1
|
González-Flores O, Garcia-Juárez M, Tecamachaltzi-Silvarán MB, Lucio RA, Ordoñez RD, Pfaus JG. Cellular and molecular mechanisms of action of ovarian steroid hormones. I: Regulation of central nervous system function. Neurosci Biobehav Rev 2024; 167:105937. [PMID: 39510217 DOI: 10.1016/j.neubiorev.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
The conventional way steroid hormones work through receptors inside cells is widely acknowledged. There are unanswered questions about what happens to the hormone in the end and why there isn't always a strong connection between how much tissue takes up and its biological effects through receptor binding. Steroid hormones can also have non-traditional effects that happen quickly but don't involve entering the cell. Several possible mechanisms for these non-traditional actions include (a) changes in membrane fluidity, (b) steroid hormones acting on receptors on the outer surface of cells, (c) steroid hormones regulating GABAA receptors on cell membranes, and (d) activation of steroid receptors by factors like EGF, IGF-1, and dopamine. Data also suggests that steroid hormones may be inserted into DNA through receptors, acting as transcription factors. These proposed new mechanisms of action should not be seen as challenging the conventional mechanism. Instead, they contribute to a more comprehensive understanding of how hormones work, allowing for rapid, short-term, and prolonged effects to meet the body's physiological needs.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico.
| | - Marcos Garcia-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico
| | | | - Rosa Angélica Lucio
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Raymundo Domínguez Ordoñez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Tlaxcala, Mexico; Licenciatura en Ingeniería Agronómica y Zootecnia, Complejo Regional Centro, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - James G Pfaus
- Center for Sexual Health and Intervention, Czech National Institute of Mental Health, Klecany, Czech Republic; Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Yao X, Gao J, Wang L, Hou X, Ge L, Qin X, Qiu J, Deng X, Li W, Wang J. Cananga oil inhibits Salmonella infection by mediating the homeostasis of purine metabolism and the TCA cycle. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117864. [PMID: 38325671 DOI: 10.1016/j.jep.2024.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Cananga oil (CO) is derived from the flowers of the traditional medicinal plant, the ylang-ylang tree. As a traditional antidepressant, CO is commonly utilized in the treatment of various mental disorders including depression, anxiety, and autism. It is also recognized as an efficient antibacterial insecticide, and has been traditionally utilized to combat malaria and acute inflammatory responses resulting from bacterial infections both in vitro and in vivo. AIM OF THE STUDY The objective of this study is to comprehensively investigate the anti-Salmonella activity and mechanism of CO both in vitro and in vivo, with the expectation of providing feasible strategies for exploring new antimicrobial strategies and developing novel drugs. METHODS The in vitro antibacterial activity of CO was comprehensively analyzed by measuring MIC, MBC, growth curve, time-killing curve, surface motility, biofilm, and Live/dead bacterial staining. The analysis of the chemistry and active ingredients of CO was conducted using GC-MS. To examine the influence of CO on the membrane homeostasis of Salmonella, we conducted utilizing diverse techniques, including ANS, PI, NPN, ONPG, BCECF-AM, DiSC3(5), and scanning electron microscopy (SEM) analysis. In addition, the antibacterial mechanism of CO was analyzed and validated through metabolomics analysis. Finally, a mouse infection model of Salmonella typhimurium was established to evaluate the toxic side effects and therapeutic effects of CO. RESULTS The antibacterial effect of CO is the result of the combined action of the main chemical components within its six (palmitic acid, α-linolenic acid, stearic acid, benzyl benzoate, benzyl acetate, and myristic acid). Furthermore, CO disrupts the balance of purine metabolism and the tricarboxylic acid cycle (TCA cycle) in Salmonella, interfering with redox processes. This leads to energy metabolic disorders and oxidative stress damage within the bacteria, resulting in bacterial shock, enhanced membrane damage, and ultimately bacterial death. It is worth emphasizing that CO exerts an effective protective influence on Salmonella infection in vivo within a non-toxic concentration range. CONCLUSION The outcomes indicate that CO displays remarkable anti-Salmonella activity both in vitro and in vivo. It triggers bacterial death by disrupting the balance of purine metabolism and the TCA cycle, interfering with the redox process, making it a promising anti-Salmonella medication.
Collapse
Affiliation(s)
- Xinyu Yao
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Jinying Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Lanqiao Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xiaoning Hou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Litao Ge
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Xinxin Qin
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Jiazhang Qiu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xuming Deng
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Wei Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Jianfeng Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, Jilin, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Wu M, Mu C, Yang H, Wang Y, Ma P, Li S, Wang Z, Lan T. 8-Br-cGMP suppresses tumor progression through EGFR/PLC γ1 pathway in epithelial ovarian cancer. Mol Biol Rep 2024; 51:140. [PMID: 38236447 DOI: 10.1007/s11033-023-09037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I), a serine/threonine kinase, is important in tumor development. The present study determines that the cGMP/PKG I pathway is essential for promoting cell proliferation and survival in human ovarian cancer cells, whereas cGMP analog has been shown to lead to growth inhibition and apoptosis of various cancer cells. The role of cGMP/PKG I pathway in epithelial ovarian cancer (EOC), therefore, remains controversial. We investigated the effect of cGMP/PKG I pathway and the underlying mechanism in EOC. METHODS AND RESULTS The results showed that exogenous 8-Bromoguanosine-3', 5'-cyclic monophosphate (8-Br-cGMP) (cGMP analog) could antagonize the effects by EGF, including suppressing proliferation, invasion and migration of EOC cells. In vivo, 8-Br-cGMP hampered the growth of the xenograft tumor. Additionally, the expressions of epidermal growth factor receptor (EGFR), matrix metallopeptidase 9 (MMP9), proliferating cell nuclear antigen and Ki67 in xenograft tumor were decreased after 8-Br-cGMP intervention. Further research demonstrated that 8-Br-cGMP decreased the phosphorylation of EGFR (Y992) and downstream proteins phospholipase Cγ1 (PLC γ1) (Y783), calmodulin kinase II (T286) and inhibited cytoplasmic Ca2+ release as well as PKC transferring to cell membrane. It's worth noting that the inhibition was 8-Br-cGMP dose-dependent and 8-Br-cGMP showed similar inhibitory effect on EOC cells compared with U-73122, a specific inhibitor of PLC γ1. CONCLUSIONS The activation of endogenous PKG I by addition of exogenous 8-Br-cGMP could inhibit EOC development probably via EGFR/PLCγ1 signaling pathway. 8-Br-cGMP/PKG I provide a new insight and strategy for EOC treatment.
Collapse
Affiliation(s)
- Min Wu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chunyan Mu
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Huiwen Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yue Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ping Ma
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shibao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongcheng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Ting Lan
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhang ML, Zhao X, Li WX, Wang XY, Niu M, Zhang H, Chen YL, Kong DX, Gao Y, Guo YM, Bai ZF, Zhao YL, Tang JF, Xiao XH. Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study. Chin Med 2023; 18:102. [PMID: 37592331 PMCID: PMC10433582 DOI: 10.1186/s13020-023-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Xia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-Ming Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Ling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Jin-Fa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Mutual Protein-Ligand Conformational Selection Drives cGMP vs. cAMP Selectivity in Protein Kinase G. J Mol Biol 2021; 433:167202. [PMID: 34400180 DOI: 10.1016/j.jmb.2021.167202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Protein kinase G (PKG) is a major receptor of cGMP, and controls signaling pathways distinct from those regulated by cAMP. However, the contributions of the two substituents that differentiate cGMP from cAMP (i.e. 6-oxo and 2-NH2) to the cGMP-versus-cAMP selectivity of PKG remain unclear. Here, using NMR to map how binding affinity and dynamics of the protein and ligand vary along a ligand double-substitution cycle, we show that the contributions of the two substituents to binding affinity are surprisingly non-additive. Such non-additivity stems primarily from mutual protein-ligand conformational selection, whereby not only does the ligand select for a preferred protein conformation upon binding, but also, the protein selects for a preferred ligand conformation. The 6-oxo substituent mainly controls the conformational equilibrium of the bound protein, while the 2-NH2 substituent primarily controls the conformational equilibrium of the unbound ligand (i.e. syn versus anti). Therefore, understanding the conformational dynamics of both the protein and ligand is essential to explain the cGMP-versus-cAMP selectivity of PKG.
