1
|
Boulos M, Mousa RS, Jeries N, Simaan E, Alam K, Bulus B, Assy N. Hidden in the Fat: Unpacking the Metabolic Tango Between Metabolic Dysfunction-Associated Steatotic Liver Disease and Metabolic Syndrome. Int J Mol Sci 2025; 26:3448. [PMID: 40244398 PMCID: PMC11989262 DOI: 10.3390/ijms26073448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolic syndrome (MetS) and metabolic dysfunction-associated steatotic liver disease (MASLD) are closely related, with rapidly increasing prevalence globally, driving significant public health concerns. Both conditions share common pathophysiological mechanisms such as insulin resistance (IR), adipose tissue dysfunction, oxidative stress, and gut microbiota dysbiosis, which contribute to their co-occurrence and progression. While the clinical implications of this overlap, including increased cardiovascular, renal, and hepatic risk, are well recognized, current diagnostic and therapeutic approaches remain insufficient due to the clinical and individuals' heterogeneity and complexity of these diseases. This review aims to provide an in-depth exploration of the molecular mechanisms linking MetS and MASLD, identify critical gaps in our understanding, and highlight existing challenges in early detection and treatment. Despite advancements in biomarkers and therapeutic interventions, the need for a comprehensive, integrated approach remains. The review also discusses emerging therapies targeting specific pathways, the potential of precision medicine, and the growing role of artificial intelligence in enhancing research and clinical management. Future research is urgently needed to combine multi-omics data, precision medicine, and novel biomarkers to better understand the complex interactions between MetS and MASLD. Collaborative, multidisciplinary efforts are essential to develop more effective diagnostic tools and therapies to address these diseases on a global scale.
Collapse
Affiliation(s)
- Mariana Boulos
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rabia S. Mousa
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nizar Jeries
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Elias Simaan
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Klode Alam
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Bulus Bulus
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
| | - Nimer Assy
- Internal Medicine Department, Galilee Medical Centre, Nahariya 221001, Israel; (R.S.M.); (N.J.); (E.S.); (K.A.); (B.B.); (N.A.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
2
|
Yao Y, Hong Q, Ding S, Cui J, Li W, Zhang J, Sun Y, Yu Y, Yu M, Zhang C, Chen L, Jiang J, Hu Y. An umbrella review of meta-analyses on the effects of microbial therapy in metabolic dysfunction-associated steatotic liver disease. Clin Nutr 2025; 47:1-13. [PMID: 39978229 DOI: 10.1016/j.clnu.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Current pharmacological treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) are often accompanied by adverse side effects. Consequently, probiotics, prebiotics, and synbiotics, which are bioactive compounds from fermented foods and offer fewer side effects, have garnered significant attention as alternative therapeutic strategies. OBJECTIVE This study aims to assess the efficacy of microbial therapies-probiotics, prebiotics, and synbiotics-in managing MASLD and to identify the optimal treatment modality for various clinical indicators through a comprehensive umbrella review of meta-analyses. METHODS A thorough literature search was conducted across PubMed, Web of Science, EMBASE, Cochrane Library, and Scopus to identify 23 meta-analyses over 18,999 MASLD patients as of November 2024. RESULTS The findings indicate that microbial treatments positively influence levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), homeostasis model assessment of insulin resistance (HOMA-IR), insulin, tumour necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and body mass index (BMI) in MASLD patients. Notably, probiotics were most effective in reducing TC, ALT, AST, GGT, insulin, TNF-α, and BMI; prebiotics were most effective in reducing TG; and synbiotics were most effective in reducing LDL-C, HOMA-IR, and CRP. CONCLUSION Our study provides robust evidence for microbial treatments of MASLD, enabling targeted interventions for different indicators.
Collapse
Affiliation(s)
- Yuanyue Yao
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, China
| | - Siqi Ding
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenhui Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yiyang Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingzhou Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lianmin Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China; Nanjing Medical University, Nanjing, 21100, China
| | - Jinchi Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yonghong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
3
|
Wang LJ, Sun JG, Chen SC, Sun YL, Zheng Y, Feng JC. The role of intestinal flora in metabolic dysfunction-associated steatotic liver disease and treatment strategies. Front Med (Lausanne) 2025; 11:1490929. [PMID: 39839647 PMCID: PMC11746088 DOI: 10.3389/fmed.2024.1490929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/23/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common multi-factorial liver disease, and its incidence is gradually increasing worldwide. Many reports have revealed that intestinal flora plays a crucial role for the occurrence and development of MASLD, through mechanisms such as flora translocation, endogenous ethanol production, dysregulation of choline metabolism and bile acid, and endotoxemia. Here, we review the relationship between intestinal flora and MASLD, as well as interventions for MASLD, such as prebiotics, probiotics, synbiotics, and intestinal flora transplantation. Intervention strategies targeting the intestinal flora along with its metabolites may be new targets for preventing and treating MASLD.
Collapse
Affiliation(s)
- Li Jun Wang
- Department of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jian Guang Sun
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shu Cheng Chen
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yu Li Sun
- Department of Hepatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Zheng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| | - Jian Chao Feng
- Department of Acupuncture and Moxibustion, Zibo Hospital, Zibo, China
| |
Collapse
|
4
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
5
|
Musazadeh V, Assadian K, Rajabi F, Faghfouri AH, Soleymani Y, Kavyani Z, Najafiyan B. The effect of synbiotics on liver enzymes, obesity indices, blood pressure, lipid profile, and inflammation in patients with non-alcoholic fatty liver: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2024; 208:107398. [PMID: 39241935 DOI: 10.1016/j.phrs.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Patients with non-alcoholic fatty liver disease (NAFLD) benefit from using synbiotics. However, findings from existing trials remain contentious. Therefore, this meta-analysis evaluated the effects of synbiotics on liver enzymes, blood pressure, inflammation, and lipid profiles in patients with NAFLD. METHODS We searched PubMed, Embase, Cochrane, Scopus, and Web of Science for randomized controlled trials (RCTs) regarding synbiotics supplementation in patients with NAFLD. RESULTS The meta-analysis revealed that synbiotics supplementation significantly improved liver enzymes (AST, WMD: -9.12 IU/L; 95 % CI: -13.19 to -5.05; ALT, WMD: -8.53 IU/L; 95 % CI: -15.07 to -1.99; GGT, WMD: -10.42 IU/L; 95 % CI: -15.19 to -5.65), lipid profile (TC, WMD: -7.74 mg/dL; 95 % CI: -12.56 to -2.92), obesity indices (body weight, WMD: -1.95 kg; 95 % CI: -3.69 to -0.22; WC, WMD: -1.40 cm; 95 % CI: -2.71 to -0.10), systolic blood pressure (SBP, WMD: -6.00 mmHg; 95 % CI: -11.52 to -0.49), and inflammatory markers (CRP, WMD: -0.69 mg/L; 95 % CI: -1.17 to -0.21; TNF-α, WMD: -14.01 pg/mL; 95 % CI: -21.81 to -6.20). CONCLUSION Overall, supplementation with synbiotics positively improved liver enzymes, obesity indices, and inflammatory cytokines in patients with NAFLD.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rajabi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yosra Soleymani
- Department of Nursing, Islamic Azad University of Hamedan, Iran
| | - Zeynab Kavyani
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Industries, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Behnam Najafiyan
- Pharmaceutical Sciences Research Center, Faculty of pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Pan Y, Yang Y, Wu J, Zhou H, Yang C. Efficacy of probiotics, prebiotics, and synbiotics on liver enzymes, lipid profiles, and inflammation in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. BMC Gastroenterol 2024; 24:283. [PMID: 39174901 PMCID: PMC11342484 DOI: 10.1186/s12876-024-03356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND There is a contradiction in the use of microbiota-therapies, including probiotics, prebiotics, and synbiotics, to improve the condition of patients with nonalcoholic fatty liver disease (NAFLD). The aim of this review was to evaluate the effect of microbiota-therapy on liver injury, inflammation, and lipid levels in individuals with NAFLD. METHODS Using Pubmed, Embase, Cochrane Library, and Web of Science databases were searched for articles on the use of prebiotic, probiotic, or synbiotic for the treatment of patients with NAFLD up to March 2024. RESULTS Thirty-four studies involving 12,682 individuals were included. Meta-analysis indicated that probiotic, prebiotic, and synbiotic supplementation significantly improved liver injury (hepatic fibrosis, SMD = -0.31; 95% CI: -0.53, -0.09; aspartate aminotransferase, SMD = -0.35; 95% CI: -0.55, -0.15; alanine aminotransferase, SMD = -0.48; 95% CI: -0.71, -0.25; alkaline phosphatase, SMD = -0.81; 95% CI: -1.55, -0.08), lipid profiles (triglycerides, SMD = -0.22; 95% CI: -0.43, -0.02), and inflammatory factors (high-density lipoprotein, SMD = -0.47; 95% CI: -0.88, -0.06; tumour necrosis factor alpha, SMD = -0.86 95% CI: -1.56, -0.56). CONCLUSION Overall, supplementation with probiotic, prebiotic, or synbiotic had a positive effect on reducing liver enzymes, lipid profiles, and inflammatory cytokines in patients with NAFLD.
