1
|
Kim S, Han Y, Lim G, Park SH, Park K, Bhatia SK, Yang YH. An all-in-one strategy for the simultaneous production of bioplastics and degrading enzymes in engineered Escherichia coli. Enzyme Microb Technol 2025; 185:110593. [PMID: 39904128 DOI: 10.1016/j.enzmictec.2025.110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Bioplastics are promising alternatives for traditional plastics, which contribute significantly to environmental pollution and have a detrimental impact on ecosystems. To advance their use, further research into bioplastic biodegradation is essential. In this study, we propose a novel approach for simultaneous polyhydroxybutyrate (PHB) and degrading enzyme production in a single-cell system using engineered Escherichia coli. Typically, PHB depolymerases, such as PhaZ, disrupt bioplastic synthesis in cells, leading to a self-defeating cycle of production and degradation. To counter this, we introduced synthetic PHB production genes and triacylglycerol lipase (TGL) from Bacillus sp. JY35, along with a native signal peptide for secretion. This enabled PHB accumulation inside the cells while TGL was secreted into the supernatant. The concentrations of PHB produced with and without TGL were similar (31.44 % PHB with TGL and 32.12 % PHB without TGL). TGL was efficiently secreted in E. coli, achieving specific esterase activities of 7.1 U/mg and 15.7 U/mg for p-Nitrophenyl butyrate and p-nitrophenyl octanoate, respectively, and degraded PHB film by 30.1 % over 14 d. Moreover, TGL retained 86 % and 91 % of its activities for the C4 and C8 substrates, respectively, after 30 d of storage at room temperature, suggesting potential use PHB degradation after use. Our study demonstrates a straightforward one-month circular cycle for bioplastic production and degradation by a single producer.
Collapse
Affiliation(s)
- Suwon Kim
- Department of Biological Engineering, Advanced Materials Program, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yebin Han
- Department of Biological Engineering, Advanced Materials Program, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Gaeun Lim
- Department of Biological Engineering, Advanced Materials Program, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Advanced Materials Program, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Advanced Materials Program, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Xu J, Chen N, Li Z, Liu Y. Gut microbiome and liver diseases. FUNDAMENTAL RESEARCH 2025; 5:890-901. [PMID: 40242515 PMCID: PMC11997574 DOI: 10.1016/j.fmre.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 04/18/2025] Open
Abstract
Symbiotic microbiota plays a crucial role in the education, development, and maintenance of the host immune system, significantly contributing to overall health. Through the gut-liver axis, the gut microbiota and liver have a bidirectional relationship that is becoming increasingly evident as more research highlights the translocation of the gut microbiota and its metabolites. The focus of this narrative review is to examine and discuss the importance of the gut-liver axis and the enterohepatic barrier in maintaining overall health. Additionally, we emphasize the crucial role of the gut microbiome in liver diseases and explore potential therapeutic strategies for liver diseases by manipulating the microbiota.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Noufeu T, Li Y, Toure NF, Yao H, Zeng X, Du Q, Pan D. Overview of Glycometabolism of Lactic Acid Bacteria During Freeze-Drying: Changes, Influencing Factors, and Application Strategies. Foods 2025; 14:743. [PMID: 40077446 PMCID: PMC11898726 DOI: 10.3390/foods14050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Lactic acid bacteria (LAB) play a vital role in food fermentation and probiotics microeconomics. Freeze-drying (FD) is a commonly used method for preserving LAB powder to extend its shelf life. However, FD induces thermal, osmotic, and mechanical stresses that can impact the glycometabolism of LAB, which is the process of converting carbohydrates into energy. This review explores the effect of FD on glycometabolism, factors influencing glycometabolism, and feasible strategies in the FD process of LAB. During the three stages of FD, freezing, primary drying or sublimation, and second drying, the glycolytic activity of LAB is disrupted in the freezing stage; further, the function of glycolytic enzymes such as hexokinase, phosphofructokinase, and pyruvate kinase is hindered, and adenosine triphosphate (ATP) production drops significantly in the sublimation stage; these enzyme activities and ATP production nearly cease and exopolysaccharide (EPS) synthesis alters during the secondary drying stage. Factors such as strain variations, pretreatment techniques, growth medium components, FD parameters, and water activity influence these changes. To counteract the effects of FD on LAB glycometabolism, strategies like cryoprotectants, encapsulation, and genetic engineering can help preserve their glycometabolic activity. These methods protect LAB from harsh FD conditions, safeguarding glycolytic flux and enzymatic processes involved in carbohydrate metabolism. A deeper understanding of these glycometabolic changes is essential for optimizing FD processes and enhancing the use of LAB in food, medicine, and biotechnology, ultimately improving their performance upon rehydration.
Collapse
Affiliation(s)
- Tchouli Noufeu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yueqin Li
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Ndeye Fatou Toure
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Hui Yao
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Tuttle M, Bradow BM, Martineau RL, Carter MS, Mancini JA, Holley KA, Diltz RA, Hung CS, Gupta MK. Shelf-Stable Sporosarcina pasteurii Formulation for Scalable Laboratory and Field-Based Production of Biocement. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7251-7261. [PMID: 39836658 PMCID: PMC11803556 DOI: 10.1021/acsami.4c15381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Biocement is an environmentally friendly alternative to traditional cement that is produced via microbially induced calcium carbonate precipitation (MICP) and has great potential to mitigate the environmental harms of cement and concrete use. Current production requires on-site bacterial cultivation and the application of live culture to target materials, lacking the convenience of stable formulas that enable broad adoption and application by nonscientific professionals. Here, we report the development of a dry shelf-stable formulation of Sporosarcina pasteurii, the model organism for biocement production. At laboratory scale, when inoculated at an equivalent concentration of viable cells, we show that this formulation produces biocement equal in strength to that produced using live cell cultures. We further demonstrate that this formulation forms biocement in the field within 24 h, leading to ground improvement with increased bearing capacity. These results illustrate that preserved, shelf-stable bacteria can contribute to rapid biocement production and can be adopted for scaled geotechnical and construction purposes.
Collapse
Affiliation(s)
- Matthew
J. Tuttle
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Biological
and Nanoscale Technologies Division, UES
Inc., Dayton, Ohio 45432, United States
| | - Brandon M. Bradow
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Biological
and Nanoscale Technologies Division, UES
Inc., Dayton, Ohio 45432, United States
| | - Rhett L. Martineau
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Michael S. Carter
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Biological
and Nanoscale Technologies Division, UES
Inc., Dayton, Ohio 45432, United States
| | - Joshua A. Mancini
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Biological
and Nanoscale Technologies Division, UES
Inc., Dayton, Ohio 45432, United States
| | - Karen A. Holley
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
- Biological
and Nanoscale Technologies Division, UES
Inc., Dayton, Ohio 45432, United States
| | - Robert A. Diltz
- Air
Force Civil Engineer Center, Tyndall
AFB, Florida 32403, United States
| | - Chia-Suei Hung
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| | - Maneesh K. Gupta
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
AFB, Ohio 45433, United States
| |
Collapse
|
5
|
Li W, Zhao Y, Li S, Yun L, Wu T, Zhang M. Improving the physical stability of Lactobacillus plantarum LP90 during storage by mixing carboxymethylated dextran-whey protein conjugates and small-molecule sugars. Food Res Int 2025; 203:115834. [PMID: 40022358 DOI: 10.1016/j.foodres.2025.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
To explore the effect of small-molecule sugars on the physical stability of microcapsules and enhance probiotic preservation, carboxymethylated dextran and whey protein conjugate (WP-CD5d) by Maillard reaction were used as the wall material. Trehalose, lactose, and sucrose were used as lyoprotectants to encapsulate Lactobacillus plantarum LP90 (LP90) during storage, forming microcapsules labeled as WP-CD5dH, WP-CD5dR, and WP-CD5dZ, respectively. WP-CD5dH and WP-CD5dR exhibited the highest viability after freeze-drying, with survival rates of 97.8 % ± 0.9 % and 98.5 % ± 0.5 % respectively. LP90 microcapsules exhibited strong resistance to simulated gastrointestinal fluid over 5 h. The Guggenheim-Anderson-de Boer (GAB) and Gordon-Taylor model showed that WP-CD5dH had the best reduction in water plasticization (k was 4.0). 1H NMR spectra confirmed that WP-CD5dH exhibited the lowest molecular mobility. Furthermore, the storage experiment showed that WP-CD5dH provided the best protection for LP90 at 11 % RH, with a K value of 0.021. These results suggest that the probiotic mechanism of small-molecule sugars involves forming intermolecular forces with WP-CD5d, which helps to maintain the glassy state.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yunjiao Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| |
Collapse
|
6
|
Jike X, Wu C, Yang N, Rong W, Zhang M, Zhang T, Lei H. Lactiplantibacillus plantarum encapsulated by chitosan-alginate and soy protein isolate-reducing sugars conjugate for enhanced viability. Int J Biol Macromol 2024; 281:136162. [PMID: 39443175 DOI: 10.1016/j.ijbiomac.2024.136162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/25/2024]
Abstract
To investigate the protective effects of various wall materials on probiotics, two types of Lactiplantibacillus plantarum 90 (Lp90) microcapsules were prepared using sodium alginate and chitosan (Lp-AC), soy protein isolate (SPI) and reducing sugars conjugate (Lp -MRP) as wall materials, respectively. The physical properties, cell viability under different conditions and the application of the microcapsules were investigated. Results showed that the selected wall materials were safe to Lp90 and their simulated digestion products exhibited antioxidant activities and prebiotic properties. The encapsulation efficiencies of Lp-AC and Lp-MRP were above 80 %. Both microcapsules significantly enhanced cell survival rates under various conditions including low pH, bile salts, thermal processing, mechanical force, storage, and gastrointestinal digestion, with Lp-MRP demonstrating superior protective effects. When incorporated into milk and orange juice and stored at 4 °C for 28 d, the colony counts of beverages containing Lp90 microcapsules exceeded 6 Log CFU/mL, with minimal changes in total soluble solids. Lp-MRP exhibited higher cell viability and smaller viscosity changes at 25 °C for 28 d. Therefore, the single-layer encapsulation using SPI and reducing sugars conjugate showed promise over traditional chitosan-alginate double-layer encapsulation concerning probiotic protection, targeted delivery, and application.
