1
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Han F, Liu Y, Wang Q, Huang Z. Dietary Reference Intakes of Selenium for Chinese Residents. J Nutr 2025:S0022-3166(25)00014-8. [PMID: 39800311 DOI: 10.1016/j.tjnut.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
The plasma selenoprotein P (SELENOP) concentration leveling out was thought to represent saturation of the functional selenium body pool and an appropriate supply of selenium to all tissues, indicating that the necessary amount of selenium had been supplied. Based on the selenium intake when SELENOP reaches saturation, the estimated average requirement of selenium was set as 50 μg/d, and the recommended nutrient intake was 60 μg/d for Chinese general population. According to a recent study, "lactating Chinese women with the optimal daily selenium intake" was defined, and the adequate intake of 0‒6-mo-old infants was set as 15 μg/d, whereas 20 μg/d was calculated for 7‒12 mo old infants. Considering the negative health effects of intake of excessive nutrient levels of selenium, we recommend reducing the tolerable upper intake level (UL) for adults from 400 to 255 μg/d based on the results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT). The SELECT trial is a key basis for setting selenium's UL. It has a large sample size and long-term design. It rigorously measures selenium intake and monitors multiple health endpoints precisely. Also, with proper control groups, it effectively determines the threshold of adverse effects, enhancing the reliability of UL determination.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, NHC Key Laboratory of Public Nutrition and Health, Beijing, China
| | - Yiqun Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, NHC Key Laboratory of Public Nutrition and Health, Beijing, China
| | - Qin Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, NHC Key Laboratory of Public Nutrition and Health, Beijing, China
| | - Zhenwu Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, NHC Key Laboratory of Public Nutrition and Health, Beijing, China.
| |
Collapse
|
3
|
Le NT, Pham YTH, Le CTK, Le LT, Le TD, Dao HV, Ha TH, Kuchipudi SV, Luu HN. A U-shaped association between selenium intake and cancer risk. Sci Rep 2024; 14:21378. [PMID: 39271688 PMCID: PMC11399399 DOI: 10.1038/s41598-024-66553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/02/2024] [Indexed: 09/15/2024] Open
Abstract
While selenium is a cofactor of several antioxidant enzymes against cancer and is essential for human health, its excess intake may also be harmful. Though a safe intake of selenium has recently been recommended, it is not well understood in the Asian population. We aimed to determine the association between dietary intake of selenium and cancer risk in a case-control study of 3758 incident cancer cases (i.e., stomach, colon, rectum, lung cancers, and other sites) and 2929 control subjects in Vietnam. Daily intake of selenium was derived from a semiquantitative food frequency questionnaire. The unconditional logistic regression model was used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between selenium intake and cancer risk. We observed a U-shaped association between selenium intake and cancer risk. A safe intake ranged from 110.8 to 124.4 µg/day (mean 117.8 µg/day). Compared to individuals with the safe intake of selenium, individuals with the lowest intake (i.e., 27.8-77.2 µg/day) were associated with an increased risk of cancer (OR = 3.78, 95% CI 2.89-4.95) and those with the highest intake (169.1-331.7 µg/day) also had an increased cancer risk (OR = 1.86, 95% CI 1.45-2.39). A U-shaped pattern of association between selenium intake and cancer risk was stronger among participants with body mass index (BMI) < 23 kg/m2 and never smokers than BMI ≥ 23 kg/m2 and ever smokers (P'sheterogeneity = 0.003 and 0.021, respectively) but found in both never and ever-drinkers of alcohol (Pheterogeneity = 0.001). A U-shaped association between selenium intake and cancer risk was seen in cancer sites of the stomach, colon, rectum, and lung cancers. In summary, we found a U-shaped association between selenium intake and cancer risk and a safe selenium intake (mean: 117.8 µg/day) in the Vietnamese population. Further mechanistic investigation is warranted to understand better a U-shaped association between selenium intake and cancer risk.
Collapse
Affiliation(s)
- Ngoan Tran Le
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
- Department of Occupational Health, Institute of Preventive Medicine and Public Health, Hanoi Medical University, 1 Ton That Tung, Hanoi, Vietnam.
| | - Yen Thi-Hai Pham
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chung Thi-Kim Le
- Laboratory Center, School of Preventive Medicine and Public Health, Hanoi Medical University, Hanoi, Vietnam
| | - Linh Thuy Le
- Laboratory of Embryology and Genetics of Human Malformation, Imagine Institute, INSERM UMR, Paris, France
| | - Thanh-Do Le
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
| | - Hang Viet Dao
- Department of Internal Medicine, Hanoi Medical University, Hanoi, Vietnam
| | - Toan H Ha
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suresh V Kuchipudi
- Department of Infectious Disease and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hung N Luu
- The University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Pyrzynska K, Sentkowska A. Selenium Species in Diabetes Mellitus Type 2. Biol Trace Elem Res 2024; 202:2993-3004. [PMID: 37880477 PMCID: PMC11074226 DOI: 10.1007/s12011-023-03900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Selenium is an important trace element for humans and animals as it plays a key role in several major metabolic pathways. Several studies were conducted to better understand the role of selenium against diabetes mellitus (DM), particularly type 2 (T2DM), but the obtained conclusions are contradictory. A simple linear relationship does not exist between the risk of T2DM and selenium levels but is best represented in a dose-dependent manner, getting often the U-graph. This relation also depends on selenium chemical forms that are present in a diet or supplements. Both too low and too high selenium intakes could increase the risk of diabetes. Moreover, the baseline status of Se should be taken into consideration to avoid over-supplementation. The focus of this brief overview is to report the recent updates concerning selenium participation in diabetes mellitus.
Collapse
Affiliation(s)
- Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093, Warsaw, Poland.
| | | |
Collapse
|
5
|
Perri G, Mathers JC, Martin-Ruiz C, Parker C, Walsh JS, Eastell R, Demircan K, Chillon TS, Schomburg L, Robinson L, Hill TR. Selenium status and its determinants in very old adults: insights from the Newcastle 85+ Study. Br J Nutr 2024; 131:901-910. [PMID: 37877251 PMCID: PMC10864996 DOI: 10.1017/s0007114523002398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
There is a dearth of data on Se status in very old adults. The aims of this study were to assess Se status and its determinants in 85-year-olds living in the Northeast of England by measuring serum Se and selenoprotein P (SELENOP) concentrations and glutathione peroxidase 3 (GPx3) activity. A secondary aim was to examine the interrelationships between each of the biomarkers. In total, 757 participants (463 women, 293 men) from the Newcastle 85+ Study were included. Biomarker concentrations were compared with selected cut-offs (serum Se: suboptimal 70 µg/l and deficient 45 µg/l; SELENOP: suboptimal 4·5 mg/l and deficient 2·6 mg/l). Determinants were assessed using linear regressions, and interrelationships were assessed using restricted cubic splines. Median (inter-quartile range) concentrations of serum Se, SELENOP and of GPx3 activity were 53·6 (23·6) µg/l, 2·9 (1·9) mg/l and 142·1 (50·7) U/l, respectively. Eighty-two percentage and 83 % of participants had suboptimal serum Se (< 70 µg/l) and SELENOP (< 4·5 mg/l), and 31 % and 40 % of participants had deficient serum Se (< 45 µg/l) and SELENOP (< 2·6 mg/l), respectively. Protein intake was a significant determinant of Se status. Additional determinants of serum Se were sex, waist:hip ratio, self-rated health and disease, while sex, BMI and physical activity were determinants of GPx3 activity. There was a linear association between serum Se and SELENOP, and nonlinear associations between serum Se and GPx3 activity and between SELENOP and GPx3 activity. These findings indicate that most participants had suboptimal Se status to saturate circulating SELENOP.
Collapse
Affiliation(s)
- Giorgia Perri
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - John C. Mathers
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Carmen Martin-Ruiz
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon TyneNE4 5PL, UK
| | - Craig Parker
- BioScreening Core Facility, Campus for Ageing and Vitality, Newcastle University, Newcastle upon TyneNE4 5PL, UK
| | - Jennifer S. Walsh
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS5 7AU, UK
| | - Richard Eastell
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- Department of Oncology and Metabolism, University of Sheffield, SheffieldS5 7AU, UK
| | - Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Thilo S. Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Berlin10115, Germany
| | - Louise Robinson
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Tom R. Hill
- Human Nutrition and Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
6
|
Mutonhodza B, Dembedza MP, Joy EJM, Manzeke-Kangara MG, Njovo H, Nyadzayo TK, Lark RM, Kalimbira AA, Bailey EH, Broadley MR, Matsungo TM, Chopera P. Urine Se concentration poorly predicts plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status. Front Nutr 2024; 11:1288748. [PMID: 38385014 PMCID: PMC10879291 DOI: 10.3389/fnut.2024.1288748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The current study investigated the value of urine selenium (Se) concentration as a biomarker of population Se status in rural sub-Saharan Africa. Method Urine and plasma Se concentrations were measured among children aged 6-59 months (n = 608) and women of reproductive age (WRA, n = 781) living in rural Zimbabwe (Murehwa, Shamva, and Mutasa districts) and participating in a pilot national micronutrient survey. Selenium concentrations were measured by inductively coupled plasma-mass spectrometry (ICP-MS), and urine concentrations were corrected for hydration status. Results The median (Q1, Q3) urine Se concentrations were 8.4 μg/L (5.3, 13.5) and 10.5 μg/L (6.5, 15.2) in children and WRA, respectively. There was moderate evidence for a relationship between urine Se concentration and plasma Se concentration in children (p = 0.0236) and WRA (p = < 0.0001), but the relationship had poor predictive value. Using previously defined thresholds for optimal activity of iodothyronine deiodinase (IDI), there was an association between deficiency when indicated by plasma Se concentrations and urine Se concentrations among WRA, but not among children. Discussion Urine Se concentration poorly predicted plasma Se concentration at sub-district scales in Zimbabwe, limiting its value as a biomarker of population Se status in this context. Further research is warranted at wider spatial scales to determine the value of urine Se as a biomarker when there is greater heterogeneity in Se exposure.