Collapse
|
7
|
Nakao S, Kojima K, Sudo Y. Microbial Rhodopsins as Multi-functional Photoreactive Membrane Proteins for Optogenetics. Biol Pharm Bull 2021; 44:1357-1363. [PMID: 34602542 DOI: 10.1248/bpb.b21-00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In life science research, methods to control biological activities with stimuli such as light, heat, pressure and chemicals have been widely utilized to understand their molecular mechanisms. The knowledge obtained by those methods has built a basis for the development of medicinal products. Among those various stimuli, light has the advantage of a high spatiotemporal resolution that allows for the precise control of biological activities. Photoactive membrane protein rhodopsins from microorganisms (called microbial rhodopsins) absorb visible light and that light absorption triggers the trans-cis photoisomerization of the chromophore retinal, leading to various functions such as ion pumps, ion channels, transcriptional regulators and enzymes. In addition to their biological significance, microbial rhodopsins are widely utilized as fundamental molecular tools for optogenetics, a method to control biological activities by light. In this review, we briefly introduce the molecular basis of representative rhodopsin molecules and their applications for optogenetics. Based on those examples, we discuss the high potential of rhodopsin-based optogenetics tools for basic and clinical research in pharmaceutical sciences.
Collapse
Affiliation(s)
- Shin Nakao
- Division of Pharmaceutical Sciences, Okayama University
| | - Keiichi Kojima
- Division of Pharmaceutical Sciences, Okayama University.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuki Sudo
- Division of Pharmaceutical Sciences, Okayama University.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
8
|
Kawamatawong T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front Pharmacol 2021; 12:518345. [PMID: 34434103 PMCID: PMC8381854 DOI: 10.3389/fphar.2021.518345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Selective phosphodiesterase (PDE) inhibitors are a class of nonsteroid anti-inflammatory drugs for treating chronic inflammatory diseases. Modulation of systemic and airway inflammation is their pivotal mechanism of action. Furthermore, PDE inhibitors modulate cough reflex and inhibit airway mucus secretion. Roflumilast, a selective PDE4 inhibitor, has been extensively studied for the efficacy and safety in chronic obstructive pulmonary disease (COPD) patients. According to the mechanisms of action, the potential roles of PDE inhibitors in treating chronic respiratory diseases including severe asthma, asthma-COPD overlap (ACO), noncystic fibrosis bronchiectasis, and chronic cough are discussed. Since roflumilast inhibits airway eosinophilia and neutrophilia in COPD patients, it reduces COPD exacerbations in the presence of chronic bronchitis in addition to baseline therapies. The clinical studies in asthma patients have shown the comparable efficacy of roflumilast to inhaled corticosteroids for improving lung function. However, the clinical trials of roflumilast in severe asthma have been limited. Although ACO is common and is also associated with poor outcomes, there is no clinical trial regarding its efficacy in patients with ACO despite a promising role in reducing COPD exacerbation. Since mucus hypersecretion is a result of neutrophil secretagogue in patients with chronic bronchitis, experimental studies have shown that PDE4s are regulators of the cystic fibrosis transmembrane conductance regulator (CFTR) in human airway epithelial cells. Besides, goblet cell hyperplasia is associated with an increased expression of PDE. Bronchiectasis and chronic bronchitis are considered neutrophilic airway diseases presenting with mucus hypersecretion. They commonly coexist and thus lead to severe disease. The role of roflumilast in noncystic fibrosis bronchiectasis is under investigation in clinical trials. Lastly, PDE inhibitors have been shown modulating cough from bronchodilation, suppressing transient receptors potential (TRP), and anti-inflammatory properties. Hence, there is the potential role of the drug in the management of unexplained cough. However, clinical trials for examining its antitussive efficacy are pivotal. In conclusion, selective PDE4 inhibitors may be potential treatment options for chronic respiratory diseases apart from COPD due to their promising mechanisms of action.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Minor Allele Frequencies and Molecular Pathways Differences for SNPs Associated with Amyotrophic Lateral Sclerosis in Subjects Participating in the UKBB and 1000 Genomes Project. J Clin Med 2021; 10:jcm10153394. [PMID: 34362180 PMCID: PMC8348602 DOI: 10.3390/jcm10153394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease with a late onset and is characterized by the progressive loss of muscular and respiratory functions. Although recent studies have partially elucidated ALS's mechanisms, many questions remain such as what the most important molecular pathways involved in ALS are and why there is such a large difference in ALS onset among different populations. In this study, we addressed this issue with a bioinformatics approach, using the United Kingdom Biobank (UKBB) and the European 1000 Genomes Project (1KG) in order to analyze the most ALS-representative single nucleotide polymorphisms (SNPs) that differ for minor allele frequency (MAF) between the United Kingdom population and some European populations including Finnish in Finland, Iberian population in Spain, and Tuscans in Italy. We found 84 SNPs associated with 46 genes that are involved in different pathways including: "Ca2+ activated K+ channels", "cGMP effects", "Nitric oxide stimulates guanylate cyclase", "Proton/oligopeptide cotransporters", and "Signaling by MAPK mutants". In addition, we revealed that 83% of the 84 SNPs can alter transcription factor-motives binding sites of 224 genes implicated in "Regulation of beta-cell development", "Transcription-al regulation by RUNX3", "Transcriptional regulation of pluripotent stem cells", and "FOXO-mediated transcription of cell death genes". In conclusion, the genes and pathways analyzed could explain the cause of the difference of ALS onset.
Collapse
|
10
|
Targeting protein phosphatase PP2A for cancer therapy: development of allosteric pharmaceutical agents. Clin Sci (Lond) 2021; 135:1545-1556. [PMID: 34192314 DOI: 10.1042/cs20201367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 01/26/2023]
Abstract
Tumor initiation is driven by oncogenes that activate signaling networks for cell proliferation and survival involving protein phosphorylation. Protein kinases in these pathways have proven to be effective targets for pharmaceutical inhibitors that have progressed to the clinic to treat various cancers. Here, we offer a narrative about the development of small molecule modulators of the protein Ser/Thr phosphatase 2A (PP2A) to reduce the activation of cell proliferation and survival pathways. These novel drugs promote the assembly of select heterotrimeric forms of PP2A that act to limit cell proliferation. We discuss the potential for the near-term translation of this approach to the clinic for cancer and other human diseases.
Collapse
|
11
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
12
|
Weigand I, Ronchi CL, Vanselow JT, Bathon K, Lenz K, Herterich S, Schlosser A, Kroiss M, Fassnacht M, Calebiro D, Sbiera S. PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser 114 phosphorylation. SCIENCE ADVANCES 2021; 7:7/8/eabd4176. [PMID: 33608270 PMCID: PMC7895437 DOI: 10.1126/sciadv.abd4176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser114 phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.
Collapse
Affiliation(s)
- Isabel Weigand
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Institute of Metabolism and System Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Edgbaston, Birmingham B15 2TT, UK
| | - Jens T Vanselow
- Rudolf-Virchow-Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), 10589 Berlin, Germany
| | - Kerstin Bathon
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97080 Würzburg, Germany
| | - Kerstin Lenz
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany.
- Central Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Davide Calebiro
- Institute of Metabolism and System Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, 97080 Würzburg, Germany
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham B15 2TT, UK
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, 97080 Würzburg, Germany.
- Central Laboratory, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
13
|
Kwiatkowski M, Wong A, Kozakiewicz A, Gehring C, Jaworski K. A tandem motif-based and structural approach can identify hidden functional phosphodiesterases. Comput Struct Biotechnol J 2021; 19:970-975. [PMID: 33613864 PMCID: PMC7873575 DOI: 10.1016/j.csbj.2021.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic nucleotide monophosphates (cNMPs) are increasingly recognized as essential signaling molecules governing many physiological and developmental processes in prokaryotes and eukaryotes. Degradation of cNMPs is as important as their generation because it offers the capability for transient and dynamic cellular level regulation but unlike their generating enzymes, the degrading enzymes, cyclic nucleotide phosphodiesterases (PDEs) are somewhat elusive in higher plants. Based on sequence analysis and structural properties of canonical PDE catalytic centers, we have developed a consensus sequence search motif and used it to identify candidate PDEs. One of these is an Arabidopsis thaliana K+-Uptake Permease (AtKUP5). Structural and molecular docking analysis revealed that the identified PDE domain occupies the C-terminal of this protein forming a solvent-exposed distinctive pocket that can spatially accommodate the cyclic adenosine monophosphate (cAMP) substrate and importantly, cAMP assumes a binding pose that is favorable for interactions with the key amino acids in the consensus motif. PDE activity was confirmed by the sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Notably, this activity was stimulated by the Ca2+/CaM complex, the binding of which to the PDE center was confirmed by surface plasmon resonance (SPR). Since AtKUP5 also has adenylate cyclase (AC) activity that is essential for K+ transport, we propose that this dual moonlighting AC-PDE architecture, offers modulatory roles that afford intricate intramolecular regulation of cAMP levels thereby enabling fine-tuning of cAMP signaling in K+ homeostasis.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, China
| | - Anna Kozakiewicz
- Department of Biomedical and Polymer Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina St. 7, 87-100 Toruń, Poland
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
- Corresponding author.