Collapse
Affiliation(s)
- Youwen Pan
- Nephrology Department, Lai'an County People's Hospital, Chuzhou, 239000, China
| | - Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China
| | - Haiteng Zhou
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi, 214000, China.
| |
Collapse
|
7
|
Maddineni G, Obulareddy SJ, Paladiya RD, Korsapati RR, Jain S, Jeanty H, Vikash F, Tummala NC, Shetty S, Ghazalgoo A, Mahapatro A, Polana V, Patel D. The role of gut microbiota augmentation in managing non-alcoholic fatty liver disease: an in-depth umbrella review of meta-analyses with grade assessment. Ann Med Surg (Lond) 2024; 86:4714-4731. [PMID: 39118769 PMCID: PMC11305784 DOI: 10.1097/ms9.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background and aim Currently, there are no authorized medications specifically for non-alcoholic fatty liver disease (NAFLD) treatment. Studies indicate that changes in gut microbiota can disturb intestinal balance and impair the immune system and metabolism, thereby elevating the risk of developing and exacerbating NAFLD. Despite some debate, the potential benefits of microbial therapies in managing NAFLD have been shown. Methods A systematic search was undertaken to identify meta-analyses of randomized controlled trials that explored the effects of microbial therapy on the NAFLD population. The goal was to synthesize the existing evidence-based knowledge in this field. Results The results revealed that probiotics played a significant role in various aspects, including a reduction in liver stiffness (MD: -0.38, 95% CI: [-0.49, -0.26]), hepatic steatosis (OR: 4.87, 95% CI: [1.85, 12.79]), decrease in body mass index (MD: -1.46, 95% CI: [-2.43, -0.48]), diminished waist circumference (MD: -1.81, 95% CI: [-3.18, -0.43]), lowered alanine aminotransferase levels (MD: -13.40, 95% CI: [-17.02, -9.77]), decreased aspartate aminotransferase levels (MD: -13.54, 95% CI: [-17.85, -9.22]), lowered total cholesterol levels (MD: -15.38, 95% CI: [-26.49, -4.26]), decreased fasting plasma glucose levels (MD: -4.98, 95% CI: [-9.94, -0.01]), reduced fasting insulin (MD: -1.32, 95% CI: [-2.42, -0.21]), and a decline in homeostatic model assessment of insulin resistance (MD: -0.42, 95% CI: [-0.72, -0.11]) (P<0.05). Conclusion Overall, the results demonstrated that gut microbiota interventions could ameliorate a wide range of indicators including glycemic profile, dyslipidemia, anthropometric indices, and liver injury, allowing them to be considered a promising treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Shika Jain
- MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | | | - Fnu Vikash
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx
| | - Nayanika C. Tummala
- Gitam Institute of Medical Sciences and Research, Visakhapatnam, Andhra Pradesh
| | | | - Arezoo Ghazalgoo
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, Pennsylvania, PA
| |
Collapse
|
8
|
Kazeminasab F, Miraghajani M, Mokhtari K, Karimi B, Rosenkranz SK, Santos HO. The effects of probiotic supplementation and exercise training on liver enzymes and cardiometabolic markers in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab (Lond) 2024; 21:59. [PMID: 39090657 PMCID: PMC11293022 DOI: 10.1186/s12986-024-00826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver ailment worldwide, in which nonpharmacological strategies have a considerable role in the treatment. Probiotic supplementation as well as physical exercise can improve cardiometabolic parameters, but further research is needed to determine the effects of combined treatment versus exercise alone in managing NAFLD-associated biomarkers, primarily liver enzymes, lipid markers, and insulin resistance. OBJECTIVES This systematic review and meta-analysis aimed to evaluate the effects of probiotic supplementation, combined with exercise versus exercise alone, on liver enzymes and cardiometabolic markers in patients with NAFLD. METHODS A systematic review and meta-analysis of randomized clinical trials was performed by searching PubMed, Scopus, and Web of Science databases up to April 2024. The search was restricted to articles published in the English language and human studies. Random effects models were used to calculate weighted mean differences (WMD). RESULTS Pooled estimates (9 studies, 615 patients, intervention durations ranging from 8 to 48 weeks) revealed that probiotics plus exercise decreased aspartate transaminase (AST) [WMD=-5.64 U/L, p = 0.02], gamma-glutamyl transferase (GGT) [WMD=-7.09 U/L, p = 0.004], low-density lipoprotein (LDL) [WMD=-8.98 mg/dL, p = 0.03], total cholesterol (TC) [WMD=-16.97 mg/dL, p = 0.01], and homeostatic model assessment for insulin resistance (HOMA-IR) [WMD=-0.94, p = 0.005] significantly more than exercise only. However, probiotics plus exercise did not significantly change high-density lipoprotein (HDL) [WMD = 0.07 mg/dL, p = 0.9], fasting insulin [WMD=-1.47 µIU/mL, p = 0.4] or fasting blood glucose (FBG) [WMD=-1.57 mg/dL, p = 0.3] compared with exercise only. While not statistically significant, there were clinically relevant reductions in alanine aminotransferase (ALT) [WMD=-6.78 U/L, p = 0.1], triglycerides (TG) [WMD=-21.84 mg/dL, p = 0.1], and body weight (BW) [WMD=-1.45 kg, p = 0.5] for probiotics plus exercise compared with exercise only. The included studies exhibited significant heterogeneity for AST (I2 = 78.99%, p = 0.001), GGT (I2 = 73.87%, p = 0.004), LDL (I2 = 62.78%, p = 0.02), TC (I2 = 72.41%, p = 0.003), HOMA-IR (I2 = 93.86%, p = 0.001), HDL (I2 = 0.00%, p = 0.9), FBG (I2 = 66.30%, p = 0.01), ALT (I2 = 88.08%, p = 0.001), and TG (I2 = 85.46%, p = 0.001). There was no significant heterogeneity among the included studies for BW (I2 = 0.00%, p = 0.9). CONCLUSION Probiotic supplementation combined with exercise training elicited better results compared to exercise alone on liver enzymes, lipid profile, and insulin resistance in patients with NAFLD. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42023424290.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran.
| | - Maryam Miraghajani
- Department of Cancer Research Center, Shahid Beheshti of Medical Sciences, Tehran, Iran
| | - Khatereh Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Bahareh Karimi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Para Street, 1720, Umuarama. Block 2H, Uberlandia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
9
|
Wang L, Liu H, Zhou L, Zheng P, Li H, Zhang H, Liu W. Association of Obstructive Sleep Apnea with Nonalcoholic Fatty Liver Disease: Evidence, Mechanism, and Treatment. Nat Sci Sleep 2024; 16:917-933. [PMID: 39006248 PMCID: PMC11244635 DOI: 10.2147/nss.s468420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Obstructive sleep apnea (OSA), a common sleep-disordered breathing condition, is characterized by intermittent hypoxia (IH) and sleep fragmentation and has been implicated in the pathogenesis and severity of nonalcoholic fatty liver disease (NAFLD). Abnormal molecular changes mediated by IH, such as high expression of hypoxia-inducible factors, are reportedly involved in abnormal pathophysiological states, including insulin resistance, abnormal lipid metabolism, cell death, and inflammation, which mediate the development of NAFLD. However, the relationship between IH and NAFLD remains to be fully elucidated. In this review, we discuss the clinical correlation between OSA and NAFLD, focusing on the molecular mechanisms of IH in NAFLD progression. We meticulously summarize clinical studies evaluating the therapeutic efficacy of continuous positive airway pressure treatment for NAFLD in OSA. Additionally, we compile potential molecular biomarkers for the co-occurrence of OSA and NAFLD. Finally, we discuss the current research progress and challenges in the field of OSA and NAFLD and propose future directions and prospects.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
10
|
Alhajlah S. Effect of grape-derived products on the serum levels of enzymes mainly produced by the liver: A systematic review and meta-analysis of parallel randomized controlled trials. Phytother Res 2024; 38:3583-3593. [PMID: 38719548 DOI: 10.1002/ptr.8226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 01/13/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
In recent years, an increase in the incidence of liver diseases has been reported all over the world. This study aims to comprehensively summarize and quantitatively analyze the existing evidence concerning the effectiveness of grape-derived products on liver enzymes through a systematic review and meta-analytic approach. PubMed, Scopus, Cochrane Library, and ISI Web of Science were comprehensively searched until January 2024. Articles that reported the effect of grape-derived products on serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) levels were included. Weighted mean differences (WMDs) were pooled using a random-effects model. Nine studies were included in the meta-analysis. The results revealed that grape-derived products did not significantly change the concentrations of ALT (WMD: -2.70 IU/L, 95% CI: -6.14 to 0.75, p = 0.12), and AST (WMD: -1.42 IU/L, 95% CI: -3.54 to 0.70, p = 0.18). However, a significant reduction was observed in serum ALP levels (WMD: -5.49 IU/L, 95% CI: -9.57 to -1.4, p = 0.008). The present findings suggest that grape-derived products positively influence serum ALP levels among adults. However, a more comprehensive decision necessitates additional studies.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
11
|
Yang Y, Yang L, Wu J, Hu J, Wan M, Bie J, Li J, Pan D, Sun G, Yang C. Optimal probiotic combinations for treating nonalcoholic fatty liver disease: A systematic review and network meta-analysis. Clin Nutr 2024; 43:1224-1239. [PMID: 38643738 DOI: 10.1016/j.clnu.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Probiotic administration is a promising therapy for improving conditions in NAFLD patients. This network meta-analysis aimed to compare and estimate the relative effects of probiotic interventions and identify the optimal probiotic species for the treatment of NAFLD (Nonalcoholic fatty liver disease) patients. METHODS The PubMed, Web of Science, Embase, and Cochrane databases were searched from inception to 29 January 2024 to identify RCTs that were published in English. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS A total of 35 RCTs involving 2212 NAFLD patients were included in the analysis. For primary outcomes, Lactobacillus + Bifidobacterium + Streptococcus exhibited the highest probability of being the finest probiotic combination in terms of enhancing acceptability as well as reducing AST (SMD: -1.95 95% CI: -2.90, -0.99), ALT (SMD = -1.67, 95% CI: -2.48, -0.85), and GGT levels (SMD = -2.17, 95% CI: -3.27, -1.06). In terms of the secondary outcomes, Lactobacillus + Bifidobacterium + Streptococcus was also the best probiotic combination for reducing BMI (SMD = -0.45, 95% CI: -0.86, -0.04), LDL levels (SMD = -0.45, 95% CI: -0.87, -0.02), TC levels (SMD = -1.09, 95% CI: -1.89, -0.29), and TNF-α levels (SMD = -1.73, 95% CI: -2.72, -0.74). CONCLUSION This network meta-analysis revealed that Lactobacillus + Bifidobacterium + Streptococcus may be the most effective probiotic combination for the treatment of liver enzymes, lipid profiles, and inflammation factors. These findings can be used to guide the development of a probiotics-based treatment guideline for NAFLD since there are few direct comparisons between different therapies.