Collapse
Affiliation(s)
- Beaula Mutonhodza
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Mavis P. Dembedza
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Edward J. M. Joy
- London School for Hygiene & Tropical Medicine, London, United Kingdom
- Rothamsted Research, West Common, Harpenden, United Kingdom
| | | | - Handrea Njovo
- National Nutrition Unit, Ministry of Health and Child Care of Zimbabwe, Harare, Zimbabwe
| | - Tasiana K. Nyadzayo
- National Nutrition Unit, Ministry of Health and Child Care of Zimbabwe, Harare, Zimbabwe
| | - R. Murray Lark
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Alexander A. Kalimbira
- Department of Human Nutrition and Health, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Elizabeth H. Bailey
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Martin R. Broadley
- Rothamsted Research, West Common, Harpenden, United Kingdom
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Tonderayi M. Matsungo
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Prosper Chopera
- Department of Nutrition, Dietetics and Food Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
7
|
Alexander J, Olsen AK. Selenium - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10320. [PMID: 38187789 PMCID: PMC10770655 DOI: 10.29219/fnr.v67.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/21/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024] Open
Abstract
Selenium is an essential trace element in humans, critical to the normal physiology in all animal species. The main form of selenium in food is selenomethionine, selenocysteine and a variety of organic compounds, while inorganic salts mainly occur in food supplements. In animals and humans, selenium occurs as selenocysteine in selenoproteins encoded by 25 genes (specific selenium pool). Several selenoproteins are part of the antioxidant enzyme system and serve as oxido-reductases and in thyroid hormone regulation. SelenoproteinP (SELENOP) transports selenium to peripheral tissues, is the main plasma selenoprotein, and has been used as biomarker of selenium status and intake. SELENOP in plasma represents a saturable pool of selenium and is maximised at a selenium concentration in plasma of about 110 µg/L or an intake of selenomethionine at about 1.2 µg/kg body weight in adults. In Finland, with an estimated selenium intake of 88 µg/day in men and 68 µg/day in women, the average selenium concentration in plasma is about 110 µg/L. Imported wheat from selenium rich areas is an important dietary source in Norway. Dietary intakes in the Nordic and Baltic area vary from 39 to 88 µg/day in men and 22 to 68 µg/day in women, the highest levels were from Finland. Most intervention trials on the effect of selenium supplementation on health outcomes have been carried out in 'selenium-replete'-populations and show no beneficial effect, which from a nutritional point of view would rather not be expected. Some intervention studies conducted in populations low in selenium have showed a beneficial effect. Observational studies suggest an inverse relationship between selenium status and risk of cardiovascular diseases (CVDs), cancer and all-cause mortality, and some other outcomes at low levels of intake (<55 µg/day) or in plasma or serum (<100 µg/L). However, a lack of quantitative data and inconsistencies between studies precludes these studies to be used to derive dietary reference values. At high intakes above 330 to 450 µg/day selenium may cause toxic effects affecting liver, peripheral nerves, skin, nails, and hair. An upper tolerable level (UL) of 255 µg selenium/day in adults was established by EFSA.
Collapse
|
8
|
Wesolowska M, Yeates AJ, McSorley EM, van Wijngaarden E, Shamlaye CF, Myers GJ, Strain JJ, Mulhern MS. Potential role of selenium in modifying the effect of maternal methylmercury exposure on child neurodevelopment - A review. Neurotoxicology 2023; 99:59-69. [PMID: 37659579 DOI: 10.1016/j.neuro.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Selenium (Se) is an essential trace element for normal neurodevelopment. It is incorporated into multiple selenoenzymes which have roles in the brain and neurological function, the synthesis of thyroid hormones, the antioxidant defense system, DNA synthesis, and reproduction. Fish is a source of both Se and neurotoxic methylmercury (MeHg). Selenium is known to ameliorate the effects of MeHg in experimental animals, but studies in children exposed to both Se and MeHg through prenatal fish consumption have been inconclusive. Research on Se's implications for pregnancy and child neurodevelopment is limited. The aims of this review are to summarize the literature on the biological roles of Se during pregnancy and the potential role in mitigating the effects of MeHg exposure from fish consumption on human health. This review has shown that Se concentrations among pregnant women globally appear insufficient, with the majority of pregnant women reporting Se concentrations below 70 µg/L during pregnancy. The role of Se in child development and its interactions with MeHg in children are inconclusive. Further investigation of the interaction between Se and MeHg in relation to child neurodevelopment in high fish-eating populations is required to fully elucidate effects.
Collapse
Affiliation(s)
- Maria Wesolowska
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | | | | | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, New York, United States
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine BT52 1SA, UK.
| |
Collapse
|
9
|
Joardar M, Mukherjee P, Das A, Mridha D, De A, Chowdhury NR, Majumder S, Ghosh S, Das J, Alam MR, Rahman MM, Roychowdhury T. Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: a probabilistic approach with sensitivity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27249-x. [PMID: 37156951 DOI: 10.1007/s11356-023-27249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (μg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Payal Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
10
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Peláez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Aggett P, Crous Bou M, Cubadda F, Ciccolallo L, de Sesmaisons Lecarré A, Fabiani L, Titz A, Naska A. Scientific opinion on the tolerable upper intake level for selenium. EFSA J 2023; 21:e07704. [PMID: 36698500 PMCID: PMC9854220 DOI: 10.2903/j.efsa.2023.7704] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for selenium. Systematic reviews of the literature were conducted to identify evidence regarding excess selenium intake and clinical effects and potential biomarkers of effect, risk of chronic diseases and impaired neuropsychological development in humans. Alopecia, as an early observable feature and a well-established adverse effect of excess selenium exposure, is selected as the critical endpoint on which to base a UL for selenium. A lowest-observed-adverse-effect-level (LOAEL) of 330 μg/day is identified from a large randomised controlled trial in humans (the Selenium and Vitamin E Cancer Prevention Trial (SELECT)), to which an uncertainty factor of 1.3 is applied. A UL of 255 μg/day is established for adult men and women (including pregnant and lactating women). ULs for children are derived from the UL for adults using allometric scaling (body weight0.75). Based on available intake data, adult consumers are unlikely to exceed the UL, except for regular users of food supplements containing high daily doses of selenium or regular consumers of Brazil nuts. No risk has been reported with the current levels of selenium intake in European countries from food (excluding food supplements) in toddlers and children, and selenium intake arising from the natural content of foods does not raise reasons for concern. Selenium-containing supplements in toddlers and children should be used with caution, based on individual needs.
Collapse
|
11
|
Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022; 14:nu14245308. [PMID: 36558469 PMCID: PMC9785339 DOI: 10.3390/nu14245308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Selenium is an essential trace element in humans and animals and its role in selenoprotein and enzyme antioxidant activity is well documented. Food is the principal source of selenium, and it is important that selenium status in the body is adequately maintained for physiological functions. There has been increasing attention on the role of selenium in mitigating the toxic effects of mercury exposure from dietary intake in humans. In contrast, mercury is a neurotoxin, and its continuous exposure can cause adverse health effects in humans. The interactions of selenium and mercury are multi-factorial and involve complex binding mechanisms between these elements at a molecular level. Further insights and understanding in this area may help to evaluate the health implications of dietary mercury exposure and selenium status. This review aims to summarise current information on the interplay of the interactions between selenium and mercury in the body and the protective effect of selenium on at-risk groups in a population who may experience long-term mercury exposure.
Collapse
|
12
|
Zhao J, Zou H, Huo Y, Wei X, Li Y. Emerging roles of selenium on metabolism and type 2 diabetes. Front Nutr 2022; 9:1027629. [PMID: 36438755 PMCID: PMC9686347 DOI: 10.3389/fnut.2022.1027629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 07/22/2023] Open
Abstract
Selenium is recognized as an essential element for human health and enters human body mainly via diet. Selenium is a key constituent in selenoproteins, which exert essential biological functions, including antioxidant and anti-inflammatory effects. Several selenoproteins including glutathione peroxidases, selenoprotein P and selenoprotein S are known to play roles in the regulation of type 2 diabetes. Although there is a close association between certain selenoproteins with glucose metabolism or insulin resistance, the relationship between selenium and type 2 diabetes is complex and remains uncertain. Here we review recent advances in the field with an emphasis on roles of selenium on metabolism and type 2 diabetes. Understanding the association between selenium and type 2 diabetes is important for developing clinical practice guidelines, establishing and implementing effective public health policies, and ultimately combating relative health issues.
