1
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Shi B, He E, Chang K, Xu G, Meng Q, Xu H, Chen Z, Wang X, Jia M, Sun W, Zhao W, Zhao H, Dong L, Cui H. Genistein prevents the production of hypospadias induced by Di-(2-ethylhexyl) phthalate through androgen signaling and antioxidant response in rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133537. [PMID: 38244450 DOI: 10.1016/j.jhazmat.2024.133537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Environmental estrogen exposure has increased dramatically over the past 50 years. In particular, prenatal exposure to estrogen causes many congenital diseases, among which reproductive system development disorders are extremely serious. In this study, the molecular mechanism of hypospadias and the therapeutic effect of genistein (GEN) were investigated through in vivo models prepared by Di-(2-ethylhexyl) phthalate (DEHP) exposure between 12 and 19 days of gestation. With increased DEHP concentrations, the incidence of hypospadias increased gradually. DEHP inhibited the key enzymes involved in steroid synthesis, resulting in decreasing testosterone synthesis. At the same time, DEHP increased reactive oxygen species (ROS) and produced inflammatory factors via NADPH oxidase-1 (NOX1) and NADPH oxidase-4 (NOX4) pathways. It also inhibited Steroid 5 α Reductase 2 (Srd5α2) and decreased dihydrotestosterone (DHT) synthesis. Additionally, DEHP inhibited the androgen receptor (AR), resulting in reduced DHT binding to the AR that ultimately retarded the development of the external reproductive system. GEN, a phytoestrogen, competes with DEHP for binding to estrogen receptor β (ERβ). This competition, along with GEN's antiestrogen and antioxidant properties, could potentially reverse impairments. The findings of this study provide valuable insights into the role of phytoestrogens in alleviating environmental estrogen-induced congenital diseases.
Collapse
Affiliation(s)
- Bowen Shi
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Enyang He
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaili Chang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Guodong Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Qingya Meng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Haihua Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Ziying Chen
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Xiaojia Wang
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Miao Jia
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wenjing Sun
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Hailan Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Liang Dong
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| | - Hualei Cui
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| |
Collapse
|
3
|
Su H, Yan Q, Du W, Hu E, Yang Z, Zhang W, Li Y, Tang T, Zhao S, Wang Y. Calycosin ameliorates osteoarthritis by regulating the imbalance between chondrocyte synthesis and catabolism. BMC Complement Med Ther 2024; 24:48. [PMID: 38254101 PMCID: PMC10804771 DOI: 10.1186/s12906-023-04314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ADTC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.
Collapse
Affiliation(s)
- Hong Su
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Qiuju Yan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wei Du
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yusheng Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Shushan Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.
- Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.
| |
Collapse
|
4
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
6
|
Bergsten TM, Li K, Lantvit DD, Murphy BT, Burdette JE. Kaempferol, a Phytoprogestin, Induces a Subset of Progesterone-Regulated Genes in the Uterus. Nutrients 2023; 15:1407. [PMID: 36986136 PMCID: PMC10051346 DOI: 10.3390/nu15061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.