Collapse
Affiliation(s)
- Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jing Hu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jindi Bie
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jiaxin Li
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
12
|
Amini-Salehi E, Hassanipour S, Keivanlou MH, Shahdkar M, Orang Goorabzarmakhi M, Vakilpour A, Joukar F, Hashemi M, Sattari N, Javid M, Mansour-Ghanaei F. The impact of gut microbiome-targeted therapy on liver enzymes in patients with nonalcoholic fatty liver disease: an umbrella meta-analysis. Nutr Rev 2024; 82:815-830. [PMID: 37550264 DOI: 10.1093/nutrit/nuad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is considered the leading cause of chronic liver disease worldwide. To date, no confirmed medication is available for the treatment of NAFLD. Previous studies showed the promising effects of gut microbiome-targeted therapies; however, the results were controversial and the strength of the evidence and their clinical significance remained unclear. OBJECTIVES This umbrella study summarizes the results of meta-analyses investigating the effects of probiotics, prebiotics, and synbiotics on liver enzymes in the NAFLD population. DATA SOURCE A comprehensive search of the PubMed, Scopus, Web of Science, and Cochrane Library databases was done up to December 20, 2022, to find meta-analyses on randomized control trials reporting the effects of gut microbial therapy on patients with NAFLD. DATA EXTRACTION Two independent investigators extracted data on the characteristics of meta-analyses, and any discrepancies were resolved by a third researcher. The AMSTAR2 checklist was used for evaluating the quality of studies. DATA ANALYSIS A final total of 15 studies were included in the analysis. Results showed that microbiome-targeted therapies could significantly reduce levels of alanine aminotransferase (ALT; effect size [ES], -10.21; 95% confidence interval [CI], -13.29, -7.14; P < 0.001), aspartate aminotransferase (AST; ES, -8.86; 95%CI, -11.39, -6.32; P < 0.001), and γ-glutamyltransferase (ES, -5.56; 95%CI, -7.92, -3.31; P < 0.001) in patients with NAFLD. Results of subgroup analysis based on intervention showed probiotics could significantly reduce levels of AST (ES, -8.69; 95%CI, -11.01, -6.37; P < 0.001) and ALT (ES, -9.82; 95%CI, -11.59, -8.05; P < 0.001). Synbiotics could significantly reduce levels of AST (ES, -11.40; 95%CI, -13.91, -8.88; P < 0.001) and ALT (ES, -11.87; 95%CI, -13.80, -9.95; P < 0.001). Prebiotics had no significant effects on AST and ALT levels (ES, -2.96; 95%CI, -8.12, 2.18, P = 0.259; and ES, -4.69; 95%CI, -13.53, 4.15, P = 0.299, respectively). CONCLUSION Gut microbiome-targeted therapies could be a promising therapeutic approach in the improvement of hepatic damage in patients with NAFLD. However, more studies are needed to better determine the best bacterial strains, duration of treatment, and optimum dosage of gut microbiome-targeted therapies in the treatment of the NAFLD population. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022346998.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Milad Shahdkar
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nazila Sattari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
Vakilpour A, Amini-Salehi E, Soltani Moghadam A, Keivanlou MH, Letafatkar N, Habibi A, Hashemi M, Eslami N, Zare R, Norouzi N, Delam H, Joukar F, Mansour-Ghanaei F, Hassanipour S, Samethadka Nayak S. The effects of gut microbiome manipulation on glycemic indices in patients with non-alcoholic fatty liver disease: a comprehensive umbrella review. Nutr Diabetes 2024; 14:25. [PMID: 38729941 PMCID: PMC11087547 DOI: 10.1038/s41387-024-00281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a significant risk factor for non-alcoholic fatty liver disease (NAFLD). Increased fasting blood sugar (FBS), fasting insulin (FI), and insulin resistance (HOMA-IR) are observed in patients with NAFLD. Gut microbial modulation using prebiotics, probiotics, and synbiotics has shown promise in NAFLD treatment. This meta-umbrella study aimed to investigate the effects of gut microbial modulation on glycemic indices in patients with NAFLD and discuss potential mechanisms of action. METHODS A systematic search was conducted in PubMed, Web of Science, Scopus, and Cochrane Library until March 2023 for meta-analyses evaluating the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD. Random-effect models, sensitivity analysis, and subgroup analysis were employed. RESULTS Gut microbial therapy significantly decreased HOMA-IR (ES: -0.41; 95%CI: -0.52, -0.31; P < 0.001) and FI (ES: -0.59; 95%CI: -0.77, -0.41; P < 0.001). However, no significant effect was observed on FBS (ES: -0.17; 95%CI: -0.36, 0.02; P = 0.082). Subgroup analysis revealed prebiotics had the most potent effect on HOMA-IR, followed by probiotics and synbiotics. For FI, synbiotics had the most substantial effect, followed by prebiotics and probiotics. CONCLUSION Probiotics, prebiotics, and synbiotics administration significantly reduced FI and HOMA-IR, but no significant effect was observed on FBS.
Collapse
Affiliation(s)
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad-Hossein Keivanlou
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Negin Letafatkar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Habibi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Zare
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Naeim Norouzi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Delam
- Student Research Committee, Larestan University of Medical Sciences, Larestan, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
14
|
Amini-Salehi E, Samethadka Nayak S, Maddineni G, Mahapatro A, Keivanlou MH, Soltani Moghadam S, Vakilpour A, Aleali MS, Joukar F, Hashemi M, Norouzi N, Bakhshi A, Bahrampourian A, Mansour-Ghanaei F, Hassanipour S. Can modulation of gut microbiota affect anthropometric indices in patients with non-alcoholic fatty liver disease? An umbrella meta-analysis of randomized controlled trials. Ann Med Surg (Lond) 2024; 86:2900-2910. [PMID: 38694388 PMCID: PMC11060227 DOI: 10.1097/ms9.0000000000001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 05/04/2024] Open
Abstract
Background and aim Modulating the gut microbiota population by administration of probiotics, prebiotics, and synbiotics has shown to have a variety of health benefits in different populations, particularly those with metabolic disorders. Although the promising effects of these compounds have been observed in the management of patients with non-alcoholic fatty liver disease (NAFLD), the exact effects and the mechanisms of action are yet to be understood. In the present study, we aimed to evaluate how gut microbiota modulation affects anthropometric indices of NAFLD patients to achieve a comprehensive summary of current evidence-based knowledge. Methods Two researchers independently searched international databases, including PubMed, Scopus, and Web of Science, from inception to June 2023. Meta-analysis studies that evaluated the effects of probiotics, prebiotics, and synbiotics on patients with NAFLD were entered into our umbrella review. The data regarding anthropometric indices, including body mass index, weight, waist circumference (WC), and waist-to-hip ratio (WHR), were extracted by the investigators. The authors used random effect model for conducting the meta-analysis. Subgroup analysis and sensitivity analysis were also performed. Results A total number of 13 studies were finally included in our study. Based on the final results, BMI was significantly decreased in NAFLD patients by modulation of gut microbiota [effect size (ES): -0.18, 05% CI: -0.25, -0.11, P<0.001]; however, no significant alteration was observed in weight and WC (ES: -1.72, 05% CI: -3.48, 0.03, P=0.055, and ES: -0.24, 05% CI: -0.75, 0.26, P=0.353, respectively). The results of subgroup analysis showed probiotics had the most substantial effect on decreasing BMI (ES: -0.77, 95% CI: -1.16, -0.38, P<0.001) followed by prebiotics (ES: -0.51, 95% CI: -0.76, -0.27, P<0.001) and synbiotics (ES: -0.12, 95% CI: -0.20, -0.04, P=0.001). Conclusion In conclusion, the present umbrella meta-analysis showed that although modulation of gut microbiota by administration of probiotics, prebiotics, and synbiotics had promising effects on BMI, no significant change was observed in the WC and weight of the patients. No sufficient data were available for other anthropometric indices including waist-to-hip ratio and waist-to-height ratio and future meta-analyses should be done in this regard.
Collapse
Affiliation(s)
- Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | | | | | - Azin Vakilpour
- School of Medicine, Guilan University of Medical Sciences, Rasht
| | | | | | - Mohammad Hashemi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Rasaei N, Heidari M, Esmaeili F, Khosravi S, Baeeri M, Tabatabaei-Malazy O, Emamgholipour S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: an umbrella review of the trials' meta-analyses. Front Endocrinol (Lausanne) 2024; 15:1277921. [PMID: 38572479 PMCID: PMC10987746 DOI: 10.3389/fendo.2024.1277921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background There is controversial data on the effects of prebiotic, probiotic, or synbiotic supplementations on overweight/obesity indicators. Thus, we aimed to clarify this role of biotics through an umbrella review of the trials' meta-analyses. Methods All meta-analyses of the clinical trials conducted on the impact of biotics on overweight/obesity indicators in general populations, pregnant women, and infants published until June 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. The meta-analysis of observational and systematic review studies without meta-analysis were excluded. We reported the results by implementing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flowchart. The Assessment of Multiple Systematic Reviews-2 (AMSTAR2) and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence. Results Overall, 97 meta-analysis studies were included. Most studies were conducted on the effect of probiotics in both genders. Consumption of prebiotic: 8-66 g/day, probiotic: 104 -1.35×1015 colony-forming unit (CFU)/day, and synbiotic: 106-1.5×1011 CFU/day and 0.5-300 g/day for 2 to 104 weeks showed a favorable effect on the overweight/obesity indicators. Moreover, an inverse association was observed between biotics consumption and overweight/obesity risk in adults in most of the studies. Biotics did not show any beneficial effect on weight and body mass index (BMI) in pregnant women by 6.6×105-1010 CFU/day of probiotics during 1-25 weeks and 1×109-112.5×109 CFU/capsule of synbiotics during 4-8 weeks. The effect of biotics on weight and BMI in infants is predominantly non-significant. Prebiotics and probiotics used in infancy were from 0.15 to 0.8 g/dL and 2×106-6×109 CFU/day for 2-24 weeks, respectively. Conclusion It seems biotics consumption can result in favorable impacts on some anthropometric indices of overweight/obesity (body weight, BMI, waist circumference) in the general population, without any significant effects on birth weight or weight gain during pregnancy and infancy. So, it is recommended to intake the biotics as complementary medications for reducing anthropometric indices of overweight/obese adults. However, more well-designed trials are needed to elucidate the anti-obesity effects of specific strains of probiotics.
Collapse
Affiliation(s)
- Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Heidari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepehr Khosravi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Mahapatro A, Bawna F, Kumar V, Daryagasht AA, Gupta S, Raghuma N, Moghdam SS, Kolla A, Mahapatra SS, Sattari N, Amini-Salehi E, Nayak SS. Anti-inflammatory effects of probiotics and synbiotics on patients with non-alcoholic fatty liver disease: An umbrella study on meta-analyses. Clin Nutr ESPEN 2023; 57:475-486. [PMID: 37739694 DOI: 10.1016/j.clnesp.2023.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIM The impact of chronic low-grade inflammation in the development of non-alcoholic fatty liver disease (NAFLD) has been studied widely. Previous studies showed gut pathogens' effects on inflammation development in NAFLD patients; hence, hypothetically, gut microbial therapy by administration of probiotics, synbiotics, and prebiotics may alleviate inflammation in these individuals. Several studies were performed in this regard; however, conflicting results were obtained. In this study, we aimed to comprehensively evaluate the effects of gut microbial therapy on inflammatory markers in NAFLD patients in a meta-umbrella design. METHODS Two independent researchers investigated international databases, including PubMed, Web of Science, Scopus, and Cochrane Library, from inception until March 2023. Meta-analyses evaluating the impact of probiotics, synbiotics, or prebiotics on inflammatory markers of patients with NAFLD were eligible for our study. AMASTAR 2 checklist was used to evaluate the quality of included studies. Random effect model was performed for the analysis, and Egger's regression test was conducted to determine publication bias. RESULTS A total number of 12 studies were entered into our analysis. Our findings revealed that gut microbial therapy could significantly reduce serum C-reactive protein (CRP) levels among NAFLD patients (ES: -0.58; 95% CI: -0.73, -0.44, P < 0.001). In subgroup analysis, this reduction was observed with both probiotics (ES: -0.63; 95% CI: -0.81, -0.45, P < 0.001) and synbiotics (ES: -0.49; 95% CI: -0.74, -0.24, P < 0.001). In addition, gut microbial therapy could significantly decrease tumor necrosis factor-a (TNF-a) levels in NAFLD patients (ES: -0.48; 95% CI: -0.67 to -0.30, P < 0.001). In subgroup analysis, this decrease was observed with probiotics (ES: -0.32; 95% CI: -0.53, -0.11, P = 0.002) and synbiotics (ES: -0.96; 95% CI: -1.32, -0.60, P < 0.001). Not enough information was available for assessing prebiotics' impacts. CONCLUSION The results of this umbrella review suggest that probiotics and synbiotics have promising effects on inflammatory markers, including TNF-a and CRP; however, more research is needed regarding the effects of prebiotics. PROSPERO REGISTRATION CODE CRD42022346998.