| |
Collapse
|
14
|
Latest Insights into the Pathophysiology of Migraine: the ATP-Sensitive Potassium Channels. Curr Pain Headache Rep 2020; 24:77. [DOI: 10.1007/s11916-020-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
|
15
|
Fusi F, Mugnai P, Trezza A, Spiga O, Sgaragli G. Fine tuning by protein kinases of Ca V1.2 channel current in rat tail artery myocytes. Biochem Pharmacol 2020; 182:114263. [PMID: 33035505 DOI: 10.1016/j.bcp.2020.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Seventeen compounds, rather selective, direct or indirect inhibitors and activators of PKA, PKG, and PKC, were analysed for effects on vascular CaV1.2 channel current (ICa1.2) by using the patch-clamp technique in single rat tail artery myocytes. The aim was to investigate how PKs regulate ICa1.2 and disclose any unexpected modulation of CaV1.2 channel function by these agents. The cAMP analogues 8-Br-cAMP and 6-Bnz-cAMP partially reduced ICa1.2 in dialysed cells, while weakly increasing it under the perforated configuration. The β-adrenoceptor agonist isoproterenol and the adenylate cyclase activator forskolin concentration-dependently increased ICa1.2; this effect was reversed by PKA inhibitors H-89 and KT5720, but not by PKI 6-22. The cGMP analogue 8-Br-cGMP, similarly to the NO-donor SNP, moderately reduced ICa1.2, this effect being reversed to a slight stimulation under the perforated configuration. Among PKG inhibitors, Rp-8-Br-PET-cGMPS decreased current amplitude in a concentration-dependent manner while Rp-8-Br-cGMPS was ineffective. The non-specific phosphodiesterase inhibitor IBMX increased ICa1.2, while H-89, KT5720, and PKI 6-22 antagonized this effect. The PKC activator PMA, but not the diacylglycerol analogue OAG, stimulated ICa1.2 in a concentration-dependent manner; conversely, the PKCα inhibitor Gö6976 markedly reduced basal ICa1.2 and, similarly to the PKCδ (rottlerin) and PKCε translocation inhibitors antagonised PMA-induced current stimulation. The ensemble of findings indicates that the stimulation of cAMP/PKA, in spite of the paradoxical effect of both 8-Br-cAMP and 6-Bnz-cAMP, or PKC pathways enhanced, while that of cGMP/PKG weakly inhibited ICa1.2 in rat tail artery myocytes. Since Rp-8-Br-PET-cGMPS and Gö6976 appeared to block directly CaV1.2 channel, their docking to the channel protein was investigated. Both compounds appeared to bind the α1C subunit in a region involved in CaV1.2 channel inactivation, forming an interaction network comparable to that of CaV1.2 channel blockers. Therefore, caution should accompany the use of these agents as pharmacological tools to elucidate the mechanism of action of drugs on vascular preparations.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
16
|
Qiu J, McGaughey SA, Groszmann M, Tyerman SD, Byrt CS. Phosphorylation influences water and ion channel function of AtPIP2;1. PLANT, CELL & ENVIRONMENT 2020; 43:2428-2442. [PMID: 32678928 DOI: 10.1111/pce.13851] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.
Collapse
Affiliation(s)
- Jiaen Qiu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Samantha A McGaughey
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Michael Groszmann
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
| | - Caitlin S Byrt
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
17
|
Ostberg NP, Zafar MA, Ziganshin BA, Elefteriades JA. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules 2020; 10:E182. [PMID: 31991693 PMCID: PMC7072177 DOI: 10.3390/biom10020182] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) affects many patients globally and has high mortality rates if undetected. Once thought to be solely a degenerative disease that afflicted the aorta due to high pressure and biomechanical stress, extensive investigation of the heritability and natural history of TAAD has shown a clear genetic basis for the disease. Here, we review both the cellular mechanisms and clinical manifestations of syndromic and non-syndromic TAAD. We particularly focus on genes that have been linked to dissection at diameters <5.0 cm, the current lower bound for surgical intervention. Genetic screening tests to identify patients with TAAD associated mutations that place them at high risk for dissection are also discussed.
Collapse
Affiliation(s)
- Nicolai P. Ostberg
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
- Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, 420012 Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
18
|
Shvedova M, Litvak MM, Roberts JD, Fukumura D, Suzuki T, Şencan İ, Li G, Reventun P, Buys ES, Kim HH, Sakadžić S, Ayata C, Huang PL, Feil R, Atochin DN. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. J Cereb Blood Flow Metab 2019; 39:2379-2391. [PMID: 31423931 PMCID: PMC6893979 DOI: 10.1177/0271678x19870583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/18/2019] [Indexed: 11/15/2022]
Abstract
Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Maxim M Litvak
- Tomsk Polytechnic University, RASA Center, Tomsk, Russian Federation
| | - Jesse D Roberts
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Dai Fukumura
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Tomoaki Suzuki
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - İkbal Şencan
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Ge Li
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Reventun
- Department of Biology Systems, School of Medicine, University of Alcalá, Madrid, Spain
| | - Emmanuel S Buys
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paul L Huang
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
19
|
Active PKG II inhibited the growth and migration of ovarian cancer cells through blocking Raf/MEK and PI3K/Akt signaling pathways. Biosci Rep 2019; 39:BSR20190405. [PMID: 31350342 PMCID: PMC6692568 DOI: 10.1042/bsr20190405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Despite advances in chemotherapy, ovarian cancer (OC) is still the most lethal gynecologic malignancy. So, it is imperative to explore its mechanism and find novel targets to improve the outcome. Type II cyclic guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG II) has been recently reported to inhibit proliferation and metastasis in several tumors. The present study is to clarify the effect of PKG II combined with l-arginine (l-Arg) on OC cells. SKOV3 and A2780 cells were infected with adenovirus coding cDNA of PKG II to increase PKG II expression and l-Arg was applied to activate this kinase. CCK8 assay, Transwell migration and TUNEL assay were applied to detect the proliferation, migration and apoptosis of the OC cells, respectively. Western blotting was used to detect the level of total and phosphorylated proteins. Our results showed that co-treatment with PKG II and l-Arg inhibited EGF-induced proliferation and the expression of Proliferating Cell Nuclear Antigen (PCNA), Cyclin E and N-Cadherin, whereas up-regulated the expression of E-Cadherin, abolished the anti-apoptotic effect of EGF, prevented the process of epithelial-to-mesenchymal transition (EMT) as well as blocked EGF-triggered Raf-MEK and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways. Our results suggested that PKG II activated by l-Arg could inhibit proliferation and migration and promote the apoptosis of OC cells. Based on the above results and our previous data, it is speculated that PKG II is an inhibitor of cancer with extensive effects.
Collapse
|
20
|
Changes in Gastric Smooth Muscle Cell Contraction during Pregnancy: Effect of Estrogen. J Pregnancy 2019; 2019:4302309. [PMID: 31080672 PMCID: PMC6475543 DOI: 10.1155/2019/4302309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
It is well known that pregnancy is associated with frequent gastrointestinal (GI) disorders and symptoms. Moreover, previous reports have shown that estrogen, which changes in levels during pregnancy, participates in the regulation of GI motility and is involved in the pathogenesis of various functional disorders in the stomach. The aim of the current study was to explore the changes in the expression of estrogen receptors (ERs) and examine the effect of estrogen on nitric oxide- (NO-) cyclic guanosine monophosphate (cGMP) pathway and thus relaxation in gastric smooth muscle cells (GSMC) during pregnancy. Single GSMC from early-pregnant and late-pregnant Sprague-Dawley rats were used. Protein and mRNA expression levels of ERs were measured via specifically designed enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), respectively. NO and cGMP levels were measured via specifically designed ELISA kits. Effect of estrogen on acetylcholine- (ACh-) induced contraction of single GSMC was measured via scanning micrometry in the presence or absence of the NO synthase inhibitor, N-nitro-L-arginine (L-NNA), or guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Estrogen increased both NO and cGMP levels and their levels were greater in early compared to late pregnancy. Expression of ERs was greater in early compared to late pregnancy. ACh induced greater contraction of GSMC in late pregnancy compared to early pregnancy. Estrogen inhibited ACh-induced contraction in both periods of pregnancy. Importantly, pretreatment of GSMC with either L-NNA or ODQ abolished estrogen inhibitory action on muscle contraction. In conclusion, GSMC contractile behavior undergoes drastic changes in response to estrogen during pregnancy and this might explain some of the pregnancy-associated gastric disorders.