Collapse
Affiliation(s)
- Xiaolan Jike
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Wenbin Rong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Mengmeng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Ting Zhang
- Institute of Farm Product Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Shen Y, Miao C, Ma M, Zhen Z, He J, Pei X, Zhang Y, Man C, Zhao Q, Jiang Y. Mechanistic insights into the changes of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei fortified milk powder during storage. Food Chem 2024; 452:139501. [PMID: 38728887 DOI: 10.1016/j.foodchem.2024.139501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
To clarify the change mechanism of biological activity and physicochemical characteristics in Lacticaseibacillus paracasei JY025 fortified milk powder (LFMP) during storage, morphological observation, JY025 survival, storage stability, and metabolomics of LFMP were determined during the storage period in this study. The results showed that the LFMP had a higher survival rate of JY025 compared with the bacterial powder of JY025 (LBP) during storage, which suggested that milk powder matrix could reduce strain JY025 mortality under prolonged storage in the LFMP samples. The fortification of strain JY025 also affected the stability of milk powder during the storage period. There was lower water activity and higher glass transition temperature in LFMP samples compared with blank control milk powder (BCMP) during storage. Moreover, the metabolomics results of LFMP indicated that vitamin degradation, Maillard reaction, lipid oxidation, tricarboxylic acid cycle, and lactobacilli metabolism are interrelated and influence each other to create complicated metabolism networks.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Miao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ming Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zizhu Zhen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Xiaoyan Pei
- National Center of Technology Innovation for Dairy, Huhehaote 010000, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
8
|
Kruk M, Lalowski P, Hoffmann M, Trząskowska M, Jaworska D. Probiotic Bacteria Survival and Shelf Life of High Fibre Plant Snack - Model Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:586-593. [PMID: 38797802 PMCID: PMC11410916 DOI: 10.1007/s11130-024-01196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
The study aimed to develop plant-based model snacks that are high in fibre, contain probiotic bacteria and are convenient for long-term storage. The research focused on selecting a suitable form of probiotic bacteria (active biomass, microencapsulated, freeze-dried), inoculation method (in the base mass or in the filling of a snack) and appropriate storage conditions (4°Cor 20 °C). The potential synbiotic properties were evaluated. The microencapsulated bacteria had the highest survival rate at 4 °C, while the freeze-dried bacteria showed better survival rates at 20 °C. Probiotics had a higher survival rate when enclosed inside snacks with a low water activity (aw = 0.27) peanut butter filling than in snacks without filling (aw = 0.53). Enclosing the probiotics in a low aw filling ensures their survival at ambient temperature for 5 months at a count higher than 6 log CFU/g. The snacks exhibited high antioxidant capacity (average 300 mg ascorbic acid equivalent/100 g), polyphenol content (average 357 mg gallic acid equivalent/100 g) and high fibre content (average 10.2 g/100 g). The sensory analysis showed a high overall quality of the snacks (average 7.1/10 of the conventional units). Furthermore, after six months of storage, significant changes were observed in the antioxidant properties, polyphenol content and texture of the snacks, while their sensory quality remained unchanged. Moreover, a potential synbiotic effect was observed. The method used to assess bacterial growth indicated significantly higher values in the model snacks compared to a control sample. Therefore, this study has effectively addressed the gap in knowledge regarding the survival of probiotics in snacks of this nature.
Collapse
Affiliation(s)
- Marcin Kruk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland.
| | - Piotr Lalowski
- Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Monika Hoffmann
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Monika Trząskowska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159c, 02-776, Warsaw, Poland
| |
Collapse
|
9
|
Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, Tu M, Pan D. New clues for postbiotics to improve host health: a review from the perspective of function and mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6376-6387. [PMID: 38450745 DOI: 10.1002/jsfa.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruonan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jiamin Shen
- Zhejiang Shenjinji Food Technology Co., LTD, Huzhou, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Zhu Y, Tang F, Wang Y, Li B, Teng J, Huang L, Xia N. Study of Lactobacillus plantarum coated with Tremella polysaccharides to improve its intestinal adhesion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6977-6986. [PMID: 38619112 DOI: 10.1002/jsfa.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The adhesion of probiotics to the intestine is crucial for their probiotic function. In previous studies, Tremella polysaccharides (TPS) (with sodium casein) have shown the potential to encapsulate probiotics and protect them in a simulated gastrointestinal tract. This study explored the effect of TPS (with sodium casein) on the adhesion of probiotics. RESULTS Lactobacillus plantarum was coated with TPS and sodium casein in different proportions, and was freeze-dried. The rheological properties of the mixture of probiotics powder and mucin solution were determined by static and dynamic rheological analysis. Aqueous solutions of probiotic powder and mucin mixture exhibited pseudoplastic fluid rheological properties. The higher the proportion of TPS content, the higher the apparent viscosity and yield stress. The mixed bacterial powder and mucin fluid displayed thixotropy and was in accordance with the Herschel-Bulkley model. The TPS increased the bio-adhesive force of the probiotic powder and mucin. When using TPS as the only carbon source, the adhesion of L. plantarum to Caco-2 cells increased by 228% in comparison with glucose in vitro. Twelve adhesive proteins were also detected in the whole-cell proteome of L. plantarum. Among them, ten adhesive proteins occurred abundantly when grown with TPS as a carbon source. CONCLUSION Tremella polysaccharides therefore possess probiotic properties and can promote the intestinal adhesion of L. plantarum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yeli Zhu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fuhao Tang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yihan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Bingbing Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Qiao Y, Yin B, Zhou W, Wang M, Chang Z, Zhou J, Yue M, Chen J, Liu F, Feng Z. Nutrient consumption patterns of Lactobacillus acidophilus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5982-5990. [PMID: 38427028 DOI: 10.1002/jsfa.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND One of the greatest challenges in using Lactobacillus acidophilus as a probiotic is acid stress. The current research aimed to identify substances that help L. acidophilus resist acid stress; this was achieved through assessing its nutrient consumption patterns under various pH conditions. RESULTS The consumption rates of alanine, uracil, adenine, guanine, niacin, and manganese were consistently higher than 60% for L. acidophilus LA-5 cultured at pH 5.8, 4.9, and 4.4. The consumption rates of glutamic acid + glutamine and thiamine increased with decreasing pH and were higher than 60% at pH 4.9 and 4.4. The viable counts of L. acidophilus LA-5 were significantly increased under the corresponding acidic stress conditions (pH 4.9 and 4.4) through the appropriate addition of either alanine (3.37 and 2.81 mmol L-1), glutamic acid + glutamine (4.77 mmol L-1), guanine (0.13 and 0.17 mmol L-1), niacin (0.02 mmol L-1), thiamine (0.009 mmol L-1), or manganese (0.73 and 0.64 mmol L-1) (P < 0.05). The viable counts of L. acidophilus LA-5 cultured in a medium supplemented with combined nutritional factors was 1.02-1.03-fold of the counts observed in control medium under all acid conditions (P < 0.05). CONCLUSION Alanine, glutamic acid + glutamine, guanine, niacin, thiamine, and manganese can improve the growth of L. acidophilus LA-5 in an acidic environment in the present study. The results will contribute to optimizing strategies to enhance the acid resistance of L. acidophilus and expand its application in the fermentation industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Boxing Yin