Collapse
Affiliation(s)
| | - Fnu Bawna
- Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Siddharth Gupta
- Baptist Memorial Hospital, North Mississippi, Mississippi, USA
| | - Nakka Raghuma
- GSL Medical College and General Hospital, Rajamahendravaram, Andhra Pradesh, India
| | | | - Akshita Kolla
- SRM Medical College Hospital and Research Center, Chennai, India
| | | | - Nazila Sattari
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Sandeep S Nayak
- Department of Internal Medicine, Bridgeport Hospital, Bridgeport, USA
| |
Collapse
|
17
|
Vachliotis ID, Polyzos SA. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2023; 12:191-206. [PMID: 37407724 PMCID: PMC10482776 DOI: 10.1007/s13679-023-00519-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW To summarize experimental and clinical evidence on the association between tumor necrosis factor-α (TNF-α) and nonalcoholic fatty liver disease (NAFLD) and discuss potential treatment considerations. RECENT FINDINGS Experimental evidence suggests that TNF-α is a cytokine with a critical role in the pathogenesis of NAFLD. Although, the production of TNF-α may be an early event during the course of nonalcoholic fatty liver (NAFL), TNF-α may play a more substantial role in the pathogenesis of nonalcoholic steatohepatitis (NASH) and NAFLD-associated fibrosis. Moreover, TNF-α may potentiate hepatic insulin resistance, thus interconnecting inflammatory with metabolic signals and possibly contributing to the development of NAFLD-related comorbidities, including cardiovascular disease, hepatocellular carcinoma, and extra-hepatic malignancies. In clinical terms, TNF-α is probably associated with the severity of NAFLD; circulating TNF-α gradually increases from controls to patients with NAFL, and then, to patients with NASH. Given this potential association, various therapeutic interventions (obeticholic acid, peroxisome proliferator-activated receptors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, probiotics, synbiotics, rifaximin, vitamin E, pentoxifylline, ursodeoxycholic acid, fibroblast growth factor-21, n-3 polyunsaturated fatty acids, statins, angiotensin receptor blockers) have been evaluated for their effect on TNF-α and NAFLD. Interestingly, anti-TNF biologics have shown favorable metabolic and hepatic effects, which may open a possible therapeutic window for the management of advanced NAFLD. The potential key pathogenic role of TNF-α in NAFLD warrants further investigation and may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
18
|
Naghipour A, Amini-Salehi E, Orang Gorabzarmakhi M, Shahdkar M, Fouladi B, Alipourfard I, Sanat ZM. Effects of gut microbial therapy on lipid profile in individuals with non-alcoholic fatty liver disease: an umbrella meta-analysis study. Syst Rev 2023; 12:144. [PMID: 37605283 PMCID: PMC10441764 DOI: 10.1186/s13643-023-02299-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is closely associated with metabolic conditions such as obesity and diabetes mellitus, which significantly impact human health outcomes. The impaired lipid profiles observed in NAFLD individuals can further contribute to cardiovascular events. Despite the high prevalence of NAFLD, there is currently no confirmed intervention approved for its treatment. This study aimed to summarize the results of meta-analysis studies of randomized control trials assessing the impact of gut microbial therapy (probiotics, synbiotics, and prebiotics) on the lipid profile of individuals with NAFLD. METHODS A systematic search was conducted on PubMed, Scopus, Web of Science, and Cochrane Library up to November 1, 2022. Meta-analyses surveying the impact of microbial therapy on lipid profile parameters (triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and total cholesterol (TC)) in the NAFLD population were included in our umbrella review. The final effect size (ES) was estimated, and sensitivity and subgroup analyses were performed to explore heterogeneity. RESULTS Fifteen studies were included in this umbrella review. Microbial therapy significantly reduced TG (ES - 0.31, 95% CI - 0.51, - 0.11, P < 0.01), TC (ES - 1.04, 95% CI - 1.46, - 0.61, P < 0.01), and LDL (ES - 0.77, 95% CI - 1.15, - 0.39, P < 0.01) in individuals with NAFLD. However, the effect on HDL was not statistically significant (ES - 0.06; 95% CI - 0.19, 0.07, P = 0.39). CONCLUSION Considering the absence of approved treatments for NAFLD and the promising role of microbial therapies in improving the three lipid profiles components in individuals with NAFLD, the use of these agents as alternative treatment options could be recommended. The findings underscore the potential of gut microbial therapy, including probiotics, synbiotics, and prebiotics, in managing NAFLD and its associated metabolic complications. TRIAL REGISTRATION PROSPERO ( CRD42022346998 ).
Collapse
Affiliation(s)
- Amirhossein Naghipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Amini-Salehi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Bahman Fouladi
- Pediatric Gastroenterology and Hepatoloy Research center, Zabol University of Medical Sciences, Zabol, Iran
- Department of Parasitology and Mycology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Marsaw, Poland
| | - Zahra Momayez Sanat
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Liu D, Wang X, Zhang H. Efficacy and safety of gastrointestinal microbiome supplementation for allergic rhinitis: A systematic review and meta-analysis with trial sequential analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154948. [PMID: 37418839 DOI: 10.1016/j.phymed.2023.154948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Allergic rhinitis (AR) is a non-infective chronic inflammatory disease of nasal mucosa. PURPOSE To evaluate the efficacy and safety of gastrointestinal microbiome supplementation (GMS) for patients with allergic rhinitis (AR), concerning improvement on symptoms and signs, laboratory outcomes, quality of life, and medication scores. METHODS Five English databases were searched up to Dec 12th, 2022. Probiotics, prebiotics, and synbiotics were main therapies or adjuvants in experimental groups. Systematic reviews and meta-analyses were conducted based on the Cochrane systematic review method by using RevMan 5.4 Software, with meta-influence analyses, subgroup-analyses, meta-regression, and publication bias performed for exploration of heterogeneity by Stata V.14. Trial sequential analyses were performed by TSA 0.9, and quality of the results was accessed through the GRADE-pro GDT. RESULTS Finally, extracted from 53 articles, 65 RCTs involving 3,634 participants with sound worldwide representativeness were included. Primary results showed better improvement in GMS groups on TNSS (WMD=1.05, P for WMD=0.004, 95%CI:0.34 to 1.76), overall nasal condition (WMD=1.25, P for WMD<0.001, 95%CI:0.90 to 1.61), overall quality of life (WMD=6.16, P for WMD<0.001, 95%CI:4.92 to 7.40) and medication score (WMD=0.42, P for WMD=0.42, 95%CI:-0.06 to 0.90).However, GMS groups were inferior than the controls concerning reduction on serum total IgE (WMD=-1.81) and ratios of serum Th1/Th2 (WMD=-1.06). Meta-regressions suggested significant (p<0.05) variations of the effects in some comparisons. In addition, results of sub-group analyses firstly revealed potential influence between final results and the variables above. Instantly after intervention, the GRADE levels of evidence were sound, including "High ⨁⨁⨁⨁" in 10, "Moderate ⨁⨁⨁◯" in 33, and "Low ⨁⨁◯◯" in nine comparisons. However, overall certainties decreased obviously during follow-ups. CONCLUSION Overall, our pooled results firstly revealed that GMS yielded acceptable benefits for patients with AR compared with controls with sound certainties, after balancing the benefits and harms.
Collapse
Affiliation(s)
- Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, PR China
| | - Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, PR China
| | - Hang Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang 110004, PR China.
| |
Collapse
|
20
|
Cai J, Dong J, Chen D, Ye H. The effect of synbiotics in patients with NAFLD: a systematic review and meta-analysis. Therap Adv Gastroenterol 2023; 16:17562848231174299. [PMID: 37388120 PMCID: PMC10302525 DOI: 10.1177/17562848231174299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the highest incidence of chronic liver disease worldwide, seriously endangering human health, and its pathogenesis is still unclear. In the recent years, increasing evidence has shown that intestinal flora plays an important role in the occurrence and development of NAFLD. Synbiotics can alter gut microbiota and may be a treatment option for NAFLD in the future. Objectives To systematically investigate the therapeutic effect of synbiotic supplementation on NAFLD patients. Design A systematic review and meta-analysis were conducted. Data sources and methods We conducted a search on four databases (PubMed, Embase, Cochrane Library, and Web of Science) to identify relevant studies. Eligible studies were then screened, and data from the included studies were extracted, combined, and analyzed. Result This study analyzed 10 randomized controlled trials involving 634 patients with NAFLD. The results showed that synbiotic supplementation could significantly reduce the level of alanine aminotransferase (mean difference (MD) = -8.80; (95% CI [-13.06, -4.53]), p < 0.0001), aspartate aminotransferase (MD = -9.48; 95% CI [-12.54, -6.43], p < 0.0001), and γ-glutamyl transferase (MD = -12.55; 95% CI [-19.40, -5.69], p = 0.0003) in NAFLD patients. In the field of metabolism, synbiotic supplementation could significantly reduce the level of total cholesterol (MD = -11.93; 95% CI [-20.43, -3.42], p = 0.006) and low-density lipoprotein cholesterol (MD = -16.2; 95% CI [-19.79, -12.60], p < 0.0001) and increase the level of high-density lipoprotein cholesterol (MD = 1.56; 95% CI [0.43, 2.68], p = 0.007) in NAFLD patients. In addition, synbiotic supplementation could significantly reduce liver stiffness measurement indicator (MD = -1.09; 95% CI [-1.87, -0.30], p = 0.006) and controlled attenuation parameter indicator (MD = -37.04; 95% CI [-56.78, -17.30], p = 0.0002) in NAFLD patients. Conclusion Based on the current evidence, synbiotic supplementation can improve liver function, adjust lipid metabolism, and reduce the degree of liver fibrosis in patients with NAFLD, but these effects need to be confirmed by further studies.