Collapse
|
21
|
Ntontsi P, Detta A, Bakakos P, Loukides S, Hillas G. Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expert Opin Investig Drugs 2019; 28:261-266. [PMID: 30678501 DOI: 10.1080/13543784.2019.1571582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Severe, inadequately-controlled asthma remains a clinical challenge. For this reason, clinical trials and preclinical experimental studies on novel agents as an add-on therapies continue emerge. Phosphodiesterases (PDEs) are enzymes that regulate the function of immune cells by hydrolyzing cyclic guanosine monophosphate/cGMP and cyclic adenosine monophosphate/cAMP. PDEs are divided into subfamilies [PDE3, PDE4, PDE5 and PDE7] which are mainly found in the respiratory tract. Inhibitors of PDEs have already been approved for COPD and pulmonary hypertension. AREAS COVERED The role of PDE inhibitors in asthma treatment and the possible mechanism of action via their anti-inflammatory and/or bronchodilating effect are discussed. EXPERT OPINION Novel PDE inhibitors exhibiting fewer adverse events may have a role as add-on therapies in asthma treatment in the future. More clinical trials are necessary to prove their efficacy and evaluate their safety profile before approval by regulatory bodies is granted.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Aggeliki Detta
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Petros Bakakos
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Stelios Loukides
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Georgios Hillas
- c 5th Pulmonary Department , "Sotiria" Chest Diseases Hospital , Athens , Greece
| |
Collapse
|
22
|
Al-Shboul OA, Mustafa AG, Omar AA, Al-Dwairi AN, Alqudah MA, Nazzal MS, Alfaqih MA, Al-Hader RA. Effect of progesterone on nitric oxide/cyclic guanosine monophosphate signaling and contraction in gastric smooth muscle cells. Biomed Rep 2018; 9:511-516. [PMID: 30546879 DOI: 10.3892/br.2018.1161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/10/2018] [Indexed: 01/22/2023] Open
Abstract
Previous studies have shown that progesterone could inhibit muscle contraction in various sites of the gastrointestinal tract. The underlying mechanisms responsible for these inhibitory effects of progesterone are not fully known. The aim of the current study was to investigate the effect of progesterone on the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway and muscle contraction in the stomach. Single gastric smooth muscle cells from female Sprague-Dawley rats were used. The expression of progesterone receptor (PR) mRNA was analyzed by reverse transcription polymerase chain reaction. NO and cGMP levels were measured via specific ELISAs. Acetylcholine (ACh)-induced contraction of single gastric muscle cells preincubated with progesterone was measured via scanning micrometry in the presence or absence of the NO synthase inhibitor, Nω-Nitro-L-arginine (L-NNA), or guanylyl cyclase inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and expressed as percent shortening from resting cell length. PR expression was detected in the stomach muscle cells. Progesterone inhibited ACh-induced gastric muscle cell contraction. Furthermore, progesterone increased NO and cGMP levels in single gastric muscle cells. Most notably, pre-incubation of muscle cells with either L-NNA or ODQ abolished the inhibitory action of progesterone on muscle contraction. These present observations suggest that progesterone promotes muscle cell relaxation in the stomach potentially via the NO/cGMP pathway.
Collapse
Affiliation(s)
- Othman A Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Amal Abu Omar
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed N Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad A Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mona S Nazzal
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rami A Al-Hader
- Department of Physiology and Biochemistry, Princess Basma Teaching Hospital, Faculty of Medicine, Jordan University of Science and Technology, Irbid 21110, Jordan
| |
Collapse
|
23
|
Lai B, Li M, Hu WL, Li W, Gan WB. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning. Dev Neurobiol 2018; 78:859-872. [PMID: 30022611 PMCID: PMC6158093 DOI: 10.1002/dneu.22623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two-photon microscopy to investigate the effect of a selective PDE9 inhibitor PF-04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF-04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF-04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF-04449613 treatment over 1-7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF-04449613 increases synaptic calcium activity and learning-dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Baoling Lai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Miao Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wan-Ling Hu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wei Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wen-Biao Gan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
24
|
Weigand I. Pathogenesis of benign unilateral adrenocortical tumors: focus on cAMP/PKA pathway. MINERVA ENDOCRINOL 2018; 44:25-32. [PMID: 29963826 DOI: 10.23736/s0391-1977.18.02874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatic mutations affecting genes in the cAMP/PKA (protein kinase A) signaling pathway have been described as causative for the pathogenesis of benign unilateral adrenocortical adenomas associated with cortisol over secretion. These include predominantly somatic mutations in the PRKACA gene which encodes the catalytic subunit α of PKA. In addition, mutations in the GNAS gene, coding for the stimulatory G protein α, have been observed in approximately 10% of cortisol producing adenomas (CPA). The mutations render PKA signaling constitutively active and are therefore involved in cortisol over secretion of these tumors. Despite the prominent role of the cAMP/PKA pathway in the pathogenesis of unilateral CPA, also mutations in the CTNNB1 gene, encoding β-catenin, were identified in CPA. However, mutations in β-catenin are not limited to CPA and are not associated with cortisol secretion since they were predominantly found in endocrine-inactive adenomas (EIA) and might hence contribute to tumorigenesis in adrenocortical tissues. In this review, recent findings in the pathogenesis of benign adrenocortical tumors with a particular focus on the cAMP/PKA signaling pathway are summarized.
Collapse
Affiliation(s)
- Isabel Weigand
- Unit of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany -
| |
Collapse
|
25
|
Chen T, Ren C, Jiang X, Zhang L, Li H, Huang W, Hu C. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades. PLoS One 2018; 13:e0194459. [PMID: 29590153 PMCID: PMC5874034 DOI: 10.1371/journal.pone.0194459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/02/2018] [Indexed: 01/15/2023] Open
Abstract
Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lvping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- * E-mail: (CH); (WH)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB); Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- * E-mail: (CH); (WH)
| |
Collapse
|
26
|
Adthapanyawanich K, Nakata H, Iseki S. Expression and localization of phosphodiesterase 2A in the submandibular gland of mice. Arch Oral Biol 2018; 90:91-99. [PMID: 29597062 DOI: 10.1016/j.archoralbio.2018.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Phosphodiesterases comprise a superfamily of enzymes that hydrolyze and inactivate cyclic AMP (cAMP) and/or cyclic GMP (cGMP), thereby regulating cellular signaling mechanisms. We herein investigated the production of phosphodiesterase 2A (PDE2A) in the mouse submandibular gland. DESIGN The expression and localization of the mRNA and protein of PDE2A were examined in the submandibular gland of male and female mice using the reverse transcription-polymerase chain reaction, in situ hybridization, Western blotting, and immunohistochemistry. RESULTS Among the different species of phosphodiesterases examined in the mouse submandibular gland, PDE2A, which hydrolyzes cAMP and cGMP, exhibited a marked sexual difference; it was more abundantly expressed in females. The mRNA and protein signals for PDE2A were intense in all acinar and duct portions, including the striated duct, in females, whereas in males, these signals were markedly weaker in the granular convoluted duct, the counterpart of the female striated duct, than in acini and other duct portions. Furthermore, the signals for protein kinases A and G1, which are intracellular effectors of cAMP and cGMP, respectively, were markedly weaker in the male granular convoluted duct. CONCLUSIONS These results suggest that cyclic nucleotide-dependent signaling mechanisms function poorly in granular convoluted duct cells in the mouse submandibular gland.
Collapse
Affiliation(s)
- Kannika Adthapanyawanich
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Department of Anatomy, School of Medicine, Naresuan University, Pitsanulok, Thailand
| | - Hiroki Nakata
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shoichi Iseki
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
27
|
Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals. Int J Mol Sci 2018; 19:ijms19030881. [PMID: 29547542 PMCID: PMC5877742 DOI: 10.3390/ijms19030881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022] Open
Abstract
Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Na⁺/H⁺ exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.