Collapse
Affiliation(s)
| | | | | | | | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Xian M, Shen L, Zhan S, Chen S, Lin H, Cai J, Hu T, Wang S. Integrated 16S rRNA gene sequencing and LC/MS-based metabolomics ascertained synergistic influences of the combination of acupuncture and NaoMaiTong on ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115281. [PMID: 35405257 DOI: 10.1016/j.jep.2022.115281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acupuncture is an effective therapy for ischemic stroke, which has been widely used in China and gradually accepted in more countries and regions recently. In addition, Chinese medicine also plays an important role in stroke treatment, among which NaoMaiTong (NMT) is an example of an effective herbal formula for the treatment of stroke. A therapeutic strategy that combines acupuncture and medicine was widely used in stroke patients. However, the synergistic influences and mechanisms of combined acupuncture and medicine on ischemic stroke have not yet been entirely elucidated. AIM OF THIS STUDY The purpose of this study is to explore whether acupuncture and medicine combination treatments can produce synergism by using NMT, a clinically effective Chinese medicinal formula for the treatment of ischemic stroke for decades and has been demonstrated to be effective against ischemic brain injury, as a probe. Meanwhile, the potential mechanisms were investigated via cecal microbiome and plasma metabolomics to provide more strategies and basis for acupuncture-medicine combination for stroke. MATERIALS AND METHODS Adopted middle-cerebral artery occlusion/reperfusion (MCAO/R) rat models, the effect for the stroke of the combination treatment consisting of acupuncture and NMT was evaluated by detecting neurological issues, cerebral infarct dimensions, levels of inflammatory factors (IL-6, IL-1β, TNF-α) and oxidative stress factors (SOD, MDA) and brain-derived neurotrophic factor (BDNF). Subsequently,16S rRNA gene sequencing and LC/MS-based metabolomic analysis were utilized to explore the characteristics of cecal-contents microecology and plasma metabolic profile, respectively. Finally, the correlation between intestinal microecological characteristics and plasma metabolic characteristics was analyzed to explore the potential mechanism of the acupuncture-NMT combination. RESULTS The efficacy of acupuncture-NMT therapy was more effective than a single treatment on ischemic stroke, with more effectively reduced infarct sizes, improved neurobehavioral deficits, and alleviated oxidative stress and inflammatory responses. Besides, the combination therapy not only adjusted gut microbiota disturbances by enriching species diversity, reducing the abundance of pathogenic bacteria (such as Escherichia-Shaigella), as well as increasing the abundance of beneficial bacteria (such as Turicibacter, Bifidobacterium), but also improved metabolic disorders by reversing metabolite plasma levels to normality. The results of the correlation analysis demonstrated a significant association between intestinal microbiota and plasma metabolic profile, especially the strong correlation of Turicibacter and isoflavones phyto-estrogens metabolites. CONCLUSION The combination of acupuncture and NMT could produce synergism, suggesting acupuncture-medicine combination therapy might be more conducive to the recovery of ischemic stroke. And the potential mechanism was probably related to the mediation of intestinal microecology and plasma metabolism. Turicibacter and isoflavones phyto-estrogens metabolites might be the targets for acupuncture-NMT combination for stroke. Our current findings could provide a potential therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shaoru Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Associations of Urinary Phytoestrogen Concentrations with Nonalcoholic Fatty Liver Disease among Adults. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4912961. [PMID: 35399831 PMCID: PMC8989597 DOI: 10.1155/2022/4912961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022]
Abstract
Phytoestrogens can alleviate some pathological processes related to nonalcoholic fatty liver disease (NAFLD). However, there are limited and contradictory studies on the relationships between phytoestrogens (especially single phytoestrogen) and NAFLD. The purpose of this study was to explore the relationships between urinary phytoestrogen concentrations and NAFLD in American adults. This cross-sectional study used the data of the National Health and Nutrition Examination Survey from 1999 to 2010, and 2294 adults were finally enrolled in this study. The concentrations of phytoestrogens were measured in urine samples, and urinary phytoestrogens were divided into tertiles according to the concentration distributions. The diagnosis of NAFLD was determined by the United States fatty liver index. The main analysis used a multivariate logistic regression model. The fully adjusted models included gender, age, race, education, marriage, poverty, body mass index, waist circumference, smoking, diabetes, hypertension, total cholesterol, high-density lipoprotein cholesterol, triglycerides, and other five phytoestrogens. In the fully adjusted model, the urinary enterolactone (ENL) concentration was negatively correlated with NAFLD (OR of Tertile 3 : 0.48, 95% CI 0.25–0.94). When stratified by age and gender, the urinary ENL concentration was negatively correlated with NAFLD in males aged 40–59 years (OR of Tertile 3 : 0.08, 95% CI 0.01–0.82), while the urinary equol concentration was positively correlated with NAFLD in such population (OR of Tertile 3 : 4.27, 95% CI 1.02–17.85). In addition, a negative correlation between enterodiol (END) concentration and NAFLD was observed in males aged 60 years or over (OR of Tertile 2 : 0.18, 95% CI 0.05–0.69). Collectively, in middle-aged males, urinary ENL may be associated with a lower risk of NAFLD, while urinary equol may be related to a higher risk. In addition, urinary END has a possible relationship with a reduced risk of NAFLD in elder males. Definitely, clinical randomized controlled trials are needed to further verify the conclusions.