Collapse
|
13
|
Perri G, Hill TR, Mathers JC, Walsh JS, Gossiel F, Winther K, Frölich J, Folkestad L, Cold S, Eastell R. Long-Term Selenium-Yeast Supplementation Does Not Affect Bone Turnover Markers: A Randomized Placebo-Controlled Trial. J Bone Miner Res 2022; 37:2165-2173. [PMID: 36093566 PMCID: PMC10087503 DOI: 10.1002/jbmr.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Higher selenium status has been associated with lower bone turnover markers (BTM) in epidemiological studies. However, the long-term impact of selenium supplementation on BTMs has not been studied. We investigated the effects of selenium supplementation on BTMs including osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), collagen type I cross-linked C-telopeptide (CTX), and bone alkaline phosphatase (BALP) in the short (6 months) and long term (5 years). A total of 481 Danish men and women (60-74 years) were randomized to receive placebo-yeast versus 100, 200, or 300 μg selenium as selenium-enriched yeast daily for 5 years. Plasma selenium concentration was measured using inductively coupled plasma mass spectrometry, and BTMs were measured in nonfasted samples at baseline, 6 months, and 5 years. Data were analyzed by ANCOVA to investigate the shape of the dose-response relationships. Covariates included age, body mass index, baseline selenium status, baseline BTM, smoking, alcohol, supplement use, and medication. Plasma selenium concentration (mean 86.5 μg/d at baseline) increased significantly with increasing selenium supplementation to 152.6, 209.1, and 253.7 μg/L after 6 months and remained elevated at 5 years (158.4, 222.4, and 275.9 μg/L for 100, 200, and 300 μg supplemental selenium/d, respectively (p < 0.001)). There was no change in plasma selenium concentration in the placebo-treated group. There was no significant effect of selenium supplementation on OC (6 months p = 0.37; 5 years p = 0.63), PINP (6 months p = 0.37; 5 years p = 0.79), CTX (6 months p = 0.91; 5 years p = 0.58) or BALP (6 months p = 0.17; 5 years p = 0.53). The relatively replete baseline selenium status in the study participants may explain this lack of effect. Testing in more deficient populations may provide further insights into the impact of selenium supplementation on bone health. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Giorgia Perri
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tom R Hill
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer S Walsh
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Kristian Winther
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Centre for Diabetes, Academic Specialist Centre, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Jacob Frölich
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Lars Folkestad
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Søren Cold
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review. Antioxidants (Basel) 2022; 11:antiox11101916. [PMID: 36290639 PMCID: PMC9598137 DOI: 10.3390/antiox11101916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
Collapse
|
15
|
Lei XG, Combs GF, Sunde RA, Caton JS, Arthington JD, Vatamaniuk MZ. Dietary Selenium Across Species. Annu Rev Nutr 2022; 42:337-375. [PMID: 35679623 DOI: 10.1146/annurev-nutr-062320-121834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review traces the discoveries that led to the recognition of selenium (Se) as an essential nutrient and discusses Se-responsive diseases in animals and humans in the context of current understanding of the molecular mechanisms of their pathogeneses. The article includes a comprehensive analysis of dietary sources, nutritional utilization, metabolic functions, and dietary requirements of Se across various species. We also compare the function and regulation of selenogenomes and selenoproteomes among rodents, food animals, and humans. The review addresses the metabolic impacts of high dietary Se intakes in different species and recent revelations of Se-metabolites, means of increasing Se status, and the recycling of Se in food systems and ecosystems. Finally, research needs are identified for supporting basic science and practical applications of dietary Se in food, nutrition, and health across species. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Roger A Sunde
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Caton
- Department of Animal Science, North Dakota State University, Fargo, North Dakota, USA
| | - John D Arthington
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Marko Z Vatamaniuk
- Department of Animal Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
16
|
Eksteen G, Steenackers N, Van der Schueren B, Vanuytsel T, Matthys C. Selenium Deficiency After Bariatric Surgery Is More Than Surface Deep. Obes Surg 2022; 32:2473-2475. [PMID: 35501636 DOI: 10.1007/s11695-022-06084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Gabriël Eksteen
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nele Steenackers
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium. .,Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Bioaccessibility and bioavailability of selenium species in Se-enriched leeks (Allium Porrum) cultivated by hydroponically. Food Chem 2022; 372:131314. [PMID: 34818737 DOI: 10.1016/j.foodchem.2021.131314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 01/27/2023]
Abstract
The Allium genus vegetables are of special interest since being potentially sources for selenium. In this study, the metabolization of selenite and selenate fortification at low and high levels in hydroponically cultivated Allium porrum (Leek) was investigated. The total Se analysis of nutritional solutions which was used in cultivation medium revealed that leeks had potential to accumulate Se above over 1000 mg/kg without any growth disturbance which was proved by comparing dry masses of control group with the ones fortified by Se species. Speciation analyses performed in edible parts which are leaves and stems showed that approximately 90% of total selenium was biotransformed into organo-selenium species in which MeSeCys and SeMet were found to be the most dominant in Se(IV) fortified leeks. However, selenate was found to be the most abundant species in edible parts of selenate fortified leeks especially at high levels. Although bioavailability rate of total selenium in selenate fortified leeks was found to be higher, lower amount of inorganic selenium and higher amount of MeSeCys were found to be bioavailable in Se(IV) fortified.
Collapse
|
18
|
Qiu Z, Geng T, Wan Z, Lu Q, Guo J, Liu L, Pan A, Liu G. Serum selenium concentrations and risk of all-cause and heart disease mortality among individuals with type 2 diabetes. Am J Clin Nutr 2022; 115:53-60. [PMID: 34664061 DOI: 10.1093/ajcn/nqab241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The impact of selenium status on the long-term health of people with type 2 diabetes (T2D) remains unclear. OBJECTIVES To prospectively examine the association of serum selenium concentrations with all-cause and heart disease mortality among individuals with T2D. METHODS This analysis included 3199 adults with T2D from the third NHANES (NHANES III) and NHANES (2003-2004, 2011-2014). Mortality from heart disease and all causes was linked to National Death Index mortality data. Cox proportional hazard models were used to estimate HRs and 95% CIs. RESULTS The median (IQR) concentration of serum selenium was 127.0 (115.0, 139.1) µg/L. During an average 12.6-y follow-up, 1693 deaths were documented, including 425 heart disease deaths. Compared with participants in the lowest quartile of selenium, the multivariate-adjusted HRs (95% CIs) for participants in the highest quartile were 0.69 (0.54, 0.89) for all-cause mortality (P-trend = 0.002) and 0.66 (0.45, 0.99) for heart disease mortality (P-trend = 0.03). In addition, a linear dose-response relation between serum selenium (range: 89-182 µg/L) and mortality was observed. For per-unit increment in natural log-transformed serum selenium, there was a 64% lower risk of all-cause mortality and a 66% lower risk of heart disease mortality (both P < 0.05). Similar results were observed when stratifying by age, sex, race, smoking status, BMI, physical activity, diabetes duration, and HbA1c concentrations. CONCLUSIONS Our study suggested that higher selenium concentration was associated with lower all-cause and heart disease mortality among individuals with T2D. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Zixin Qiu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Natural Autoimmunity to Selenoprotein P Impairs Selenium Transport in Hashimoto's Thyroiditis. Int J Mol Sci 2021; 22:ijms222313088. [PMID: 34884891 PMCID: PMC8658221 DOI: 10.3390/ijms222313088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
The essential trace element selenium (Se) is needed for the biosynthesis of selenocysteine-containing selenoproteins, including the secreted enzyme glutathione peroxidase 3 (GPX3) and the Se-transporter selenoprotein P (SELENOP). Both are found in blood and thyroid colloid, where they serve protective functions. Serum SELENOP derives mainly from hepatocytes, whereas the kidney contributes most serum GPX3. Studies using transgenic mice indicated that renal GPX3 biosynthesis depends on Se supply by hepatic SELENOP, which is produced in protein variants with varying Se contents. Low Se status is an established risk factor for autoimmune thyroid disease, and thyroid autoimmunity generates novel autoantigens. We hypothesized that natural autoantibodies to SELENOP are prevalent in thyroid patients, impair Se transport, and negatively affect GPX3 biosynthesis. Using a newly established quantitative immunoassay, SELENOP autoantibodies were particularly prevalent in Hashimoto’s thyroiditis as compared with healthy control subjects (6.6% versus 0.3%). Serum samples rich in SELENOP autoantibodies displayed relatively high total Se and SELENOP concentrations in comparison with autoantibody-negative samples ([Se]; 85.3 vs. 77.1 µg/L, p = 0.0178, and [SELENOP]; 5.1 vs. 3.5 mg/L, p = 0.001), while GPX3 activity was low and correlated inversely to SELENOP autoantibody concentrations. In renal cells in culture, antibodies to SELENOP inhibited Se uptake. Our results indicate an impairment of SELENOP-dependent Se transport by natural SELENOP autoantibodies, suggesting that the characterization of health risk from Se deficiency may need to include autoimmunity to SELENOP as additional biomarker of Se status.
Collapse
|
20
|
Reflecting on "Selenium in Global Food Systems". Br J Nutr 2021; 127:736-738. [PMID: 34776019 DOI: 10.1017/s0007114521004578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Analytical Problems in Separation of Selenomethionine and Its Oxidative Product in HILIC HPLC. Molecules 2021; 26:molecules26165073. [PMID: 34443660 PMCID: PMC8398165 DOI: 10.3390/molecules26165073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022] Open
Abstract
Selenomethionine (SeMet) is one of the main selenium forms in foods and supplements. Determining its presence in natural food samples creates difficulties due to possible oxidation processes. The objective of this study was to evaluate the possible degradation of SeMet in water extracts of green teas, one of the most consumed beverages worldwide. Such a medium has not been investigated at this time. The HILIC-HPLC MS/MS method with different stationary phases was used to achieve the satisfactory separation of SeMet and selenomethionine oxide (SeMetO). The addition of dithiothreitol and β-mercaptoethanol, recommended to ensure that SeMet is kept in the reduced form, was also evaluated. The best separation was achieved using the zwitterionic HILIC stationary phase coupled to mass spectrometry and MeOH with water (85/15, v/v) as the eluent. Extraction was done with hot water with the addition of β-mercaptoethanol. The infusions prepared from Lung-Ching teas (from the Zhejiang Province in China) contained the highest concentration of selenium in a typical cup of tea (12.5–17.3 µg L−1). For other tested teas it decreased in the following order: Yunnan > Dilmah > Lipton. For Lung-Ching teas, the sum of concentrations of SeMet and SeMetO corresponded to about 46–63% of the total selenium in their extracts.
Collapse
|
22
|
Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021; 13:1649. [PMID: 34068374 PMCID: PMC8153312 DOI: 10.3390/nu13051649] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
This review answers the question of why selenium is such an important trace element in the human diet. Daily dietary intake of selenium and its content in various food products is discussed in this paper, as well as the effects of its deficiency and excess in the body. Moreover, the biological activity of selenium, which it performs mainly through selenoproteins, is discussed. These specific proteins are responsible for thyroid hormone management, fertility, the aging process, and immunity, but their key role is to maintain a redox balance in cells. Furthermore, taking into account world news and the current SARS-CoV-2 virus pandemic, the impact of selenium on the course of COVID-19 is also discussed. Another worldwide problem is the number of new cancer cases and cancer-related mortality. Thus, the last part of the article discusses the impact of selenium on cancer risk based on clinical trials (including NPC and SELECT), systematic reviews, and meta-analyses. Additionally, this review discusses the possible mechanisms of selenium action that prevent cancer development.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| |
Collapse
|
23
|
Zake T, Kalere I, Upmale-Engela S, Svirskis S, Gersone G, Skesters A, Groma V, Konrade I. Plasma levels of Th17-associated cytokines and selenium status in autoimmune thyroid diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:792-803. [PMID: 33943012 PMCID: PMC8342220 DOI: 10.1002/iid3.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Introduction The contribution of Th17 cytokines to autoimmune thyroid disease (AITD) is generally accepted. However, the roles of Th17 cells in the initiation and progression of Hashimoto's thyroiditis (HT) and Graves' disease (GD) remain unclear. Selenium deficiency, along with genetic predisposition and environmental factors, may have a role in thyroid autoimmunity. Aim We aimed to assess (1) the Th17 immune response by measuring plasma levels of Th17‐ and Treg‐associated cytokines and (2) the selenium status in treatment‐naïve Latvian patients with newly diagnosed GD or HT. Methods Eleven GD patients, 41 HT patients, and 26 healthy subjects were recruited for this study. Plasma levels of IL‐17a, IL‐22, IL‐23, IL‐6, and IL‐10 were detected by xMAP technology, while selenium was detected fluorometrically. Results and Conclusions No significant differences in IL‐17a, IL‐22, IL‐23, IL‐6, or IL‐10 levels were found among the HT patients, GD patients, and controls. In the HT patients, IL‐17a levels were positively correlated with IL‐22, IL‐23, IL‐6, and IL‐10, while IL‐22 was correlated with IL‐6, IL‐23, and IL‐10. In the GD patients, IL‐17a levels were positively correlated with IL‐22, IL‐23, and IL‐10; IL‐22 was positively correlated with IL‐23, IL‐6, and IL‐10; FT3 was positively correlated with IL‐17a, IL‐23, and IL‐10; and FT4 was positively correlated with IL‐17a and IL‐10 levels. Plasma selenium levels were negatively correlated with antithyroid peroxidase antibody titers in the HT patients. Although no difference in selenium levels was observed between the AITD patients and controls, the selenium status of the Latvian patients with GD or HT was at a suboptimal level.
