1
|
Liu J, Zhang G, Chen L, Dong Q, Luo R, Zhang Y, Wen J, He Y, Li L. Natural products targeting ferroptosis in depression: Research progress and therapeutic prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156818. [PMID: 40339536 DOI: 10.1016/j.phymed.2025.156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Depression is recognized as a chronic mental illness, also influenced by neurotransmitter homeostasis, with its incidence increasing annually worldwide. This condition inflicts significant physical and psychological harm, severely compromising human health. It exhibits a broad morbidity spectrum, and some current treatments and medications are hindered by short-term efficacy, strong side effects, and other limitations. PURPOSE Due to the limitations, it is imperative to explore new treatment approaches and develop targeted drugs. Ferroptosis, a cell death mode dependent on iron, is believed to be intricately linked to the onset of depression. Thus, modulating cellular ferroptosis presents a promising avenue for the targeted therapy of depression. METHODS We conducted a comprehensive search of databases such as PubMed, Elsevier ScienceDirect, Google Scholar, and CNKI, using keywords such as "ferroptosis", "depression", "iron death", "safety", "efficacy", and "effectiveness". Our review included original scientific articles, clinical trials, meta-analyses, and review papers published up to February 2025, focusing on studies excluding non-natural products. RESULTS Several natural products derived from plant, animal, or microbial sources effectively target ferroptosis, alleviating depressive symptoms and demonstrating unique and favorable outcomes. This review provides an exhaustive overview of the sources, pharmacological actions, mechanisms, efficacy, and safety of these natural products, highlighting their potential clinical benefits and offering a comprehensive perspective on their properties. CONCLUSION This study offers concrete ideas and valuable insights for the development and application of these natural products in the targeted treatment of depression.
Collapse
Affiliation(s)
- Jing Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Gaoju Zhang
- Sichuan Province Traditional Chinese Medicine Decoction Pieces Co., Ltd, Chengdu 611732, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ranwen Luo
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| |
Collapse
|
2
|
Khainskaya K, Hileuskaya K, Nikalaichuk V, Ladutska A, Akhmedov O, Abrekova N, You L, Shao P, Odonchimeg M. Chitosan-gallic acid conjugate with enhanced functional properties and synergistic wound healing effect. Carbohydr Res 2025; 553:109496. [PMID: 40267696 DOI: 10.1016/j.carres.2025.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Chitosan-gallic acid conjugates were synthesized by carbodiimide method and characterized by physicochemical methods (UV-vis, FTIR, 1H NMR, TGA). The FTIR and NMR assays confirmed that the chemical interaction occurred solely due to the formation of an amide bond. It was established that by varying the ratio of the components during synthesis it is possible to obtain conjugates with desired conjugation ratio, grafting efficiency and gallic acid content up to 8.09 ± 1.72 %, 70.51 ± 9.45 % and 79.9 ± 2.4 μg gallic acid/mg chitosan, respectively. Chitosan-gallic acid conjugate with a 5 % conjugation ratio demonstrated excellent antioxidant properties: the IC50 value for ABTS radical scavenging activity was 0.0073 ± 0.0001 mg/mL. In vitro tests showed that conjugation of chitosan with gallic acid provided the antiglycemic activity of the material and its good biocompatibility. A low level of cytotoxicity was recorded in the HaCaT cell line model (IC50 was 1030.4 μg/mL). The received eco-friendly chitosan-gallic acid conjugate effectively inhibited the growth of thermophilic spore-forming bacteria G. thermodenitrificans and the resistant to classical antibiotics strain A. palidus. The results of an in vivo comparative analysis showed that chitosan-gallic acid conjugate had excellent wound healing properties due to the synergism of the polysaccharide and the natural antioxidant.
Collapse
Affiliation(s)
- Katsiaryna Khainskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus.
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, 36 F. Skaryna str., 220084, Minsk, Belarus
| | - Alena Ladutska
- Institute of Microbiology of the National Academy of Sciences of Belarus, 2 Kuprevich str., 220084, Minsk, Belarus
| | - Oliy Akhmedov
- Institute of Bioorganic Chemistry of the Academy of Sciences of Uzbekistan, 83 M. Ulugbek str., 100125, Tashkent, Uzbekistan
| | - Nadjiye Abrekova
- Institute of Bioorganic Chemistry of the Academy of Sciences of Uzbekistan, 83 M. Ulugbek str., 100125, Tashkent, Uzbekistan
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, 510640, Guangzhou, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, 18 Chao wang road, 310014, Hangzhou, China
| | - Munkhjargal Odonchimeg
- Institute of Chemistry and Chemical Technology of the Mongolian Academy of Sciences, MAS 4-th building Peace ave., 13330, Ulaanbaatar, Mongolia
| |
Collapse
|
3
|
Wijaya GYA, Vornoli A, Giambastiani L, Digiacomo M, Macchia M, Szymczak B, Wójcik M, Pozzo L, Longo V. Solid-State Fermented Cereals: Increased Phenolics and Their Role in Attenuating Liver Diseases. Nutrients 2025; 17:900. [PMID: 40077770 PMCID: PMC11901820 DOI: 10.3390/nu17050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Liver diseases, a leading cause of global mortality, necessitate effective dietary strategies. Fermented cereals, traditionally recognized for benefits in glucose regulation, lipid profiles, and antioxidant activity, hold potential for managing conditions such as type 2 diabetes, hypertension, and obesity. However, their specific impact on liver health requires further investigation. Fermentation, particularly solid-state fermentation (SSF), enhances the bioavailability of beneficial compounds, including phenolics. This review summarizes recent studies on the phenolic content of fermented cereals, highlighting variations based on microbial strains and cereal types. It examines the hepatoprotective effects of these phenolics, drawing on in vivo and in vitro research. Furthermore, the review explores recent findings on the impact of fermented cereals on liver health and related diseases. This work provides a foundation for future research exploring fermented cereals as a dietary intervention for liver disease prevention and management.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Lucia Giambastiani
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland;
| | - Marta Wójcik
- Veterinary Oncology Lab., Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| |
Collapse
|
4
|
An Y, Tu Z, Wang A, Gou W, Yu H, Wang X, Xu F, Li Y, Wang C, Li J, Zhang M, Xiao M, Di Y, Hou W, Cui Y. Qingyi decoction and its active ingredients ameliorate acute pancreatitis by regulating acinar cells and macrophages via NF-κB/NLRP3/Caspase-1 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156424. [PMID: 40020626 DOI: 10.1016/j.phymed.2025.156424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND AND PURPOSE Macrophage infiltration and activation is a critical step during acute pancreatitis (AP). NLRP3 inflammasomes in macrophages plays a critical role in mediating pancreatic inflammatory responses. Qing-Yi Decoction(QYD)has been used for many years in clinical practice of Nankai Hospital combined with traditional Chinese and western medicine treatment of acute pancreatitis. Although QYD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects. Here, we elucidate the therapeutic effects of QYD against acute pancreatitis and reveal its mechanism of action. METHODS The main components of QYD were identified using UHPLC-Q-Orbitrap MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. C57BL/6 mice were randomly divided into control group, model group, low, medium and high dose (6, 12, 24 g/kg) QYD groups, with 10 mice in each group. The therapeutic effect of QYD on cerulein-induced acute pancreatitis. (CER-AP) was evaluated by histopathological score, immunohistochemistry, serum amylase and cytokines detection by ELISA. The protein expressions of MyD88/NF-κB/NLRP3 signaling pathway were detected by Western blotting. Along with molecular docking of key bioactive compounds and targets, RAW264.7 cells stimulated with 1μg/ml LPS is used to screen components with more potent effects on target proteins. AR42 J cells were stimulated with 100 nM dexamethasone (dexa) combined with 10 nM cerulein (CN) as s a cell-culture model of acute pancreatitis. Inhibitory effects of the main chemical composition Wogonoside on NLRP3 inflammasomes were analyzed by qRT-PCR and Western blots. RESULTS Using UHPLC-Q-Orbitrap MS, 217 compounds were identified from QYD, including Wogonoside, Catechins, Rhein, etc. A visualization network of QYD-compounds-key targets-pathways-AP show that QYD may modulate PI3K-Akt signaling pathway, NOD-like receptor signaling pathway, MAPK signaling pathway, Ras signaling pathway and Apoptosis signaling pathway by targeting TNF, IL1β, AKT1, TP53 and STAT3 exerting a therapeutic effect on AP. QYD administration effectively mitigated CER-induced cytokine storm, pancreas edema and serum amylase. QYD (12 mg/kg) showed better effect. The protein expression levels of MyD88, NF-κB, NLRP3, Caspase-1 and GSDMD in pancreatic tissue were significantly decreased. Through molecular docking and LPS-RAW264.7 inflammation model, the selected Wogonoside significantly decreased IL-1β mRNA. The expression levels of NLRP3/Caspase-1/GSDMD pathway-related proteins were also decreased on AR42J-AP. CONCLUSION The results of network pharmacology indicate that QYD can inhibit AP through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that QYD can reduce AP by inhibiting NLRP3 inflammasomes, additionally, it should be noted that 12mg/kg was a relatively superior dose. One of the main chemical compositions Wogonoside regulated NLRP3 inflammasome activation to protect against AP. This study is the first to verify the intrinsic molecular mechanism of QYD in treating AP by combining network pharmacology and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Yu An
- Tianjin Medical University, Tianjin, China
| | - Zhengwei Tu
- Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China
| | - Ao Wang
- Tianjin Medical University, Tianjin, China
| | - Wenfeng Gou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Huijuan Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Feifei Xu
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Yanli Li
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
| | - Jinan Li
- Tianjin Medical University, Tianjin, China
| | - Mengyue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | | | - Ying Di
- Tianjin Medical University, Tianjin, China
| | - Wenbin Hou
- Peking Union Medical College & Institute of Radiological Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China.
| | - Yunfeng Cui
- Tianjin Medical University, Tianjin, China; Tianjin Nankai Hospital, Tianjin, China; Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
5
|
Agarwal S, Kaushik S, Saha H, Paramanick D, Mazhar M, Basist P, Khan R, Alhalmi A. Therapeutic potential of traditional herbal plants and their polyphenols in alleviation of mercury toxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03807-7. [PMID: 39912903 DOI: 10.1007/s00210-025-03807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Mercury (Hg) is a major environmental contaminant significantly impacting human health. As a naturally occurring element, mercury has been extensively mobilized into aquatic and terrestrial ecosystems over thousands of years, largely due to anthropogenic activities such as mining and metal extraction. Acute mercury toxicity causes extensive physiological damage, affecting vital organs including the kidneys, heart, liver, brain, and skin. Phytochemicals, known for their diverse pharmacological properties, have shown promise in mitigating metal-induced toxicities, including mercury. These compounds exhibit protective effects against mercury-induced multi-organ damage through mechanisms such as reactive oxygen species (ROS) scavenging, cyclooxygenase (COX) inhibition, and anti-inflammatory activity. This review explores the therapeutic potential of traditional herbal plants and their phytoconstituents in alleviating mercury-induced toxicity. Key findings highlight several plants with hepatoprotective effects, mitigating necrosis and anatomical distortion in liver cells. Phytochemicals such as quercetin, rutin, salicylic acid, ferulic acid, 6-gingerol, and 6-shogaol play pivotal roles in downregulating molecular pathways activated by mercury exposure. Other bioactive compounds, including acetogenin and gallic acid, exhibit potent antioxidant properties, with mechanisms such as ROS scavenging and inhibition of lipid peroxidation. This review also highlights certain compounds, such as aloe-emodin and gentisic acid, which exhibit potential for mitigating mercury toxicity through mechanisms like inhibiting oxidative stress and enhancing cellular defense pathways. However, these compounds remain underexplored, with no significant studies conducted to evaluate their efficacy against mercury-induced toxicity, presenting a critical area for future research. These findings underscore the potential of phytochemicals as effective agents in combating mercury toxicity through antioxidant mechanisms, cellular signalling regulation, and heavy metal chelation.