Collapse
|
28
|
Tanwar M, Sharma K, Moar P, Kateriya S. Biochemical Characterization of the Engineered Soluble Photoactivated Guanylate Cyclases from Microbes Expands Optogenetic Tools. Appl Biochem Biotechnol 2018; 185:1014-1028. [PMID: 29404907 DOI: 10.1007/s12010-018-2710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023]
Abstract
Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Komal Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Preeti Moar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
29
|
Wu Y, Liu Y, Cai Z, Qin H, Li H, Su W, Wang Y, Qian H, Jiang L, Wu M, Pang J, Chen Y. Protein Kinases Type II (PKG II) Combined with L-Arginine Significantly Ameliorated Xenograft Tumor Development: Is L-Arginine a Potential Alternative in PKG II Activation? Med Sci Monit 2018; 24:736-742. [PMID: 29401205 PMCID: PMC5810367 DOI: 10.12659/msm.906213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The mammalian cyclic guanosine monophosphate (cGMP)-dependent protein kinases type II (PKG II) plays critical physiological or pathological functions in different tissues. However, the biological effects of PKG II are dependent on cGMP. Published data indicated that L-arginine (L-Arg) promoted NO production, NO can activate soluble guanylate cyclase (sGC), and catalyzes guanosine triphosphate (GTP) into cGMP, which suggested L-Arg could activate PKG II. Therefore, the present work was performed to address: (i) whether L-Arg could be a potential alternative in PKG II activation, and (ii) whether L-Arg also contributes to PKG II against cancer. MATERIAL AND METHODS Nude BALB/c mice were inoculated with human MCF-7, HepG2, and SW480 cell lines via subcutaneous (s.c.) injecting. After 7 days of inoculation, Ad-PKG II was injected into the cancer tissues every 4 days, and the next day 10 μmol/mouse L-Arg was administered. Western blotting and immunohistochemistry were used to assess protein expression. RESULTS Our results demonstrated that L-Arg significantly activated PKG II and effectively ameliorated xenograft tumor development through inhibiting cancer growth, angiogenesis, and metastasis, which was partially dependent on blocking of epidermal growth factor receptor (EGFR) activity, as well as downstream signaling pathways such as Erk1/2. CONCLUSIONS Our results provide an exciting new insight: L-Arg is a potential alternative to PKG II activation.
Collapse
Affiliation(s)
- Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland).,The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ying Liu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Zhensheng Cai
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Huijuan Qin
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Hongfan Li
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Wenbin Su
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ying Wang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Hai Qian
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Lu Jiang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Min Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Ji Pang
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| | - Yongchang Chen
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China (mainland)
| |
Collapse
|
30
|
Abstract
Lymphangioleiomyomatosis (LAM), a rare disease of women, is associated with cystic lung destruction resulting from the proliferation of abnormal smooth muscle-like LAM cells with mutations in the tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2 The mutant genes and encoded proteins are responsible for activation of the mechanistic target of rapamycin (mTOR), which is inhibited by sirolimus (rapamycin), a drug used to treat LAM. Patients who have LAM may also be treated with bronchodilators for asthma-like symptoms due to LAM. We observed stabilization of forced expiratory volume in 1 s over time in patients receiving sirolimus and long-acting beta-agonists with short-acting rescue inhalers compared with patients receiving only sirolimus. Because beta-agonists increase cAMP and PKA activity, we investigated effects of PKA activation on the mTOR pathway. Human skin TSC2+/- fibroblasts or LAM lung cells incubated short-term with isoproterenol (beta-agonist) showed a sirolimus-independent increase in phosphorylation of S6, a downstream effector of the mTOR pathway, and increased cell growth. Cells incubated long-term with isoproterenol, which may lead to beta-adrenergic receptor desensitization, did not show increased S6 phosphorylation. Inhibition of PKA blocked the isoproterenol effect on S6 phosphorylation. Thus, activation of PKA by beta-agonists increased phospho-S6 independent of mTOR, an effect abrogated by beta-agonist-driven receptor desensitization. In agreement, retrospective clinical data from patients with LAM suggested that a combination of bronchodilators in conjunction with sirolimus may be preferable to sirolimus alone for stabilization of pulmonary function.
Collapse
|
31
|
Abstract
The cyclic nucleotides cAMP and cGMP are well-characterized second messenger molecules regulating many important intracellular processes, such as differentiation, proliferation, and apoptosis. The latter is a highly regulated process of programmed cell death wherein several regulatory proteins, like those belonging to the Bcl-2 family, are involved. The initiation of apoptosis is regulated by three different pathways: the intrinsic or mitochondrial, the extrinsic, and the ER stress pathway. Recently, it has been published that the pyrimidine cyclic nucleotides cCMP and cUMP also function as second messenger molecules, and additionally have an effect on apoptosis signaling pathways. cCMP induced PKA-independent apoptosis via the intrinsic and ER-stress pathway in S49 mouse lymphoma cells, and cCMP as well as cUMP induced apoptosis in human HEL cells via the intrinsic pathway. However, in human K-562 cells, which are known to be multidrug-resistant, cCMP and cUMP had no effect. Summarized in this chapter are the initiation of apoptosis by cCMP and cUMP regarding the various apoptotic pathways, the enzymes involved in apoptosis, as well as the most relevant methods for the detection and examination of apoptosis and the corresponding signaling pathways.
Collapse
|
32
|
VanSchouwen B, Melacini G. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides. Handb Exp Pharmacol 2017; 238:123-133. [PMID: 28181007 DOI: 10.1007/164_2016_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1. .,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1.
| |
Collapse
|
33
|
Chu S, Narayan VP, Sung MK, Park T. Piperonal attenuates visceral adiposity in mice fed a high-fat diet: potential involvement of the adenylate cyclase-protein kinase A dependent pathway. Mol Nutr Food Res 2017; 61. [PMID: 28699236 DOI: 10.1002/mnfr.201601124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/23/2017] [Accepted: 07/06/2017] [Indexed: 12/15/2022]
Abstract
SCOPE Piperonal is an aromatic compound found in vanilla and has a floral odor resembling vanillin. This study was aimed to test whether piperonal attenuates visceral adiposity induced by a high-fat diet (HFD) in mice and to explore the underlying molecular mechanisms. METHODS AND RESULTS Male C57BL/6N mice were fed a normal diet, HFD, or 0.05% piperonal-supplemented HFD (PSD) for 10 weeks. PSD-fed mice showed attenuation of body weight gain, total visceral fat pad weights, and plasma lipid levels compared to HFD-fed mice. Piperonal supplementation of the HFD increased the mRNA expression of certain isotypes of adenylate cyclase (Adcy) and protein kinase A (PKA) in the white adipose tissue (WAT) of mice. The adipogenesis-related genes were downregulated, whereas fatty acid oxidation- and thermogenesis-related genes were upregulated in the WAT of PSD-fed mice compared to those in HFD-fed mice. Piperonal directly activated Adcy by decreasing the Km for its substrate (ATP) in plasma membranes prepared from the WAT of mice. Furthermore, piperonal-induced inhibition of adipocyte differentiation and elevation of Adcy and PKA activities in 3T3-L1 cells were abrogated by an Adcy inhibitor. CONCLUSION The anti-adipogenic effect of piperonal in mice fed the high-fat diet appears to be associated with increased Adcy-PKA signaling in WAT.
Collapse
Affiliation(s)
- Songyi Chu
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Vikram P Narayan
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Yongsan-gu, Seoul, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
34
|
Protein kinase enzymes in the human vagina-relation to key mediators of the cyclic AMP and cyclic GMP pathways. Int J Impot Res 2017; 29:127-131. [PMID: 28405029 DOI: 10.1038/ijir.2017.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 12/05/2016] [Accepted: 02/13/2017] [Indexed: 11/08/2022]
Abstract
Aside from phosphodiesterase (PDE) isoenzymes, protein kinases (cAK=cyclic AMP-binding protein kinase, cGK=cyclic GMP-binding protein kinase) have also been identified as important receptors for cyclic nucleotides. A significance of protein kinases in the control of the function of the male and female reproductive tract has been suggested; however, up until today, only a few approaches have addressed these enzymes in female genital tissues. The present study aimed to investigate by means of biochemical and immunohistochemical methods the expression of cAK and cGK. The distribution of cAK(I) and cGK(I) in relation to the vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) and PDE type 4 (PDE4) was also evaluated. Cytosolic supernatants prepared from specimens of vaginal wall smooth muscle or epithelium were subjected to anion exchange chromatography and the activities of cAK and cGK(I) measured. To evaluate the distribution of cAK(I) and cGK(I) in relation to VIP, CGRP and PDE4, immunohistochemistry was conducted in sections of the human vaginal wall (full-wall specimens). Activities representing cGK(I) and cAK(I) were resolved from the chromatography column. Staining specific for cAK(Iα) was identified in both vascular and non-vascular vaginal smooth musculature, immunoreactivity for cGK(Iβ) was observed in the smooth muscle and endothelium of small arteries interspersing the sections. cAK(Iα)-positive vessels were found innervated by slender varicose nerve fibers presenting the expression of VIP and CGRP. These arteries also expressed PDE4. Localization of cAK and cGK in close relation to key mediators of the cyclic AMP (PDE4, VIP) and cyclic GMP (CGRP) pathways indicate that both signaling systems may synergistically work together in human vaginal tissue.
