), Basel, Switzerland
| |
Collapse
|
50
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|