Collapse
|
9
|
Genistein Regulates Lipid Metabolism via Estrogen Receptor β and Its Downstream Signal Akt/mTOR in HepG2 Cells. Nutrients 2021; 13:nu13114015. [PMID: 34836271 PMCID: PMC8622023 DOI: 10.3390/nu13114015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Genistein (GEN) has been shown to significantly inhibit hepatic triglyceride accretion triggered by estrogen deficiency. The main purpose of this in vitro study was to investigate the function and molecular mechanism of estrogen receptor β (ERβ) in regulating hepatic lipid metabolism induced by GEN. Different doses of GEN or GEN with an ERβ antagonist were treated with HepG2 cells. Results showed that 25 μM GEN significantly diminished triglyceride levels. Meanwhile, GEN downregulated the levels of genes and proteins involved in lipogenesis, such as sterol-regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase (FASN), and stearoyl-coenzyme A desaturase 1 (SCD1), and upregulated the gene and protein levels of the regulation factors responsible for fatty acid β-oxidation, such as carnitine palmitoyltransferase 1α (CPT-1α) and peroxisome proliferator-activated receptor α (PPARα). Furthermore, 25 μM GEN reduced the levels of phosphorylation of protein kinase B (Akt) and mechanistic target of rapamycin (mTOR). Moreover, most of these effects from GEN were reverted by pretreatment with the antagonist of ERβ. In conclusion, GEN improved hepatic lipid metabolism by activating ERβ and further modulation of Akt/mTOR signals. The results provide novel aspects of the regulatory mechanism of ERβ on hepatic lipid metabolism and might help to profoundly understand the functions of food-derived phytoestrogens in preventing and treating hepatic steatosis in postmenopausal women.
Collapse
|
10
|
Sardana K, Sachdeva S. Role of nutritional supplements in selected dermatological disorders: A review. J Cosmet Dermatol 2021; 21:85-98. [PMID: 34564936 DOI: 10.1111/jocd.14436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND While a plethora of literature continues to be published on the role of nutritional agents both in lay press and indexed journals, the data is not on a firm footing and leaves the dermatologist in a quandry and the patient confused. The various agents include vitamins, minerals, amino acids, antioxidants, diets & gluten. A proper knowledge of the role of nutritional supplements in dermatological diseases can be a useful tool in advising the patients and in certain cases ameliorating the disorder. PATIENTS/METHODS Literature review of last 15 years was made using the terms "diet in dermatology," "nutrition and skin," "nutritional supplements in dermatology," "nutritional agents and acne," "nutritional agents and alopecia," and "nutritional agents and psoriasis." RESULTS While there are multiple publications on the use of nutritional supplements for amelioration of skin diseases, most of them are based on either associations or in vitro studies, but very few transcend the rigors of a clinical trial or the holey grail of a double-blinded randomized controlled trial. There seem to be some evidence in acne, psoriasis, telogen effluvium, urticaria & vitiligo. Coeliac disease and dermatitis herpetiformis have a strong link with diet. Rosacea has a strong link with certain foods, but the other disorders like melasma, aphthous stomatitis do not have any scientifically validated association with diet. CONCLUSIONS Our updated review examines the role of nutritional supplements and antioxidants in various dermatological disorders. We have found that there are varying levels of evidence with notable associations of low glycemic diet & acne, fish oil & weight loss with psoriasis, fish oils & probiotics with atopic dermatitis & vitamins & botanical extracts with vitiligo. The evidence for diet and nutrition in bullous disorders and photoageing is scarce. The role of low histamine diet in urticaria is useful in select cases of episodic urticaria. Rosacea is triggered by hot and spicy food . Apart from gluten and Dermatitis Herpetiformis, no diet can be considered disease modifying in our reveiw. The lack of comparison of nutritional or dietary modiffication with conventional validated agents, makes the data difficult to translate in real world patient management.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India
| | - Soumya Sachdeva
- Department of Dermatology, Venereology and Leprosy, Dr Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India
| |
Collapse
|
11
|