Collapse
Affiliation(s)
- Tatjana Zake
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | - Ieva Kalere
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | | - Simons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Riga, Latvia
| | - Gita Gersone
- Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - Andrejs Skesters
- Laboratory of Biochemistry, Riga Stradins University, Riga, Latvia
| | - Valerija Groma
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| |
Collapse
|
24
|
Donadio JLS, Duarte GBS, Borel P, Cozzolino SMF, Rogero MM. The influence of nutrigenetics on biomarkers of selenium nutritional status. Nutr Rev 2021; 79:1259-1273. [PMID: 33570152 DOI: 10.1093/nutrit/nuaa136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential micronutrient for human biology that executes its functions as the amino acid selenocysteine via selenoproteins, which have important functions in, for example, antioxidation, immunomodulation, thyroid metabolism, and human fertility. Se nutritional status is assessed using the quantification of blood Se biomarkers, which are influenced by several factors, including diet, age, gender, smoking status, alcohol consumption, health condition, and the genetic characteristics of individuals. Nutrigenetic studies have identified single nucleotide polymorphisms in selenoproteins that might clarify the high variability in values reported for biomarkers of Se nutritional status in different populations, and the response of these biomarkers to Se supplementation with either organic or inorganic forms of Se. This review aims to (1) define the basic aspects of Se biology, (2) describe the current most commonly used biomarkers of Se nutritional status, and (3) provide a summary of associations between functional single nucleotide polymorphisms in selenoproteins and biomarkers of Se status in healthy populations.
Collapse
Affiliation(s)
- Janaina L S Donadio
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Graziela B S Duarte
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Patrick Borel
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Silvia M F Cozzolino
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo M Rogero
- J.L.S. Donadio, G.B.S. Duarte, and S.M.F. Cozzolino are with the Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil. J.L.S. Donadio and M.M. Rogero are with the Food Research Center (FoRC), CEPID-FAPESP Research Innovation and Dissemination Centers, São Paulo Research Foundation, São Paulo, Brazil. P. Borel is with the C2VN, INRAE, INSERM, Aix Marseille University, Marseille, France. M.M. Rogero is with the Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Assarzadeh S, Badri S, Vahdat S, Pourfarzam M, Seirafian S, Ataei S. Potential benefits of selenium supplementation in patients with kidney disease. J Res Pharm Pract 2021; 10:149-158. [PMID: 35769838 PMCID: PMC9235365 DOI: 10.4103/jrpp.jrpp_3_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
Trace element deficiency is common among patients with end-stage renal disease (ESRD); the reason is that since these patients undergo dialysis, they lose these elements more than healthy people, and also the use of trace elements is restricted due to loss of appetite. Selenium (Se) is a trace element that is essential for the oxidative stress defense system. Se deficiency leads to some complications similar to those often seen in ESRD patients, such as all-cause mortality due to cardiovascular diseases, bone loss, uric acid elevation, and anemia. This article aims to review the evidence on consequences of Se deficiency in ESRD patients, as well as effects of Se supplementation in hemodialysis patients. Multiple databases were searched to summarize the available evidence on selenium's role in kidney diseases. Since the complications of ESRD and those of Se deficiency are mostly similar, this triggers the idea that Se deficiency may be considered as a cause of these problems, but it needs to be more assessed that Se deficiency is a single factor or there are other factors participated in. Also the role of Se supplementation on resolving the mentioned complications, needs to be more studied through welldesigned clinical studies.
Collapse
|
26
|
Singh R, Shaik L, Mehra I, Kashyap R, Surani S. Novel and Controversial Therapies in COVID-19. Open Respir Med J 2020; 14:79-86. [PMID: 33717367 PMCID: PMC7931150 DOI: 10.2174/1874306402014010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease (COVID-19) pandemic, which has led scientists all over the world to push for the identification of novel therapies for COVID-19. The lack of a vaccine and specific treatment has led to a surge of novel therapies and their publicity in recent times. Under these unprecedented circumstances, a myriad of drugs used for other diseases is being evaluated and repositioned to treat COVID-19 (example- Remdesivir, Baricitinib). While multiple trials for potential drugs and vaccines are ongoing, and there are many unproven remedies with little or no supporting evidence. Presently, discussions are revolving around the use of multivitamins (Vitamin, C, D, A), minerals (selenium, zinc), probiotics, flavonoids, polyphenols, and herbal remedies (curcumin, artemisinin, herbal drinks). Our review delves further into the details of some of these controversial therapies for COVID-19.
Collapse
Affiliation(s)
- Romil Singh
- Department of Medicine, Metropolitan Hospital, Jaipur, Rajasthan, India
| | - Likhita Shaik
- Department of Oncology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ishita Mehra
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, North Alabama Medical Center, Florence, AL, USA
| | - Rahul Kashyap
- Department of Anesthesiology and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Salim Surani
- Department of Pulmonary & Critical Care Medicine & Pharmacology, Texas A&M University, TX, USA
| |
Collapse
|
27
|
Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Leggeri C, Cinelli G, Tarsitano MG, Caparello G, Carrano E, Merra G, Pujia AM, Danieli R, De Lorenzo A. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med 2020; 18:415. [PMID: 33160363 PMCID: PMC7647877 DOI: 10.1186/s12967-020-02594-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
On December 12, 2019 a new coronavirus (SARS-CoV-2) emerged in Wuhan, China, triggering a pandemic of severe acute respiratory syndrome in humans (COVID-19). Today, the scientific community is investing all the resources available to find any therapy and prevention strategies to defeat COVID-19. In this context, immunonutrition can play a pivotal role in improving immune responses against viral infections. Immunonutrition has been based on the concept that malnutrition impairs immune function. Therefore, immunonutrition involves feeding enriched with various pharmaconutrients (Omega 3 Fatty Acids, Vitamin C, Arginine, Glutamine, Selenium, Zinc, Vitamin, E and Vitamin D) to modulate inflammatory responses, acquired immune response and to improve patient outcomes. In literature, significant evidences indicate that obesity, a malnutrition state, negatively impacts on immune system functionality and on host defense, impairing protection from infections. Immunonutrients can promote patient recovery by inhibiting inflammatory responses and regulating immune function. Immune system dysfunction is considered to increase the risk of viral infections, such as SARS-CoV-2, and was observed in different pathological situations. Obese patients develop severe COVID-19 sequelae, due to the high concentrations of TNF-α, MCP-1 and IL-6 produced in the meantime by visceral and subcutaneous adipose tissue and by innate immunity. Moreover, leptin, released by adipose tissue, helps to increase inflammatory milieu with a dysregulation of the immune response. Additionally, gut microbiota plays a crucial role in the maturation, development and functions of both innate and adaptive immune system, as well as contributing to develop obese phenotype. The gut microbiota has been shown to affect lung health through a vital crosstalk between gut microbiota and lungs, called the "gut-lung axis". This axis communicates through a bi-directional pathway in which endotoxins, or microbial metabolites, may affect the lung through the blood and when inflammation occurs in the lung, this in turn can affect the gut microbiota. Therefore, the modulation of gut microbiota in obese COVID-19 patients can play a key role in immunonutrition therapeutic strategy. This umbrella review seeks to answer the question of whether a nutritional approach can be used to enhance the immune system's response to obesity in obese patients affected by COVID-19.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Francesca Pivari
- Department of Health Sciences, University of Milan, Via A. Di Rudinì 8, 20142, Milan, Italy.
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Alda Attinà
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Claudia Leggeri
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Cinelli
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
- Predictive and Preventive Medicine Research Unit, "Bambino Gesù" Children Hospital IRCCS, 00165, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Caparello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Carrano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alberto Maria Pujia
- Department of Surgery, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberta Danieli
- Telematic University of San Raffaele Rome, 00166, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
28
|
Nutrigenetics of antioxidant enzymes and micronutrient needs in the context of viral infections. Nutr Res Rev 2020; 34:174-184. [PMID: 33081856 DOI: 10.1017/s0954422420000244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sustaining adequate nutritional needs of a population is a challenging task in normal times and a priority in times of crisis. There is no 'one-size-fits-all' solution that addresses nutrition. In relevance to the COVID-19 (coronavirus disease 2019) pandemic crisis, viral infections in general and RNA viruses in particular are known to induce and promote oxidative stress, consequently increasing the body's demand for micronutrients, especially those related to antioxidant enzymic systems, thus draining the body of micronutrients, and so hindering the human body's ability to cope optimally with oxidative stress. Common polymorphisms in major antioxidant enzymes, with world population minor allele frequencies ranging from 0·5 to 50 %, are related to altered enzymic function, with substantial potential effects on the body's ability to cope with viral infection-induced oxidative stress. In this review we highlight common SNP of the major antioxidant enzymes relevant to nutritional components in the context of viral infections, namely: superoxide dismutases, glutathione peroxidases and catalase. We delineate functional polymorphisms in several human antioxidant enzymes that require, especially during a viral crisis, adequate and potentially additional nutritional support to cope with the pathological consequences of disease. Thus, in face of the COVID-19 pandemic, nutrition should be tightly monitored and possibly supplemented, with special attention to those carrying common polymorphisms in antioxidant enzymes.