Collapse
Affiliation(s)
- Jiacheng Cai
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Jia Dong
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Dahua Chen
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Hua Ye
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, People’s Republic of China
| |
Collapse
|
21
|
Musazadeh V, Mohammadi Anilou M, Vajdi M, Karimi A, Sedgh Ahrabi S, Dehghan P. Effects of synbiotics supplementation on anthropometric and lipid profile parameters: Finding from an umbrella meta-analysis. Front Nutr 2023; 10:1121541. [PMID: 36908920 PMCID: PMC9995782 DOI: 10.3389/fnut.2023.1121541] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Several systematic reviews and meta-analyses have been carried out to assess the impact of synbiotics on lipid profiles and anthropometric parameters. In this regard, an umbrella meta-analysis was performed to provide a more accurate view of the overall impacts of synbiotic supplementation on lipid profile and anthropometric parameters. Methods Databases such as PubMed, Scopus, Embase, Web of Science, and Google Scholar were searched for this study from inception to January 2022. A random-effects model was applied to evaluate the effects of synbiotic supplementation on lipid profile and anthropometric parameters. The methodological quality of eligible articles was evaluated using the AMSTAR2 questionnaire. The GRADE approach was used to evaluate the overall certainty of the evidence in the meta-analyses. Results Meta-analyses of 17 studies revealed significant decreases in body mass index (BMI) (ES: -0.13 kg/m2; 95% CI: -0.19, -0.06, p < 0.001, I2 = 0.0%, p = 0.870), BW (ES: -1.30 kg; 95% CI: -2.19, -0.41, p = 0.004, I2 = 88.9%, p < 0.001), waist circumference (WC) (ES: -1.80 cm; 95% CI: -3.26, -0.34, p = 0.016, I2 = 94.1%, p < 0.001), low-density lipoprotein cholesterol (LDL-C) (ES: -2.81 mg/dl; 95% CI: -3.90, -1.72, p < 0.001, I2 = 95.1%, p < 0.001), total cholesterol (TC) (ES = -2.24 mg/dl; 95% CI: -3.18, -1.30, p < 0.001, I2 = 94.5%, p < 0.001), and triglyceride (TG) (ES: -0.43 mg/dl; 95% CI: -0.79, -0.07, p = 0.019, I2 = 78.0%, p < 0.001) but not high-density lipoprotein cholesterol (HDL-C) (ES: 0.23 mg/dl; 95% CI: -0.11, 0.56, p = 0.193, I2 = 45.2%, p = 0.051) following synbiotic supplementation. Discussion The present umbrella meta-analysis suggests synbiotic supplementation can slightly improve lipid profile and anthropometric indices and might be a therapeutic option for obesity and its related disorders. Systematic review registration www.crd.york.ac.uk/prospero, identifier CRD42022304376.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mohammadi Anilou
- Department of Emergency Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Vajdi
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Sedgh Ahrabi
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Wang LL, Zhang PH, Yan HH. Functional foods and dietary supplements in the management of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Nutr 2023; 10:1014010. [PMID: 36866059 PMCID: PMC9971819 DOI: 10.3389/fnut.2023.1014010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Objective In this systematic review and meta-analysis, we aimed to clarify the overall effects of functional foods and dietary supplements in non-alcoholic fatty liver disease (NAFLD) patients. Methods Randomized controlled trials (RCTs) published in PubMed, ISI Web of Science, Cochrane library, and Embase from January 1, 2000 to January 31, 2022 were systematically searched to assess the effects of functional foods and dietary supplements in patients with NAFLD. The primary outcomes were liver-related measures, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and hepatic fibrosis and steatosis, while the secondary outcomes included body mass index (BMI), waist circumference (WC), triacylglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). These indexes were all continuous variables, so the mean difference (MD) was used for calculating the effect size. Random-effects or fixed-effects models were used to estimate the mean difference (MD). The risk of bias in all studies was assessed with guidance provided in the Cochrane Handbook for Systematic Reviews of Interventions. Results Twenty-nine articles investigating functional foods and dietary supplements [antioxidants (phytonutrients and coenzyme Q10) = 18, probiotics/symbiotic/prebiotic = 6, fatty acids = 3, vitamin D = 1, and whole grain = 1] met the eligibility criteria. Our results showed that antioxidants could significantly reduce WC (MD: -1.28 cm; 95% CI: -1.58, -0.99, P < 0.05), ALT (MD: -7.65 IU/L; 95% CI: -11.14, -4.16, P < 0.001), AST (MD: -4.26 IU/L; 95% CI: -5.76, -2.76, P < 0.001), and LDL-C (MD: -0.24 mg/dL; 95% CI: -0.46, -0.02, P < 0.05) increased in patients with NAFLD but had no effect on BMI, TG, and TC. Probiotic/symbiotic/prebiotic supplementation could decrease BMI (MD: -0.57 kg/m2; 95% CI: -0.72, -0.42, P < 0.05), ALT (MD: -3.96 IU/L; 95% CI: -5.24, -2.69, P < 0.001), and AST (MD: -2.76; 95% CI: -3.97, -1.56, P < 0.0001) levels but did not have beneficial effects on serum lipid levels compared to the control group. Moreover, the efficacy of fatty acids for treating NAFLD was full of discrepancies. Additionally, vitamin D had no significant effect on BMI, liver transaminase, and serum lipids, while whole grain could reduce ALT and AST but did not affect serum lipid levels. Conclusion The current study suggests that antioxidant and probiotic/symbiotic/prebiotic supplements may be a promising regimen for NAFLD patients. However, the usage of fatty acids, vitamin D, and whole grain in clinical treatment is uncertain. Further exploration of the efficacy ranks of functional foods and dietary supplements is needed to provide a reliable basis for clinical application. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier: CRD42022351763.
Collapse
Affiliation(s)
- Lei-lei Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pian-hong Zhang
- Department of Clinical Nutrition, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-hui Yan
- Department of Gastroenterology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Hall RL, George ES, Tierney AC, Reddy AJ. Effect of Dietary Intervention, with or without Cointerventions, on Inflammatory Markers in Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:475-499. [PMID: 36796436 DOI: 10.1016/j.advnut.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/21/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease from simple steatosis to nonalcoholic steatohepatitis, with inflammatory cytokines and adipokines identified as drivers of disease progression. Poor dietary patterns are known to promote an inflammatory milieu, although the effects of specific diets remain largely unknown. This review aimed to gather and summarize new and existing evidence on the effect of dietary intervention on inflammatory markers in patients with NAFLD. The electronic databases MEDLINE, EMBASE, CINAHL, and Cochrane were searched for clinical trials which investigated outcomes of inflammatory cytokines and adipokines. Eligible studies included adults >18 y with NAFLD, which compared a dietary intervention with an alternative diet or control (no intervention) group or were accompanied by supplementation or other lifestyle interventions. Outcomes for inflammatory markers were grouped and pooled for meta-analysis where heterogeneity was allowed. Methodological quality and risk of bias were assessed using the Academy of Nutrition and Dietetics Criteria. Overall, 44 studies with a total of 2579 participants were included. Meta-analyses indicated intervention with an isocaloric diet plus supplement was more effective in reducing C-reactive protein (CRP) [standard mean difference (SMD): 0.44; 95% CI: 0.20, 0.68; P = 0.0003] and tumor necrosis factor-alpha (TNF-α) (SMD: 0.74; 95% CI: 0.02, 1.46; P = 0.03) than an isocaloric diet alone. No significant weighting was shown between a hypocaloric diet with or without supplementation for CRP (SMD: 0.30; 95% CI: -0.84, 1.44; P = 0.60) and TNF-α (SMD: 0.01; 95% CI: -0.43, 0.45; P = 0.97). In conclusion, hypocaloric and energy-restricted diets alone or with supplementation, and isocaloric diets with supplementation were shown to be most effective in improving the inflammatory profile of patients with NAFLD. To better determine the effectiveness of dietary intervention alone on a NAFLD population, further investigations of longer durations, with larger sample sizes are required.
Collapse
Affiliation(s)
- Renate L Hall
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
| | - Elena S George
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Audrey C Tierney
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; School of Allied Health, Health Implementation Science and Technology Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Anjana J Reddy
- School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia; Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia.