Guzmán TJ, Martínez-Ayala AL, García-López PM, Soto-Luna IC, Gurrola-Díaz CM. Effect of the acute and chronic administration of Lupinus albus β-conglutin on glycaemia, circulating cholesterol, and genes potentially involved. Biomed Pharmacother 2021; 133:110969. [PMID: 33166762 DOI: 10.1016/j.biopha.2020.110969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Constituents of lupin seeds, like γ-conglutin and lupanine, have gained attention as potential complementary treatments for dysglycaemia management. Notwithstanding, the effect of other lupin components on carbohydrate metabolism, including β-conglutin protein, has received little attention. Here, we investigated the influence of the acute and chronic administration of β-conglutin on glycaemia modulation in normal and streptozotocin induced-to-diabetes rats. We analysed the liver transcriptome modulation exerted by β-conglutin in diabetes-induced rats using DNA microarrays to scout for potential molecular targets and pathways involved in this biological response. The acute administration of β-conglutin reduced the incremental area under the curve of glycaemia in normal and diabetes-induced animals. In a seven-day study with diabetic animals, glycaemia increased significantly in non-treated animals but remained unchanged in animals treated with a daily dose of β-conglutin. Total cholesterol was significantly lower at the end of the experimental period (-21.8 %, p = 0.039). The microarray and gene ontology analyses revealed several targets and pathways potentially modulated by β-conglutin treatment, including a possible down-regulation of Jun kinase activity. Moreover, our data indicate that targets related to oxidative stress, inflammation, and estrogenic activity might orchestrate these metabolic effects. In conclusion, our findings show that β-conglutin may help manage postprandial glycaemia and reduce cholesterol levels under the dysglycaemia stage. We identified and proposed new potential molecular targets for further research related to the mechanism of action of β-conglutin.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| | - Alma L Martínez-Ayala
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Yautepec, Morelos, México.
| | - Pedro M García-López
- Laboratorio de Productos Bióticos, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Zapopan, Jalisco, México.
| | - Irma C Soto-Luna
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| | - Carmen M Gurrola-Díaz
- Instituto de Investigación en Enfermedades Crónico-Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México.
| |
Collapse
|
12
|
Sun J, Jiang H, Wang W, Dong X, Zhang D. Associations of Urinary Phytoestrogen Concentrations with Sleep Disorders and Sleep Duration among Adults. Nutrients 2020; 12:nu12072103. [PMID: 32708566 PMCID: PMC7400948 DOI: 10.3390/nu12072103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Current evidence on the relationship of phytoestrogens with sleep is limited and contradictory. In particular, studies on individual phytoestrogens and sleep have not been reported. Thus, this study aimed to appraise the associations of individual phytoestrogens with sleep disorders and sleep duration. This cross-sectional study comprising 4830 adults utilized data from the National Health and Nutrition Examination Survey 2005-2010. Phytoestrogens were tested in urine specimens. Sleep disorders and sleep duration were based on a self-reported doctor's diagnosis and usual sleep duration. The main analyses utilized logistic and multinomial logistic regression models and a restricted cubic spline. In the fully adjusted model, compared with tertile 1 (lowest), the odds ratios (95% confidence intervals (CIs)) of sleep disorders for the highest tertile of urinary concentrations of enterolactone, enterodiol, and O-desmethylangolensin were 0.64 (0.41-1.00), 1.54 (1.07-2.21), and 1.89 (1.26-2.85), respectively. Linear inverse, approximatively linear positive, and inverted L-shaped concentration-response relationships were found between enterolactone, enterodiol, and O-desmethylangolensin and sleep disorders, respectively. Compared with normal sleep (7-8 h/night), the relative risk ratio (RRR) (95% CI) of very short sleep for enterolactone was 0.56 (0.36-0.86), and the RRR (95% CI) of long sleep risk for genistein was 0.62 (0.39-0.99). Furthermore, negative associations of genistein with sleep disorders and enterolactone with long sleep risk, as well as positive associations of enterodiol with both long and very short sleep, were observed in the stratified analysis by age or gender. Finally, a notable finding was that urinary O-desmethylangolensin concentration was positively related to sleep disorders in both females aged 40-59 years and non-Hispanic Whites but inversely associated with sleep disorders in both females aged 60 years or over and other Hispanics. Our findings suggested that enterolactone and genistein might be beneficial for preventing sleep disorders or non-normal sleep duration among adults, and enterodiol might be adverse toward this goal. However, the association of O-desmethylangolensin with sleep disorders might be discrepant in different races and females of different ages.
Collapse
Affiliation(s)
- Jing Sun
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.S.); (W.W.); (X.D.); (D.Z.)