Collapse
|
29
|
Kuria A, Tian H, Li M, Wang Y, Aaseth JO, Zang J, Cao Y. Selenium status in the body and cardiovascular disease: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2020; 61:3616-3625. [DOI: 10.1080/10408398.2020.1803200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Hongdou Tian
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Mei Li
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Yinhe Wang
- Department of Orthopaedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jan Olav Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Jiajie Zang
- Department of Nutrition Hygiene, Division of Health Risk Factor Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
30
|
Abstract
Selenium (Se) is an essential micronutrient present in human diet, entering in the composition of selenoproteins as selenocysteine (Se-Cys) amino acid. At the thyroid level, these proteins play an important role as antioxidant and in hormone metabolism. Selenoproteins are essential for the balance of redox homeostasis and antioxidant defense of mammalian organisms, while the corresponding imbalance is now recognized as the cause of many diseases including cancer. The food chain is the main source of Se in human body. Dietary intake is strongly correlated with Se content in soil and varies according to several factors such as geology and atmospheric input. Both Se deficiency and toxicity have been associated with adverse health effects. This review synthesizes recent data on the transfer of Se from soil to humans, Se U-shaped deficiency and toxicity uptake effects and particularly the impact of Se deficiency on thyroid cancer.
Collapse
|
31
|
Krysiak R, Kowalcze K, Okopień B. Hyperprolactinaemia attenuates the inhibitory effect of vitamin D/selenomethionine combination therapy on thyroid autoimmunity in euthyroid women with Hashimoto’s thyroiditis: A pilot study. J Clin Pharm Ther 2020; 45:1334-1341. [DOI: 10.1111/jcpt.13214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| | - Karolina Kowalcze
- Department of Pediatrics in Bytom School of Health Sciences in KatowiceMedical University of Silesia Katowice Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology Medical University of Silesia Katowice Poland
| |
Collapse
|
32
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
33
|
Guo K, Yao Y, Yang M, Li Y, Wu B, Lin X. Transcriptome sequencing and analysis reveals the molecular response to selenium stimuli in Pueraria lobata (willd.) Ohwi. PeerJ 2020; 8:e8768. [PMID: 32231880 PMCID: PMC7100600 DOI: 10.7717/peerj.8768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/18/2020] [Indexed: 01/04/2023] Open
Abstract
Pueraria lobata (willd.) Ohwi is a consumable selenium-enriched plant used for medicinal purposes. The molecular response to selenium (Se) stimuli in P. lobata is currently unknown. We used RNA-Seq to identify potential genes involved in selenite metabolism and analyzed their expression profiles. We obtained a total of 150,567 unigenes, of which 90,961 were annotated, including 16 structural genes, 14 sulfate transporters, and 13 phosphate transporters that may be involved in Se metabolism, and 33 candidate structural genes involved in isoflavone biosynthesis. The genes with a —foldchange— >2 and q value <0.05 after sodium selenite treatment were identified as differentially expressed genes (DEGs). We obtained a total of 4,246 DEGs, which were enriched in GO terms that included “response to stimulus”, “response to stress”, “signal transduction”, “response to abiotic stimulus”, and “response to chemical”. Of the 4,246 DEGs, one sulfate transporter and five phosphate transporter genes involved Se metabolism, and nine structural genes involved in isoflavone biosynthesis were up-regulated. The expression patterns of 10 DEGs were selected randomly and validated using qRT-PCR. The Pearson Correlation Coefficient (r) was 0.86, indicating the reliability of RNA-Seq results. 22 Reactive Oxygen Species (ROS) scavenging DEGs were found, 11 of which were up-regulated. 436, 624 transcription factors (TFs) correlated with structural genes were identified that may be involved in Se and isoflavone biosynthesis, respectively, using r (r > 0.7 or r < − 0.7). 556 TFs were related to at least one sulfate and phosphate transporter. Our results provided a comprehensive description of gene expression and regulation in response to Se stimuli in P. lobata.
Collapse
Affiliation(s)
- Kunyuan Guo
- Institute of Chinese Medicinal Materials, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Yiwei Yao
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, beijing, China
| | - Meng Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, beijing, China
| | - Yanni Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, beijing, China
| | - Bin Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Medicinal Plant Development, beijing, China
| | - Xianming Lin
- Institute of Chinese Medicinal Materials, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
34
|
Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00303-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Lima LW, Stonehouse GC, Walters C, Mehdawi AFE, Fakra SC, Pilon-Smits EAH. Selenium Accumulation, Speciation and Localization in Brazil Nuts ( Bertholletia excelsa H.B.K.). PLANTS 2019; 8:plants8080289. [PMID: 31426292 PMCID: PMC6724122 DOI: 10.3390/plants8080289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022]
Abstract
More than a billion people worldwide may be selenium (Se) deficient, and supplementation with Se-rich Brazil nuts may be a good strategy to prevent deficiency. Since different forms of Se have different nutritional value, and Se is toxic at elevated levels, careful seed characterization is important. Variation in Se concentration and correlations of this element with other nutrients were found in two batches of commercially available nuts. Selenium tissue localization and speciation were further determined. Mean Se levels were between 28 and 49 mg kg−1, with up to 8-fold seed-to-seed variation (n = 13) within batches. Brazil nut Se was mainly in organic form. While present throughout the seed, Se was most concentrated in a ring 1 to 2 mm below the surface. While healthy, Brazil nuts should be consumed in moderation. Consumption of one seed (5 g) from a high-Se area meets its recommended daily allowance; the recommended serving size of 30 g may exceed the allowable daily intake (400 μg) or even its toxicity threshold (1200 μg). Based on these findings, the recommended serving size may be re-evaluated, consumers should be warned not to exceed the serving size and the seed may be sold as part of mixed nuts, to avoid excess Se intake.
Collapse
Affiliation(s)
- Leonardo W Lima
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Gavin C Stonehouse
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christina Walters
- National Laboratory for Genetic Resources Preservation, USDA-ARS, Fort Collins, CO 80521, USA
| | - Ali F El Mehdawi
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
36
|
Pieczyńska J, Płaczkowska S, Sozański R, Orywal K, Mroczko B, Grajeta H. Is maternal dietary selenium intake related to antioxidant status and the occurrence of pregnancy complications? J Trace Elem Med Biol 2019; 54:110-117. [PMID: 31109600 DOI: 10.1016/j.jtemb.2019.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
Abstract
Selenium (Se) is a trace element essential for the appropriate course of vital processes in the human body. It is also a constituent of the active center of glutathione peroxidase and other antioxidant compounds which play an important role in red-ox processes. Associations between lower blood selenium concentration and obstetric complications has been reported in many studies. The aim of this study was to determine the dietary selenium intake and serum selenium content in pregnant Polish women and relate this to antioxidant status as whole blood glutathione peroxidase (GPX) activity, serum uric acid (UA) content and serum total antioxidant status (TAS) and pregnancy complications occurrence. Ninety-four pregnant women at a mean age 30.6 ± 5.4 years from the Lower Silesia region of Poland were recruited to the study, 37% of studied group had pregnancy complications. The mean reported Se intake and serum selenium content for Polish pregnant women was in the first trimester - 53.99 μg/day and 44.36 μg/l, the second trimester - 58.93 μg/day and 43.16 μg/l and the third trimester - 62.89 μg/day and 40.97 μg/l, respectively. Selenium intake below or above recommended value hadn't significant effect on GPX activity, TAS and UA levels. There were no statistical differences in selenium intake, serum selenium content, GPX activity and TAS and UA level between physiological and complicated pregnancy, but a positive correlation between Se intake and serum selenium content was observed during all period of gestation as well as in the second trimester of pregnancy between Se intake and GPX activity in group with physiological pregnancy where selenium intake was below the recommended level. Selenium intake above the recommended level was positively correlated also with serum UA level in first and second trimester of pregnancy. Despite weak, positive correlations in the first two trimesters of pregnancy between selenium supply and GPX activity and UA concentration we concluded that selenium intake does not significantly affect during pregnancy, both: markers of the antioxidant status of pregnant women and the occurrence of pregnancy complications.
Collapse
Affiliation(s)
- Joanna Pieczyńska
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland.
| | - Sylwia Płaczkowska
- Diagnostics Laboratory for Teaching and Research, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Rafał Sozański
- 1st Department and Clinic of Gynaecology and Obstetrics, Wroclaw Medical University, T. Chałubińskiego 3, 50-368, Wroclaw, Poland
| | - Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269, Bialystok, Poland; Department of Neurodegeneration Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269, Bialystok, Poland
| | - Halina Grajeta
- Department of Food Science and Dietetics, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
37
|
Krysiak R, Kowalcze K, Okopień B. The Effect of Selenomethionine on Thyroid Autoimmunity in Euthyroid Men With Hashimoto Thyroiditis and Testosterone Deficiency. J Clin Pharmacol 2019; 59:1477-1484. [DOI: 10.1002/jcph.1447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical PharmacologyMedical University of Silesia Katowice Poland
| | - Karolina Kowalcze
- Department of Paediatrics in BytomSchool of Health Sciences in KatowiceMedical University of Silesia Katowice Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical PharmacologyMedical University of Silesia Katowice Poland
| |
Collapse
|
38
|
Han F, Liu L, Lu J, Chai Y, Zhang J, Wang S, Sun L, Wang Q, Liu Y, He M, Mu W, Huang Z. Calculation of an Adequate Intake (AI) Value and Safe Range of Selenium (Se) for Chinese Infants 0-3 Months Old Based on Se Concentration in the Milk of Lactating Chinese Women with Optimal Se Intake. Biol Trace Elem Res 2019; 188:363-372. [PMID: 30014285 DOI: 10.1007/s12011-018-1440-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/10/2018] [Indexed: 01/13/2023]
Abstract
The required selenium intake for optimal health in Chinese residents was published in 2014. However, the adequate intake (AI) value for Chinese infants 0-3 months old is not established. This study assessed the current selenium nutritional status of 264 lactating Chinese women from three geographical locations with different Se levels (Liangshan in Sichuan province, Enshi in Hubei province, and Xicheng District in Beijing), to screen mothers with optimal Se intake, and to modify the AI value of Se for Chinese infants 0-3 months old. Milk and plasma Se concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and glutathione peroxidase 3 (GPx3), and plasma selenoprotein P (SEPP1) was measured by ELISA. Daily Se intake (Y, μg/day) in lactating Chinese woman was calculated from plasma Se concentrations (X, μg/L) using the formula logY = 1.623 log(X) + 3.433. Plasma Se concentrations in lactating Chinese women were 78.19 ± 25.71, 112.48 ± 24.57, and 183.83 ± 45.81 μg/L from Se-deficient, Se-moderate, and seleniferous areas, respectively. Se intakes calculated from concentrations of plasma Se were 45.6 ± 21.69, 80.03 ± 27.69, and 223.10 ± 50.95 μg/day, respectively. An optimal dietary Se intake is not lower than the recommended nutrient intake (RNI) but not more than the tolerable upper intake level (UL). A range of 78-400 μg Se/day was defined as the optimal daily Se intake for lactating Chinese women. The percentages of mothers within this range in Sichuan, Beijing, and Enshi were 8.11, 45.13, and 6.06%, respectively. Based on milk Se concentrations of mothers with optimal daily Se intake, the adequate Se intake value and a safe range for Chinese infants 0-3 months of age were calculated as 15.29 and 8-35 μg Se/day, respectively. The Se status of Chinese lactating women has improved, particularly in traditionally Se-deficient and Se-toxic regions. A safe range for daily Se intake in Chinese infants may be regarded as a guideline for infant formula.