Collapse
Affiliation(s)
- Saloni Agarwal
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Swati Kaushik
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Hiranmoy Saha
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Debashish Paramanick
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Mohd Mazhar
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Parakh Basist
- School of Medical and Allied Sciences, K.R. Mangalam University, Sohna, Gurugram, 122103, India
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Aden, 00967, Aden, Yemen.
| |
Collapse
|
6
|
Delen O, Uz YH, Yuksel C, Ersoy O, Kizilay G. Gallic acid mitigates lipopolysaccharide-induced testicular inflammation via regulation of the NF-κB and PK2/PKR1 pathway. J Mol Histol 2025; 56:71. [PMID: 39825958 DOI: 10.1007/s10735-024-10349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/20/2025]
Abstract
Genital tract infections are common causes of male infertility, and most of diagnosed men are asymptomatic. This study examined the effect of gallic acid (GA) against lipopolysaccharide (LPS)-induced testicular inflammation. Thirty-two Spraque Dawley, 2.5-3 month-old male rats were separated into four groups (n = 8). Control group; saline at 3 ml/kg, and in the GA group; GA was dissolved in saline, by gavage at 100 mg/kg for 14 days. LPS group; LPS 5 mg/kg as a single dose was given intraperitoneal on the 11th day. LPS + GA group; GA was given for 14 days and LPS 5 mg/kg on the 11th day. After 72 h of LPS injection, all samples were collected. Semen analysis, biochemical assays, histological evaluations, and immunohistochemical or Western blot analyses for nuclear factor-kappa B (NF-κB) and Prokineticin 2/prokineticin receptor 1(PK2/PKR1) pathways were performed. There was a significant decrease in body and testicular weight, sperm parameters, serum testosterone level, mean seminiferous tubule diameter, germinal epithelial thickness, and Johnsen score in the LPS group compared to control and GA groups. However, a significant increase was found in interstitial space width, percentage of abnormal sperm, NF-κB and PK2 immunoreactivities, and expression of PK2 and PKR1 proteins. In the LPS + GA group, GA administration was observed to significantly prevent these adverse effects. In conclusion, the inhibitory effects of GA on the NF-κB and PK2/PKR1 pathways not only suppressed the inflammatory response but also restored impaired sperm parameters and testicular structure. These findings indicate GA's potential for treating testicular inflammation and protecting male reproductive health.
Collapse
Affiliation(s)
- Ozlem Delen
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey.
| | - Yesim Hulya Uz
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey
| | - Cengiz Yuksel
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey
| | - Onur Ersoy
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Trakya University, Edirne, Turkey
| | - Gulnur Kizilay
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, 22030, Turkey
| |
Collapse
|
7
|
Tsirtsidou K, Zou Y, Robbens J, Raes K. Pectin-chitosan hydrogels with modified properties for the encapsulation of strawberry phenolic compounds. Food Chem 2025; 463:141236. [PMID: 39293378 DOI: 10.1016/j.foodchem.2024.141236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Pectin-chitosan hydrogels with blends of low (50-190 kDa) and medium (310-395 KDa) molecular weight (MW) chitosan (LC and MC, respectively) were developed, and their characteristics were investigated before and after the encapsulation of an aqueous strawberry extract. The pectin to total chitosan mass ratio, the composition of the strawberry extract and the MW of chitosan greatly affected the interactions between pectin and chitosan at different pH values. More specifically, blends of low and medium MW chitosan improved the stability of the strawberry-gels in acidic conditions compared to their corresponding MC-gels, showed better flow and texture profiles, as well as slower release of phenolic compounds during in vitro digestion compared to the only stable LC-gel. Therefore, by manipulating the length range of chitosan chains would allow the formation of pectin-chitosan hydrogels with improved properties for the development of functional food products.
Collapse
Affiliation(s)
- Kyriaki Tsirtsidou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium; Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium
| | - Johan Robbens
- Cell Blue Biotech and Food Integrity, Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, ILVO Jacobsenstraat 1, 8400 Ostend, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
8
|
Zhao XL, Cao ZJ, Li KD, Tang F, Xu LY, Zhang JN, Liu D, Peng C, Ao H. Gallic acid: a dietary metabolite's therapeutic potential in the management of atherosclerotic cardiovascular disease. Front Pharmacol 2025; 15:1515172. [PMID: 39840111 PMCID: PMC11747375 DOI: 10.3389/fphar.2024.1515172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) causes significant morbidity and mortality globally. Most of the chemicals specifically target certain pathways and minimally impact other diseases associated with ASCVD. Moreover, interactions of these drugs can cause toxic reactions. Consequently, the exploration of multi-targeted and safe medications for treating and preventing ASCVD has become an increasingly popular trend. Gallic acid (GA), a natural secondary metabolite found in various fruits, plants, and nuts, has demonstrated potentials in preventing and treating ASCVD, in addition to its known antioxidant and anti-inflammatory effects. It alleviates the entire process of atherosclerosis (AS) by reducing oxidative stress, improving endothelial dysfunction, and inhibiting platelet activation and aggregation. Additionally, GA can treat ASCVD-related diseases, such as coronary heart disease (CHD) and cerebral ischemia. However, the pharmacological actions of GA in the prevention and treatment of ASCVD have not been comprehensively reviewed, which limits its clinical development. This review primarily summarizes the in vitro and in vivo pharmacological actions of GA on the related risk factors of ASCVD, AS, and ASCVD. Additionally, it provides a comprehensive overview of the toxicity, extraction, synthesis, pharmacokinetics, and pharmaceutics of GA,aimed to enhance understanding of its clinical applications and further research and development.
Collapse
Affiliation(s)
- Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang-Jing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke-Di Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Cacak-Pietrzak G, Grabarczyk J, Szafrańska A, Krajewska A, Dziki D. Cereal Coffee as a Functional Additive in Wheat Bread: Impact on Dough and Bread Properties. Foods 2024; 13:3991. [PMID: 39766934 PMCID: PMC11675443 DOI: 10.3390/foods13243991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The chemical composition and quality attributes of wheat bread enriched with cereal coffee were analyzed, with additive incorporated as a partial replacement for wheat flour at levels of 2%, 4%, 6%, 8%, and 10%. The rheological properties of the bread dough, consisting of wheat flour and cereal coffee blends, were evaluated using farinograph and extensograph analyses. Results indicated that the addition of cereal coffee decreased flour water absorption, extended dough stability, and increased dough softening. Dough containing cereal coffee showed greater resistance to stretching and reduced extensibility. However, the incorporation of cereal coffee led to a reduction in bread volume and an increase in crumb hardness and density, especially when the substitution level exceeded 6%. In terms of nutritional composition, the levels of dietary fiber, ash, fat, and total polyphenols increased with higher cereal coffee content, while crumb brightness decreased, and yellowness and redness intensified. Overall, the study suggests that cereal coffee can function as a valuable ingredient in bread; however, substitution levels should ideally be kept below 8% to preserve acceptable sensory qualities.
Collapse
Affiliation(s)
- Grażyna Cacak-Pietrzak
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences (WULS), 159C Nowoursynowska Street, 02-776 Warsaw, Poland;
| | - Justyna Grabarczyk
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland; (J.G.); (A.S.)
| | - Anna Szafrańska
- Department of Grain Processing and Bakery, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland; (J.G.); (A.S.)