| |
Collapse
|
24
|
Musazadeh V, Faghfouri AH, Kavyani Z, Dehghan P. Synbiotic as an adjunctive agent can be useful in the management of hyperglycemia in adults: An umbrella review and meta-research of meta-analysis studies. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
25
|
Xing W, Gao W, Lv X, Zhao Z, Mao G, Dong X, Zhang Z. The effects of supplementation of probiotics, prebiotics, or synbiotics on patients with non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Front Nutr 2022; 9:1024678. [PMID: 36386939 PMCID: PMC9640999 DOI: 10.3389/fnut.2022.1024678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/03/2022] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease. Research on the efficacy of probiotics, prebiotics, and synbiotics on NAFLD patients continues to be inconsistent. The purpose of this study is to evaluate the effectiveness of these microbial therapies on NAFLD. METHODS Eligible randomized-controlled trials reporting the effect of probiotics, prebiotics, or synbiotics in NAFLD were searched in PubMed, Web of Science, Embase, Google scholar, and CNKI databases from 2020 to Jul 2022. The changes in the outcomes were analyzed using standard mean difference (SMD) and 95% confidence intervals (CIs) with a random- or fixed-effects model to examine the effect of microbial therapies. Subgroup analysis, influence and publication bias analysis were also performed. The quality of the eligible studies was evaluated using the Cochrane Risk of Bias Tool. RESULTS Eleven studies met the inclusion criteria involving 741 individuals. Microbial therapies could improve liver steatosis, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-c), alanine aminotransferase (ALT), alkaline phosphatase (ALP), glutamyl transpeptidase (GGT), and homeostasis model assessment-insulin resistance (HOMAI-R) (all P < 0.05). But microbial therapies could not ameliorate body mass index (BMI), energy, carbohydrate, fat intake, fasting blood sugar, HbA1c, insulin, high-sensitivity C-reactive protein (hs-CRP), and hepatic fibrosis of patients with NAFLD. CONCLUSION Probiotics, prebiotics, and synbiotics supplementation can potentially improve liver enzymes, lipid profiles, and liver steatosis in patients with NAFLD.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Zuyong Zhang
- The Third People’s Hospital of Hangzhou, Hangzhou, China
| |
Collapse
|
26
|
Xu D, Fu L, Pan D, Chu Y, Feng M, Lu Y, Yang C, Wang Y, Xia J, Sun G. Role of probiotics/synbiotic supplementation in glycemic control: A critical umbrella review of meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 64:1467-1485. [PMID: 36052685 DOI: 10.1080/10408398.2022.2117783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evidence regarding the beneficial effects of probiotics/synbiotic supplementation have been revealed by several meta-analyses, however some of these studies have fielded inconsistent results and a conclusion has yet to be reached. Therefore, the aim of present umbrella meta-analyses was to assess relevant evidence and elucidate the efficacy of probiotics/synbiotic supplementation in glycemic control. A comprehensive search in four databases (Cochrane library, PubMed, Web of science and Scopus) was performed to collect relevant studies up to August 2022, the pooled effects were measured with the use of random/fix-effect model depends on the heterogeneity. A total of 47 eligible meta-analyses involving 47,720 participants were identified to evaluate the pooled effects. The overall results showed that probiotics/synbiotic supplementation delivered significant decreases in fast plasma glucose (ES = -0.408, 95% CI: -0.518, -0.298; P < 0.001; I2 = 82.996, P < 0.001), fast plasma insulin (ES = -1.165, 95% CI: -1.454, -0.876; P < 0.001; I2 = 89.629, P < 0.001), homeostasis model assessment of insulin resistance (ES = -0.539, 95% CI: -0.624, -0.454; P < 0.001; I2 = 56.716, P < 0.001), and glycosylated hemoglobin (ES = -0.186, 95% CI: -0.270, -0.102; P < 0.001; I2 = 59.647, P = 0.001). Subgroup analysis showed that patients with impaired glucose homeostasis might benefit the most from probiotics/synbiotic supplementation. In conclusion, current umbrella meta-analysis strongly supporting the beneficial health effects of probiotics/synbiotic supplementation in glycemic control.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Lingmeng Fu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
- Department of Quality Management, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - YiFang Chu
- Department of R&D Life Science, PepsiCo, Inc, Barrington, IL, USA
| | - Meiyuan Feng
- Department of R&D Life Science, PepsiCo, Inc, Shanghai, China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, P.R. China
| |
Collapse
|
27
|
Health Effects of Probiotics on Nonalcoholic Fatty Liver in the Life Cycle Based on Data Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2123162. [PMID: 35936368 PMCID: PMC9355765 DOI: 10.1155/2022/2123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
Objective To observe the effect of intestinal probiotics in the treatment of nonalcoholic fatty liver disease (NAFLD) and the effect on liver function and inflammatory factors. Methods 34 healthy rats were selected for the study and divided into 10 rats in the control group, 12 rats in the model group, and 12 rats in the treatment group according to the random number table method. The control group was given behavioral and lifestyle interventions, and the treatment group was given Bifidobacterium minus Black enteric capsules 5 g/(kg-d) by strong feeding method on the basis of the control group. The fatty liver index (FLI), liver ultrasound examination results, liver function, and inflammatory factor levels were compared among the three groups. After 8 weeks of treatment, there were statistically significant differences between the FLI values and liver ultrasound results of the three groups, and the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triacylglycerol (TG), and total cholesterol (TC) levels of the observation group were lower than those of the control group and the model group. The levels of serum high molecular weight lipocalin (HMW-APN) and interleukin 22 (IL-22) in the observation group were higher than those in the control group, and the levels of tumor necrosis factor-α (TNF-α) were lower than those in the control and model groups, and the differences were statistically significant (P < 0.05). Conclusion Intestinal probiotics can improve the clinical efficacy of patients with NAFLD, improve liver function, and alleviate the inflammatory response, in order to provide a theoretical basis for the clinical treatment of patients with NAFLD.
Collapse
|
28
|
Rostamizadeh P, Asl SMKH, Far ZG, Ahmadijoo P, Mahmudiono T, Bokov DO, Alsaikhan F, Jannat B, Mazloom Z. Effects of licorice root supplementation on liver enzymes, hepatic steatosis, metabolic and oxidative stress parameters in women with nonalcoholic fatty liver disease: A randomized double-blind clinical trial. Phytother Res 2022; 36:3949-3956. [PMID: 35785498 DOI: 10.1002/ptr.7543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to evaluate the effects of licorice root supplementation on liver enzymes, hepatic steatosis, metabolic and oxidative stress parameters in women with nonalcoholic fatty liver disease (NAFLD). In this randomized double-blind, placebo-controlled trial, 60 women with NAFLD were selected and randomly assigned into 2 groups to take 1,000 mg/day powder of licorice root extract or placebo for 12 weeks. In addition, all the patients were advised to follow a weight loss diet and healthy lifestyle. The plasma levels of liver enzymes, glycemic indices, lipid profile, oxidative stress parameters, as well as hepatic steatosis were measured at the beginning and end of the study. Through the 12-weeks period of supplementation, women who received powder of licorice root experienced a statistically significant improvement in alanine aminotransferase (p < .001), insulin (p = .002), insulin resistance (p = .003), malondialdehyde (p < .001) serum levels, and ultrasonographic findings of liver steatosis (p < .001), compared to the placebo group. In conclusion, licorice root supplementation in addition to gradual weight loss and lifestyle modification is superior to lifestyle modification alone for the treatment of NAFLD.
Collapse
Affiliation(s)
- Pouya Rostamizadeh
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zohreh Ghaem Far
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Ahmadijoo
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Fahad Alsaikhan
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Zohreh Mazloom
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: An overview of systematic reviews. Obes Rev 2022; 23:e13409. [PMID: 34978141 DOI: 10.1111/obr.13409] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/05/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
To summarize the microbiome's role in metabolic disorders (insulin resistance, hyperglycemia, type 2 diabetes, obesity, hyperlipidemia, hypertension, nonalcoholic fatty liver disease [NAFLD], and metabolic syndrome), systematic reviews on observational or interventional studies (prebiotics/probiotics/synbiotics/transplant) were searched in MEDLINE and Embase until September 2020. The 87 selected systematic reviews included 57 meta-analyses. Methodological quality (AMSTAR2) was moderate in 62%, 12% low, and 26% critically low. Observational studies on obesity (10 reviews) reported less gut bacterial diversity with higher Fusobacterium, Lactobacillus reuteri, Bacteroides fragilis, and Staphylococcus aureus, whereas lower Methanobrevibacter, Lactobacillus plantarum, Akkermansia muciniphila, and Bifidobacterium animalis compared with nonobese. For diabetes (n = 1), the same was found for Fusobacterium and A. muciniphila, whereas higher Ruminococcus and lower Faecalibacterium, Roseburia, Bacteroides vulgatus, and several Bifidobacterium spp. For NAFLD (n = 2), lower Firmicutes, Rikenellaceae, Ruminococcaceae, whereas higher Escherichia and Lactobacillus were detected. Discriminating bacteria overlapped between metabolic disorders, those with high abundance being often involved in inflammation, whereas those with low abundance being used as probiotics. Meta-analyses (n = 54) on interventional studies reported 522 associations: 54% was statistically significant with intermediate effect size and moderate between-study heterogeneity. Meta-evidence was highest for probiotics and lowest for fecal transplant. Future avenues include better methodological quality/comparability, testing functional differences, new intervention strategies, and considerating other body habitats and kingdoms.
Collapse
Affiliation(s)
- Nathalie Michels
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Semi Zouiouich
- International Agency for Research on Cancer, Lyon, France
| | - Bert Vanderbauwhede
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Judith Vanacker
- Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
30
|
Gupta H, Min BH, Ganesan R, Gebru YA, Sharma SP, Park E, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022; 10:550. [PMID: 35327352 PMCID: PMC8945462 DOI: 10.3390/biomedicines10030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Korea; (H.G.); (B.-H.M.); (R.G.); (Y.A.G.); (S.P.S.); (E.P.); (S.-M.W.); (J.-J.J.); (S.-B.L.); (M.-G.C.); (G.-H.K.); (M.-K.J.); (J.-Y.H.); (J.-A.E.); (H.-J.P.); (S.-J.Y.); (M.-R.C.); (D.-J.K.)
| |
Collapse
|
31
|
Effects of supplementation with vegetable sources of alpha-linolenic acid (ALA) on inflammatory markers and lipid profile in individuals with chronic kidney disease: A systematic review and meta-analysis. Clin Nutr 2022; 41:1434-1444. [DOI: 10.1016/j.clnu.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
32
|
Souza CAD, Rocha R, Costa PRDF, Almeida NS, Cotrim HP. PROBIOTIC, PREBIOTIC OR SYMBIOTIC SUPPLEMENTATION IMPACTS ON INTESTINAL MICROBIOTA IN PATIENTS WITH NONALCOHOLIC FATTY LIVER DISEASE: A SYSTEMATIC REVIEW. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:123-128. [PMID: 35442322 DOI: 10.1590/s0004-2803.202200001-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Supplementation with probiotics, prebiotics and symbiotics has shown positive effects on clinical markers and risk factors for non-alcoholic fatty liver disease (NAFLD). OBJECTIVE To evaluate the effect of supplementation with probiotic, prebiotic or symbiotic on intestinal microbiota in NAFLD patients. METHODS Two investigators conducted independently search for articles in the Medline databases, via PubMed, Web of Science, Embase, Scopus, Lilacs, Central Cochrane Library, Clinical Trials.gov and on the Ovid platform for the gray literature search. RESULTS A total of 3,423 papers were identified by searching the electronic databases; 1,560 of them were duplicate and they were excluded; 1,825 articles were excluded after reading the title and abstract. A total of 39 articles were select to reading, however only four articles met the eligibility criteria to include in this systematic review. Three of the included studies that used prebiotic or symbiotic supplementation showed that after the intervention there were changes in the intestinal microbiota pattern. Only in one study such changes were not observed. A high risk of bias was observed in most assessments. CONCLUSION Although there is a possible change in the gut microbiota of individuals with NAFLD after supplementation with symbiotics or prebiotics, a clinical indication as part of NAFLD treatment is not yet possible.