Collapse
Affiliation(s)
- Feng Han
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Liping Liu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jiaxi Lu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yingjuan Chai
- Maternal and Child Care Hospital of Xicheng District, Beijing, 100054, China
| | - Jie Zhang
- Center for Disease Control and Prevention of Enshi Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Shijin Wang
- Center for Disease Control and Prevention of Yi Autonomous Prefecture of Liangshan, Liangshan, 615000, Sichuan, China
| | - Licui Sun
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qin Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yiqun Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Mengjie He
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Weipeng Mu
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhenwu Huang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
39
|
Krysiak R, Szkróbka W, Okopień B. Atorvastatin potentiates the effect of selenomethionine on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis. Curr Med Res Opin 2019; 35:675-681. [PMID: 30354702 DOI: 10.1080/03007995.2018.1541314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE In many studies, selenium supplementation decreased serum titers of thyroid antibodies. The aim of the study was to investigate whether statin therapy determines selenium action on thyroid autoimmunity. METHODS This prospective case-control study enrolled 42 euthyroid women with Hashimoto's thyroiditis and normal vitamin D status, 20 of whom had been treated with atorvastatin (40 mg daily) for at least 6 months. All patients received selenomethionine (200 µg daily) for 6 months. Plasma levels of lipids, serum titers of thyroid peroxidase (TPOAb) and thyroglobulin (TgAb) antibodies, as well as serum levels of thyrotropin, free thyroid hormones, and 25-hydroxyvitamin D were determined at the beginning and at the end of the study. RESULTS At baseline, there were no differences between both treatment arms in plasma lipids, titers of thyroid antibodies, serum levels of thyrotropin, free thyroid hormones, and 25-hydroxyvitamin D. Selenometionine decreased titers of TPOAb (from 843 ± 228 to 562 ± 189 U/mL) and TgAb (from 795 ± 286 to 501 ± 216 U/mL) in atorvastatin-treated women, as well as titers of TPOAb (from 892 ± 247 to 705 ± 205 U/mL) and TgAb (from 810 ± 301 to 645 ± 224 U/mL) in statin-naive women. The changes in antibody titers were more pronounced in women receiving atorvastatin (between-group difference: 94 [32-156] [TPOAb]; 129 [52-206] [TgAb]). Treatment-induced changes in TPOAb and TgAb correlated positively with baseline thyroid antibody titers. Circulating levels of lipids, free thyroxine, free triiodothyronine, and 25-hydroxyvitamin D remained at similar levels throughout the study. CONCLUSIONS The obtained results indicate that the decrease in titers of thyroid antibodies was potentiated by atorvastatin use.
Collapse
Affiliation(s)
- Robert Krysiak
- a Department of Internal Medicine and Clinical Pharmacology , Medical University of Silesia , Katowice , Poland
| | - Witold Szkróbka
- a Department of Internal Medicine and Clinical Pharmacology , Medical University of Silesia , Katowice , Poland
| | - Bogusław Okopień
- a Department of Internal Medicine and Clinical Pharmacology , Medical University of Silesia , Katowice , Poland
| |
Collapse
|
40
|
Ullah H, Liu G, Yousaf B, Ali MU, Irshad S, Abbas Q, Ahmad R. A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1003-1035. [PMID: 30267320 DOI: 10.1007/s10653-018-0195-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/21/2018] [Indexed: 05/09/2023]
Abstract
Selenium (Se) is an important micronutrient and essential trace element for both humans and animals, which exist in the environment ubiquitously. Selenium deficiency is an important issue worldwide, with various reported cases of its deficiency. Low selenium contents in some specific terrestrial environments have resulted in its deficiency in humans. However, high levels of selenium in the geochemical environment may have harmful influences and can cause a severe toxicity to living things. Due to its extremely narrow deficiency and toxicity limits, selenium is becoming a serious matter of discussion for the scientists who deals with selenium-related environmental and health issues. Based on available relevant literature, this review provides a comprehensive data about Se sources, levels, production and factors affecting selenium bioavailability/speciation in soil, characteristics of Se, biogeochemical cycling, deficiency and toxicity, and its environmental transformation to know the Se distribution in the environment. Further research should focus on thoroughly understanding the concentration, speciation, Se cycling in the environment and food chain to effectively utilize Se resources, remediate Se deficiency/toxicity, and evaluate the Se states and eco-effects on human health.
Collapse
Affiliation(s)
- Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Rafay Ahmad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
41
|
Almondes KGS, Cardoso BR, Cominetti C, Nogueira NN, Marreiro DN, Oliveira TF, Loureiro APM, Cozzolino SMF. The redox balance of healthy Brazilian adults is associated with GPX1 Pro198Leu and -602A/G polymorphisms, selenium status, and anthropometric and lifestyle parameters. Food Funct 2019; 9:5313-5322. [PMID: 30256368 DOI: 10.1039/c8fo01621f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Considering that oxidative stress is implicated in the pathogenesis and progression of different health conditions, we aimed to evaluate whether the redox balance of a healthy Brazilian population is associated with GPX1 polymorphisms, selenium status, lipid profile, and anthropometric and lifestyle parameters. METHODS 343 healthy adults were assessed for redox balance markers [glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity; malondialdehyde (MDA) and oxygen radical absorption capacity (ORAC)]; genotyped for the polymorphisms GPX1 Pro198Leu (rs1050450), -602A/G (rs3811699) and Arg5Pro (rs8179169); evaluated for selenium biomarkers (plasma, erythrocyte, and urine) and intake; and assessed for lipid profile. Anthropometric (BMI) and lifestyle data (physical activity, current smoking habit and alcohol consumption) were collected. Multivariable regression models were applied to investigate the possible associations. RESULTS Although there were no differences in GPx activity according to GPX1 Pro198Leu and -602A/G polymorphisms, this redox balance marker was positively associated with erythrocyte selenium and negatively associated with the presence of a minor allele of Pro198Leu. SOD activity was positively associated with the presence of a minor allele for these polymorphisms. ORAC showed the same pattern among Leu and G carriers and was positively associated with Leu allele presence, BMI and alcohol intake. MDA was only associated negatively with the male sex and plasma selenium. CONCLUSIONS Our findings suggest that the redox balance of a Brazilian healthy population is associated with GPX1 polymorphisms (Pro198Leu and -602A/G), selenium status, BMI, sex, smoking habit and alcohol consumption.
Collapse
Affiliation(s)
- Kaluce G S Almondes
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, Butantã, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kuria A, Fang X, Li M, Han H, He J, Aaseth JO, Cao Y. Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit Rev Food Sci Nutr 2018; 60:684-694. [PMID: 30570346 DOI: 10.1080/10408398.2018.1548427] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current evidence on selenium and its effects on cancer is conflicting. This study aimed at assessing the association between dietary intake of selenium and incidence of cancers by performing systematic review and meta-analysis of population-based prospective studies. We systematically searched for articles in Medline (Ovid), Embase, Web of Science (Thomson Reuters), China National Knowledge Infrastructure, Wanfang Database and VIP Chinese Scientific Journals. Analysis was performed in Stata version 14.2. Of the 2,564 articles obtained from the databases, 39 met our inclusion criteria, 37 were included in the final analysis. Selenium at recommended daily allowance levels of ≥55 μg/day decreased the risk of cancer [relative risk (RR) = 0.94, 95% confidence interval (CI): 0.90-0.98]. A protective effect was found in men at levels ≥55 μg/day (RR = 0.97, 95% CI: 0.94-0.99). Extra selenium intake from supplements was protective at levels ≥55 μg/day (RR = 0.89, 95% CI: 0.82-0.97). There was an inverse relationship (p value = 0.020) between selenium intake and overall cancer risk after adjusting for age, body mass index, and smoking but there was no evidence of nonlinear relationship (p value = 0.261). The findings in this study suggest that selenium is protective against cancer however the effects vary with different cancers.
Collapse
Affiliation(s)
- Angelica Kuria
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Xin Fang
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mei Li
- Center for Assessment of Medical Technology, Örebro University Hospital, Örebro University, Örebro, Sweden
| | - Hedong Han
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Jia He
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Jan Olav Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway.,Research department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Yang Cao
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
43
|
Krysiak R, Kowalcze K, Okopień B. Selenomethionine potentiates the impact of vitamin D on thyroid autoimmunity in euthyroid women with Hashimoto's thyroiditis and low vitamin D status. Pharmacol Rep 2018; 71:367-373. [PMID: 30844687 DOI: 10.1016/j.pharep.2018.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Both exogenous vitamin D and selenium reduce thyroid antibody titers. The aim of the study was to investigate whether the impact of vitamin D on thyroid autoimmunity is affected by selenium intake. METHODS The study included 47 euthyroid women with Hashimoto's thyroiditis and low vitamin D status, 23 of whom had been treated with selenomethionine (200 μg daily) for at least 12 months before the beginning of the study. During the study, all patients were treated with vitamin D preparations (4000 IU daily). Serum titers of thyroid peroxidase and thyroglobulin antibodies, as well as circulating levels of thyrotropin, free thyroid hormones and 25-hydroxyvitamin D were measured before vitamin D supplementation and 6 months later. Moreover, at the beginning and at the end of the study, we calculated Jostel's thyrotropin index, the SPINA-GT index and the SPINA-GD index. RESULTS With the exception of the free triiodothyronine/free thyroxine ratio and the SPINA-GD index, there were no differences between the study groups. In both groups, vitamin D increased 25-hydroxyvitamin D levels, reduced thyroid peroxidase and thyroglobulin antibody titers, as well as increased the SPINA-GT index. The effects on antibody titers and the SPINA-GT index were more pronounced in women receiving selenomethionine. Neither in selenomethionine-treated nor in selenomethionine-naïve women vitamin D affected serum hormone levels, Jostel's index and the SPINA-GD index. CONCLUSIONS The results of the study suggest that selenium intake enhances the effect of vitamin D on thyroid autoimmunity.