| | - Anna Krajewska
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka Street, 20-612 Lublin, Poland;
| |
Collapse
|
10
|
Quradha MM, Tamfu AN, Duru ME, Kucukaydin S, Iqbal M, Qahtan AMF, Khan R, Ceylan O. Evaluation of HPLC Profile, Antioxidant, Quorum Sensing, Biofilm, Swarming Motility, and Enzyme Inhibition Activities of Conventional and Green Extracts of Salvia triloba. Food Sci Nutr 2024; 12:10716-10733. [PMID: 39723056 PMCID: PMC11666897 DOI: 10.1002/fsn3.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
The current study aims to prepare a green extract using a new method in addition to conventional extraction methods including; methanolic and ultrasonic extraction of Salvia triloba, to compare their phenolic composition utilizing high-performance liquid chromatograph equipped with a diode array detector (HPLC-DAD), anti-bacterial, anti-oxidant, and enzyme inhibition activities. The results of HPLC-DAD analysis showed that Rosmarinic acid was found the highest amount in the methanolic extract followed by ultrasonic and green extracts as 169.7 ± 0.51, 135.1 ± 0.40, and 28.58 ± 0.46 μg/g respectively. The Trans-cinnamic acid (4.40 ± 0.09 μg/g) was found exclusively in ultrasonic extract. For bioactivities, the green extract exhibited the highest biofilm inhibition against Enterococcus faecalis compared to other extracts, while the methanolic extract outperformed both ultrasonic-assisted and green extract against Staphylococcus aureus and Escherichia coli strains at minimum inhibitory concentration. The methanolic and green extract exhibited considerable quorum sensing inhibition against Chromobacterium violaceum CV026, while no activity was recorded from ultrasonic-assisted extract. The methanolic and ultrasonic-assisted extracts of S. triloba recorded moderate butyrylcholinesterase inhibition; each extract demonstrated limited inhibitory effects on the urease enzyme. Similarly, each extract of S. triloba demonstrated significant antioxidant activity, with the highest activity exhibited by methanolic extract as β-carotene-linoleic acid assay (IC50 = 10.29 ± 0.36 μg/mL), DPPH• assay (IC50 = 27.77 ± 0.55 μg/mL), ABTS•+ assay (IC50 = 15.49 ± 0.95 μg/mL), metal chelating assay (IC50 = 57.80 ± 0.95 μg/mL), and CUPRAC (assay A 0.50 = 32.54 ± 0.84 μg/mL). Furthermore, the methanolic extract exhibited antioxidant activity better than α-tocopherol (Standard used). The current study demonstrated the potential of green solvent(s) as eco-friendly alternative for extractin phenolic compounds from S. triloba and evaluated their biological activities for the first time.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of EducationSeiyun UniversitySeiyunYemen
- Pharmacy Department, Medical SciencesAljanad University for Science and TechnologyTaizYemen
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral IndustriesUniversity of NgaoundereNgaoundereCameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of ScienceMugla Sitki Kocman UniversityMenteşeMuglaTurkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health ServicesMugla Sıtkı Kocman UniversityKoycegizMuglaTurkey
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and BiochemistryThe University of Agriculture PeshawarPeshawarPakistan
| | | | - Rasool Khan
- Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational SchoolMugla Sitki Kocman UniversityUla MuglaTurkey
| |
Collapse
|
11
|
Vatanpour M, Ebrahimzadeh-Bideskan A, Rajabian A, Alipour F, Raoofi A, Ebrahimi V. Ameliorating effects of selenium nanoparticle coated by gallic acid on histological and biochemical parameters of testis in azoospermic rat model. Tissue Cell 2024; 91:102550. [PMID: 39236520 DOI: 10.1016/j.tice.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This study was designed to examine the effects of selenium nanoparticles (SeNPs) coated with gallic acid (GA) on testis in azoospermic rats. Thirty-six adult Wistar rats were assigned to six groups: control (1 ml intraperitoneal (i.p.) phosphate-buffered saline (PBS) for 7 consecutive days), SHAM (single i.p. injection of 1 ml of 8 % dimethyl sulfoxide (DMSO)), BUS (single i.p. injection of busulfan (BUS) 30 mg/kg body weight), GA (single i.p. injection of BUS 30 mg/kg on day 1, 100 mg/kg body weight GA from days 2-7), SeNPs (single i.p. injection of BUS 30 mg/kg on day 1, 0.5 mg/kg body weight SeNPs from days 2-7), and SeNPs-GA (single i.p. injection of BUS 30 mg/kg on day 1, 0.5 mg/kg body weight SeNPs-GA from days 2-7). Subsequently, serum levels of testosterone and insulin-like growth factor-1 (IGF-1), antioxidant markers, sperm parameters, and histological parameters were evaluated. The results showed that BUS injection induced azoospermia in rats by causing oxidative stress and testicular tissue damage. In contrast, co-administration of SeNPs and GA showed significant improvements in testosterone and IGF-1 levels, antioxidant status, testicular tissue characteristics, and sperm parameters. Overall, the findings suggest that GA-coated SeNPs offer therapeutic potential in BUS-induced azoospermic models.
Collapse
Affiliation(s)
- Morvarid Vatanpour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Ebrahimi
- Department of Anatomical Sciences and Pathology, Faculty of Medicine, Shahed University, Tehran, Iran.
| |
Collapse
|
12
|
Korkmaz C, Güneş H, Küçükaydın MT, Küçükaydın S, Duru ME. Biological Activities and Chemical Contents of Edible Hohenbuehelia petaloides (Bull.) Schulzer. ACS OMEGA 2024; 9:45733-45745. [PMID: 39583709 PMCID: PMC11579941 DOI: 10.1021/acsomega.4c02369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 11/26/2024]
Abstract
Mushrooms are a good diet with high protein and polyunsaturated fatty acid contents in health, food, and industry from past to present. Mushrooms have attracted a lot of attention in terms of the bioavailability of natural products. Hohenbuehelia petaloides, a member of the Pleuroteceae family, is an edible wood fungus that grows naturally on the trunks of old and decayed trees. In this study, the cytotoxic activities of hexane, methanol, and water extracts of H. petaloides against various cancer cell lines A549, MCF-7, PC-3, and HT-29 were investigated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipenyltetrazolium bromide (MTT) assay. In addition, the apoptotic, inflammatory, angiogenic, and antimicrobial effects of the extracts were examined by flow cytometry, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and well diffusion assays, respectively. Moreover, the antioxidant activity and phenolic and lipid components of H. petaloides were determined. The hexane extract showed the highest cytotoxic activity (IC50 = 26.48 ± 0.02 μg/mL) against A549 cells, while water and methanol extracts exhibited the highest cytotoxicity (IC50 = 83.18 ± 0.05 μg/mL and IC50 = 90.95 ± 0.05 μg/mL, respectively) against PC-3 cells. The hexane extract killed A549 cells via apoptosis. The methanol extract, at the IC50 level, was the most effective in decreasing both tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) release. In antioxidant activity tests performed with 5 different methods, the methanol extract had higher antioxidant activity than the others, followed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical (IC50 = 82.61 ± 0.90 μg/mL) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation radical removal (IC50 = 55.20 ± 0.65 μg/mL) and CUPRAC-reducing power (IC50 = 76.41 ± 0.73 μg/mL). Among the extracts studied, the hexane extract showed antimicrobial activity against Bacillus cereus, Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus with different inhibition zones. The major lipid components of H. petaloides analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) were elaidic acid (38.22%), palmitic acid (30.59%), stearic acid (13.21%), linoleic acid (4.35%), and azelaic acid (4.29%). The phenolic compounds determined by the high-performance liquid chromatography with photodiode-array detection (HPLC-DAD) system were p-hydroxybenzoic acid (7.42 μg/g extract), cinnamic acid (6.83 μg/g extract), gallic acid (5.36 μg/g extract), and protocatechuic acid (1.83 μg/g extract). The results showed that H. petaloides has the potential to be a natural source for the development of novel anticancer and antimicrobial agents as well as a beneficial food supplement for the prevention of cancer.
Collapse
Affiliation(s)
- Cansu Korkmaz
- Department
of Biology, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Hatice Güneş
- Department
of Biology, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Meltem Taş Küçükaydın
- Department
of Chemistry, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Selçuk Küçükaydın
- Department
of Medical Services and Techniques, Köyceğiz Vocational
School of Health Services, Muğla
Sıtkı Koçman University, 48800 Köyceğiz/Muğla, Turkey
| | - Mehmet Emin Duru
- Department
of Chemistry, Faculty of Science, Muğla
Sıtkı Koçman University, 48000 Muğla, Turkey
| |
Collapse
|
13
|
Carvalho MAGD, Souza GB, Tizziani T, Pontes CLM, Dambrós BP, Sousa NFD, Scotti MT, Steindel M, Braga AL, Sandjo LP, Assis FFD. Synthesis, in vitro and in silico evaluation of gallamide and selenogallamide derivatives as inhibitors of the SARS-CoV-2 main protease. Arch Pharm (Weinheim) 2024; 357:e2400253. [PMID: 39148177 DOI: 10.1002/ardp.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against Mpro, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity. Compounds 3a, 3b, and 3f showed the highest enzymatic inhibition with IC50 = 0.26 ± 0.19 µM, 0.80 ± 0.38 µM, and 2.87 ± 1.17 µM, respectively. Selenogallamide 6a exhibited IC50 values of 5.42 ± 2.89 µM and a comparison with its nonselenylated congener 3c shows that the insertion of the chalcogen moiety improved the inhibitory capacity of the compound by approximately 10 times. Regarding the cellular toxicity in THP-1 and Vero cells, compounds 3e and 3g, showed moderate cytotoxicity in Vero cells, while for THP-1 both were nontoxic, with CC50 > 150 µM. Derivative 3d showed moderate cytotoxicity against both cell lines, whereas 6d was moderatly toxic to THP-1. Other compounds analyzed do not induce substantial cellular toxicity at the concentrations tested. The molecular docking results for compounds 3a, 3b, and 3f show that hydrogen bonding interactions involving the hydroxyl groups (OH) of the gallate moiety are relevant, as well as the carbonyl group.
Collapse
Affiliation(s)
- Maryelle A G de Carvalho
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Gabriella B Souza
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Tiago Tizziani
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Carime L M Pontes
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bibiana P Dambrós
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Natália F de Sousa
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Mario Steindel
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Antonio L Braga
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Louis P Sandjo
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Francisco F de Assis
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
14
|
Ullah S, Han X, Deng R, Ali I, Li W, Xu Y, Yang M. Impacts of shifting from single-species pine forests to distinct agroforestry models on soil fertility, exchangeable cations, and microbial functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122823. [PMID: 39369525 DOI: 10.1016/j.jenvman.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The transition from monoculture to mixed-species agroforestry systems affects soil organic matter and microbial activity. However, the specific dynamics of these changes, particularly within medicinal plant-based agroforestry, remain underexplored. This study investigates the impact of monoculture Pine (Pinus massoniana) forests and four agroforestry models: (M1) Pinus massoniana and Alpina oxyphylla, (M2) Pinus massoniana and Ficus simplicissima, (M3) Pinus massoniana and Amomum villosum, and (M4) Pinus massoniana and Curcuma longa on soil properties and microbial activity in rhizosphere and non-rhizosphere environments. Our results showed significantly higher pH (4.80) and total nitrogen (N) content (1.77 g kg-1) in the rhizosphere of model (M4) compared to (CK). Total organic carbon (TOC) and carbon fractions (POC, DOC, and MBC) also differed significantly across monoculture and agroforestry models, with highest TOC concentrations (31.70 g kg⁻1) in rhizosphere of CK. Exchangeable cations, including Ca2⁺, and Mg2⁺ were significantly higher in the rhizosphere of agroforestry models compared to CK, particularly in M4, where Ca2⁺ was recorded at 12.03 cmol kg-1 with the highest percent base saturation (PBS) at 90.17%. Enzymes leucine aminopeptidase and polyphenol oxidase varied significantly, with higher activity in the rhizosphere of agroforestry models and greater activity in non-rhizosphere of monoculture. Soil microbial respiration (MRes) revealed substantial differences, with an average 17% decrease in rhizosphere soil for models M2 and M4 and a 20.83% reduction in non-rhizosphere soil for model M1 compared to CK. Generalized Linear Model (GLM) demonstrated a significant positive correlation between TOC and MRes (R2 = 0.885, p < 0.01), indicating that higher TOC levels are linked with increased MRes. In conclusion, model M4 most effectively enhanced soil fertility and nutrient availability followed by the other agroforestry models tested. This suggests that integrating medicinal plants into agroforestry systems is a viable strategy for improving ecosystem functioning compared to monoculture practices.