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Wei Zhou
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Yangzhou Yangda Kangyuan Dairy Co., Ltd, Yangzhou, China
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| |
Collapse
|
12
|
Hua Y, Wei Z, Xue C, Si J. Stability and programmed sequential release of Lactobacillus plantarum and curcumin encapsulated in bilayer-stabilized W 1/O/W 2 double emulsion: Effect of pectin as protective shell. Int J Biol Macromol 2024; 265:130805. [PMID: 38490382 DOI: 10.1016/j.ijbiomac.2024.130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
In order to overcome the problem that traditional W1/O/W2 double emulsions do not have targeted release performance, thereby better meeting the health needs of consumers, ovalbumin fibrils/pectin-based bilayer-stabilized double emulsion (OP-BDE) co-encapsulated with Lactobacillus plantarum and curcumin was constructed with pectin as the outer protective shell, which was expected to be used in the development of novel functional foods. The effects of pectin coating on the viability of Lactobacillus plantarum under conditions including storage, pasteurization, freeze-thaw cycles and in vitro simulated digestion were investigated. Results showed that pectin as protective shell could significantly enhance the tolerance of Lactobacillus plantarum to various environmental factors. Besides, the adsorption of pectin endowed OP-BDE with higher lipolysis and stronger protective effect on curcumin, remarkably improving the photostability and bioaccessibility of curcumin. In addition, in vitro simulated gastrointestinal release study indicated that OP-BDE possessed programmed sequential release property, allowing curcumin and Lactobacillus plantarum to be released in small intestine and colon, respectively. OP-BDE is the first reported co-delivery emulsion system with programmed release characteristic. This study provides new insights into OP-BDE in constructing co-delivery systems and programmed sequential release of active substances, and has potential reference and application value in actual food production.
Collapse
Affiliation(s)
- Yijie Hua
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jingyu Si
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
13
|
Wang A, Zhong Q. Drying of probiotics to enhance the viability during preparation, storage, food application, and digestion: A review. Compr Rev Food Sci Food Saf 2024; 23:e13287. [PMID: 38284583 DOI: 10.1111/1541-4337.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Functional food products containing viable probiotics have become increasingly popular and demand for probiotic ingredients that maintain viability and stability during processing, storage, and gastrointestinal digestions. This has resulted in heightened research and development of powdered probiotic ingredients. The aim of this review is to overview the development of dried probiotics from upstream identification to downstream applications in food. Free probiotic bacteria are susceptible to various environmental stresses during food processing, storage, and after ingestion, necessitating additional materials and processes to preserve their activity for delivery to the colon. Various classic and emerging thermal and nonthermal drying technologies are discussed for their efficiency in preparing dehydrated probiotics, and strategies for enhancing probiotic survival after dehydration are highlighted. Both the formulation and drying technology can influence the microbiological and physical properties of powdered probiotics that are to be characterized comprehensively with various techniques. Furthermore, quality control during probiotic manufacturing and strategies of incorporating powdered probiotics into liquid and solid food products are discussed. As emerging technologies, structure-design principles to encapsulate probiotics in engineered structures and protective materials with improved survivability are highlighted. Overall, this review provides insights into formulations and drying technologies required to supplement viable and stable probiotics into functional foods, ensuring the retention of their health benefits upon consumption.
Collapse
Affiliation(s)
- Anyi Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
- International Flavors and Fragrances, Palo Alto, California, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Ding X, Li D, Xu Y, Wang Y, Liang S, Xie L, Yu W, Zhan X, Fu A. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized emulsions incorporated into alginate as microcapsule matrix for intestinal-targeted delivery of probiotics: In vivo and in vitro studies. Int J Biol Macromol 2023; 253:126931. [PMID: 37722632 DOI: 10.1016/j.ijbiomac.2023.126931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
In this study, we developed a novel delivery system using carboxymethyl konjac glucomannan-chitosan (CMKGM-CS) nanogels stabilized single and double emulsion incorporated into alginate hydrogel as microcapsule matrix for intestinal-targeted delivery of probiotics. Through in vitro experiments, it was demonstrated that alginate hydrogel provided favorable biocompatible growth conditions for the proliferation of Lactobacillus reuteri (LR). The alginate hydrogel containing single (ASE) or double emulsions (ACG) enhanced the resistance of LR to various adverse environments. Simulated gastrointestinal digestion experiments revealed that the survivability of LR in free, CON, ASE and ACG group decreased by 6.45 log CFU/g, 4.21 log CFU/g, 1.26 log CFU/g and 0.65 log CFU/g, respectively. In vivo studies conducted in mice showed that ACG maintained its integrity during passage through the stomach and released the probiotics in the targeted intestinal area, whereas the pure alginate hydrogels (CON) were prematurely released in the gastrointestinal tract. Moreover, the viable counts of ACG in different intestinal segments (jejunum, ileum, cecum, and colon) were increased by 1.11, 1.42, 1.68, and 1.89 log CFU/g, respectively, after 72 h of oral administration compared to the CON group. This research contributed valuable insights into the development of an effective microbial delivery system with potential applications in the biopharmaceutical and food industries.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Danlei Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Wang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuang Liang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingyu Xie
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiqiang Yu
- Animal Husbandry and Veterinary Services Center of Haiyan, Jiaxing 314300, China.
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Chen JF, Hsia KC, Kuo YW, Chen SH, Huang YY, Li CM, Hsu YC, Tsai SY, Ho HH. Safety Assessment and Probiotic Potential Comparison of Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus plantarum LPL28, Lactobacillus acidophilus TYCA06, and Lactobacillus paracasei ET-66. Nutrients 2023; 16:126. [PMID: 38201957 PMCID: PMC10780348 DOI: 10.3390/nu16010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Bifidobacterium longum subsp. infantis BLI-02, Lactobacillus paracasei ET-66, Lactobacillus plantarum LPL28, and Lactobacillus acidophilus TYCA06, isolated from healthy breast milk, miso, and the healthy human gut, were assessed for safety in this study. BLI-02, LPL28, TYCA06, and ET-66 exhibited no antibiotic resistance and mutagenic activity in the Ames test at the highest dosage (5000 μg/plate). No genotoxicity was observed in micronucleus and chromosomal aberration assays in rodent spermatogonia at the maximum dosage of 10 g/kg body weight (BW). No acute and sub-chronic toxicity occurred in mice and rats at the maximum tested dosage of 10 g/kg BW and 1.5 g/kg BW, respectively. The lyophilized powder of these strains survived a low pH and high bile salt environment, adhering strongly to Caco-2 cells. Unique antimicrobial activities were noted in these strains, with BLI-02 demonstrating the best growth inhibition against Vibrio parahaemolyticus, LPL28 exhibiting the best growth inhibition against Helicobacter pylori, and ET-66 showing the best growth inhibition against Aggregatibacter actinomycetemcomitans. Based on the present study, the lyophilized powder of these four strains appears to be a safe probiotic supplement at tested dosages. It should be applicable for clinical or healthcare applications.