Collapse
Affiliation(s)
- Robert Krysiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland.
| | - Karolina Kowalcze
- Department of Paediatrics in Bytom, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
44
|
Cardoso BR, Szymlek-Gay EA, Roberts BR, Formica M, Gianoudis J, O'Connell S, Nowson CA, Daly RM. Selenium Status Is Not Associated with Cognitive Performance: A Cross-Sectional Study in 154 Older Australian Adults. Nutrients 2018; 10:E1847. [PMID: 30513714 PMCID: PMC6315874 DOI: 10.3390/nu10121847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Selenium was suggested to play a role in modulating cognitive performance and dementia risk. Thus, this study aimed to investigate the association between selenium status and cognitive performance, as well as inflammatory and neurotrophic markers in healthy older adults. This cross-sectional study included 154 older adults (≥60 years) from Victoria, Australia. Participants were assessed for cognitive performance (Cogstate battery), dietary selenium intake (two 24-h food recalls), plasma selenium concentration, inflammatory markers (interleukin (IL)-6, -8, -10, tumor necrosis factor-alpha and adiponectin) and neurotrophic factors (brain-derived neurotrophic factor, vascular endothelial growth factor and insulin-like growth factor 1). Dietary selenium intake was adequate for 85% of all participants. The prevalence of selenium deficiency was low; only 8.4% did not have the minimum concentration in plasma required for optimization of iodothyronine 5' deiodinases activity. Multiple linear regression analysis revealed that plasma selenium was not associated with cognitive performance, inflammatory markers nor neurotrophic factors, independent of age, sex, body mass index (BMI), habitual physical activity, APOE status, education, and history of cardiovascular disease. The lack of association might be due to the optimization of selenoproteins synthesis as a result of adequate selenium intake. Future prospective studies are recommended to explore potential associations of selenium status with age-associated cognitive decline.
Collapse
Affiliation(s)
- Barbara R Cardoso
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, Parkville, 3050 Victoria, Australia.
| | - Ewa A Szymlek-Gay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, Parkville, 3050 Victoria, Australia.
| | - Melissa Formica
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| | - Jenny Gianoudis
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| | - Stella O'Connell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| | - Caryl A Nowson
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| | - Robin M Daly
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 3220 Geelong, Australia.
| |
Collapse
|
45
|
D'Amato R, Petrelli M, Proietti P, Onofri A, Regni L, Perugini D, Businelli D. Determination of changes in the concentration and distribution of elements within olive drupes (cv. Leccino) from Se biofortified plants, using laser ablation inductively coupled plasma mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4971-4977. [PMID: 29577309 DOI: 10.1002/jsfa.9030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Biofortification of food crops has been used to increase the intake of Se in the human diet, even though this may change the concentration of other elements and modify the nutritional properties of the enriched food. Selenium biofortification programs should include routine assessment of the overall mineral composition of enriched plants. RESULTS Laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) was used for the assessment of mineral composition of table olives. Olive trees were fertilized with sodium selenate before flowering. At harvest, the edible parts of drupes proved to be significantly enriched in Se, delivering 6.1 μg g-1 (39% of the RDA for five olives). Such enrichment was followed by significant changes in the concentrations of B, Mg, K, Cr, Mn, Fe and Cu in edible parts, which are discussed for their impact on food quality. CONCLUSION The biofortification of olive plants has allowed the enrichment of fruits with selenium. Enrichment with selenium has caused an increase in the concentration of other elements, which can change the nutritional quality of the drupes. The analytical technique used well as a valuable tool for routinely determining the chemical composition of all fruit parts. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Roberto D'Amato
- DSA3, Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, Perugia, Italy
| | - Maurizio Petrelli
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, Perugia, Italy
| | - Primo Proietti
- DSA3, Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, Perugia, Italy
| | - Andrea Onofri
- DSA3, Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, Perugia, Italy
| | - Luca Regni
- DSA3, Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, Perugia, Italy
| | - Diego Perugini
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, Perugia, Italy
| | - Daniela Businelli
- DSA3, Department of Agricultural, Food and Environmental Sciences, University of Perugia, Via Borgo XX Giugno 74, Perugia, Italy
| |
Collapse
|
46
|
Kopp TI, Outzen M, Olsen A, Vogel U, Ravn-Haren G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. GENES AND NUTRITION 2018; 13:20. [PMID: 30008961 PMCID: PMC6045871 DOI: 10.1186/s12263-018-0608-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Background Selenium is an essential trace element and is suggested to play a role in the etiology of a number of chronic diseases. Genetic variation in genes encoding selenoproteins, such as selenoprotein P and the glutathione peroxidases, may affect selenium status and, thus, individual susceptibility to some chronic diseases. In the present study, we aimed to (1) investigate the effect of mussel and fish intake on glutathione peroxidase enzyme activity and (2) examine whether single nucleotide polymorphisms in the GPX1, GPX4, and SELENOP genes modify the effect of mussel and fish intake for 26 weeks on whole blood selenium, plasma selenoprotein P concentrations, and erythrocyte GPX enzyme activity in a randomized intervention trial in Denmark. Results CC homozygotes of the SELENOP/rs3877899 polymorphism who consumed 1000 g fish and mussels per week for 26 consecutive weeks had higher levels of both selenoprotein P (difference between means - 4.68 ng/mL (95% CI - 8.49, - 0.871)) and whole blood selenium (difference between means - 5.76 (95% CI - 12.5, 1.01)) compared to fish and mussel consuming T-allele carriers although the effect in whole blood selenium concentration was not statistically significant. Conclusions Our study indicates that genetically determined variation in SELENOP leads to different responses in expression of selenoproteins following consumption of selenium-rich foods. This study also emphasizes the importance of taking individual aspects such as genotypes into consideration when assessing risk in public health recommendations.
Collapse
Affiliation(s)
- Tine Iskov Kopp
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.,2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.,3The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.,5The Danish Multiple Sclerosis Center, Department of Neurology, The Danish Multiple Sclerosis Registry, Section 7801, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Malene Outzen
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.,2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Anja Olsen
- 2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- 4National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
47
|
Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: A validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS One 2018; 13:e0193120. [PMID: 29641571 PMCID: PMC5894963 DOI: 10.1371/journal.pone.0193120] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Selenium and coenzyme Q10 are both necessary for optimal cell function in the body. The intake of selenium is low in Europe, and the endogenous production of coenzyme Q10 decreases as age increases. Therefore, an intervention trial using selenium and coenzyme Q10 for four years as a dietary supplement was performed. The main publication reported reduced cardiovascular mortality as a result of the intervention. In the present sub-study the objective was to determine whether reduced cardiovascular (CV) mortality persisted after 12 years, in the supplemented population or in subgroups with diabetes, hypertension, ischemic heart disease or reduced functional capacity due to impaired cardiac function. METHODS From a rural municipality in Sweden, four hundred forty-three healthy elderly individuals were included. All cardiovascular mortality was registered, and no participant was lost to the follow-up. Based on death certificates and autopsy results, mortality was registered. FINDINGS After 12 years a significantly reduced CV mortality could be seen in those supplemented with selenium and coenzyme Q10, with a CV mortality of 28.1% in the active treatment group, and 38.7% in the placebo group. A multivariate Cox regression analysis demonstrated a reduced CV mortality risk in the active treatment group (HR: 0.59; 95%CI 0.42-0.81; P = 0.001). In those with ischemic heart disease, diabetes, hypertension and impaired functional capacity we demonstrated a significantly reduced CV mortality risk. CONCLUSIONS This is a 12-year follow-up of a group of healthy elderly participants that were supplemented with selenium and coenzyme Q10 for four years. Even after twelve years we observed a significantly reduced risk for CV mortality in this group, as well as in subgroups of patients with diabetes, hypertension, ischemic heart disease or impaired functional capacity. The results thus validate the results obtained in the 10-year evaluation. The protective action was not confined to the intervention period, but persisted during the follow-up period. The mechanisms behind this effect remain to be fully elucidated, although various effects on cardiac function, oxidative stress, fibrosis and inflammation have previously been identified. Since this was a small study, the observations should be regarded as hypothesis-generating. TRIAL REGISTRATION Clinicaltrials.gov NCT01443780.
Collapse
|
48
|
Cardoso BR, Hare DJ, Bush AI, Li QX, Fowler CJ, Masters CL, Martins RN, Ganio K, Lothian A, Mukherjee S, Kapp EA, Roberts BR. Selenium Levels in Serum, Red Blood Cells, and Cerebrospinal Fluid of Alzheimer's Disease Patients: A Report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL). J Alzheimers Dis 2018; 57:183-193. [PMID: 28222503 DOI: 10.3233/jad-160622] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Selenium (Se) protects cells against oxidative stress damage through a range of bioactive selenoproteins. Increased oxidative stress is a prominent feature of Alzheimer's disease (AD), and previous studies have shown that Se deficiency is associated with age-related cognitive decline. In this study, we assessed Se status in different biofluids from a subgroup of participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing. As Se in humans can either be an active component of selenoproteins or inactive via non-specific incorporation into other proteins, we used both size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and tandem mass spectrometry to characterize selenoproteins in serum. We observed no differences in total Se concentration in serum or cerebrospinal fluid of AD subjects compared to mildly cognitively impairment patients and healthy controls. However, Se levels in erythrocytes were decreased in AD compared to controls. SEC-ICP-MS analysis revealed a dominant Se-containing fraction. This fraction was subjected to standard protein purification and a bottom-up proteomics approach to confirm that the abundant Se in the fraction was due, in part, to selenoprotein P. The lack of change in the Se level is at odds with our previous observations in a Brazilian population deficient in Se, and we attribute this to the Australian cohort being Se-replete.