Collapse
Affiliation(s)
- Saif Ullah
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiaomei Han
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Rongyan Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Izhar Ali
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Wannian Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
15
|
Sousa JN, Sousa BVDO, Santos EPD, Ribeiro GHM, Pereira APM, Guimarães VHD, Queiroz LDRP, Motta-Santos D, Farias LC, Guimarães ALS, de Paula AMB, Santos SHS. Effects of gallic acid and physical training on liver damage, force, and anxiety in obese mice: Hepatic modulation of Sestrin 2 (SESN2) and PGC-α expression. Gene 2024; 926:148606. [PMID: 38788813 DOI: 10.1016/j.gene.2024.148606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.
Collapse
Affiliation(s)
- Jaciara Neves Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Berenilde Valéria de Oliveira Sousa
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Eduardo Pinheiro Dos Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Guilherme Henrique Mendes Ribeiro
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Ana Paula Maciel Pereira
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Lorena Dos Reis Pereira Queiroz
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Daisy Motta-Santos
- Sports Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Post graduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Post graduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Weinberg Sibony R, Segev O, Dor S, Raz I. Overview of oxidative stress and inflammation in diabetes. J Diabetes 2024; 16:e70014. [PMID: 39435991 PMCID: PMC11494684 DOI: 10.1111/1753-0407.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
The global prevalence of diabetes has increased significantly, leading to various complications and a negative impact on quality of life. Hyperglycemia hyperglycemic-induced oxidative stress (OS) and inflammation are closely associated with the development and progression of type 2 diabetes mellitus (T2D) and its complications. This review explores the effect of T2D on target organ damage and potential treatments to minimize this damage. The paper examines the pathophysiology of T2D, focusing on low-grade chronic inflammation and OS and on their impact on insulin resistance. The review discusses the role of inflammation and OS in the development of microvascular and macrovascular complications. The findings highlight the mechanisms by which inflammatory cytokines, stress kinases, and reactive oxygen species (ROS) interfere with insulin signaling pathways, leading to impaired glucose metabolism and organ dysfunction. Lifestyle interventions, including a balanced diet and exercise, can help reduce chronic inflammation and OS, thereby preventing and controlling T2D and its associated complications. Additionally, various antioxidants and anti-inflammatory agents show potential in reducing OS and inflammation. Some anti-diabetic drugs, like pioglitazone, metformin, and glucagon-like peptide-1 (GLP-1) agonists, may also have anti-inflammatory effects. Further research, including randomized controlled trials, is needed to evaluate the efficacy of these interventions.
Collapse
Affiliation(s)
| | - Omri Segev
- Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Saar Dor
- Faculty of MedicineBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Itamar Raz
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Diabetes Unit, Department of Endocrinology and MetabolismHadassah Medical CenterJerusalemIsrael
| |
Collapse
|
17
|
Hatem S, Moftah NH, Ragai MH, El-Maghawry E. Development of gallic acid loaded composite nanovesicles for the topical treatment of acne: optimization, characterization, and clinical investigation. Pharm Dev Technol 2024; 29:899-911. [PMID: 39325630 DOI: 10.1080/10837450.2024.2409812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Gallic acid (GA) proved to produce desired effects topically in the treatment of acne, through its antibacterial, anti-inflammatory and antioxidant characteristics. In the current work, nanovesicular systems; aspasomes loaded with GA were prepared, and evaluated on in-vitro and ex-vivo levels. Formulations were coated with chitosan due to its mucoadhesive properties. Results indicated that the size of the formulations ranged between 273.20 and 855.00 nm, with positively charged zeta potential ranging between 30.60 and 34.40 mV, EE% ranging between 57.651% and 95.20% and good stability after 3-months storage. The formulae provided a sustained drug release of 98.22% over 24 h, 5.4-fold higher ex-vivo skin deposition compared to GA solution, and powerful antioxidant potential compared to the control solution and appeared as spherical bilayer vesicles on being examined using transmission electron microscope. A clinical study was carried out on patients suffering from acne, where the reduction percent of comedones, inflammatory, total acne lesions and infiltrate was calculated. Results revealed that aspasomes exhibited reduction percentages of 72.35%, 80.33%, 77.95% and 90.01% ± for comedones, inflammatory lesions, total lesions, and infiltrate, respectively compared to control solution providing an effective topical delivery system for the management of acne.
Collapse
Affiliation(s)
- Shymaa Hatem
- Department of Pharmaceutics and Pharmaceutical Technology, Future University, Cairo, Egypt
| | - Noha H Moftah
- Department of Dermatology and Venereology, Minia University, Al-Minya, Egypt
| | - Maha H Ragai
- Department of Dermatology and Venereology, Minia University, Al-Minya, Egypt
| | - Enas El-Maghawry
- Department of Pharmaceutics and Pharmaceutical Technology, Future University, Cairo, Egypt
| |
Collapse
|
18
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
19
|
Khan MS, Fatima M, Wahab S, Khalid M, Kesharwani P. Gallic acid loaded self-nano emulsifying hydrogel-based drug delivery system against onychomycosis. Nanomedicine (Lond) 2024; 19:2065-2083. [PMID: 39143900 PMCID: PMC11485813 DOI: 10.1080/17435889.2024.2386923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To developed and investigate gallic acid (GA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) for treating onychomycosis via transungual route.Materials & methods: The SNEDDS were prepared by direct dispersion technique and were evaluated for characteristics parameters using Fourier transform infrared, differential scanning calorimetry, confocal microscopy, transmission electron microscopy and zeta sizer. Furthermore, the safety of prepared formulation was evaluated via Hen's egg test-chorioallantoic membrane study and stability was confirmed using different parameters. Also, its effectiveness was evaluated against fungal strain Trichophyton mentagrophytes.Results: The SNEDDS displayed a particle size of 199.8 ± 4.21 nm and a zeta potential; of -22.75 ± 2.09 mV. Drug release study illustrated a sustained release pattern with a release of 70.34 ± 0.20% over a period of 24 h. The penetration across the nail plate was found to be 1.59 ± 0.002 µg/mg and 0.97 ± 0.001 µg/mg for GA loaded SNEDDS and GA solution respectively. An irritation score of 0.52 ± 0.005 and 3.84 ± 0.001 was reported for GA loaded SNEDDS hydrogel and GA solution, indicating a decrease in the drug's irritation potential from slightly irritating to non irritating due to its entrapment within the SNEDDS.Conclusion: GA loaded SNEDDS has potential to address limitations of conventional treatments, enhancing the drug's efficacy and reducing the likelihood of resistance in the treatment of Onychomycosis.
Collapse
Affiliation(s)
- Mohammad Sameer Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha62529, Saudi Arabia
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
20
|
Abrahams D, Baker PGL. 3-Methyl Thiophene-Modified Boron-Doped Diamond (BDD) Electrodes as Efficient Catalysts for Phenol Detection-A Case Study for the Detection of Gallic Acid in Three Specific Tea Types. Foods 2024; 13:2447. [PMID: 39123638 PMCID: PMC11311794 DOI: 10.3390/foods13152447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer modification has been established as a cost-effective, simple, in situ method for overcoming some of the inherent disadvantages of boron-doped diamond (BDD) electrodes, and its application has been extended to reliable, low-cost environmental monitoring solutions. The present review focuses on modifying BDD electrodes with semi-conductive polymers acting as redox mediators. This article reports on the development of a 3-methyl thiophene-modified boron-doped diamond (BDD/P3MT) sensor for the electrochemical determination of total phenolic compounds (TPCs) in tea samples, using gallic acid (GA) as a marker. GA is a significant polyphenol with various biological activities, making its quantification crucial. Thus, a simple, fast, and sensitive GA sensor was fabricated using the electroanalytical square wave voltammetry (SWV) technique. The sensor utilizes a semi-conductive polymer, 3-methyl thiophene, as a redox mediator to enhance BDD's sensitivity and selectivity. Electrochemical synthesis was used for polymer deposition, allowing for greater purity and avoiding solubility problems. The BDD/P3MT sensor exhibits good electrochemical properties, including rapid charge transfer and a large electrochemical area, enabling GA detection with a limit of detection of 11 mg/L. The sensor's response was correlated with TPCs measured by the Folin-Ciocalteu method. Square wave voltammetry (SWV) showed a good linear relationship between peak currents and GA concentrations in a wide linear range of 3-71 mg/L under optimal conditions. The BDD/P3MT sensor accurately measured TPCs in green tea, rooibos tea, and black tea samples, with green tea exhibiting the highest TPC levels. The results demonstrate the potential of the modified BDD electrode for the rapid and accurate detection of phenolic compounds in tea, with implications for quality control and antioxidant activity assessments. The prolific publications of the past decade have established BDD electrodes as robust BDD sensors for quantifying polyphenols. Fruits, vegetables, nuts, plant-derived beverages such as tea and wine, traditional Eastern remedies and various herbal nutritional supplements contain phenolic chemicals. The safety concerns of contaminated food intake are significant health concerns worldwide, as there exists a critical nexus between food safety, nutrition, and food security. It has been well established that green tea polyphenol consumption promotes positive health effects. Despite their potential benefits, consuming high amounts of these polyphenols has sparked debate due to concerns over potential negative consequences.
Collapse
Affiliation(s)
- Dhielnawaaz Abrahams
- SensorLab Research Group, Chemistry Department, University of The Western Cape, P.O. Box X17, Cape Town 7535, South Africa;
| | | |
Collapse
|
21
|
Theocharidou A, Lousinian S, Tsagkaris A, Mourtzinos I, Ritzoulis C. Interactions between xanthan gum and phenolic acids. Int J Biol Macromol 2024; 273:133175. [PMID: 38889835 DOI: 10.1016/j.ijbiomac.2024.133175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The molecular and colloidal-level interactions between two major phenolic acids, gallic and caffeic acid, with a major food polysaccharide, xanthan gum, were studied in binary systems aiming to correlate the stability of the binary systems as a function of pH and xanthan-polyphenol concentrations. Global stability diagrams were built, acting as roadmaps for examining the phase separation regimes followed by the fluorimetry-based thermodynamics of the interactions. The effects of noncovalent interactions on the macroscopic behavior of the binary systems were studied, using shear and extensional rheometry. The collected data for caffeic acid - xanthan gum mixtures showed that the main interactions were pH-independent volume exclusions, while gallic acid interacts with xanthan gum, especially at pH 7 with other mechanisms as well, improving the colloidal dispersion stability. A combination of fluorimetry, extensional rheology and stability measurements highlight the effect of gallic acid-induced aggregation of xanthan gum, both in structuring and de-structuring the binary systems. The above provide a coherent framework of the physicochemical aspect of binary systems, shedding light on the role of xanthan gum in its oral functions, such as in inducing texture, in model complex systems containing phenolic acids.