Collapse
Affiliation(s)
- Jui-Fen Chen
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ko-Chiang Hsia
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yi-Wei Kuo
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Shu-Hui Chen
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| | - Yen-Yu Huang
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Ching-Min Li
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Yu-Chieh Hsu
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Shin-Yu Tsai
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
| | - Hsieh-Hsun Ho
- Research Product Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan; (J.-F.C.); (K.-C.H.); (Y.-Y.H.); (C.-M.L.); (Y.-C.H.); (S.-Y.T.)
- Functional Investigation Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
- Process Department, R&D Center, Glac Biotech Co., Ltd., Tainan City 744, Taiwan;
| |
Collapse
|
16
|
Alves Gragnani Vido M, Dutra Alvim I, Vinderola G, Isabel Berto M, Blumer Zacarchenco Rodrigues de Sá P, Mauricio Barreto Pinilla C, Torres Silva E Alves A. Microencapsulation of Limosilactobacillus reuteri (DSM 23878) for application in infant formula: Heat resistance and bacterial viability during long-time storage. Food Res Int 2023; 173:113378. [PMID: 37803716 DOI: 10.1016/j.foodres.2023.113378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to evaluate the survival capacity of the probiotic culture Limosilactobacillus reuteri (DSM 23878) to microencapsulation by spray drying, and its potential as component of an infant formula. Preliminary tests were performed between skim milk (SM) and infant formula (IF) as wall material and two inlet temperatures, evaluating the encapsulation efficiency, moisture content, water activity and stability, to choose the drying parameters. After drying in optimized conditions, the powder of microencapsulated L. reuteri was characterized and the viability after dilution in an infant formula at 70 °C was determined. In addition, the survival rate throughout 360 days of storage was assessed. As results, encapsulation efficiency was superior to 90 % in both wall materials. However, the use of IF as for microencapsulation produced microparticles with lower water activity (Aw) and moisture, as compared with the SM. Final microparticles produced with IF as wall material presented values of Aw, moisture content, and particle diameter averaged 0.11 ± 0.02, 2.10 ± 0.35 % and 10.30 ± 0.12 μm, respectively. The viability of microencapsulated L.reuteri decreased 1 Log CFU/mL after dilution at 70 °C and the powder maintained a survivor of 73.5 % after 365 days of storage at 4 °C. Thus, the microencapsulation by spray drying under the conditions of this study proved to be an effective technique to protect the probiotic L. reuteri for application in infant formulas, obtaining an adequate number of viable cells after reconstitution at 70 °C and during long time the storage.
Collapse
Affiliation(s)
| | - Izabela Dutra Alvim
- Cereal and Chocolate Technology Center, Institute of Food Technology, Brazil (ITAL), Campinas, São Paulo, Brazil
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Maria Isabel Berto
- Dairy Technology Center (TECNOLAT) of the Food Technology Institute (ITAL), Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
17
|
do Carmo Alves AP, do Carmo Alves A, Ferreira Rodrigues RA, da Silva Cerozi B, Possebon Cyrino JE. Microencapsulation of Bacillus subtilis and oat β-glucan and their application as a synbiotic in fish feed. J Microencapsul 2023; 40:491-501. [PMID: 37254699 DOI: 10.1080/02652048.2023.2220394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
To improve survival during storage and exposure to adverse conditions, Bacillus subtilis was microencapsulated with oat β-glucan by spray-drying technology. The characterisation of the microcapsules was designed to compare free and microencapsulated cells through exposure to simulated gastric fluids (SGF) throughout storage for 90 days at different temperatures. The characterisation included analysis of efficiency, morphology, moisture, water activity, hygroscopicity, particle size, and zeta potential. The microcapsules presented a particle size of 1.5 ± 0.34 μm and an encapsulation efficiency of 77.9 ± 3.06%. After SGF, the survival of microencapsulated cells was 8.4 ± 0.07 log CFU mL-1 while that of free cells was 7.6 ± 0.06 log CFU mL-1. After 90 days of storage, only microencapsulated cells remained above 6 log-unit of viability. In conclusion, spray-drying technique combined with the addition of oat β-glucan proved to be an efficient method to protect B. subtilis under storage and SGF with potential application in fish feed.
Collapse
Affiliation(s)
- Angélica Priscila do Carmo Alves
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - Amanda do Carmo Alves
- Departamento de Biotecnologia Vegetal, Universidade Federal de Lavras [UFLA], Lavras, Minas Gerais, Brazil
| | - Rodney Alexandre Ferreira Rodrigues
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas [CPQBA], Universidade Estadual de Campinas [UNICAMP], Campinas, São Paulo, Brazil
| | - Brunno da Silva Cerozi
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| | - José Eurico Possebon Cyrino
- Departamento de Zootecnia, Escola Superior de Agricultura Luiz de Queiroz [ESALQ], Universidade de São Paulo [USP], Piracicaba, São Paulo, Brazil
| |
Collapse
|
18
|
Naseem Z, Mir SA, Wani SM, Rouf MA, Bashir I, Zehra A. Probiotic-fortified fruit juices: Health benefits, challenges, and future perspective. Nutrition 2023; 115:112154. [PMID: 37536023 DOI: 10.1016/j.nut.2023.112154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Consumers' growing interest in using foods that improve health has motivated researchers and the food industry to develop new functional products, such as foods containing probiotics or live microbes. Probiotics have functional attributes that could satisfy most basic nutritional and therapeutic supplementation requirements. These microbes positively respond to clinical therapies against diseases and illnesses such as rotavirus-associated diarrhea, irritable bowel syndrome, and food allergies. Moreover, the role of probiotics in the prevention and treatment of obesity, diabetes, cancer, and diseases related to pathogenic microbes is an exciting and rapidly advancing research arena. Probiotic supplementation usually involves dairy products. However, because of the growing number of individuals affected by lactose intolerance and/or vegans, other food matrices like fruits, vegetables, cereals, and so on, have been studied as potential carriers for these microorganisms, presenting an alternative and better source in the process of assessing novel probiotic strains. The present review discusses the various factors affecting the survival of probiotics during storage in fruit juices, the possible effect of probiotics on sensory attributes and the overall acceptance of the products, and future technologies to improve the viability of probiotics.
Collapse
Affiliation(s)
- Zahida Naseem
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Sajad Ahmad Mir
- Department of Food Science and Technology, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Mohd Wani
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India.
| | - Molvi Abdul Rouf
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Iqra Bashir
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| | - Aiman Zehra
- Division of Food Science and Technology, SKUAST-K, Shalimar, Srinagar, India
| |
Collapse
|
19
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Javed M, Amir M, Amjad A, Shah M, Anwar M, Ahmed F. VIABILITY OF MICROENCAPSULATED PROBIOTICS (LACTOBACILLUS REUTERI) IN GUAVA JUICE. THE JOURNAL OF ANIMAL AND PLANT SCIENCES 2023; 33:644-654. [DOI: 10.36899/japs.2023.3.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Probiotics play a pivotal role to reduce gastrointestinal problems by exerting a drastic effect on various pathogenic microflora of the colon. Lactobacillus reuteri CECT-925 loaded beads were prepared by emulsion containing sodium alginate and sesame seed oil. Encapsulation was done by spraying emulsion into a 0.5% solution of calcium chloride. Microencapsulated probiotics incorporated guava juice was assessed for physicochemical analysis at the 15-day interval for 60 days. The juice was tested for probiotics viability, titratable acidity, pH, total soluble solids and organoleptic properties. In the control sample, viable counts of encapsulated probiotics were reduced from 7.68 to 1.96 log10 CFU/ml while in T1, T2 and T3 the initial numbers 7.39, 7.7 and 7.87 were reduced to 5.97, 6.87 and 6.02 log10 CFU/ml respectively at the termination of the storage period. However, pH and sensory scores decreased while total soluble solids and titratable acidity increased. Results indicated that microencapsulation by sodium alginate in combination with sesame oil retained the viability of Lactobacillus reuteri > 90% in guava juice. The acceptability of the product was 82.04% till the end of the storage period
Collapse
Affiliation(s)
- M.S. Javed
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Amir
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - A Amjad
- Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Punjab-Pakistan
| | - M.J. Anwar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - F Ahmed
- Institute of Technology, Estonian University of Life Sciences, Tartu-Estonia
| |
Collapse
|
21
|
He X, Yang W, Qin X. Ultrasound-assisted multilayer Pickering emulsion fabricated by WPI-EGCG covalent conjugates for encapsulating probiotics in colon-targeted release. ULTRASONICS SONOCHEMISTRY 2023; 97:106450. [PMID: 37224638 DOI: 10.1016/j.ultsonch.2023.106450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3-4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.