Collapse
Affiliation(s)
- Claudineia Almeida de Souza
- Universidade Federal da Bahia, Programa de Pós-Graduação em Alimentação, Nutrição e Saúde, Salvador, BA, Brasil
| | - Raquel Rocha
- Universidade Federal da Bahia, Programa de Pós-Graduação em Alimentação, Nutrição e Saúde, Salvador, BA, Brasil
| | | | - Naiade Silveira Almeida
- Universidade Federal da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Salvador, BA, Brasil
| | | |
Collapse
|
33
|
Voss GB, Machado D, Barbosa JC, Campos DA, Gomes AM, Pintado M. Interplay between probiotics and prebiotics for human nutrition and health. PROBIOTICS FOR HUMAN NUTRITION IN HEALTH AND DISEASE 2022:231-254. [DOI: 10.1016/b978-0-323-89908-6.00027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Barone M, D'Amico F, Fabbrini M, Rampelli S, Brigidi P, Turroni S. Over-feeding the gut microbiome: A scoping review on health implications and therapeutic perspectives. World J Gastroenterol 2021; 27:7041-7064. [PMID: 34887627 PMCID: PMC8613651 DOI: 10.3748/wjg.v27.i41.7041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
The human gut microbiome has gained increasing attention over the past two decades. Several findings have shown that this complex and dynamic microbial ecosystem can contribute to the maintenance of host health or, when subject to imbalances, to the pathogenesis of various enteric and non-enteric diseases. This scoping review summarizes the current knowledge on how the gut microbiota and microbially-derived compounds affect host metabolism, especially in the context of obesity and related disorders. Examples of microbiome-based targeted intervention strategies that aim to restore and maintain an eubiotic layout are then discussed. Adjuvant therapeutic interventions to alleviate obesity and associated comorbidities are traditionally based on diet modulation and the supplementation of prebiotics, probiotics and synbiotics. However, these approaches have shown only moderate ability to induce sustained changes in the gut microbial ecosystem, making the development of innovative and tailored microbiome-based intervention strategies of utmost importance in clinical practice. In this regard, the administration of next-generation probiotics and engineered microbiomes has shown promising results, together with more radical intervention strategies based on the replacement of the dysbiotic ecosystem by means of fecal microbiota transplantation from healthy donors or with the introduction of synthetic communities specifically designed to achieve the desired therapeutic outcome. Finally, we provide a perspective for future translational investigations through the implementation of bioinformatics approaches, including machine and deep learning, to predict health risks and therapeutic outcomes.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
35
|
Jin H, Xu X, Pang B, Yang R, Sun H, Jiang C, Shao D, Shi J. Probiotic and prebiotic interventions for non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Benef Microbes 2021; 12:517-529. [PMID: 34511051 DOI: 10.3920/bm2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many studies have associated altered intestinal bacterial communities and non-alcoholic fatty liver disease, but the putative effects are inconclusive. The purpose of this network meta-analysis (NMA) was to evaluate the effects of probiotics, prebiotics, and synbiotics on non-alcoholic fatty liver disease through randomised intervention trials. Literature searches were performed until March 2020. For each outcome, a random NMA was performed, the surface under the cumulative ranking curve (SUCRA) was determined. A total of 22 randomised trials comparing prebiotic, probiotic, and synbiotic treatments included 1301 participants. Considering all seven results (aspartate aminotransferase, alanine aminotransferase, body mass index, weight, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) together, the highest SUCRA values are probiotics (94%), synbiotics (61%) and prebiotics (56%), respectively. NMA results provide evidence that probiotics, prebiotics, and synbiotics can alleviate non-alcoholic fatty liver disease. However, due to the lack of high-quality randomised trials, this research also has some limitations.
Collapse
Affiliation(s)
- H Jin
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - X Xu
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - B Pang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - R Yang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - H Sun
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R.,School of Hospitality Management, Guilin Tourism University, 26 Liangfeng Road, Yanshan District, Guilin City, Guangxi Province 541006, China P.R
| | - C Jiang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - D Shao
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - J Shi
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| |
Collapse
|
36
|
Erhardtsen E, Rasmussen DG, Frederiksen P, Leeming DJ, Shevell D, Gluud LL, Karsdal MA, Aithal GP, Schattenberg JM. Determining a healthy reference range and factors potentially influencing PRO-C3 - A biomarker of liver fibrosis. JHEP Rep 2021; 3:100317. [PMID: 34466796 PMCID: PMC8385245 DOI: 10.1016/j.jhepr.2021.100317] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/19/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND & AIMS Progressive fibrosis has been identified as the major predictor of mortality in patients with non-alcoholic fatty liver disease (NAFLD). Several biomarkers are currently being evaluated for their ability to substitute the liver biopsy as the reference standard. Recent clinical studies in NAFLD/NASH patients support the utility of PRO-C3, a marker of type III collagen formation, as a marker for the degree of fibrosis, disease activity, and effect of treatment. Here we establish the healthy reference range, optimal sample handling conditions for both short- and long-term serum storage, and robustness for the PRO-C3 assay. METHODS PRO-C3 was measured in 269 healthy volunteers and in 222 NAFLD patients. Robustness of the PRO-C3 assay was measured according to Clinical and Laboratory Standards Institute standards and included validation of interference, precision, and reagent stability, whilst sample stability was defined for storage at different temperatures and for 3 freeze-thaw cycles. Fibrosis scoring was based on histological assessments and used as a reference for the diagnostic ability of PRO-C3 to discriminate between patients with different levels of fibrosis. RESULTS Robustness of the PRO-C3 analysis validated by interference, precision, and reagent stability was found to be within the predefined acceptance criteria. The healthy reference range was determined to be 6.1-14.7 ng/ml. Levels of PRO-C3 were not affected by sex, age, BMI, or ethnicity. Levels of PRO-C3 were able to identify patients with clinically significant fibrosis and advanced fibrosis (AUC = 0.83 (95% CI [0.77-0.88], p <0.0001), and AUC = 0.79 (95% CI [0.73-0.85], p <0.0001), respectively). CONCLUSIONS The assay proved to be robust and sample stability was found to comply with hospital sample handling requirements. PRO-C3 measured in samples from patients with NAFLD/NASH was diagnostic for significant and advanced liver fibrosis. LAY SUMMARY We showed that PRO-C3 levels were stable under conditions conforming with hospital sample-handling requirements. We determined a healthy reference range and showed that PRO-C3 levels were not associated with sex, age, BMI, or ethnicity. Finally, we provide further evidence of an association of PRO-C3 with increasing liver fibrosis.
Collapse
Key Words
- ADAM, A Disintegrin and Metalloproteases
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUROC, area under the receiver operating characteristics curve
- Biomarkers
- Biopsy
- Body mass index
- CLSI, Clinical and Laboratory Standards Institute
- Collagen type III
- ELF™ test, Enhanced Liver Fibrosis test
- Ethnic groups
- FIB-4, fibrosis-4
- Fibrosis
- Healthy volunteers
- Hospitals
- Humans
- LITMUS, Liver Investigation: Testing Marker Utility in Steatohepatitis (consortium)
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD Activity Score
- NASH, non-alcoholic steatohepatitis
- NASH-CRN, NASH Clinical Research Network
- NIMBLE, Non-Invasive Biomarkers of Metabolic Liver Disease (consortium)
- NPV, negative predictive value
- Non-alcoholic fatty liver disease
- PPV, positive predictive value
- Reference standards
- Reference values
- T2DM, type 2 diabetes mellitus
Collapse
Affiliation(s)
| | | | | | | | - Diane Shevell
- Innovative Medicine, Bristol Myers-Squibb, Princeton, NJ, USA
| | - Lise Lotte Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Medical Division, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | | | - Guruprasad P. Aithal
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Medical Research Council (MRC), Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Jörn M. Schattenberg
- Department of Internal Medicine I, University Medical Centre of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
37
|
Chaiyasut C, Sivamaruthi BS, Kesika P, Khongtan S, Khampithum N, Thangaleela S, Peerajan S, Bumrungpert A, Chaiyasut K, Sirilun S, Sittiprapaporn P. Synbiotic Supplementation Improves Obesity Index and Metabolic Biomarkers in Thai Obese Adults: A Randomized Clinical Trial. Foods 2021; 10:1580. [PMID: 34359450 PMCID: PMC8304233 DOI: 10.3390/foods10071580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
The cluster of metabolic disorders includes obesity, dyslipidemia, hypertension, and glucose intolerance, increasing the risk of developing cardiovascular diseases and type 2 diabetes. Evolving proofs suggest an essential role of microbiota in human health and disease, including digestion, energy and glucose metabolism, immunomodulation, and brain function. The frequency of overweight is increasing, and the main causes for this are highly processed foods and less active lifestyles. Research is underway to unravel the probable relationship between obesity and intestinal microbiota. Here, we propose a method to understand and elucidate the synergistic function of prebiotics and probiotics in treating obesity. The biomarkers of obesity, such as cholesterol, gut permeability, oxidative stress, bacterial toxins, cytokines, and short-chain fatty acids, were analyzed in Thai obese individuals after being supplemented with a synbiotic preparation containing Lactobacillus paracasei, Bifidobacterium longum, Bifidobacterium breve, inulin, and fructooligosaccharide. The results reveal that the supplementation of synbiotics significantly altered the obesity-associated biomarkers in an appositive way. Further studies are warranted to use synbiotics as an adjuvant therapy for the management of obesity-related health issues.
Collapse
Affiliation(s)
- Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Periyanaina Kesika
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Suchanat Khongtan
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Nanticha Khampithum
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | | | - Akkarach Bumrungpert
- Mahidol Nutrition Society, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand;
- Research Center of Nutraceuticals and Natural Products for Health & Anti-Aging, College of Integrative Medicine, Dhurakij Pundit University, Bangkok 10210, Thailand
| | - Khontaros Chaiyasut
- Institute of Research and Development, Chiang Mai Rajabhat University, Chiangmai 50300, Thailand;
| | - Sasithorn Sirilun
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (P.K.); (S.K.); (N.K.); (S.T.); (S.S.)
| | - Phakkharawat Sittiprapaporn
- Neuropsychological Research Laboratory, Department of Anti-Aging and Regenerative Science, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Bangkok 11120, Thailand
| |
Collapse
|
38
|
Gupta M, Krishan P, Kaur A, Arora S, Trehanpati N, Singh TG, Bedi O. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm Res 2021; 70:765-776. [PMID: 34212214 DOI: 10.1007/s00011-021-01480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted disease allied with various metabolic disorders, obesity and dysbiosis. Gut microbiota plays an influential role in the pathogenesis of NAFLD and other metabolic disorders. However, recent scientific upsurge emphasizes on the utility of beneficial gut microbiota and bacteriotherapy in the management of NAFLD. Fecal microbiota transplantation (FMT) is the contemporary therapeutic approach with state-of-the-art methods for the treatment of NAFLD. Other potential therapies include probiotics and prebiotics supplements which are based on alteration of gut microbes to treat NAFLD. In this review, our major focus is on the pathological association of gut microbiota with progression of NAFLD, historical aspects and recent advances in FMT with possible intervention to combat NAFLD and its associated metabolic dysfunctions.