Collapse
Affiliation(s)
- Athina Theocharidou
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Sylvie Lousinian
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Apostolos Tsagkaris
- Department of Industrial Engineering & Management, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece.
| |
Collapse
|
22
|
Ni BB, Liu H, Wang ZS, Zhang GY, Sang ZY, Liu JJ, He CY, Zhang JG. A chromosome-scale genome of Rhus chinensis Mill. provides new insights into plant-insect interaction and gallotannins biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:766-786. [PMID: 38271098 DOI: 10.1111/tpj.16631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal-level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase-like (SCPL) and their homologs involved in HT production were determined as specific to HT-rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia-lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co-expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant-galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.
Collapse
Affiliation(s)
- Bing-Bing Ni
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhao-Shan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guo-Yun Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zi-Yang Sang
- Forest Enterprise of Wufeng County in Hubei Province, Wufeng, 443400, Hubei, China
| | - Juan-Juan Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Cai-Yun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jian-Guo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
23
|
Sahu R, Rawal RK. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension. PHYTOMEDICINE PLUS 2024; 4:100564. [DOI: 10.1016/j.phyplu.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Fernandes FHA, Soares SDS, Bekbolatova E, Boylan F, Salgado HRN. Pharmacological, toxicological and phytochemical analysis of Spondias dulcis parkinson. Nat Prod Res 2024; 38:1049-1053. [PMID: 37157836 DOI: 10.1080/14786419.2023.2210254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Spondias dulcis Parkinson have been used in traditional medicine in Asia, Oceania, and South America, for different diseases conditions and as a functional food. The scientific literature described as different potential pharmacology such as antioxidant, anti-inflammatory, antimicrobial, thrombolytic and enzymatic inhibitor. This study aimed to: (1) establish the pharmacological activity in intestinal motility in vivo and antioxidant activity in vitro; (2) perform the acute toxicology test in mouse; (3) characterize the phytochemical profile based on counter-current chromatography (CCC) and NMR analysis. The results revealed a laxative effect of S. dulcis extract and a high antioxidant activity (IC50 = 5.10 for DPPH assay and 14.14 for hydrogen peroxide scavenging test). No side effects were observed in the oral acute toxicity test for a dose up to 2000 mg/kg. The chemical profile was identified by CCC and NMR, and the comparison of the data obtained with previous literature revealed the presence of the flavonoid rutin (Quercetin-3-O-rutinoside) in the extract.
Collapse
Affiliation(s)
- Felipe Hugo Alencar Fernandes
- School of Pharmacy, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- UNIFACISA Centro Universitário, Campina Grande, Paraíba, Brazil
| | | | | | - Fábio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
25
|
Feng M, Zeng X, Lin Q, Wang Y, Wei H, Yang S, Wang G, Chen X, Guo M, Yang X, Hu J, Zhang Y, Yang X, Du Y, Zhao Y. Characterization of Chitosan-Gallic Acid Graft Copolymer for Periodontal Dressing Hydrogel Application. Adv Healthc Mater 2024; 13:e2302877. [PMID: 38041691 DOI: 10.1002/adhm.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Indexed: 12/03/2023]
Abstract
The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.
Collapse
Affiliation(s)
- Mengge Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xuelian Zeng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Lin
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxiao Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Hongjiang Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Shanyi Yang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Guangwei Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangge Du
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Quradha MM, Duru ME, Kucukaydin S, Tamfu AN, Iqbal M, Bibi H, Khan R, Ceylan O. Comparative assessment of phenolic composition profile and biological activities of green extract and conventional extracts of Salvia sclarea. Sci Rep 2024; 14:1885. [PMID: 38253648 PMCID: PMC10803343 DOI: 10.1038/s41598-024-51661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as β-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.
Collapse
Affiliation(s)
- Mohammed Mansour Quradha
- College of Education, Seiyun University, Seiyun, Yemen.
- Pharmacy Department, Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen.
| | - Mehmet Emin Duru
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Selcuk Kucukaydin
- Department of Medical Services and Techniques, Koycegiz Vocational School of Health Services, Mugla Sıtkı Kocman University, Koycegiz/Mugla, Turkey
| | - Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, 454, Ngaoundere, Cameroon
| | - Mudassar Iqbal
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Hamida Bibi
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Rasool Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Ula Mugla, 48147, Turkey
| |
Collapse
|
27
|
Kozarski M, Klaus A, Špirović-Trifunović B, Miletić S, Lazić V, Žižak Ž, Vunduk J. Bioprospecting of Selected Species of Polypore Fungi from the Western Balkans. Molecules 2024; 29:314. [PMID: 38257227 PMCID: PMC10819588 DOI: 10.3390/molecules29020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Growing mushrooms means meeting challenges while aiming for sustainability and circularity. Wherever the producer is located, commercial strains are the same originating from several producers. Customized strains adapted to local conditions are urgently needed. Before introducing new species to the strain development pipeline, the chemical characterization and biological activity of wild ones need to be assessed. Accordingly, the mycoceutical potential of five polypore mushroom species from Serbia was evaluated including: secondary metabolite composition, oxidative damage prevention, anti-tyrosinase, and anti-angiotensin converting enzyme (ACE). The phenolic pattern was comparable in all samples, but the amounts of specific chemicals varied. Hydroxybenzoic acids were the primary components. All samples had varying quantities of ascorbic acid, carotene, and lycopene, and showed a pronounced inhibition of lipid peroxidation (LPx) and ability to scavenge HO•. Extracts were more potent tyrosinase inhibitors but unsuccessful when faced with ACE. Fomitopsis pinicola had the strongest anti-tumor efficacy while Ganoderma lucidum demonstrated strong selectivity in anti-tumor effect in comparison to normal cells. The evaluated species provided a solid foundation for commercial development while keeping local ecology in mind.
Collapse
Affiliation(s)
- Maja Kozarski
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Bojana Špirović-Trifunović
- Institute for Phytomedicine, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Srdjan Miletić
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Vesna Lazić
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.K.); (A.K.); (V.L.)
| | - Željko Žižak
- Institute of Oncology and Radiology of Serbia, Paterova 14, 11000 Belgrade, Serbia;
| | - Jovana Vunduk
- Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Belgrade, Serbia
| |
Collapse
|
28
|
Kim HB, Hong YJ, Lee SH, Kee HJ, Kim M, Ahn Y, Jeong MH. Gallic Acid Inhibits Proliferation and Migration of Smooth Muscle Cells in a Pig In-Stent Restenosis Model. Chonnam Med J 2024; 60:32-39. [PMID: 38304132 PMCID: PMC10828086 DOI: 10.4068/cmj.2024.60.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
In-stent restenosis (ISR) develops primarily due to neointimal hyperplasia. Gallic acid (GA) has anti-inflammatory, antioxidant, and cardioprotective effects. This study sought to investigate the effects of GA on neointimal hyperplasia and proliferation and migration of vascular smooth muscle cells (VSMCs) in a pig ISR model. In vitro proliferation and migration experiments were confirmed, after VSMCs were treated with platelet-derived growth factor (PDGF-BB) and GA (100 µM) using a 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay and a scratch wound assay for 24 hours and 48 hours. A bare metal stent (BMS) was implanted in the pig coronary artery to induce ISR with overdilation (1.1-1.2:1), and GA (10 mg/kg/day) was administered for 4 weeks. At the 4-week follow-up, optical coherence tomography (OCT) and histopathological analyses were performed. GA decreased the proliferation of VSMCs by PDGF-BB for 24 hours (89.24±24.56% vs. 170.04±19.98%, p<0.001) and 48 hours (124.87±7.35% vs. 187.64±4.83%, p<0.001). GA inhibited the migration of VSMCs induced by PDGF-BB for 24 hours (26.73±2.38% vs. 65.38±9.73%, p<0.001) and 48 hours (32.96±3.04% vs. 77.04±10.07%, p<0.001). Using OCT, % neointimal hyperplasia was shown to have significantly decreased in the GA group compared with control vehicle group (28.25±10.07% vs. 37.60±10.84%, p<0.001). GA effectively reduced neointimal hyperplasia by inhibiting the proliferation and migration of VSMCs in a pig ISR model. GA could be a potential treatment strategy for reducing ISR after stent implantation.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Seung Hun Lee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hae Jin Kee
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Munki Kim
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Myung Ho Jeong
- Division of Cardiology, Chonnam National University Hospital, Gwangju, Korea
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
29
|
Yu L, Zhang R, Jia R, Fa W, Yin H, Zhang LY, Li H, Xu B. Rational engineering of a carbon skeleton supported tin dioxide nanocomposite from MOF on graphene precursor for superior lithium and sodium ion storage. J Colloid Interface Sci 2024; 653:359-369. [PMID: 37717436 DOI: 10.1016/j.jcis.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Tin dioxide (SnO2) is being investigated as a promising anode material for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). Effectively dispersing small sized SnO2 crystals in well-designed carbonaceous matrices using eco-friendly materials and simplified methods is an urgent task. Herein, gallic acid (GA) molecules, abundant in plant kingdom, are firstly selected to react with few-layered graphene oxide (GO) in mild hydrothermal condition, and the GA modulated reduced graphene oxide (GA@RGO) supporting skeleton can be obtained. Then Sn-GA metal-organic framework (MOF) domains can be directly engineered on the surface of the GA@RGO sheets with controlled size and improved dispersion. Finally, the well-designed Sn-GA@RGO precursor is converted to the SnO2/C/RGO nanocomposite with significantly optimized microstructure. The SnO2/C/RGO sample delivers an excellent specific capacity of 823.6 mAh·g-1 after 700 cycles at 1000 mA·g-1 in half-cells and 741.3 mAh·g-1 after 50 cycles at 200 mA·g-1 in full-cells for LIBs, a specific capacity of 370.3 mAh·g-1 after 600 cycles at 200 mA·g-1 in half-cells for SIBs. The sample preparation strategy is rationally established by comprehensively understanding the interactions between GO sheets, Sn2+ ions and GA molecules, and the engineered SnO2/C/RGO nanocomposite has good prospects in wider fields.