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence:
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.S.); (W.W.); (X.D.); (D.Z.)
| | - Xue Dong
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.S.); (W.W.); (X.D.); (D.Z.)
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (J.S.); (W.W.); (X.D.); (D.Z.)
| |
Collapse
|
13
|
Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int J Mol Sci 2020; 21:ijms21061929. [PMID: 32178293 PMCID: PMC7139484 DOI: 10.3390/ijms21061929] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic contaminants in water can impose risks to reproductive health. Most of these compounds are known to be endocrine disrupting chemicals (EDCs). EDCs can impact the endocrine system and subsequently impair the development and fertility of non-human animals and humans. The source of chemical contamination in water is diverse, originating from byproducts formed during water disinfection processes, release from industry and livestock activity, or therapeutic drugs released into sewage. This review discusses the occurrence of EDCs in water such as disinfection byproducts, fluorinated compounds, bisphenol A, phthalates, pesticides, and estrogens, and it outlines their adverse reproductive effects in non-human animals and humans.
Collapse
|
14
|
Peirotén Á, Bravo D, Landete JM. Bacterial metabolism as responsible of beneficial effects of phytoestrogens on human health. Crit Rev Food Sci Nutr 2019; 60:1922-1937. [PMID: 31161778 DOI: 10.1080/10408398.2019.1622505] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytoestrogens (PE) are compounds found in plants such as soy (isoflavones), flax seeds and cereals (lignans) and pomegranates (ellagitannins). PE have shown estrogenic/antiestrogenic, antioxidant, anti-inflammatory, antineoplastic and apoptotic activities. The human studies are showing promising although inconsistent results about the beneficial effects of PE on ameliorating the menopausal symptoms or reducing the risk of certain cancers, cardiovascular disease or diabetes. The effects of PE on the organism are mediated by the intestinal microbiota, which transforms them into bioactive PE such as genistein, equol, enterolignans and certain urolithins. In this work, we review the most recent findings about the bacteria able to metabolize PE, together with the latest studies on the effects of PE on health. In addition, we describe the possible factors hindering the demonstration of the beneficial effect of PE on health, evincing the importance of measuring the actual circulating PE in order to encompass the variability of PE metabolism due to the intestinal microbiota. With this in mind, we also explore an approach to ensure the access to bioactive PE.
Collapse
Affiliation(s)
- Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Daniel Bravo
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José M Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
15
|
Sexually Dimorphic Effect of Genistein on Hypothalamic Neuronal Differentiation in Vitro. Int J Mol Sci 2019; 20:ijms20102465. [PMID: 31109056 PMCID: PMC6567056 DOI: 10.3390/ijms20102465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Developmental actions of estradiol in the hypothalamus are well characterized. This hormone generates sex differences in the development of hypothalamic neuronal circuits controlling neuroendocrine events, feeding, growth, reproduction and behavior. In vitro, estradiol promotes sexually dimorphic effects on hypothalamic neuritogenesis. Previous studies have shown that developmental actions of the phytoestrogen genistein result in permanent sexually dimorphic effects in some behaviors and neural circuits in vivo. In the present study, we have explored if genistein, like estradiol, affects neuritogenesis in primary hypothalamic neurons and investigated the estrogen receptors implicated in this action. Hypothalamic neuronal cultures, obtained from male or female embryonic day 14 (E14) CD1 mice, were treated with genistein (0.1 µM, 0.5 µM or 1 µM) or vehicle. Under basal conditions, female neurons had longer primary neurites, higher number of secondary neurites and higher neuritic arborization compared to male neurons. The treatment with genistein increased neuritic arborization and the number of primary neurites and decreased the number of secondary neurites in female neurons, but not in male neurons. In contrast, genistein resulted in a significant increase in primary neuritic length in male neurons, but not in female neurons. The use of selective estrogen receptor antagonists suggests that estrogen receptor α, estrogen receptor β and G-protein-coupled estrogen receptors are involved in the neuritogenic action of genistein. In summary, these findings indicate that genistein exerts sexually dimorphic actions on the development of hypothalamic neurons, altering the normal pattern of sex differences in neuritogenesis.