Collapse
Affiliation(s)
- Xian He
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Xinsheng Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
22
|
Nikolaou A, Mitropoulou G, Nelios G, Kourkoutas Y. Novel Functional Grape Juices Fortified with Free or Immobilized Lacticaseibacillus rhamnosus OLXAL-1. Microorganisms 2023; 11:646. [PMID: 36985219 PMCID: PMC10051719 DOI: 10.3390/microorganisms11030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
During the last decade, a rising interest in novel functional products containing probiotic microorganisms has been witnessed. As food processing and storage usually lead to a reduction of cell viability, freeze-dried cultures and immobilization are usually recommended in order to maintain adequate loads and deliver health benefits. In this study, freeze-dried (free and immobilized on apple pieces) Lacticaseibacillus rhamnosus OLXAL-1 cells were used to fortify grape juice. Juice storage at ambient temperature resulted in significantly higher (>7 log cfu/g) levels of immobilized L. rhamnosus cells compared to free cells after 4 days. On the other hand, refrigerated storage resulted in cell loads > 7 log cfu/g for both free and immobilized cells for up to 10 days, achieving populations > 109 cfu per share, with no spoilage noticed. The possible resistance of the novel fortified juice products to microbial spoilage (after deliberate spiking with Saccharomyces cerevisiae or Aspergillus niger) was also investigated. Significant growth limitation of both food-spoilage microorganisms was observed (both at 20 and 4 °C) when immobilized cells were contained compared to the unfortified juice. Keynote volatile compounds derived from the juice and the immobilization carrier were detected in all products by HS-SPME GC/MS analysis. PCA revealed that both the nature of the freeze-dried cells (free or immobilized), as well as storage temperature affected significantly the content of minor volatiles detected and resulted in significant differences in the total volatile concentration. Juices with freeze-dried immobilized cells were distinguished by the tasters and perceived as highly novel. Notably, all fortified juice products were accepted during the preliminary sensory evaluation.
Collapse
Affiliation(s)
- Anastasios Nikolaou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | | | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
23
|
Qin X, Bo Q, Qin P, Wang S, Liu K. Fabrication of WPI-EGCG covalent conjugates/gellan gum double network emulsion gels by duo-induction of GDL and CaCl2 for colon-controlled Lactobacillus Plantarum delivery. Food Chem 2023; 404:134513. [DOI: 10.1016/j.foodchem.2022.134513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022]
|
24
|
Youn HY, Kim HJ, Kim DH, Jang YS, Kim H, Seo KH. Gut microbiota modulation via short-term administration of potential probiotic kefir yeast Kluyveromyces marxianus A4 and A5 in BALB/c mice. Food Sci Biotechnol 2023; 32:589-598. [PMID: 36911334 PMCID: PMC9992467 DOI: 10.1007/s10068-023-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Kefir yeast, Kluyveromyces marxianus, has been evaluated for its potential probiotic properties-survivability, non-pathogenicity, and antioxidant and anti-microbial activities. However, host gut microbiota modulation of kefir yeasts remains unclear. Here, we compared kefir yeast strains K. marxianus A4 (Km A4) and K. marxianus A5 (Km A5) with Saccharomyces boulardii ATCC MYA-796 (Sb MYA-796) by investigating their adherence to colorectal adenocarcinoma (Caco-2) cells and gut microbiota modulation in BALB/c mice. The kefir yeast strains exhibited higher intestinal cell adhesion than Sb MYA-796 (p < 0.05). Bacteroidetes, Bacteroidales, and Bacteroides were more abundant in the 1 × 108 CFU/mL of Km A4 treatment group than in the control group (p < 0.05). Moreover, 1 × 108 CFU/mL of Km A5 increased Corynebacteriales and Corynebacterium compared to the 1 × 108 CFU/mL of Km A4 treatment group (p < 0.01). The results showed that Km A4 and Km A5 had good Caco-2 cell adhesion ability and modulated gut microbiota upon short-term administration in healthy mice. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01268-3.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dong-Hyeon Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Yong-Seok Jang
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, Seoul, 04763 Republic of Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
25
|
Costa NDA, Silveira LR, Amaral EDP, Pereira GC, Paula DDA, Vieira ÉNR, Martins EMF, Stringheta PC, Leite Júnior BRDC, Ramos AM. Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food Res Int 2023; 164:112367. [PMID: 36737954 DOI: 10.1016/j.foodres.2022.112367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Different plant products and co-products have been studied as wall materials for the microencapsulation of probiotics due to the need for new lost-cost, abundant, and natural materials. In this study, microparticles were developed by spray drying using different combinations of conventional materials such as maltodextrin, pectin, gelatin, and agar-agar with unconventional materials such as sweet potato flour to microencapsulate Lactiplantibacillus plantarum. The microparticles obtained were evaluated for encapsulation efficiency, thermal resistance, and rupture test. The most resistant microparticles were characterized and evaluated for probiotic viability during storage and survival to in vitro gastrointestinal conditions. Microparticles A (10 % maltodextrin, 5 % sweet potato flour, and 1 % pectin) and B (10 % maltodextrin, 4 % sweet potato flour, and 2 % gelatin) showed high thermal resistance (>59 %) and survival in acidic conditions (>80 %). L. plantarum in microparticles A and B remained viable with counts > 6 log CFU.g-1 for 45 days at 8 °C and -18 °C and resisted in vitro gastrointestinal conditions after processing with counts of 8.38 and 9.10 log CFU.g-1, respectively. Therefore, the selected microparticles have great potential for application in different products in the food industry, as they promote the protection and distribution of probiotic microorganisms.
Collapse
Affiliation(s)
- Nataly de Almeida Costa
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil.
| | | | - Ester de Paula Amaral
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | - Eliane Maurício Furtado Martins
- Department of Food Science and Technology (DCTA), Federal Institute of Education, Science and Technology of Southeast Minas Gerais, Av. Dr. José Sebastião da Paixão - Lindo Vale, 36180-000 Rio Pomba, Minas Gerais, Brazil
| | - Paulo César Stringheta
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | | | - Afonso Mota Ramos
- Department of Food Technology (DTA), Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
26
|
Stability and Survivability of Alginate Gum-Coated Lactobacillus rhamnosus GG in Simulated Gastrointestinal Conditions and Probiotic Juice Development. J FOOD QUALITY 2023. [DOI: 10.1155/2023/3660968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Survivability of probiotics is severely affected by harsh gastrointestinal conditions. In the present study, microbeads of Lactobacillus rhamnosus GG were formulated using alginate (1.5% w/v) and combination of alginate (1.5% w/v) with xanthan gum (0.5% w/v) through an emulsion technique to improve bacterial viability in low pH orange juice and in gastrointestinal conditions. The microbeads were tested for encapsulation efficiency, survivability in bile salt, SGF (simulated gastric juice), SIF (simulated intestinal fluid), and storage stability. Probiotic orange juice was formulated and tested for physicochemical parameters (pH, titratable acidity, and total sugars) and sensorial properties during storage. Gum-coated alginate microbeads (T3) showed higher encapsulation efficiency, i.e., 95.2% compared to alginate microbeads (T2), i.e., 86.85%. Similarly, T3 showed the highest resistance against bile salt (8.50 log CFU/g), SGF (7.95 log CFU/g), and SIF (8.0 log CFU/g) during 80 min exposure compared to T2 and free cells. The viability of gum-coated alginate beads (T3) remained above 107 CFU/g in gastrointestinal conditions and at the end of 21 days storage (8.3 log CFU/mL). All physicochemical parameters of probiotic juice were significantly (
) decreased with respect to storage except acidity. In addition, minimal changes in physicochemical parameters were observed in T3 compared to other treatments. Treatment had no significant impact on the sensory characteristics of juice, but storage had a significant effect (
) on the sensory characteristics of juice. The alginate gum microbeads improve the survivability of probiotics for targeted delivery. Hence, encapsulated probiotics can be used for functional beverage development to take advantage of their therapeutic benefits.