Collapse
Affiliation(s)
- Longbiao Yu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ruixin Jia
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wenhao Fa
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haoyu Yin
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lian Ying Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Binghui Xu
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
30
|
Huang J, Jiang Z, Wu M, Zhang J, Chen C. Gallic acid exerts protective effects in spinal cord injured rats through modulating microglial polarization. Physiol Behav 2024; 273:114405. [PMID: 37939829 DOI: 10.1016/j.physbeh.2023.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly traumatic injury that causes mechanical damage to the spinal cord. Our study aimed to investigate whether gallic acid has protective effects against SCI injury. METHODS Adult male rats were subjected to contusive spinal cord injuries. For behavioural evaluation, the rats were given gallic acid by i.p. injection at the doses of 10, 50 or 100 mg/kg immediately after SCI once daily for consecutive 28 days. Behavioral tests were used to evaluate locomotor functions, mechanical sensitivity and nerve conduction functions. For biochemical experiments, the rats were randomly divided into three groups: sham group, SCI group and SCI+gallic acid group. The rats in the SCI+gallic acid group were given gallic acid at the dose of 100 mg/kg immediately after SCI once daily for consecutive 14 days. The levels of inflammatory factors were evaluated. RESULTS Gallic acid treatment could improve locomotive and sensory function and reduce the functional impairments in SCI rats. The effects were more effective with increasing gallic acid dose. The levels of M1 markers (inducible nitric oxide synthase and cyclooxygenase-2) were decreased in gallic acid-treated SCI rats, whereas the levels of M2 markers (arginase 1 and cluster of differentiation 206) were increased in response to gallic acid administration. Gallic acid treatment resulted in a significant reduction in pro-inflammatory cytokines and an increase in anti-inflammatory cytokine levels. CONCLUSION Gallic acid enhances the recovery in SCI rats by regulating microglial polarization. The underlying mechanism may involve the promotion of M2 polarization and the suppression of M1 polarization in microglia.
Collapse
Affiliation(s)
- Jianxing Huang
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China; Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Zhixian Jiang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Manzhen Wu
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China
| | - Jinning Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University, No. 248-252 Dong Road, Quanzhou, Fujian 362000, China.
| | - Chunmei Chen
- Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
31
|
Haghshenas M, Firouzabadi N, Akbarizadeh AR, Rashedinia M. Combination of metformin and gallic acid induces autophagy and apoptosis in human breast cancer cells. Res Pharm Sci 2023; 18:663-675. [PMID: 39005566 PMCID: PMC11246111 DOI: 10.4103/1735-5362.389956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/13/2023] [Accepted: 10/28/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Breast cancer is the most common type of cancer and one of the major causes of death among women. Many reports propose gallic acid as a candidate for cancer treatment due to its biological and medicinal effects as well as its antioxidant properties. This study aimed to assess the effects of metformin and gallic acid on human breast cancer (MCF-7) and normal (MCF-10) cell lines. Experimental approach MCF7 and MCF-10 cells were treated with various concentrations of metformin, gallic acid, and their combination. Cell proliferation, reactive oxygen species (ROS), as well as cell cycle arrest were measured. Autophagy induction was assessed using western blot analysis. Findings/Results Metformin and gallic acid did not cause toxicity in normal cells. They had a stronger combined impact on ROS induction. Metformin and Gallic acid resulted in cell cycle arrest in the sub-G1 phase with G1 and S phase arrest, respectively. Increased levels of LC3 and Beclin-1 markers along with decreased P62 markers were observed in cancerous cells, which is consistent with the anticancer properties of metformin and gallic acid. Conclusion and implications The effects of metformin and gallic acid on cancerous cells indicate the positive impact of their combination in treating human breast cancer.
Collapse
Affiliation(s)
- Marziyeh Haghshenas
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Safety Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Adedara IA, Atanda OE, Sant'Anna Monteiro C, Rosemberg DB, Aschner M, Farombi EO, Rocha JBT, Furian AF, Emanuelli T. Cellular and molecular mechanisms of aflatoxin B 1-mediated neurotoxicity: The therapeutic role of natural bioactive compounds. ENVIRONMENTAL RESEARCH 2023; 237:116869. [PMID: 37567382 DOI: 10.1016/j.envres.2023.116869] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Aflatoxin B1 (AFB1), a dietary toxin from the mold Aspergillus species, is well acknowledged to elicit extra-hepatic toxicity in both animals and humans. The neurotoxicity of AFB1 has become a global public health concern. Contemporary research on how AFB1 enters the brain to elicit neuronal dysregulation leading to noxious neurological outcomes has increased greatly in recent years. The current review discusses several neurotoxic outcomes and susceptible targets of AFB1 toxicity at cellular, molecular and genetic levels. Specifically, neurotoxicity studies involving the use of brain homogenates, neuroblastoma cell line IMR-32, human brain microvascular endothelial cells, microglial cells, and astrocytes, as well as mammalian and non-mammalian models to unravel the mechanisms associated with AFB1 exposure are highlighted. Further, some naturally occurring bioactive compounds with compelling therapeutic effects on AFB1-induced neurotoxicity are reviewed. In conclusion, available data from literature highlight AFB1 as a neurotoxin and its possible pathological contribution to neurological disorders. Further mechanistic studies aimed at discovering and developing effective therapeutics for AFB1 neurotoxicity is warranted.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwadarasimi E Atanda
- Human Toxicology Program, Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Camila Sant'Anna Monteiro
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Department of Biochemical and Molecular Biology, Federal University of Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ana Flávia Furian
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
33
|
Zhao H, Wang S, Williamson PTF, Ewing RM, Tang X, Wang J, Wang Y. Integrated network pharmacology and cellular assay reveal the biological mechanisms of Limonium sinense (Girard) Kuntze against Breast cancer. BMC Complement Med Ther 2023; 23:408. [PMID: 37957642 PMCID: PMC10644419 DOI: 10.1186/s12906-023-04233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Limonium Sinense (Girard) Kuntze (L. sinense) has been widely used for the treatment of anaemia, bleeding, cancer, and other disorders in Chinese folk medicine. The aim of this study is to predict the therapeutic effects of L. sinense and investigate the potential mechanisms using integrated network pharmacology methods and in vitro cellular experiments. METHODS The active ingredients of L. sinense were collected from published literature, and the potential targets related to L. sinense were obtained from public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and DisGeNET enrichment analyses were performed to explore the underlying mechanisms. Molecular docking, cellular experiments, RNA-sequencing (RNA-seq) and Gene Expression Omnibus (GEO) datasets were employed to further evaluate the findings. RESULTS A total of 15 active ingredients of L. sinense and their corresponding 389 targets were obtained. KEGG enrichment analysis revealed that the biological effects of L. sinense were primarily associated with "Pathways in cancer". DisGeNET enrichment analysis highlighted the potential role of L. sinense in the treatment of breast cancer. Apigenin within L. sinense showed promising potential against cancer. Cellular experiments demonstrated that the L. sinense ethanol extract (LSE) exhibited a significant growth inhibitory effect on multiple breast cancer cell lines in both 2D and 3D cultures. RNA-seq analysis revealed a potential impact of LSE on breast cancer. Additionally, analysis of GEO datasets verified the significant enrichment of breast cancer and several cancer-related pathways upon treatment with Apigenin in human breast cancer cells. CONCLUSION This study predicts the biological activities of L. sinense and demonstrates the inhibitory effect of LSE on breast cancer cells, highlighting the potential application of L. sinense in cancer treatment.
Collapse
Affiliation(s)
- Hualong Zhao
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Philip T F Williamson
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xinhui Tang
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China
| | - Jialian Wang
- School of Marine and Biological Engineering, Yancheng Teachers' University, Xiwang Road, Yancheng, 224002, PR China.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
34
|
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G, Wen X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 2023; 14:1275859. [PMID: 38022517 PMCID: PMC10644286 DOI: 10.3389/fimmu.2023.1275859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a potent contender in the fight against microbial infections, especially in the context of the rising antibiotic resistance crisis. Recently, there has been significant interest in polyphenolic natural products as potential photosensitizers (PSs) in aPDT, given their unique chemical structures and inherent antimicrobial properties. Polyphenolic natural products, abundant and readily obtainable from natural sources, are generally regarded as safe and highly compatible with the human body. This comprehensive review focuses on the latest developments and future implications of using natural polyphenols as PSs in aPDT. Paramount polyphenolic compounds, including curcumin, hypericin, quercetin, hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are elaborated upon with respect to their structural characteristics, absorption properties, and antimicrobial effects. Furthermore, the aPDT mechanism, specifically its targeted action on microbial cells and biofilms, is also discussed. Polyphenolic natural products demonstrate immense potential as PSs in aPDT, representing a promising alternate approach to counteract antibiotic-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Keyvani‐Ghamsari S, Rahimi M, Khorsandi K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci Nutr 2023; 11:5856-5872. [PMID: 37823155 PMCID: PMC10563697 DOI: 10.1002/fsn3.3615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to antibacterial and anticancer drugs is one of the most important global problems in the treatment field that is constantly expanding and hinders the recovery and survival of patients. Therefore, it is necessary to identify compounds that have antibacterial and anticancer properties or increase the effectiveness of existing drugs. One of these approaches is using natural compounds that have few side effects and are effective. Gallic acid (GA) has been identified as one of the most important plant polyphenols that health-promoting effects in various aspects such as bacterial and viral infections, cancer, inflammatory, neuropsychological, gastrointestinal, and metabolic disease. Various studies have shown that GA inhibits bacterial growth by altering membrane structure, and bacterial metabolism, and inhibits biofilm formation. Also, GA inhibits cancer cell growth by targeting different signaling pathways in apoptosis, increasing reactive oxygen species (ROS) production, targeting the cell cycle, and inhibiting oncogenes and matrix metalloproteinases (MMPs) expression. Due to the powerful function of GA against bacteria and cancer cells. In this review, we describe the latest findings in the field of the sources and chemical properties of GA, its pharmacological properties and bioavailability, the antibacterial and anticancer activities of GA, and its derivatives alone, in combination with other drugs and in the form of nanoformulation. This review can be a comprehensive perspective for scientists to use medicinal compounds containing GA in future research and expand its clinical applications.