Collapse
|
16
|
Li M, Zhang C, Li X, Lv Z, Chen Y, Zhao J. Isoquercitrin promotes the osteogenic differentiation of osteoblasts and BMSCs via the RUNX2 or BMP pathway. Connect Tissue Res 2019; 60:189-199. [PMID: 29852784 DOI: 10.1080/03008207.2018.1483358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Isoquercitrin is widely present in fruits, vegetables and medicinal herbs. As a natural phytoestrogen, isoquercitrin has been considered a possible osteoporosis prevention option to avoid the risk of hormone therapy. MATERIALS AND METHODS The cell proliferation of osteoblasts and bone mesenchymal stem cells (BMSCs) was examined by cell counting kit-8 (CCK-8). The osteogenic differentiation was evaluated by real-time qPCR, ALP staining and Alizarin Red S staining. Small interfering RNA (siRNA) was used to knockdown the expression of runt-related transcription factor 2 (RUNX2). RESULTS The cell proliferation of osteoblasts and BMSCs was promoted by isoquercitrin at low concentrations. High concentrations of isoquercitrin promoted the osteogenic differentiation via RUNX2 expression in osteoblasts and via the bone morphogenetic protein (BMP) pathway in BMSCs. Inhibition of RUNX2 expression in osteoblasts by siRNA or addition of noggin to the culture medium of BMSCs reduced the effects of osteogenic differentiation induced by isoquercitrin. CONCLUSIONS These data suggest that isoquercitrin is a natural potential osteoinductive compound and might be valuable for the prevention/treatment of bone disorders.
Collapse
Affiliation(s)
- Mei Li
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China.,b Ningbo Institute of Medical Sciences , Ningbo , People's Republic of China
| | - Chi Zhang
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Xinhan Li
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Zeheng Lv
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Yao Chen
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| | - Jiyuan Zhao
- a Zhejiang Key Laboratory of Pathophysiology , Medical School of Ningbo University , Ningbo , People's Republic of China
| |
Collapse
|
17
|
Sabapati M, Palei NN, C.K. AK, Molakpogu RB. Solid lipid nanoparticles of Annona muricata fruit extract: formulation, optimization and in vitro cytotoxicity studies. Drug Dev Ind Pharm 2019; 45:577-586. [DOI: 10.1080/03639045.2019.1569027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Narahari N. Palei
- Department of Pharmaceutics, Sree Vidyanikethan College of Pharmacy, Tirupati, India
| | - Ashok Kumar C.K.
- Department of Pharmacognosy, Sree Vidyanikethan College of Pharmacy, Tirupati, India
| | | |
Collapse
|
18
|
Nie Q, Chen H, Hu J, Fan S, Nie S. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit Rev Food Sci Nutr 2018; 59:848-863. [PMID: 30569745 DOI: 10.1080/10408398.2018.1536646] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) and its complications are major public health concerns which strongly influence the quality of humans' life. Modification of gut microbiota has been widely used for the management of diabetes. In this review, the relationship between diabetes and gut microbiota, as well as the effects of different dietary components and traditional Chinese medicine (TCM) on gut microflora are summarized. Dietary compounds and TCM possessing bioactive components (fiber and phytochemicals) first change the composition of gut microbiota (inhibiting pathogens and promoting the beneficial bacteria growth) and then influence the production of their metabolites, which would further modify the intestinal environment through inhibiting the production of detrimental compounds (such as lipopolysaccharide, hydrogen sulfide, indol, etc.). Importantly, metabolites (short chain fatty acids and other bioactive components) fermented/degraded by gut microbiota can target multiple pathways in intestine, liver, pancreas, etc., resulting in the improvement of gut health, glycemic control, lipids profile, insulin resistance and inflammation. Furthermore, understanding the interaction between different dietary components and gut microbiota, as well as underlying mechanisms would help design different diet formula for the management of diabetes. Further researches could focus on the combination of different dietary components for preventing and treating diabetes, based on the principle of "multiple components against multiple targets" from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Qixing Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Haihong Chen