Collapse
|
35
|
Kawamatawong T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis 2017; 9:1144-1154. [PMID: 28523172 DOI: 10.21037/jtd.2017.03.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases. Both diseases have incompletely distinct pathophysiology, clinical manifestation, and treatment responsiveness. Pulmonary and systemic inflammations are the hallmarks of COPD. Most asthma responds to inhaled corticosteroid (ICS) treatment. In contrast, COPD is a corticosteroid-resistant disease. Bronchodilators are a preferred treatment method of COPD, with the aim of improving symptoms and preventing exacerbation. In addition, corticosteroid insensitivity is an underlying mechanism in severe asthma. An overlap of features between asthma and COPD, which was described as asthma-COPD overlap syndrome (ACOS) is not uncommon in practice. Novel nonsteroidal therapies focusing on inflammation in asthma and COPD have been developed. Selective phosphodiesterase 4 (PDE4) inhibitor is a promising class of drugs that has been studied for the treatment of COPD. Selective PDE4 inhibitor is different from xanthine in terms of mechanisms and pharmacokinetic profiles. This review focuses on clinical data on PDE4 inhibitors and its future roles in asthma, COPD, bronchiectasis, ACOS and other chronic non-pulmonary diseases.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Tuttle TR, Takiar V, Kumar B, Kumar P, Ben-Jonathan N. Soluble guanylate cyclase stimulators increase sensitivity to cisplatin in head and neck squamous cell carcinoma cells. Cancer Lett 2016; 389:33-40. [PMID: 28025101 DOI: 10.1016/j.canlet.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive and often fatal disease. Cisplatin is the most common chemotherapeutic drug in the treatment of HNSCC, but intrinsic and acquired resistance are frequent, and severe side effects occur at high doses. The second messenger cyclic GMP (cGMP) is produced by soluble guanylate cyclase (sGC). We previously reported that activation of the cGMP signaling cascade caused apoptosis in HNSCC cells, while others found that this pathway enhances cisplatin efficacy in some cell types. Here we found that sGC stimulators reduced HNSCC cell viability synergistically with cisplatin, and enhanced apoptosis by cisplatin. Moreover, the sGC stimulators effectively reduced viability in cells with acquired cisplatin resistance, and were synergistic with cisplatin. The sGC stimulator BAY 41-2272 reduced expression of the survival proteins EGFR and β-catenin, and increased pro-apoptotic Bax, suggesting a potential mechanism for the anti-tumorigenic effects of these drugs. The sGC stimulator Riociguat is FDA-approved to treat pulmonary hypertension, and others are being studied for therapeutic use in several diseases. These drugs could provide valuable addition or alternative to cisplatin in the treatment of HNSCC.
Collapse
Affiliation(s)
- Traci R Tuttle
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Bhavna Kumar
- Department of Otolaryngology-Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- Department of Otolaryngology-Head and Neck Surgery, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nira Ben-Jonathan
- Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
37
|
Campbell JC, VanSchouwen B, Lorenz R, Sankaran B, Herberg FW, Melacini G, Kim C. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation. FEBS Lett 2016; 591:221-230. [PMID: 27914169 DOI: 10.1002/1873-3468.12505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022]
Abstract
The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B.
Collapse
Affiliation(s)
- James C Campbell
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse, Germany
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, CA, USA
| | | | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Choel Kim
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals. Sci Rep 2016; 6:36423. [PMID: 27811978 PMCID: PMC5095659 DOI: 10.1038/srep36423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.
Collapse
|
39
|
Yoneda M, Sugimoto N, Katakura M, Matsuzaki K, Tanigami H, Yachie A, Ohno-Shosaku T, Shido O. Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice. J Nutr Biochem 2016; 39:110-116. [PMID: 27833051 DOI: 10.1016/j.jnutbio.2016.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 01/22/2023]
Abstract
Theobromine, which is a caffeine derivative, is the primary methylxanthine produced by Theobroma cacao. Theobromine works as a phosphodiesterase (PDE) inhibitor to increase intracellular cyclic adenosine monophosphate (cAMP). cAMP activates the cAMP-response element-binding protein (CREB), which is involved in a large variety of brain processes, including the induction of the brain-derived neurotrophic factor (BDNF). BDNF supports cell survival and neuronal functions, including learning and memory. Thus, cAMP/CREB/BDNF pathways play an important role in learning and memory. Here, we investigated whether orally administered theobromine could act as a PDE inhibitor centrally and affect cAMP/CREB/BDNF pathways and learning behavior in mice. The mice were divided into two groups. The control group (CN) was fed a normal diet, whereas the theobromine group (TB) was fed a diet supplemented with 0.05% theobromine for 30 days. We measured the levels of theobromine, phosphorylated vasodilator-stimulated phosphoprotein (p-VASP), phosphorylated CREB (p-CREB), and BDNF in the brain. p-VASP was used as an index of cAMP increases. Moreover, we analyzed the performance of the mice on a three-lever motor learning task. Theobromine was detectable in the brains of TB mice. The brain levels of p-VASP, p-CREB, and BDNF were higher in the TB mice compared with those in the CN mice. In addition, the TB mice performed better on the three-lever task than the CN mice did. These results strongly suggested that orally administered theobromine acted as a PDE inhibitor in the brain, and it augmented the cAMP/CREB/BDNF pathways and motor learning in mice.
Collapse
Affiliation(s)
- Mitsugu Yoneda
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan; Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan; Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan; Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, 350-0295, Japan.
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| | - Hayate Tanigami
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Akihiro Yachie
- Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan.
| | - Takako Ohno-Shosaku
- Impairment Study, Graduate School of Medical Sciences, Kanazawa University, 5-11-80 Kodatsuno, Takara-machi, Kanazawa, 920-0942, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, 89-1 Enya-machi, Izumo, 693-8501, Japan.
| |
Collapse
|
40
|
Kim S, Pick JE, Abera S, Khatri L, Ferreira DDP, Sathler MF, Morison SL, Hofmann F, Ziff EB. Brain region-specific effects of cGMP-dependent kinase II knockout on AMPA receptor trafficking and animal behavior. ACTA ACUST UNITED AC 2016; 23:435-41. [PMID: 27421896 PMCID: PMC4947234 DOI: 10.1101/lm.042960.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 12/25/2022]
Abstract
Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO hippocampus is increased as a functional compensation for gene deletion, while such compensation is absent in the prefrontal cortex. Thus, there are brain region-specific effects of cGKII KO on AMPAR trafficking, which could affect animal behavior. Here, we show that GluA1 phosphorylation levels differ in various brain regions, and specific behaviors are altered according to region-specific changes in GluA1 phosphorylation. Moreover, we identified distinct regulations of phosphatases in different brain regions, leading to regional heterogeneity of GluA1 phosphorylation in the KO brain. Our work demonstrates region-specific changes in GluA1 phosphorylation in cGKII KO mice and corresponding effects on cognitive performance. We also reveal distinct regulation of phosphatases in different brain region in which region-specific effects of kinase gene KO arise and can selectively alter animal behavior.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Joseph E Pick
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Sinedu Abera
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| | - Danielle D P Ferreira
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Department of Pharmacology and Physiology, Fluminense Federal University, Niteroi 24210-130, Brazil
| | - Matheus F Sathler
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Department of Pharmacology and Physiology, Fluminense Federal University, Niteroi 24210-130, Brazil
| | - Sage L Morison
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA Center for Neural Science, New York University, New York 10012, USA
| | - Franz Hofmann
- Technical University of Munich, Munich 80802, Germany
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York 10016, New York, USA
| |
Collapse
|
41
|
Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012. Molecules 2016; 21:molecules21050650. [PMID: 27213312 PMCID: PMC6273803 DOI: 10.3390/molecules21050650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
Collapse
|
42
|
Donaldson L, Meier S, Gehring C. The arabidopsis cyclic nucleotide interactome. Cell Commun Signal 2016; 14:10. [PMID: 27170143 PMCID: PMC4865018 DOI: 10.1186/s12964-016-0133-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. METHODS An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. RESULTS A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. CONCLUSIONS We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.