Collapse
Affiliation(s)
- Saeedeh Keyvani‐Ghamsari
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Maryam Rahimi
- Clinical Cares and Health Promotion Research Center, Karaj BranchIslamic Azad UniversityKarajIran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research CenterYara Institute, ACECRTehranIran
| |
Collapse
|
36
|
Ashraf GJ, Das P, Sahu R, Nandi G, Paul P, Dua TK. Impact of ultrasound-assisted extraction of polyphenols and caffeine from green tea leaves using high-performance thin-layer chromatography. Biomed Chromatogr 2023; 37:e5698. [PMID: 37403293 DOI: 10.1002/bmc.5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
Tea is the most popular daily drink consumed globally, with a high concentration of caffeine and polyphenols. In this study, the effects of ultrasonic-assisted extraction and quantification of caffeine and polyphenols from green tea were investigated and optimized using 23 -full factorial design and high-performance thin-layer chromatography. Three parameters were optimized to maximize the concentration of caffeine and polyphenols extracted using ultrasound: crude drug-to-solvent ratio (1:10-1:5), temperature (20-40°C), and ultrasonication time (10-30 min). The optimal conditions achieved from the model for tea extraction were as follows: crude drug-to-solvent ratio, 0.199 g/ml; temperature, 39.9°C; and time, 29.9 min; the extractive value was found to be 16.8%. Images from scanning electron microscopy showed that the matrix underwent a physical alteration and cell wall disintegration, which intensified and accelerated the extraction. This process might be simplified using sonication, which results in a higher extractive yield and a significant concentration of caffeine and polyphenols than the traditional approach, with a smaller quantity of solvent and faster analytical times. The result of high-performance thin-layer chromatography analysis proves a significant positive correlation between extractive value and caffeine and polyphenol concentrations.
Collapse
Affiliation(s)
- Gouhar Jahan Ashraf
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Priya Das
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Gouranga Nandi
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling, India
| |
Collapse
|
37
|
Moghaddam AZ, Arabi E, Shakourian-Fard M. SPE of gallic acid and ascorbic acid in fruits using polymerized deep eutectic solvent-modified substrate. Bioanalysis 2023; 15:1221-1233. [PMID: 37724473 DOI: 10.4155/bio-2023-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
Aim: Novel substrates were synthesized by porous and nonporous polymerization of deep eutectic solvents on magnetic silica nanoparticles and introduced for dispersive solid-phase extraction of two analytes. Materials & methods: The prepared substrates were characterized, and an extraction procedure was implemented to select the best substrates and eluent. The central composite design acted to optimize the effects of parameters that influenced the extraction efficiencies. Results: For gallic and ascorbic acids, the limits of detection were obtained at 0.136 and 0.165 μM, respectively, with linear ranges of 0.6-125.2 and 0.5-106.8 μM, respectively. Conclusion: The substrate produced good extractions even after being used three-times and was successfully applied for the analysis of real samples.
Collapse
Affiliation(s)
- Ali Zeraatkar Moghaddam
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, South Khorasan, PO Box 97175/615, Iran
| | - Elahe Arabi
- Department of Chemistry, Faculty of Science, University of Birjand, Birjand, South Khorasan, PO Box 97175/615, Iran
| | - Mehdi Shakourian-Fard
- Department of Chemical Engineering, Birjand University of Technology, Birjand, South Khorasan, PO Box 97175/569, Iran
| |
Collapse
|
38
|
Aldawsari MF, Alkholifi FK, Foudah AI, Alqarni MH, Alam A, Salkini MA, Sweilam SH. Gallic-Acid-Loaded PLGA Nanoparticles: A Promising Transdermal Drug Delivery System with Antioxidant and Antimicrobial Agents. Pharmaceuticals (Basel) 2023; 16:1090. [PMID: 37631005 PMCID: PMC10459217 DOI: 10.3390/ph16081090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The objective of this study was to develop an innovative gallic-acid (GA) drug delivery system that could be administered transdermally, resulting in enhanced therapeutic benefits and minimal negative consequences. The method employed involved the preparation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with GA through nanoprecipitation-denoted GA@PLGANPs. The results reveal that this strategy led to perfectly spherical, homogeneous, and negatively charged particles, which are suitable for administration via skin patches or ointments. A further analysis indicates that these GA@PLGANPs exhibit remarkable antioxidant activity as well as potent antibacterial effects against a diverse range of microorganisms, making them ideal candidates for numerous applications. Additionally, it has been observed that these nanoparticles can effectively mitigate oxidative stress while also significantly inhibiting microbial growth by exerting detrimental effects on bacterial cell walls or membranes. In conclusion, on the basis of the findings presented in this study, there is strong evidence supporting the potential use of GA@PLGANPs as an effective therapy option with reduced side effects compared to conventional drug delivery methods.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Faisal K. Alkholifi
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia;
| | - Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (A.A.); (S.H.S.)
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (A.A.); (S.H.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (A.A.); (S.H.S.)
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (A.A.); (S.H.S.)
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (A.I.F.); (M.H.A.); (A.A.); (S.H.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo-Suez Road, Cairo 11829, Egypt
| |
Collapse
|
39
|
Meira TM, da Costa MM, de Simoni Gouveia JJ, Soares RAN, Tavares MRS, Fernandes AWC, Gouveia GV. Action of crude ethanol extract of Hymenaea martiana leaf, gallic acid, and polypyrrole (PPy) against Aeromonas hydrophila. Braz J Microbiol 2023; 54:1191-1202. [PMID: 36807089 PMCID: PMC10235323 DOI: 10.1007/s42770-023-00922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Pisciculture represents one of the industries with the fastest growth rates worldwide. However, it presents obstacles to its development, such as bacteriosis, which is conventionally treated with antibiotics. The indiscriminate and inappropriate use of antibiotics can lead to bacterial resistance, thus alternatives to the use of antibiotics have been researched. The study aimed to analyze the potential of crude ethanol extract (CEE) from Hymenaea martiana leaf, gallic acid (GA), and polypyrrole (PPy) against Aeromonas hydrophila. Tests were performed to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compounds individually and in synergy (checkerboard) against A. hydrophila and in silico tests between the compounds evaluated. The CEE of H. martiana leaf and PPy were effective against A. hydrophila with MBC results of 3125 μg/mL for the CEE of H. martiana and 125 μg/mL for PPy. Evaluating the GA, a MIC and MBC of 125 μg/mL was obtained. In the interaction tests (checkerboard, using PPy/CEE and PPy/GA), there was a significant reduction in individual introductions. Thus, for the PPy/CEE tests, we had a reduction of MIC/MBC to 1.95 and 781.25 μg/mL, and for the synergy tests between PPy/GA to 7.8125 and 31.125 μg/mL, respectively. The synergy tests are encouraging, and it is possible to verify a decrease of up to 98% in the introduction of PPy, 75% in CEE for H. martiana and 75.1% for GA, when compared to their individual tests. The tests with GA are encouraging due to GA's effectiveness as an antimicrobial agent and high synergy with polypyrrole, both in vitro results and molecular docking experiments showed the actions at the same activation site in A. hydrophila. In vivo tests evaluating isolated components of CEE from H. martiana in synergy with PPy should be performed, to verify the quality of the interactions and the improvement of the immune responses of the animals. It was evidenced that gallic acid, a substance isolated from the extract, tends to have more promising results. This is relevant since the industry has been developing these compounds for different uses, thus providing easier access to the product. Thus, the present study indicates an efficient alternative in the use of bioactive compounds as substitutes for conventional antimicrobials.
Collapse
|
40
|
Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural Gallic Acid and Methyl Gallate Induces Apoptosis in Hela Cells through Regulation of Intrinsic and Extrinsic Protein Expression. Int J Mol Sci 2023; 24:ijms24108495. [PMID: 37239840 DOI: 10.3390/ijms24108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Hasmah Abdullah
- Faculty of Resilience, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ilyana Ismail
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Munirah Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
41
|
da Costa YFG, Llorent-Martínez EJ, Fernandes LS, de Freitas PHS, Scio E, de Sousa OV, Castilho PC, Alves MS. Phenolics Profiling by HPLC-DAD-ESI/MS n of the Scientific Unknown Polygonum hydropiperoides Michx. and Its Antioxidant and Anti-Methicillin-Resistant Staphylococcus aureus Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1606. [PMID: 37111830 PMCID: PMC10143521 DOI: 10.3390/plants12081606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Polygonum hydropiperoides Michx. is an Asian native plant species that is also widely distributed in the Americas. Despite its traditional uses, P. hydropiperoides is scarcely scientifically exploited. This study aimed to chemically characterize and investigate the antioxidant and antibacterial activities of hexane (HE-Ph), ethyl acetate (EAE-Ph), and ethanolic (EE-Ph) extracts from aerial parts of P. hydropiperoides. The chemical characterization was performed through HPLC-DAD-ESI/MSn. The antioxidant activity was assessed by the phosphomolybdenum reducing power, nitric oxide inhibition, and the β-carotene bleaching assays. The antibacterial activity was determined by the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration followed by the classification of the antibacterial effect. Chemical characterization revealed the expressive presence of phenolic acids and flavonoids in EAE-Ph. An increased antioxidant capacity was revealed in EAE-Ph. Regarding antibacterial activity, EAE-Ph showed weak to moderate property against 13 strains tested with MIC values ranging from 625 to 5000 µg/mL, with bactericidal or bacteriostatic effects. Glucogallin and gallic acid stand out as the most relevant bioactive compounds. These results suggest that P. hydropiperoides is a natural source of active substances, supporting this species' traditional use.