Collapse
|
27
|
Choi I, Lee JS, Han J. Maltodextrin-trehalose miscible system-based bacteriophage encapsulation: Studies of plasticizing effect on encapsulated phage activity and food application as an antimicrobial agent. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
28
|
Canibe N, Højberg O, Kongsted H, Vodolazska D, Lauridsen C, Nielsen TS, Schönherz AA. Review on Preventive Measures to Reduce Post-Weaning Diarrhoea in Piglets. Animals (Basel) 2022; 12:2585. [PMID: 36230326 PMCID: PMC9558551 DOI: 10.3390/ani12192585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 02/08/2023] Open
Abstract
In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.
Collapse
Affiliation(s)
- Nuria Canibe
- Department of Animal and Veterinary Sciences, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
29
|
Shobuz M, Sabur K, Khan MR, Julkifal I, Uttam Kumar S, Hasan GMMA, Ahmed M. Viability and stability of microencapsulated probiotic bacteria by freeze‐drying under in vitro gastrointestinal conditions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Mahmud Shobuz
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - khan Sabur
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Mahbubur Rahman Khan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Islam Julkifal
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - Sarker Uttam Kumar
- Department of Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| | - G. M. M. Anwarul Hasan
- Institute of Food Science &Technology (IFST) Bangladesh Council of Scientific &Industrial Research (BCSIR), Dr Qudrat‐I‐ Khuda Road, Dhaka‐1205 Bangladesh
| | - Maruf Ahmed
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200 Bangladesh
| |
Collapse
|
30
|
Characteristics of Probiotic Preparations and Their Applications. Foods 2022; 11:foods11162472. [PMID: 36010472 PMCID: PMC9407510 DOI: 10.3390/foods11162472] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022] Open
Abstract
The probiotics market is one of the fastest growing segments of the food industry as there is growing scientific evidence of the positive health effects of probiotics on consumers. Currently, there are various forms of probiotic products and they can be categorized according to dosage form and the site of action. To increase the effectiveness of probiotic preparations, they need to be specifically designed so they can target different sites, such as the oral, upper respiratory or gastrointestinal tracts. Here we review the characteristics of different dosage forms of probiotics and discuss methods to improve their bioavailability in detail, in the hope that this article will provide a reference for the development of probiotic products.
Collapse
|
31
|
Ding X, Xu Y, Wang Y, Xie L, Liang S, Li D, Wang Y, Wang J, Zhan X. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics. Carbohydr Polym 2022; 289:119438. [DOI: 10.1016/j.carbpol.2022.119438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
|
32
|
Qiu X, Wu Q, Li W, Tang K, Zhang J. Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: A systematic review and meta-analysis. Clin Nutr 2022; 41:1787-1797. [PMID: 35820261 DOI: 10.1016/j.clnu.2022.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Recent evidence suggests that gut microbiota may represent an important factor to affect the development of obesity and obesity-related diseases. Although several randomized controlled trials (RCTs) have explored the ability of Lactobacillus to improve metabolic parameters in adults who are overweight or obese, their findings have been inconsistent and require further analysis. Therefore, this systematic review and meta-analysis aimed to determine the ability of Lactobacillus supplementation to improve glycemic control, the lipid profile, and blood pressure in adults who are overweight or obese. METHODS Seven electronic databases and two trial registers were searched up to April 2022 to identify eligible RCTs evaluating the effects of Lactobacillus supplementation in overweight or obese adults. Mean differences (MDs) or standardized mean differences were pooled using a random-effects model. RESULTS Nine eligible RCTs with 598 participants were included. We found that Lactobacillus supplementation significantly reduced low-density lipoprotein cholesterol (MD -5.27 mg/dL; 95% confidence interval [CI] -8.28, -2.25; P = 0.0006) and total cholesterol (MD -4.84 mg/dL; 95% CI -8.29, -1.39; P = 0.006), particularly when taken in capsule, powder, or tablet form, for 12 weeks, as ≥1 × 1010 colony forming units/day, or as part of a normal diet. Benefits of Lactobacillus on fasting plasma glucose were seen after 12 weeks of supplementation (MD -1.81 mg/dL; 95% CI -3.08, -0.54; P = 0.005) and on triglycerides when taking a normal diet (MD -14.14 mg/dL; 95% CI -24.38, -3.91; P = 0.007). Lactobacillus had only a short-term beneficial effect on fasting plasma insulin and blood pressure and no significant beneficial effect on high-density lipoprotein cholesterol. CONCLUSIONS Lactobacillus supplementation has a beneficial effect on low-density lipoprotein cholesterol and total cholesterol in adults who are overweight or obese, and also on fasting plasma glucose and triglycerides under certain conditions. Therefore, Lactobacillus supplementation represents a promising approach in the management of obesity-related diseases.
Collapse
Affiliation(s)
- Xudong Qiu
- Shanghai Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyan Li
- Shanghai Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kairan Tang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Rodrigues F, Cedran M, Pereira G, Bicas J, Sato H. Effective encapsulation of reuterin-producing Limosilactobacillus reuteri in alginate beads prepared with different mucilages/gums. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 34:e00737. [PMID: 35686007 PMCID: PMC9171447 DOI: 10.1016/j.btre.2022.e00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
The mainly aim of this study was to use mucilaginous solutions obtained from tamarind, mutamba, cassia tora, psyllium and konjac powdered to encapsulate reuterin-producing Limosilactobacillus reuteri in alginate beads by extrusion technique. In the particles were determined the bacterial encapsulation efficiency, cell viability during storage and survival under simulated gastric and intestinal conditions. Moreover, the reuterin production, its entrapment into the beads and the influence on viability of encapsulated microorganism were evaluated. Scanning electron microscopy and Fourier Transform Infrared spectroscopy were employed to characterize the produced particles. The beads showed a relatively spherical shape with homogenous distribution of L. reuteri. The use of gums and mucilages combined with alginate improved the encapsulation efficiency (from 93.2 to 97.4%), the viability of encapsulated bacteria during refrigerated storage (especially in prolonged storage of 20, 30 and 60 days) and the survival after exposure to gastric and enteric environments (from 67.7 to 76.6%). The L. reuteri was able to produce reuterin via bioconversion of glycerol in the film-forming solutions, and the entrapment of the metabolite was improved using konjac, mutamba and tamarind mucilaginous solutions in the encapsulation process (45, 44.57 and 41.25%, respectively). Thus, our findings confirm the great potential of these hydrocolloids to different further purposes, enabling its application as support material for delivery of chemical or biological compounds.
Collapse
Affiliation(s)
- F.J. Rodrigues
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - M.F. Cedran
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - G.A. Pereira
- School of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - J.L. Bicas
- Food Biotechnology Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - H.H. Sato
- Food Biochemistry Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
34
|
Colonization of the live biotherapeutic product VE303 and modulation of the microbiota and metabolites in healthy volunteers. Cell Host Microbe 2022; 30:583-598.e8. [PMID: 35421353 DOI: 10.1016/j.chom.2022.03.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/22/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.