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Jielun Hu
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Songtao Fan
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| | - Shaoping Nie
- a State Key Laboratory of Food Science and Technology , China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University , Nanchang , China
| |
Collapse
|
19
|
García-Mateos D, García-Villalba R, Otero JA, Marañón JA, Espín JC, Álvarez AI, Merino G. An altered tissue distribution of flaxseed lignans and their metabolites in Abcg2 knockout mice. Food Funct 2018; 9:636-642. [PMID: 29292449 DOI: 10.1039/c7fo01549f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lignans are dietary polyphenols, which are metabolized by gut microbiota into the phytoestrogenic metabolites enterolignans, mainly enterolactone and enterodiol. Breast Cancer Resistance Protein (BCRP/ABCG2) is an efflux transporter that affects the plasma and milk secretion of several drugs and natural compounds. We hypothesized here that Abcg2 could influence the levels of lignans and their derived metabolites in target tissues. Consequently, we aimed to evaluate the role of Abcg2 in the tissue distribution of these compounds. We used Abcg2-/- knockout and wild-type male mice fed with a lignan-enriched diet for one week and analysed their plasma, small intestine, colon, liver, kidneys and testicles. High levels of lignans as well as enterolignans and their glucuronide and sulfate conjugates in the small intestine and colon were detected, with higher concentrations of the conjugates in the wild-type compared with Abcg2-/- mice. Particularly relevant was the detection of 24-fold and 8-fold higher concentrations of enterolactone-sulfate and enterolactone-glucuronide, respectively, in the kidney of Abcg2-/- compared with wild-type mice. In conclusion, our study showed that lignans and their derived metabolites were in vivo substrates of Abcg2, which affected their plasma and tissue levels. These results highlight the role of Abcg2 in influencing the health-beneficial properties of dietary lignans.
Collapse
Affiliation(s)
- Dafne García-Mateos
- Department of Biomedical Sciences - Physiology, Veterinary Faculty, University of Leon, 24071 Campus de Vegazana, León, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
21
|
Kiyama R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 2017; 815:405-415. [PMID: 28970013 DOI: 10.1016/j.ejphar.2017.09.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
Abstract
Terpenes are made of the isoprene unit (C5), and along with their derivatives, terpenoids, they are widely distributed in plants as active ingredients involved in anti-inflammation, anti-carcinogenesis and neuroprotection. Estrogenic terpenes and terpenoids are an important category of phytoestrogens and have been used as traditional medicines. The comprehensive list of estrogenic terpenes and terpenoids includes hemi-, mono-, sesqui-, di-, tri-, tetra- and polyterpenes, their derivatives, and meroterpenes, along with the signaling pathways and cellular functions on which their estrogenicity is exerted. Signaling pathways are further classified as bidirectional or unidirectional, the latter being further divided into two types depending upon the presence of both ligands, or the absence of one or both ligands. Although estrogenic activity of terpenes and terpenoids was evaluated by ligand-binding assays, yeast two-hybrid assays, reporter-gene assays, transcription assays, protein assays, cell assays and animal testing, the mechanism of estrogenic activity is still not fully understood. Applications of estrogenic terpenes and terpenoids are categorized into cancer treatment and prevention, cardioprotection, endocrine toxicity/reproductive dysfunction, food/supplement/traditional medicine, immunology/inflammation, menopausal syndromes and neuroprotection, where their benefits are discussed based on their availability, stability and variations.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Fukuoka, Japan.