Collapse
Affiliation(s)
- Ygor Ferreira Garcia da Costa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Eulogio José Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaén, Spain;
| | - Laura Silva Fernandes
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Pedro Henrique Santos de Freitas
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (P.H.S.d.F.); (E.S.)
| | - Elita Scio
- Department of Biochemistry, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (P.H.S.d.F.); (E.S.)
| | - Orlando Vieira de Sousa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| | - Paula Cristina Castilho
- Madeira Chemical Center, Faculty of Exact and Engineering, University of Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Maria Silvana Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; (Y.F.G.d.C.); (L.S.F.); (O.V.d.S.)
| |
Collapse
|
42
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S, Michalska-Sionkowska M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers-A Review. Foods 2023; 12:foods12061343. [PMID: 36981267 PMCID: PMC10048273 DOI: 10.3390/foods12061343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
This article provides a summarization of present knowledge on the fabrication and characterization of polymeric food packaging materials that can be an alternative to synthetic ones. The review aimed to explore different studies related to the use of phenolic acids as cross-linkers, as well as bioactive additives, to the polymer-based materials upon their application as packaging. This article further discusses additives such as benzoic acid derivatives (sinapic acid, gallic acid, and ellagic acid) and cinnamic acid derivatives (p-coumaric acid, caffeic acid, and ferulic acid). These phenolic acids are mainly used as antibacterial, antifungal, and antioxidant agents. However, their presence also improves the physicochemical properties of materials based on polymers. Future perspectives in polymer food packaging are discussed.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Marta Michalska-Sionkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| |
Collapse
|
43
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
44
|
Velho P, Rebelo CS, Macedo EA. Extraction of Gallic Acid and Ferulic Acid for Application in Hair Supplements. Molecules 2023; 28:molecules28052369. [PMID: 36903614 PMCID: PMC10005415 DOI: 10.3390/molecules28052369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Food supplements based on antioxidants and vitamins are often prescribed to correct inefficiencies in the human diet and delay diseases such as premature aging and alopecia (temporary or permanent hair loss), given the free radical scavenging activity of these biomolecules. By reducing the concentration of reactive oxygen species (ROS), which promote abnormal hair follicle cycling and morphology, follicle inflammation and oxidative stress are reduced, minimising the effects of these health issues. Gallic acid (GA), which is significantly present in gallnuts and in pomegranate root bark, and ferulic acid (FA), commonly found in brown rice and coffee seeds, are very important antioxidants for the preservation of hair colour, strength and growth. In this work, these two secondary phenolic metabolites were successfully extracted in the Aqueous Two-Phase Systems (ATPS) {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)} at 298.15 K and 0.1 MPa, moving towards the application of these ternary systems in extracting antioxidants from biowaste and their a posteriori processing as food supplements for hair fortification. The studied ATPS provided biocompatible and sustainable media for the extraction of gallic acid and ferulic acid, yielding low mass losses (<3%) and contributing to an eco-friendlier production of therapeutics. The most promising results were obtained for ferulic acid, which attained maximum partition coefficients (K) of 15 ± 5 and (3 ± 2) · 101 and maximum extraction efficiencies (E) of (92.7 ± 0.4)% and (96.7 ± 0.4)% for the longest tie-lines (TLL = 69.68 and 77.66 m%) in {ethyl lactate (1) + trisodium citrate (2) + water (3)} and {ethyl lactate (1) + tripotassium citrate (2) + water (3)}, respectively. Moreover, the effect of pH on the UV-Vis absorbance spectra was studied for all the biomolecules to minimise errors in solute quantification. Both GA and FA were found to be stable at the used extractive conditions.
Collapse
Affiliation(s)
- Pedro Velho
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Catarina S. Rebelo
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eugénia A. Macedo
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-220-411-653
| |
Collapse
|
45
|
Sharma N, Vuppu S. Computational Modelling and Molecular Docking of Industrial Leather Enzymes. Mol Biotechnol 2023:10.1007/s12033-023-00689-z. [PMID: 36807269 DOI: 10.1007/s12033-023-00689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023]
Abstract
Leather is one of the widely traded commodities globally. It is a strategically important sector for the economic and industrial development of the country. However, the leather industry is perceived as a highly polluting industry. It produces huge amounts of solid and liquid wastes, and if these wastes are not properly treated and disposed of, then it tends to deteriorate the quality of soil and water, as well as cause emanations of smell and noxious gases into the surrounding. The current paper provides information about industrial leather enzymes, primarily collagenase, tannase, and lecithinase. In this study, enzymes such as collagenase, tannase, and lecithinase had a pivotal role in leather industries and their action in the bioremediation of leather effluents was further analysed and docked with a diverse range of compounds (ligands), with an optimal binding affinity score was determined. All interactions between protein ligands were depicted, which will help us with future research. Furthermore, this method can be tested practically, and other parameters can be studied in the future. Further, applications of enzymes and their hydrolyse by-products have also been highlighted in a variety of industries, including the pharmaceutical, cosmetic, agricultural, medical, and food sectors. Subsequently, this finding provides an innovative and broader goal for various sectors in terms of sustainability, stabilisation, and identifying research gaps that can guide modern industries and research scientists.
Collapse
Affiliation(s)
- Nikita Sharma
- School of Bioscience and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Suneetha Vuppu
- School of Bioscience and Technology, Department of Biotechnology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
46
|
Kutraite I, Malys N. Development and Application of Whole-Cell Biosensors for the Detection of Gallic Acid. ACS Synth Biol 2023; 12:533-543. [PMID: 36724292 PMCID: PMC9942251 DOI: 10.1021/acssynbio.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gallic acid is a prevalent secondary plant metabolite distinguished as one of the most effective free-radical scavengers among phenolic acids. This compound is also known for its cytotoxic, anti-inflammatory, and antimicrobial activities. Bulk quantities of gallic acid are conventionally produced by acid hydrolysis of tannins, a costly and environmentally hazardous process. With the aim to develop more sustainable approaches, microbial bioproduction strategies have been attempted recently. To advance synthetic biology and metabolic engineering of microorganisms for gallic acid production, we characterize here a transcription factor-based inducible system PpGalR/PPP_RS13150 that responds to the extracellular gallic acid in a dose-dependent manner in Pseudomonas putida KT2440. Surprisingly, this compound does not mediate induction when PpGalR/PPP_RS13150 is used in non-native host background. We show that the activation of the inducible system requires gallate dioxygenase activity encoded by galA gene. The 4-oxalomesaconic acid, an intermediate of gallic acid-metabolism, is identified as the effector molecule that interacts with the transcription factor GalR mediating activation of gene expression. Introduction of galA gene along galR enables development of biosensors suitable for detection and monitoring of gallic acid extracellularly using non-native hosts such as E. coli and C. necator. Moreover, the P. putida-based biosensor's applicability is demonstrated by detecting and measuring gallic acid in extracts of Camellia sinensis leaves. This study reports the strategy, which can be applied for developing gallic acid biosensors using bacterial species outside Pseudomonas genus.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, LT-50254Kaunas, Lithuania,
| |
Collapse
|
47
|
Prathima TS, Ahmad MG, Karuppasamy R, Chanda K, Balamurali MM. Investigation on Phyto‐active Constituent of
Clerodendrum paniculatum
as Therapeutic Agent against Viral Diseases. ChemistrySelect 2023. [DOI: 10.1002/slct.202203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T. S. Prathima
- Division of Chemistry School of Advanced Sciences Vellore Institute of Technology Chennai Tamil Nadu India 600027
| | - Md. Gulzar Ahmad
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India 632014
| | - Ramanathan Karuppasamy
- Department of Biotechnology School of BioSciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India 632014
| | - Kaushik Chanda
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India 632014
| | - M. M. Balamurali
- Division of Chemistry School of Advanced Sciences Vellore Institute of Technology Chennai Tamil Nadu India 600027
| |
Collapse
|
48
|
A Concise Profile of Gallic Acid-From Its Natural Sources through Biological Properties and Chemical Methods of Determination. Molecules 2023; 28:molecules28031186. [PMID: 36770851 PMCID: PMC9919014 DOI: 10.3390/molecules28031186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Nature is a valuable source of anti-oxidants that have a health-promoting effect by inhibiting various undesirable changes leading to cell degradation and, consequently, potential disease ailments. One of them is gallic acid which has been used as a healing agent since ancient times. Currently, due to various beneficial properties, this compound is considered to be one of the main phenolic acids of great importance in numerous industries. It is commonly used as a substance protecting against the harmful effects of UV radiation, an astringent in cosmetic preparations, and a preservative in food products. Therefore, gallic acid is now deemed essential for both human health and industry. Increasingly better methods of its isolation and analysis are being developed, and new solutions are being sought to increase its production. This review, presenting a concise characterization of gallic acid, updates the knowledge about its various biological activities and methods used for its isolation and determination, including chromatographic and non-chromatographic methods.
Collapse
|
49
|
Anwar R, Hajardhini P. Antibacterial Activity of Gallic Acid from the Leaves of Altingia excelsa Noronha to Enterococcus faecalis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM : The aim of this study was to determine the antibacterial compound of Altingia excelsa leaves to inhibit the growth of Entrococcus faecalis.
METHODS : The study was true experimental laboratory design. Separating the ethyl acetate extract via their compounds using various chromatographic techniques. Four extracts from A. excelsa leaves was obtained by the maceration method. The highest inhibitory effect was then continued to be isolated until one compound was obtained. Therefore, additional assay to determine chemical structure of compounds was done using UV spectra, infrared (IR), core magnetic resonance (NMR), and comparison with spectra data from the literature. The data were analyzed by ANACOVA assay.
RESULTS : The highest inhibitory effect was the ethyl acetate extract. The chemical structure of compound 1 was identified as an acidic compound 3,4,5 -trihydroxy benzoate, namely as the gallic acid which had inhibitory effect against Enterococcus faecalis. Antibacterial test against Enterococcus faecalis was done to determine inhibitory effect by its compound and MIC values showed of 12.25 µg/mL.
CONCLUSION : Gallic acid as the compound of Altingia excelsa leaves had a strong inhibitory effect to Enterococcus faecalis.
Collapse
|
50
|
Mahomoodally MF, Aumeeruddy MZ, Legoabe LJ, Dall’Acqua S, Zengin G. Plants' bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front Pharmacol 2022; 13:1046523. [PMID: 36588685 PMCID: PMC9800845 DOI: 10.3389/fphar.2022.1046523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a severe inflammatory response to systemic infection and is a threatening cause of death in intensive care units. In recent years, a number of studies have been conducted on the protective effect of natural products against sepsis-induced organ injury. However, a comprehensive review of these studies indicating the mechanisms of action of the bioactive compounds is still lacking. In this context, this review aimed to provide an updated analysis of the mechanism of action of plants' secondary metabolites in the management of sepsis. Scopus, Science Direct, Google Scholar, and PubMed were searched from inception to July 2022. A variety of secondary metabolites were found to be effective in sepsis management including allicin, aloin, cepharanthine, chrysin, curcumin, cyanidin, gallic acid, gingerol, ginsenoside, glycyrrhizin, hesperidin, kaempferol, narciclasine, naringenin, naringin, piperine, quercetin, resveratrol, rosmarinic acid, shogaol, silymarin, sulforaphane, thymoquinone, umbelliferone, and zingerone. The protective effects exerted by these compounds can be ascribed to their antioxidant properties as well as induction of endogenous antioxidant mechanisms, and also via the downregulation of inflammatory response and reduction of biochemical and inflammatory markers of sepsis. These findings suggest that these secondary metabolites could be of potential therapeutic value in the management of sepsis, but human studies must be performed to provide strength to their potential clinical relevance in sepsis-related morbidity and mortality reduction.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam,Faculty of Natural Sciences, Duy Tan University, Da Nang, Vietnam,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | | | - Lesetja Jan Legoabe
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North West University, Potchefstroom, South Africa
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,*Correspondence: Mohamad Fawzi Mahomoodally, ; Stefano Dall’Acqua,
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, Konya, Turkey
| |
Collapse
|