Collapse
Affiliation(s)
- Lara Donaldson
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag × 3, Rondebosch, 7701, South Africa.
| | - Stuart Meier
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Christoph Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
43
|
Kim JJ, Lorenz R, Arold ST, Reger AS, Sankaran B, Casteel DE, Herberg FW, Kim C. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation. Structure 2016; 24:710-720. [PMID: 27066748 DOI: 10.1016/j.str.2016.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 01/21/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022]
Abstract
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.
Collapse
Affiliation(s)
- Jeong Joo Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Robin Lorenz
- Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Albert S Reger
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Choel Kim
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Egbert JR, Uliasz TF, Shuhaibar LC, Geerts A, Wunder F, Kleiman RJ, Humphrey JM, Lampe PD, Artemyev NO, Rybalkin SD, Beavo JA, Movsesian MA, Jaffe LA. Luteinizing Hormone Causes Phosphorylation and Activation of the cGMP Phosphodiesterase PDE5 in Rat Ovarian Follicles, Contributing, Together with PDE1 Activity, to the Resumption of Meiosis. Biol Reprod 2016; 94:110. [PMID: 27009040 PMCID: PMC4939740 DOI: 10.1095/biolreprod.115.135897] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
The meiotic cell cycle of mammalian oocytes in preovulatory follicles is held in prophase arrest by diffusion of cGMP from the surrounding granulosa cells into the oocyte. Luteinizing hormone (LH) then releases meiotic arrest by lowering cGMP in the granulosa cells. The LH-induced reduction of cGMP is caused in part by a decrease in guanylyl cyclase activity, but the observation that the cGMP phosphodiesterase PDE5 is phosphorylated during LH signaling suggests that an increase in PDE5 activity could also contribute. To investigate this idea, we measured cGMP-hydrolytic activity in rat ovarian follicles. Basal activity was due primarily to PDE1A and PDE5, and LH increased PDE5 activity. The increase in PDE5 activity was accompanied by phosphorylation of PDE5 at serine 92, a protein kinase A/G consensus site. Both the phosphorylation and the increase in activity were promoted by elevating cAMP and opposed by inhibiting protein kinase A, supporting the hypothesis that LH activates PDE5 by stimulating its phosphorylation by protein kinase A. Inhibition of PDE5 activity partially suppressed LH-induced meiotic resumption as indicated by nuclear envelope breakdown, but inhibition of both PDE5 and PDE1 activities was needed to completely inhibit this response. These results show that activities of both PDE5 and PDE1 contribute to the LH-induced resumption of meiosis in rat oocytes, and that phosphorylation and activation of PDE5 is a regulatory mechanism.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Tracy F Uliasz
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Leia C Shuhaibar
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Andreas Geerts
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Frank Wunder
- Bayer Pharma AG, Pharma Research Center, Wuppertal, Germany
| | - Robin J Kleiman
- Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
| | - John M Humphrey
- Pfizer Worldwide Research & Development, Groton, Connecticut
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sergei D Rybalkin
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Joseph A Beavo
- Department of Pharmacology, University of Washington, Seattle, Washington
| | - Matthew A Movsesian
- Cardiology Section, VA Salt Lake City Health Care System and Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Laurinda A Jaffe
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
45
|
Campbell JC, Kim JJ, Li KY, Huang GY, Reger AS, Matsuda S, Sankaran B, Link TM, Yuasa K, Ladbury JE, Casteel DE, Kim C. Structural Basis of Cyclic Nucleotide Selectivity in cGMP-dependent Protein Kinase II. J Biol Chem 2016; 291:5623-5633. [PMID: 26769964 PMCID: PMC4786703 DOI: 10.1074/jbc.m115.691303] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/13/2016] [Indexed: 02/04/2023] Open
Abstract
Membrane-bound cGMP-dependent protein kinase (PKG) II is a key regulator of bone growth, renin secretion, and memory formation. Despite its crucial physiological roles, little is known about its cyclic nucleotide selectivity mechanism due to a lack of structural information. Here, we find that the C-terminal cyclic nucleotide binding (CNB-B) domain of PKG II binds cGMP with higher affinity and selectivity when compared with its N-terminal CNB (CNB-A) domain. To understand the structural basis of cGMP selectivity, we solved co-crystal structures of the CNB domains with cyclic nucleotides. Our structures combined with mutagenesis demonstrate that the guanine-specific contacts at Asp-412 and Arg-415 of the αC-helix of CNB-B are crucial for cGMP selectivity and activation of PKG II. Structural comparison with the cGMP selective CNB domains of human PKG I and Plasmodium falciparum PKG (PfPKG) shows different contacts with the guanine moiety, revealing a unique cGMP selectivity mechanism for PKG II.
Collapse
Affiliation(s)
- James C Campbell
- From the Structural and Computational Biology and Molecular Biophysics Program
| | - Jeong Joo Kim
- Department of Pharmacology, and; the Department of Biochemistry, University of Kassel, Kassel, Hesse 34132, Germany
| | - Kevin Y Li
- the Department of Biochemistry & Cell Biology, Rice University, Houston, Texas 77005
| | - Gilbert Y Huang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Shinya Matsuda
- the Department of Biological Science and Technology, the University of Tokushima Graduate School, Tokushima 770-8506, Japan
| | - Banumathi Sankaran
- the Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Todd M Link
- the Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Keizo Yuasa
- the Department of Biological Science and Technology, the University of Tokushima Graduate School, Tokushima 770-8506, Japan
| | - John E Ladbury
- From the Structural and Computational Biology and Molecular Biophysics Program,; the Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, and
| | - Darren E Casteel
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Choel Kim
- From the Structural and Computational Biology and Molecular Biophysics Program,; Department of Pharmacology, and; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030,.
| |
Collapse
|
46
|
Zhang YL, Guo KP, Ji SY, Liu XM, Wang P, Wu J, Gao L, Jiang TQ, Xu T, Fan HY. Development and characterization of a novel long-acting recombinant follicle stimulating hormone agonist by fusing Fc to an FSH-β subunit. Hum Reprod 2015; 31:169-82. [PMID: 26621853 DOI: 10.1093/humrep/dev295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/02/2015] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Does a novel long-acting recombinant human FSH, KN015, a heterodimer composed of FSHα and FSHβ-Fc/Fc, offer a potential FSH alternative? SUMMARY ANSWER KN015 had in vitro activity and superior in vivo bioactivity than recombinant human FSH (rhFSH), suggesting KN015 could serve as a potential FSH agonist for clinical therapy. WHAT IS KNOWN ALREADY rhFSH has very short half-life so that repeat injections are needed, resulting in discomfort and inconvenience for patients. The longest-acting rhFSH available in clinics is corifollitropin alpha (FSH-CTP), but its half-life is not long enough to sustain the whole therapy period, and additional injections of rhFSH are needed. STUDY DESIGN, SIZE, DURATION Plasmids containing FSHα, FSHβ-Fc and Fc cDNA were transfected into Chinese hamster ovary (CHO) cells for KN015 production. The pharmacokinetics of KN015 was investigated in 6-week-old SD rats (n = 6/group) and healthy Cynomolgus monkeys in two different dose groups (n = 2/group). A series of experiments were designed for in vitro and in vivo characterization of the bioactivity of KN015 relative to rhFSH. PARTICIPANTS/MATERIALS, SETTING, METHODS The purity and molecular weight of KN015 were determined by reducing and non-reducing SDS-PAGE. To measure KN015 half-life, sera were collected at increasing time points and the remaining FSH concentration was measured by enzyme-linked immunosorbent assay. To assess the bioactivity of KN015 versus rhFSH in vitro, firstly cAMP production was assessed in CHO cells expressing FSH receptor (FSHR) with the treatment of Fc/Fc, rhFSH or KN015 at eight different doses (0.03, 0.09, 0.28, 0.83, 2.5, 7.5, 22.5, 67.5 nM), and secondly cumulus oocyte complexes (COCs; n = 20/group) of ICR mice (primed-PMSG 44 h before sacrificed) were collected and cultured in medium containing 1.25 pM Fc/Fc, rhFSH or KN015 at 37°C and then germinal vesicle breakdown (GVBD) and COC expansion were observed at 4 and 16 h, respectively. The in vivo activity of KN015 was compared with rhFSH by ovary weight gain and ovulation assays. In the former, ovary weight gains in 21-day-old female SD rats, after a single subcutaneous injection of KN015, were compared with those after several injections of rhFSH over a range of doses (n = 8/group). Sera were harvested for estradiol (E2) analysis, and the ovaries were processed for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labeling (TUNEL), RT-PCR and western blot. In the latter, 26-day-old female SD rats (n = 8/group) were injected with different doses of KN015 or