| |
Collapse
|
22
|
García-Mateos D, García-Villalba R, Marañón JA, Espín JC, Merino G, Álvarez AI. The Breast Cancer Resistance Protein (BCRP/ABCG2) influences the levels of enterolignans and their metabolites in plasma, milk and mammary gland. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
23
|
Dean M, Murphy BT, Burdette JE. Phytosteroids beyond estrogens: Regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol 2017; 442:98-105. [PMID: 27986590 PMCID: PMC5276729 DOI: 10.1016/j.mce.2016.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Abstract
Foods and botanical supplements can interfere with the endocrine system through the presence of phytosteroids - chemicals that interact with steroids receptors. Phytoestrogens are well studied, but compounds such as kaempferol, apigenin, genistein, ginsenoside Rf, and glycyrrhetinic acid have been shown to interact with non-estrogen nuclear receptors. These compounds can have agonist, antagonist, or mixed agonist/antagonist activity depending on compound, receptor, cell line or tissue, and concentration. Some phytosteroids have also been shown to inhibit steroid metabolizing enzymes, resulting in biological effects through altered endogenous steroid concentrations. An interesting example, compound A (4-[1-chloro-2-(methylamino)ethyl]phenyl acetate hydrochloride (1:1)) is a promising selective glucocorticoid receptor modulator (SGRM) based on a phytosteroid isolated from Salsola tuberculatiformis Botschantzev. Given that $6.9 billion of herbal supplements are sold each year, is clear that further identification and characterization of phytosteroids is needed to ensure the safe and effective use of botanical supplements.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian T Murphy
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Bidirectional Estrogen-Like Effects of Genistein on Murine Experimental Autoimmune Ovarian Disease. Int J Mol Sci 2016; 17:ijms17111855. [PMID: 27834809 PMCID: PMC5133855 DOI: 10.3390/ijms17111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/23/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022] Open
Abstract
This study was to investigate the bidirectional estrogen-like effects of genistein on murine experimental autoimmune ovarian disease (AOD). Female BALB/c mice were induced by immunization with a peptide from murine zona pellucida. The changes of estrous cycle, ovarian histomorphology were measured, and the levels of serum sex hormone were analyzed using radioimmunoassay. Proliferative responses of the ovary were also determined by immunohistochemistry. Administration of 25 or 45 mg/kg body weight genistein enhanced ovary development with changes in serum sex hormone levels and proliferative responses. Meanwhile, the proportions of growing and mature follicles increased and the incidence of autoimmune oophoritis decreased, which exhibited normal ovarian morphology in administration of 25 or 45 mg/kg body weight genistein, while a lower dose (5 mg/kg body weight genistein) produced the opposite effect. These findings suggest that genistein exerts bidirectional estrogen-like effects on murine experimental AOD, while a high dose (45 mg/kg body weight) of genistein may suppress AOD.
Collapse
|
25
|
Jeon EJ, Lee DH, Kim YJ, Ahn J, Kim MJ, Hwang JT, Hur J, Kim M, Jang YJ, Ha TY, Seo DH, Lee JS, Sung MJ, Jung CH. Effects of yuja peel extract and its flavanones on osteopenia in ovariectomized rats and osteoblast differentiation. Mol Nutr Food Res 2016; 60:2587-2601. [PMID: 27506630 DOI: 10.1002/mnfr.201600257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/24/2016] [Accepted: 08/04/2016] [Indexed: 11/12/2022]
Abstract
SCOPE Yuja (Citrus junos Tanaka) possesses various health benefits, but its effects on bone health are unknown. In this study, the preventative effects of yuja peel ethanol extract (YPEE) on osteopenia were determined in ovariectomized (OVX) rats, and the mechanisms by which YPEE and its flavanones regulate osteoblastogenesis were examined in vitro. METHODS AND RESULTS The effects of YPEE on osteoblastogenesis were investigated in MC3T3-E1 cells. YPEE promoted alkaline phosphatase (ALP) activity, mineralization, and the expression of osteoblast differentiation marker genes, such as ALP, runt-related transcription factor 2 (Runx2), and osteocalcin. YPEE and its flavanones promoted osteoblast differentiation via BMP-2-mediated p38 and the Smad1/5/8 signaling pathway. YPEE supplementation significantly decreased body weight and increased uterine weight and bone mineral density in OVX rats. Based on a micro-CT analysis of femurs, YPEE significantly attenuated osteopenia and increased trabecular volume fraction, trabecular separation, and trabecular number (p < 0.05). CONCLUSION Dietary YPEE has a protective effect on OVX-induced osteopenia. YPEE and its flavanones promote osteoblastogenesis via the activation of the BMP/p38/Smad/Runx2 pathways. These results extend our knowledge of the beneficial effects of YPEE and provide a basis for the development of novel therapies for osteoporosis.
Collapse
Affiliation(s)
- Eun Joo Jeon
- Research Group of Nutrition and Diet, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Da-Hye Lee
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Yang-Ji Kim
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Jiyun Ahn
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Min Jung Kim
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Jin-Taek Hwang
- Research Group of Nutrition and Diet, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Jinyoung Hur
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Mina Kim
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Young-Jin Jang
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Tae-Youl Ha
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Dong-Hyun Seo
- Department of Biomedical Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jong Suk Lee
- Department of Analysis Support, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Nutrition and Diet, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| | - Chang Hwa Jung
- Research Group of Metabolic Mechanism, Korea Food Research Institute, Seongnam, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|