Collapse
Affiliation(s)
- Bárbara R Cardoso
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil
| | - Dominic J Hare
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Elemental Bio-imaging Facility, University of Technology Sydney, Broadway, NSW, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | - Qiao-Xin Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher J Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ralph N Martins
- Edith Cowan University, School of Exercise, Biomedical and Health Sciences, Joondalup, WA, Australia
| | - Katherine Ganio
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Amber Lothian
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | - Soumya Mukherjee
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India
| | - Eugene A Kapp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Blaine R Roberts
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Cooperative Research Centre for Mental Health, Parkville, VIC, Australia
| | | |
Collapse
|
49
|
Kok DEG, Kiemeney LALM, Verhaegh GW, Schalken JA, van Lin ENJT, Sedelaar JPM, Witjes JA, Hulsbergen-van de Kaa CA, van 't Veer P, Kampman E, Afman LA. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget 2018; 8:10565-10579. [PMID: 28076331 PMCID: PMC5354681 DOI: 10.18632/oncotarget.14551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
In parallel with the inconsistency in observational studies and chemoprevention trials, the mechanisms by which selenium affects prostate cancer risk have not been elucidated. We conducted a randomized, placebo-controlled trial to examine the effects of a short-term intervention with selenium on gene expression in non-malignant prostate tissue. Twenty-three men received 300 μg selenium per day in the form of selenized yeast (n=12) or a placebo (n=11) during 5 weeks. Prostate biopsies collected from the transition zone before and after intervention were analysed for 15 participants (n=8 selenium, n=7 placebo). Pathway analyses revealed that the intervention with selenium was associated with down-regulated expression of genes involved in cellular migration, invasion, remodeling and immune responses. Specifically, expression of well-established epithelial markers, such as E-cadherin and epithelial cell adhesion molecule EPCAM, was up-regulated, while the mesenchymal markers vimentin and fibronectin were down-regulated after intervention with selenium. This implies an inhibitory effect of selenium on the epithelial-to-mesenchymal transition (EMT). Moreover, selenium was associated with down-regulated expression of genes involved in wound healing and inflammation; processes which are both related to EMT. In conclusion, our explorative data showed that selenium affected expression of genes implicated in EMT in the transition zone of the prostate.
Collapse
Affiliation(s)
- Dieuwertje E G Kok
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | | | - J P Michiel Sedelaar
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud university Medical Center, Nijmegen, The Netherlands
| | | | - Pieter van 't Veer
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Ellen Kampman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.,Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
50
|
Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MPA, Horneber M, D'Amico R, Crespi CM. Selenium for preventing cancer. Cochrane Database Syst Rev 2018; 1:CD005195. [PMID: 29376219 PMCID: PMC6491296 DOI: 10.1002/14651858.cd005195.pub4] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND This review is the third update of the Cochrane review "Selenium for preventing cancer". Selenium is a naturally occurring element with both nutritional and toxicological properties. Higher selenium exposure and selenium supplements have been suggested to protect against several types of cancer. OBJECTIVES To gather and present evidence needed to address two research questions:1. What is the aetiological relationship between selenium exposure and cancer risk in humans?2. Describe the efficacy of selenium supplementation for cancer prevention in humans. SEARCH METHODS We updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2017, Issue 2), MEDLINE (Ovid, 2013 to January 2017, week 4), and Embase (2013 to 2017, week 6), as well as searches of clinical trial registries. SELECTION CRITERIA We included randomised controlled trials (RCTs) and longitudinal observational studies that enrolled adult participants. DATA COLLECTION AND ANALYSIS We performed random-effects (RE) meta-analyses when two or more RCTs were available for a specific outcome. We conducted RE meta-analyses when five or more observational studies were available for a specific outcome. We assessed risk of bias in RCTs and in observational studies using Cochrane's risk assessment tool and the Newcastle-Ottawa Scale, respectively. We considered in the primary analysis data pooled from RCTs with low risk of bias. We assessed the certainty of evidence by using the GRADE approach. MAIN RESULTS We included 83 studies in this updated review: two additional RCTs (10 in total) and a few additional trial reports for previously included studies. RCTs involved 27,232 participants allocated to either selenium supplements or placebo. For analyses of RCTs with low risk of bias, the summary risk ratio (RR) for any cancer incidence was 1.01 (95% confidence interval (CI) 0.93 to 1.10; 3 studies, 19,475 participants; high-certainty evidence). The RR for estimated cancer mortality was 1.02 (95% CI 0.80 to 1.30; 1 study, 17,444 participants). For the most frequently investigated site-specific cancers, investigators provided little evidence of any effect of selenium supplementation. Two RCTs with 19,009 participants indicated that colorectal cancer was unaffected by selenium administration (RR 0.99, 95% CI 0.69 to 1.43), as were non-melanoma skin cancer (RR 1.16, 95% CI 0.30 to 4.42; 2 studies, 2027 participants), lung cancer (RR 1.16, 95% CI 0.89 to 1.50; 2 studies, 19,009 participants), breast cancer (RR 2.04, 95% CI 0.44 to 9.55; 1 study, 802 participants), bladder cancer (RR 1.07, 95% CI 0.76 to 1.52; 2 studies, 19,009 participants), and prostate cancer (RR 1.01, 95% CI 0.90 to 1.14; 4 studies, 18,942 participants). Certainty of the evidence was high for all of these cancer sites, except for breast cancer, which was of moderate certainty owing to imprecision, and non-melanoma skin cancer, which we judged as moderate certainty owing to high heterogeneity. RCTs with low risk of bias suggested increased melanoma risk.Results for most outcomes were similar when we included all RCTs in the meta-analysis, regardless of risk of bias. Selenium supplementation did not reduce overall cancer incidence (RR 0.99, 95% CI 0.86 to 1.14; 5 studies, 21,860 participants) nor mortality (RR 0.81, 95% CI 0.49 to 1.32; 2 studies, 18,698 participants). Summary RRs for site-specific cancers showed limited changes compared with estimates from high-quality studies alone, except for liver cancer, for which results were reversed.In the largest trial, the Selenium and Vitamin E Cancer Trial, selenium supplementation increased risks of alopecia and dermatitis, and for participants with highest background selenium status, supplementation also increased risk of high-grade prostate cancer. RCTs showed a slightly increased risk of type 2 diabetes associated with supplementation. A hypothesis generated by the Nutritional Prevention of Cancer Trial - that individuals with low blood selenium levels could reduce their risk of cancer (particularly prostate cancer) by increasing selenium intake - has not been confirmed. As RCT participants have been overwhelmingly male (88%), we could not assess the potential influence of sex or gender.We included 15 additional observational cohort studies (70 in total; over 2,360,000 participants). We found that lower cancer incidence (summary odds ratio (OR) 0.72, 95% CI 0.55 to 0.93; 7 studies, 76,239 participants) and lower cancer mortality (OR 0.76, 95% CI 0.59 to 0.97; 7 studies, 183,863 participants) were associated with the highest category of selenium exposure compared with the lowest. Cancer incidence was lower in men (OR 0.72, 95% CI 0.46 to 1.14, 4 studies, 29,365 men) than in women (OR 0.90, 95% CI 0.45 to 1.77, 2 studies, 18,244 women). Data show a decrease in risk of site-specific cancers for stomach, colorectal, lung, breast, bladder, and prostate cancers. However, these studies have major weaknesses due to study design, exposure misclassification, and potential unmeasured confounding due to lifestyle or nutritional factors covarying with selenium exposure beyond those taken into account in multi-variable analyses. In addition, no evidence of a dose-response relation between selenium status and cancer risk emerged. Certainty of evidence was very low for each outcome. Some studies suggested that genetic factors might modify the relation between selenium and cancer risk - an issue that merits further investigation. AUTHORS' CONCLUSIONS Well-designed and well-conducted RCTs have shown no beneficial effect of selenium supplements in reducing cancer risk (high certainty of evidence). Some RCTs have raised concerns by reporting a higher incidence of high-grade prostate cancer and type 2 diabetes in participants with selenium supplementation. No clear evidence of an influence of baseline participant selenium status on outcomes has emerged in these studies.Observational longitudinal studies have shown an inverse association between selenium exposure and risk of some cancer types, but null and direct relations have also been reported, and no systematic pattern suggesting dose-response relations has emerged. These studies suffer from limitations inherent to the observational design, including exposure misclassification and unmeasured confounding.Overall, there is no evidence to suggest that increasing selenium intake through diet or supplementation prevents cancer in humans. However, more research is needed to assess whether selenium may modify the risk of cancer in individuals with a specific genetic background or nutritional status, and to investigate possible differential effects of various forms of selenium.
Collapse
Affiliation(s)
- Marco Vinceti
- Boston University School of Public HealthDepartment of Epidemiology715 Albany StreetBoston, MAUSA02118
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Tommaso Filippini
- University of Modena and Reggio EmiliaResearch Center in Environmental, Nutritional and Genetic Epidemiology (CREAGEN), Department of Biomedical, Metabolic and Neural SciencesVia Campi 287ModenaItaly41125
| | - Cinzia Del Giovane
- University of BernInstitute of Primary Health Care (BIHAM)Gesellschaftsstrasse 49BernSwitzerland3012
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Gabriele Dennert
- University of Applied Sciences DortmundSocial Medicine and Public Health with Focus on Gender and Diversity, Department of Applied Social SciencesEmil‐Figge‐Str. 44DortmundGermanyD‐44227
| | - Marcel Zwahlen
- University of BernInstitute of Social and Preventive Medicine (ISPM)Finkelhubelweg11BernSwitzerland3012
| | - Maree Brinkman
- Nutrition Biomed Research InstituteDepartment of Nutritional Epidemiology and Clinical StudiesArgyle Place SouthMelbourneVictoriaAustralia3053
- Chairgroup of Complex Genetics and Epidemiology, School for Nutrition and Translational Research in Metabolism, Care and Public Health Research InstituteUnit of Nutritional and Cancer EpidemiologyMaastricht UniversityMaastrichtNetherlands
| | | | - Markus Horneber
- Paracelsus Medical University, Klinikum NurembergDepartment of Internal Medicine, Division of Oncology and HematologyProf.‐Ernst‐Nathan‐Str. 1NurembergGermanyD‐90419
| | - Roberto D'Amico
- University of Modena and Reggio EmiliaCochrane Italy, Department of Diagnostic, Clinical and Public Health MedicineVia del Pozzo, 71ModenaItaly41100
| | - Catherine M Crespi
- University of California Los AngelesBiostatisticsFielding School of Public Health650 Charles Young Drive South, A2‐125 CHS, Box 956900Los AngelesCaliforniaUSA90095‐6900
| | | |
Collapse
|