rhFSH, and were sacrificed at 24 h after an injection of hCG (20 IU/rat). Moreover, the molecular responses stimulated by KN015 or rhFSH in the ovary were also analyzed through detecting expression of the FSH target genes (Cyp19a1, Fshr and Lhcgr) and phosphatidylinositide 3-kinase (PI3K) pathway activation. MAIN RESULTS AND THE ROLE OF CHANCE KN015 has a molecular weight of 82 kD and its half-life is 84 h in SD rats (10-fold longer than that of rhFSH) and 215 h in Cynomolgus monkeys. The EC50 value of the cAMP induction in CHO cells (KN015 versus rhFSH, 1.84 versus 0.87 nM), COC expansion and oocyte maturation assays showed KN015 had approximately half of rhFSH's activity in vitro. A single dose of KN015 (1.5 pmol/rat, 166.1 ± 19.7 mg, P < 0.01) stimulated significantly larger ovary weight gain than several injections of rhFSH (1.5 pmol/rat, 59.3 ± 28.1 mg, P < 0.01). The serum E2 level in the KN015 group was significantly higher than that in rhFSH group. The number of oocytes obtained by ovulation induction was comparable with or higher in the KN015 group than in the rhFSH group. KN015 was more effective than rhFSH in inducing FSH target genes (Cyp19a1, Fshr, Lhcgr) or activating the PI3K pathway in vivo. Moreover, a single injection of KN015 promoted granulosa cell proliferation and prevented follicle atresia to the same extent as several injections of rhFSH. LIMITATIONS, REASONS FOR CAUTION All assays in this study were operated only in animals and clinical trials are needed to confirm they can be extrapolated to humans. WIDER IMPLICATIONS OF THE FINDINGS KN015 is a valuable alternative to FSH and may have great potential for therapeutic applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by National Basic Research Program of China (2011|CB944504, 2012CB944403) and National Natural Science Foundation of China (81172473, 31371449). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Shu-Yan Ji
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Man Liu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Wu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Li Gao
- Alphamab Co. Ltd., Suzhou 215125, China
| | | | - Ting Xu
- Alphamab Co. Ltd., Suzhou 215125, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
VanSchouwen B, Selvaratnam R, Giri R, Lorenz R, Herberg FW, Kim C, Melacini G. Mechanism of cAMP Partial Agonism in Protein Kinase G (PKG). J Biol Chem 2015; 290:28631-41. [PMID: 26370085 DOI: 10.1074/jbc.m115.685305] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
Protein kinase G (PKG) is a major receptor of cGMP and controls signaling pathways often distinct from those regulated by cAMP. Hence, the selective activation of PKG by cGMP versus cAMP is critical. However, the mechanism of cGMP-versus-cAMP selectivity is only limitedly understood. Although the C-terminal cyclic nucleotide-binding domain B of PKG binds cGMP with higher affinity than cAMP, the intracellular concentrations of cAMP are typically higher than those of cGMP, suggesting that the cGMP-versus-cAMP selectivity of PKG is not controlled uniquely through affinities. Here, we show that cAMP is a partial agonist for PKG, and we elucidate the mechanism for cAMP partial agonism through the comparative NMR analysis of the apo, cGMP-, and cAMP-bound forms of the PKG cyclic nucleotide-binding domain B. We show that although cGMP activation is adequately explained by a two-state conformational selection model, the partial agonism of cAMP arises from the sampling of a third, partially autoinhibited state.
Collapse
Affiliation(s)
| | | | - Rajanish Giri
- From the Departments of Chemistry and Chemical Biology and
| | - Robin Lorenz
- the Department of Biochemistry, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel, Germany, and
| | - Friedrich W Herberg
- the Department of Biochemistry, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel, Germany, and
| | - Choel Kim
- the Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Giuseppe Melacini
- From the Departments of Chemistry and Chemical Biology and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4M1, Canada,
| |
Collapse
|
48
|
Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol 2015; 98:119-31. [PMID: 26300059 DOI: 10.1016/j.bcp.2015.08.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
cCMP is a cyclic pyrimidine nucleotide which binds to and activates cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). In S49 lymphoma cells, cAMP induces apoptosis via PKA. In our present study, we examined the effect of cCMP on apoptosis in S49 mouse lymphoma cells and in PKA-deficient S49kin(-)cells. These two cell lines also lack PKG, hyperpolarization-activated cyclic nucleotide-gated channels 2 and 4 (HCN2 and HCN4) as assessed by real-time PCR. The cell-permeable analog cCMP-AM induced PKA- and PKG-independent apoptosis in S49 cells. In contrast, exchange protein activated by cAMP (Epac) activation did not induce apoptosis. cCMP induced caspase-dependent apoptosis via the intrinsic pathway, led to cytochrome c release from mitochondria and also activated the ER stress pathway. On the contrary, the extrinsic apoptotic pathway was not involved. Autophagy was not detectable after treatment with cCMP-AM in both cell lines. cAMP-AM, cGMP-AM, cUMP-AM as well as the cyclic nucleotides lacking the acetoxymethylester (AM)-group had no effect. cCMP-AM altered gene expression of the apoptotic-relevant gene Gadd45α and the immediate early response genes cFos and Nr4A1 in S49 wild-type (wt) cells. In conclusion, cCMP induces apoptosis of S49 lymphoma cells, independently of hitherto known cCMP target proteins.
Collapse
Affiliation(s)
- Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Christina Kloth
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Marina Golombek
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Fanni Dittmar
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Lisa Försterling
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
49
|
Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Iα. Basic Res Cardiol 2015; 110:42. [PMID: 26036467 DOI: 10.1007/s00395-015-0500-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
Cyclic GMP-dependent protein kinase (PKG) is a serine-threonine kinase that mediates the cardioprotective effect of ischemic and pharmacologic preconditioning. Since hydrogen sulfide (H2S) has been implicated in mediating the cardioprotective effects of the cGMP modulators tadalafil and cinaciguat, we tested the hypothesis that myocardial gene therapy with PKG exerts cardioprotection against ischemia/reperfusion (I/R) injury through a mechanism involving H2S. Adult rat cardiomyocytes were infected with adenoviral vector encoding PKGIα or inactive mutant PKGIαK390A (K390A) for 24 h. Necrosis and apoptosis (n = 6/group) were determined after 90 min of simulated ischemia and 1 or 18 h of reoxygenation, respectively. To study the effect of PKGIα in vivo, mice received intramyocardial injections of adenoviral PKGIα or K390A. Four days later, the hearts were subjected to 30 min of ischemia followed by reperfusion for 24 h. The inhibitor of H2S-producing enzyme, cystathionine-γ-lyase (CSE), dl-propargylglycine (PAG, 50 mg/kg, ip) was given 30 min before ischemia. PKGIα overexpression induced CSE expression, whereas cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase expression was not changed. PKGIα overexpression increased H2S in the heart and cardiomyocytes in relation to control and PKGIαK390A. Moreover, PAG abolished protection with PKGIα in vitro by increasing necrosis (35.2 ± 1.7%, P < 0.05) and apoptosis (23.5 ± 1.8 %, P < 0.05) as compared to PKGIα-overexpressing cells (necrosis: 17.2 ± 0.9% and apoptosis: 13.2 ± 0.8%). In vivo, PKGIα overexpression reduced infarct size and preserved left ventricular fractional shortening as compared with K390A (P < 0.05) and PAG abolished the cardioprotective effect of PKGIα. The protective effect of myocardial gene therapy with PKGIα against I/R injury is mediated through a mechanism involving H2S signaling.
Collapse
|
50
|
Abstract
cAMP-dependent protein kinase (PKA) was the second protein kinase to be discovered and the PKA catalytic (C) subunit serves as a prototype for the large protein kinase superfamily that contains over 500 gene products. The protein kinases regulate much of biology in eukaryotic cells and they are now also a major therapeutic target. Although PKA was discovered nearly 50 years ago and the subsequent discovery of the regulatory subunits that bind cAMP and release the catalytic activity from the holoenzyme followed quickly. Thus in PKA we see the convergence of two major signaling mechanisms - protein phosphorylation and second messenger signaling through cAMP. Crystallography provides a foundation for understanding function, and the structure of the isolated regulatory (R) and C-subunits have been extremely informative. Yet it is the R2C2 holoenzyme that predominates in cells, and one can only appreciate the allosteric features of PKA signaling by seeing the full length protein. The symmetry and the quaternary constraints that one R:C hetero-dimer exerts on the other in the holoenzyme simply are not present in the isolated subunits or even in the R:C hetero-dimer.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Jian Wu
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093
| | - Susan S Taylor
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093 ; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|