Collapse
|
35
|
Development of a shelf-stable, gel-based delivery system for probiotics by encapsulation, 3D printing, and freeze-drying. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
37
|
Priour S, Welman A, Singh H, Ellis A. Impact of protectant uptake on the shelf-life of dried Lacticaseibacillus rhamnosus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
NOOR E, YUSRON M, SITORUS RDMC. Proteus penneri encapsulation with maltodextrin and sodium alginate using a spray-drying method. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.49621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Deng Z, Li J, Song R, Zhou B, Li B, Liang H. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Joint protection strategies for Saccharomyces boulardii: exogenous encapsulation and endogenous biofilm structure. Appl Microbiol Biotechnol 2021; 105:8469-8479. [PMID: 34647135 DOI: 10.1007/s00253-021-11601-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Biofilms are heterogeneous structures composed of microorganisms and the surrounding extracellular polymeric substances (EPS) that protect the microbial cells from harsh environments. Saccharomyces boulardii is the first yeast classified as a probiotic strain with unique properties. However, tolerance of S. boulardii biofilms to harsh environments especially during production and in the gastrointestine remains unknown. In this study, S. boulardii cells were encapsulated in alginate microcapsules and subsequently cultured to form biofilms, and their survival and tolerance were evaluated. Microencapsulation provided S. boulardii a confined space that enhanced biofilm formation. The thick alginate shell and the mature biofilm improved the ability of S. boulardii to survive under harsh conditions. The exogenous encapsulation and the endogenous biofilm structure together enhanced the gastrointestinal tolerance and thermotolerance of S. boulardii. Besides, as the alginate shell became thinner with an increase in the subsequent culture duration, the EPS of S. boulardii biofilms exerted an important protective effect in resisting high temperatures. The encapsulated biofilm of S. boulardii after 24-h culture exhibited 60 × higher thermotolerance at 60 °C (10 min), while those after 6-h and 24-h culture showed 1000 × to 550,000 × higher thermotolerance at 120 °C (1 min) compared with the planktonic cells without encapsulation. The present study's findings suggest that a combination of encapsulation and biofilm mode efficiently enhanced gastrointestinal tolerance and thermotolerance of S. boulardii. KEY POINTS: • Encapsulated S. boulardii in biofilm mode showed enhanced tolerance. • Exogenous shell and endogenous biofilm provided dual protection to S. boulardii.
Collapse
|
41
|
Sánchez-Castro I, Martínez-Rodríguez P, Abad MM, Descostes M, Merroun ML. Uranium removal from complex mining waters by alginate beads doped with cells of Stenotrophomonas sp. Br8: Novel perspectives for metal bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113411. [PMID: 34351286 DOI: 10.1016/j.jenvman.2021.113411] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Uranium-containing effluents generated by nuclear energy industry must be efficiently remediated before release to the environment. Currently, numerous microbial-based strategies are being developed for this purpose. In particular, the bacterial strain Stenotrophomonas sp. Br8, isolated from U mill tailings porewaters, has been already shown to efficiently precipitate U(VI) as stable U phosphates mediated by phosphatase activity. However, the upscaling of this strategy should overcome some constraints regarding cell exposure to harsh environmental conditions. In the present study, the immobilization of Br8 biomass in an inorganic matrix was optimized to provide protection to the cells as well as to make the process more convenient for real-scale utilization. The use of biocompatible, highly porous alginate beads for Br8 cells immobilization resulted the best alternative when investigating by a multidisciplinary approach (High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), Environmental Scanning Electron Microscopy (ESEM), Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance, etc.) several consolidated entrapment methods. This biomaterial was applied to complex real U mining porewaters (containing 47 mg/L U) in presence of an organic phosphate source (glycerol-2-phosphate) to produce reactive free orthophosphates through Br8 phosphatase activity. Uranium immobilization rates around 98 % were observed after one cycle of 72 h. In terms of U removal ability as a function of biomass, Br8-doped alginate beads were determined to remove up to 1199.5 mg U/g dry biomass over two treatment cycles. Additionally, optimized conditions for storing Br8-doped beads and for a correct application were assessed. Results for U accumulation kinetics and HAADF-STEM/ESEM analyses revealed that U removal by the immobilized cells is a biphasic process combining a first passive U sorption onto bead and/or cell surfaces and a second slow active biomineralization. This work provides new practical insights into the biological and physico-chemical parameters governing a high-efficient U bioremediation process based on the phosphatase activity of immobilized bacterial cells when applied to complex mining waters under laboratory conditions.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - María M Abad
- Centro de Instrumentación Científica (CIC), University of Granada, Campus Fuentenueva, Granada, Spain
| | | | - Mohamed Larbi Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
42
|
Probiotic Supplements Improve Blood Glucose and Insulin Resistance/Sensitivity among Healthy and GDM Pregnant Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9830200. [PMID: 34603479 PMCID: PMC8481047 DOI: 10.1155/2021/9830200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Background Probiotic supplements may be seen as a promising way to improve glucose metabolism. This study aimed to evaluate the effects of probiotic supplements on blood glucose, insulin resistance/sensitivity, and prevention of gestational diabetes mellitus (GDM) among pregnant women. Methods Eleven electronic databases were searched from inception to May 2020. Two authors independently identified randomized controlled trials (RCTs), assessed the eligibility and quality of the included studies, and then extracted data. The primary outcomes were fasting plasma glucose (FPG), 1 h and 2 h plasma glucose after 75 g oral glucose tolerance test (OGTT), HbA1c, fasting plasma insulin, insulin resistance, and insulin sensitivity. Fixed and random effect models were used to pool the results. Results A total of 20 RCTs involving 2972 participants were included according to the inclusion and exclusion criteria. The pooled results of this research showed that probiotic supplements could reduce the level of FPG (mean difference (MD) = −0.11; 95% CI = −0.15 to −0.04; P=0.0007), serum insulin (MD = −1.68; 95% CI = −2.44 to −0.92; P < 0.00001), insulin resistance (MD = −0.36; 95% CI = −0.53 to −0.20; P < 0.00001), and insulin sensitivity (MD = −21.80; 95% CI = −31.92 to −11.67; P < 0.00001). Regarding the subgroup analysis of different pregnant women, the effects of probiotics on FPG, insulin, and insulin resistance were more obvious among GDM and healthy women than among overweight/obese women. Furthermore, the differences were not significant in HbA1c (MD = −0.05; 95% CI = −0.12 to 0.03; P=0.23), 1 h OGTT (MD = −0.07; 95% CI = −0.25 to 0.10; P=0.42), and 2 h OGTT (MD = −0.03; 95% CI = −0.17 to 0.12; P=0.72). Conclusion This review found that probiotic supplements had certain functions to reduce the level of FPG and improve insulin, insulin resistance, and insulin sensitivity, especially for GDM and healthy pregnant women.
Collapse
|
43
|
Berreta A, Kopper JJ, Alexander TL, Kogan CJ, Burbick CR. Effect of an In Vitro Proximal Gastrointestinal Tract on Viability of Commercially Available Equine Probiotics. J Equine Vet Sci 2021; 104:103671. [PMID: 34416988 DOI: 10.1016/j.jevs.2021.103671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Probiotics, by definition, are live micro-organisms and should remain viable when they reach the intended site of action which is typically the cecum and/or colon. In humans, probiotics often need enteric protection to survive transit through the proximal gastrointestinal (GI) tract. Typically, equine probiotics do not advertise enteric protection and to the author's knowledge the viability of equine probiotics after exposure to the proximal GI tract has not been evaluated. The objective of this study was to evaluate the effect of an in vitro simulation of the equine proximal GI tract on probiotic viability. We hypothesized that the simulated proximal GI tract would adversely effect microbial viability and that the adverse effects would be partially ameliorated by increasing the gastric pH to 4. A total of 11 products were evaluated of which six had at least one micro-organism that was adversely effected by exposure to the proximal GI tract and four of which had at least one micro-organism that was adversely affected when the gastric pH was increased to 4.0. Results from this study indicate that some micro-organisms in equine probiotics do not appear to be adversely affected by exposure to the equine proximal GI tract.
Collapse
Affiliation(s)
- Ana Berreta
- Department of Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - Jamie J Kopper
- Department of Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA.
| | - Trevor L Alexander
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA
| | - Clark J Kogan
- Center for Interdisciplinary Statistical Education and Research, Washington State University, Pullman, WA
| | - Claire R Burbick
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA; Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA
| |
Collapse
|
44
|
Marzorati M, Calatayud M, Rotsaert C, Van Mele M, Duysburgh C, Durkee S, White T, Fowler K, Jannin V, Bellamine A. Comparison of protection and release behavior of different capsule polymer combinations based on L. acidophilus survivability and function and caffeine release. Int J Pharm 2021; 607:120977. [PMID: 34384885 DOI: 10.1016/j.ijpharm.2021.120977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Oral administration of active pharmaceutical ingredients, nutraceuticals, enzymes or probiotics requires an appropriate delivery system for optimal bioactivity and absorption. The harsh conditions during the gastrointestinal transit can degrade the administered products, hampering their efficacy. Enteric or delayed-release pharmaceutical formulations may help overcome these issues. In a Simulator of Human Intestinal Microbial Ecosystem model (SHIME) and using caffeine as a marker for release kinetics and L. acidophilus survivability as an indicator for protection, we compared the performance of ten capsule configurations, single or DUOCAP® combinations. The function of L. acidophilus and its impact on the gut microbiota was further tested in three selected capsule types, combinations of DRcaps® capsule in DRcaps® capsule (DR-in-DR) and DRcaps® capsule in Vcaps® capsule (DR-in-VC) and single Vcaps® Plus capsule under colonic conditions. We found that under stomach and small intestine conditions, DR-in-DR and DR-in-VC led to the best performance both under fed and fasted conditions based on the slow caffeine release and the highest L. acidophilus survivability. The Vcaps® Plus capsule however, led to the quickest caffeine and probiotic release. When DR-in-DR, DR-in-VC and single Vcaps® Plus capsules were tested through the whole gastrointestinal tract, including under colonic conditions, caffeine release was found to be slower in capsules containing DRcaps® capsules compared to the single Vcaps® capsules. In addition, colonic survival of L. acidophilus was significantly increased under fasted conditions in DR-in-DR or DR-in-VC formulation compared to Vcaps® Plus capsule. To assess the impact of these formulations on the microbial function, acetate, butyrate and propionate as well as ammonia were measured. L. acidophilus released from DR-in-DR or DR-in-VC induced a significant increase in butyrate and a decrease in ammonia, suggesting a proliferation of butyrate-producing bacteria and reduction in ammonia-producing bacteria. These data suggest that L. acidophilus included in DR-in-DR or DR-in-VC reaching the colon is viable and functional, potentially contributing to changes in colonic microbiota composition and diversity.
Collapse
Affiliation(s)
- Massimo Marzorati
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; ProDigest bvba, Technologiepark 82, 9052 Ghent, Belgium
| | - Marta Calatayud
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; ProDigest bvba, Technologiepark 82, 9052 Ghent, Belgium
| | | | | | | | - Shane Durkee
- Capsules and Health Ingredients Lonza Inc, 412, Morristown, NJ, USA
| | - Tyler White
- Capsules and Health Ingredients Lonza Inc, 412, Morristown, NJ, USA
| | - Kelli Fowler
- Capsules and Health Ingredients Lonza Inc, 412, Morristown, NJ, USA
| | - Vincent Jannin
- Lonza Capsules and Health Ingredients, 10 rue Timken, 68000 Colmar, France.
| | - Aouatef Bellamine
- Capsules and Health Ingredients Lonza Inc, 412, Morristown, NJ, USA.
| |
Collapse
|
45
|
Qin XS, Gao QY, Luo ZG. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Ng E, Tay JRH, Ong MMA, Bostanci N, Belibasakis GN, Seneviratne CJ. Probiotic therapy for periodontal and peri-implant health - silver bullet or sham? Benef Microbes 2021; 12:215-230. [PMID: 34057054 DOI: 10.3920/bm2020.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are thought to be beneficial microbes that influence health-related outcomes through host immunomodulation and modulation of the bacteriome. Its reported success in the treatment of gastrointestinal disorders has led to further research on its potential applicability within the dental field due to similarities such as a polymicrobial aetiology and disease associated microbial-shifts. Although the literature is replete with studies demonstrating its efficacy, the use of probiotics in dentistry continues to polarise opinion. Here, we explore the evidence for probiotics and its effect on periodontal and peri-implant health. MEDLINE, EMBASE, and CENTRAL were systemically searched from June 2010 to June 2020 based on a formulated search strategy. Of 1,956 potentially relevant articles, we selected 27 double-blinded randomised clinical trials in the areas of gingivitis, periodontitis, residual pockets during supportive periodontal therapy, and peri-implant diseases, and reviewed their efficacy in these clinical situations. We observed substantial variation in treatment results and protocols between studies. Overall, the evidence for probiotic therapy for periodontal and peri-implant health appears unconvincing. The scarcity of trials with adequate power and follow-up precludes any meaningful clinical recommendations. Thus, the routine use of probiotics for these purposes are currently unsubstantiated. Further multi-centre trials encompassing a standardised investigation on the most promising strains and administration methods, with longer observation times are required to confirm the benefits of probiotic therapy for these applications.
Collapse
Affiliation(s)
- E Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - J R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - M M A Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - C J Seneviratne
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Centre Singapore, Second Hospital Ave, 168938, Singapore
| |
Collapse
|
47
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
48
|
An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Phuong Ta L, Bujna E, Kun S, Charalampopoulos D, Khutoryanskiy VV. Electrosprayed mucoadhesive alginate-chitosan microcapsules for gastrointestinal delivery of probiotics. Int J Pharm 2021; 597:120342. [PMID: 33545291 DOI: 10.1016/j.ijpharm.2021.120342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Besides viability protection, a sufficiently prolonged gastrointestinal retention of probiotics has emerged as critically important in improving the functional effectiveness of gastrointestinal delivery of these microorganisms. In this work, we formulated pure, resistant starch-reinforced and chitosan-coated alginate microparticles using an electrospray technique and evaluated their performance as mucoadhesive probiotic formulations for gastrointestinal delivery. In addition, we designed and successfully validated a novel experimental set-up of in vitro wash-off mucoadhesion test, using a portable and low-cost USB microscope for fluorescence imaging. In our test, pure chitosan microparticles (positive control) exhibited the greatest mucoadhesive property, whereas the alginate-resistant starch ones (negative control) were the least retentive on a gastric mucosa. These electrosprayed formulations were spherically shaped, with a size range of 30-600 µm (60-1300 µm with chitosan coating). Moreover, model probiotic Lactobacillus plantarum loaded in alginate-starch formulations was better protected against simulated gastric conditions than in alginate ones, but not better than in the chitosan-coated ones.
Collapse
Affiliation(s)
- Linh Phuong Ta
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom; Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Erika Bujna
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Szilárd Kun
- Institute of Biosystems Engineering and Process Control, Faculty of Food Science, Szent István University, Ménesi út 45, H-1118, Budapest, Hungary
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading RG6 6DX, United Kingdom.
| |
Collapse
|
50
|
Huang X, Gänzle M, Zhang H, Zhao M, Fang Y, Nishinari K. Microencapsulation of probiotic lactobacilli with shellac as moisture barrier and to allow controlled release. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:726-734. [PMID: 32706117 DOI: 10.1002/jsfa.10685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rapid dissolution in digestive tract and moisture sorption during ambient storage are the two challenges of dry probiotic preparations. To solve these problems, microcapsules with shellac (LAC) addition containing Limosilactobacillus reuteri TMW 1.656 were designed in this work to provide a good moisture barrier and to provide controlled release in digestive tract, based on the hydrophobicity and acid-resistance of LAC. Four microcapsules were prepared using the method of emulsification/external gelation based on the crosslinking reaction between alginate or LAC with calcium ion, including alginate/sucrose (ALG), alginate/shellac/sucrose (ALG/LAC), alginate/whey protein isolate/sucrose (ALG/WPI) and alginate/whey protein isolate/shellac/sucrose (ALG/WPI/LAC). RESULTS Measurements of physical properties showed that microcapsules with LAC addition (ALG/WPI/LAC and ALG/LAC) had larger particle size, much denser structure, lower hygroscopicity and slower solubilization in water, which agreed with the primary microcapsule design. Probiotic survivals in digestive juices followed the order of ALG/WPI/LAC ≥ ALG/WPI ≥ ALG/LAC > ALG. Probiotic stability after heating and ambient storage both exhibited the order of ALG/WPI/LAC > ALG/LAC ≈ ALG/WPI > ALG, which can be explained by the decreased hygroscopicity with adding LAC. CONCLUSION LAC addition contributed to better probiotic survivals after freeze drying, simulated digestion, heating and ambient storage, and whey protein isolate (WPI) addition had a synergistic effect. Microcapsule hygroscopicity was closely related with probiotic survivals after heating and ambient storage, while microcapsule solubilization was closely related with probiotic survivals in simulated juices. Within our knowledge, this is the first report to improve probiotic stability during ambient storage based on LAC hydrophobicity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Huang
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Michael Gänzle
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Hui Zhang
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Meng Zhao
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| |
Collapse
|