Collapse
Affiliation(s)
- Manisha Gupta
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Rajpura, 140401, Punjab, India.
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
39
|
Fianchi F, Liguori A, Gasbarrini A, Grieco A, Miele L. Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021; 22:6485. [PMID: 34204274 PMCID: PMC8233936 DOI: 10.3390/ijms22126485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide, affecting both adults and children and will result, in the near future, as the leading cause of end-stage liver disease. Indeed, its prevalence is rapidly increasing, and NAFLD is becoming a major public health concern. For this reason, great efforts are needed to identify its pathogenetic factors and new therapeutic approaches. In the past decade, enormous advances understanding the gut-liver axis-the complex network of cross-talking between the gut, microbiome and liver through the portal circulation-have elucidated its role as one of the main actors in the pathogenesis of NAFLD. Indeed, evidence shows that gut microbiota is involved in the development and progression of liver steatosis, inflammation and fibrosis seen in the context of NAFLD, as well as in the process of hepatocarcinogenesis. As a result, gut microbiota is currently emerging as a non-invasive biomarker for the diagnosis of disease and for the assessment of its severity. Additionally, to its enormous diagnostic potential, gut microbiota is currently studied as a therapeutic target in NAFLD: several different approaches targeting the gut homeostasis such as antibiotics, prebiotics, probiotics, symbiotics, adsorbents, bariatric surgery and fecal microbiota transplantation are emerging as promising therapeutic options.
Collapse
Affiliation(s)
- Francesca Fianchi
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Liguori
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Antonio Grieco
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Luca Miele
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (F.F.); (A.L.); (A.G.); (A.G.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del S. Cuore, 00168 Rome, Italy
| |
Collapse
|
40
|
Vali Y, Lee J, Boursier J, Spijker R, Verheij J, Brosnan MJ, Anstee QM, Bossuyt PM, Zafarmand MH. FibroTest for Evaluating Fibrosis in Non-Alcoholic Fatty Liver Disease Patients: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10112415. [PMID: 34072480 PMCID: PMC8198930 DOI: 10.3390/jcm10112415] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: FibroTest™ is a multi-marker panel, suggested by guidelines as one of the surrogate markers with acceptable performance for detecting fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). A number of studies evaluating this test have been published after publication of the guidelines. This study aims to produce summary estimates of FibroTest™ diagnostic accuracy. (2) Methods: Five databases were searched for studies that evaluated FibroTest™ against liver biopsy as the reference standard in NAFLD patients. Two authors independently screened the references, extracted data, and assessed the quality of included studies. Meta-analyses of the accuracy in detecting different levels of fibrosis were performed using the bivariate random-effects model and the linear mixed-effects multiple thresholds model. (3) Results: From ten included studies, seven were eligible for inclusion in our meta-analysis. Five studies were included in the meta-analysis of FibroTest™ in detecting advanced fibrosis and five in significant fibrosis, resulting in an AUC of 0.77 for both target conditions. The meta-analysis of three studies resulted in an AUC of 0.69 in detecting any fibrosis, while analysis of three other studies showed higher accuracy in cirrhosis (AUC: 0.92). (4) Conclusions: Our meta-analysis showed acceptable performance (AUC > 0.80) of FibroTest™ only in detecting cirrhosis. We observed more limited performance of the test in detecting significant and advanced fibrosis in NAFLD patients. Further primary studies with high methodological quality are required to validate the reliability of the test for detecting different fibrosis levels and to compare the performance of the test in different settings.
Collapse
Affiliation(s)
- Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.L.); (P.M.B.); (M.H.Z.)
- Correspondence: ; Tel.: +31-(0)20-5668520
| | - Jenny Lee
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.L.); (P.M.B.); (M.H.Z.)
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, Angers University Hospital, 49933 Angers, France;
- HIFIH Laboratory, UPRES EA3859, Angers University, 49035 Angers, France
| | - René Spijker
- Medical Library AMC, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - M. Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA 02139, USA;
| | - Quentin M. Anstee
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Patrick M. Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.L.); (P.M.B.); (M.H.Z.)
| | - Mohammad Hadi Zafarmand
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (J.L.); (P.M.B.); (M.H.Z.)
| | | |
Collapse
|
41
|
Sturov NV, Popov SV, Zhukov VA. Modern approaches to the correction of the gut microbiota. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021:136-143. [DOI: 10.21518/2079-701x-2021-4-136-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article presents modern data on the formation, structure, functions and possibilities of correction of the gut microbiota. The gut microbiota is a collection of living organisms that inhabit the human intestine and form a complex microecological system that performs many functions. It is known that the composition and state of the gut microbiota is influenced by both environmental factors, such as diet and lifestyle, and the human body, including genetic predisposition. A violation in this system (dysbiosis) can provoke the development of a number of diseases and pathological conditions, in which the correction of the gut microbiota may be a promising therapeutic strategy. The most common methods of correcting dysbiosis are dieting, the use of pro-and prebiotics, and fecal microbiota transplantation. The diet affects the qualitative and quantitative composition and functions of the gut microbiota, the activity of its individual representatives. Probiotics are used to modulate, preserve the gut microbiota in dysbiosis, as well as to prevent its development. Fecal microbiota transplantation is performed by transferring the microbiota from a healthy donor. This method is one of the most effective ways to treat Clostridium difficile infection. This review article also presents the results of fecal microbiota transplantation in patients with inflammatory bowel disease and hepatic encephalopathy. It is shown that after transplantation, there is a rapid change in the composition of the gut microbiota, which becomes similar to the microbiota of a healthy donor. Each of these methods of correction demonstrates a different degree of influence on the gut microbiota, and their therapeutic effectiveness depends on the direct characteristics of the methods used, as well as the specific disease and requires further study.
Collapse
|
42
|
Crovesy L, El-Bacha T, Rosado EL. Modulation of the gut microbiota by probiotics and symbiotics is associated with changes in serum metabolite profile related to a decrease in inflammation and overall benefits to metabolic health: a double-blind randomized controlled clinical trial in women with obesity. Food Funct 2021; 12:2161-2170. [PMID: 33565558 DOI: 10.1039/d0fo02748k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulation of the gut microbiota may help in treating obesity by improving host metabolic health. We aimed to evaluate the effects of probiotics or symbiotics on body weight and serum metabolite profile in women with obesity. A double-blind, parallel, randomized, controlled clinical trial was conducted with 32 adult women with body mass index ranging from 30 to 34.9 kg m-2. Volunteers followed a low-energy diet and were subjected to 8 weeks intervention: probiotic group (PG - Bifidobacterium lactis UBBLa-70, n = 10), symbiotic group (SG - Bifidobacterium lactis UBBLa-70 and fructooligosaccharide, n = 11), or control group (CG - placebo, n = 11). Analyses of anthropometric variables, gut microbiota and serum metabolites by 1H nuclear magnetic resonance (NMR) were performed at baseline and after the intervention. Multivariate statistics showed that all groups presented a decrease in glycerol and increase in arginine, glutamine and 2-oxoisovalerate. Therefore, a low-energy diet per se promoted changes in the metabolite profile related to decreased inflammation and positive effects on body weight. SG presented unique changes in metabolites (increase in pyruvate and alanine and decrease in citrate and BCAA). Negative correlations between arginine and glutamine with fat mass were observed in the SG. PG presented a decrease in 1H NMR lipid signals and negative correlation between Verrucomicrobia and Firmicutes with (CH2)n lipids. Both probiotics and symbiotics promoted changes in metabolites related to improved metabolic health. Specific metabolite changes following symbiotic intervention might suggest some advantage in providing Bifidobacterium lactis in combination with fructooligosaccharide in a low-energy diet, rather than probiotics or diet alone. Clinical trial: NCT02505854.
Collapse
Affiliation(s)
- Louise Crovesy
- Department of Nutrition and Dietetics (DND), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil.
| | - Tatiana El-Bacha
- Lebiome - Núcleo de estudos com bioativos, Mitocôndria e metabolismo da placenta, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil
| | - Eliane Lopes Rosado
- Department of Nutrition and Dietetics (DND), Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro - RJ, Brazil.
| |
Collapse
|
43
|
Coman V, Vodnar DC. Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Exp Gerontol 2020; 141:111095. [PMID: 32979504 PMCID: PMC7510636 DOI: 10.1016/j.exger.2020.111095] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Our gut microbiota is a complex and dynamic ecosystem with a paramount role in shaping our metabolic and immunological functions. Recent research suggests that aging may negatively affect the composition, diversity, and function of our microbiota mainly due to alterations in diet and immunologic reactivity (i.e. immunosenescence), and increased incidence of certain diseases and, therefore, increased exposure to certain medication (e.g. antibiotics, proton pump inhibitors). In turn, this aging-related gut dysbiosis may contribute to the initiation and/or progress of other metabolic diseases, and consequently, to a decrease in healthy longevity. On the positive side, promising therapeutic interventions, such as diet supplementation with prebiotics, probiotics and synbiotics, or fecal microbiota transplantation, aimed to counteract these aging-related deleterious consequences, could improve our health, and extend our healthy lifespan. In this context, the current review aims to assess the latest progress in identifying the key elements affecting the gut microbiota of the older adults and their mechanism of action, and the effectiveness of the therapeutic interventions aimed at restoring the diversity and healthy functions of the gut microbiota in older individuals.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
44
|
Izadi F, Farrokhzad A, Tamizifar B, Tarrahi MJ, Entezari MH. Effect of sour tea supplementation on liver enzymes, lipid profile, blood pressure, and antioxidant status in patients with non-alcoholic fatty liver disease: A double-blind randomized controlled clinical trial. Phytother Res 2020; 35:477-485. [PMID: 32909326 DOI: 10.1002/ptr.6826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the efficacy of sour tea supplementation in patients with nonalcoholic fatty liver disease (NAFLD). Seventy NAFLD patients were enrolled in this randomized, double-blind, placebo-controlled clinical trial. Participants received sour tea in the form of a 450 mg capsule or a placebo capsule daily for 8 weeks. Anthropometric indices, liver enzymes, lipid profile, blood pressure, and antioxidant status were evaluated at the baseline and at the end of the study. Sixty-one participants completed the study. After 8 weeks, sour tea administration significantly decreased serum triglyceride (TG) (p = .03), alanine aminotransferase (ALT) (p = .01), and aspartate aminotransferase (AST) (p = .004) levels compared with the placebo. In addition, sour tea supplementation resulted in a significant reduction in systolic blood pressure (SBP) (p = .03) and diastolic blood pressure (DBP) (p = .04), and a significant increase in serum total antioxidant capacity (TAC) levels (p ˂ .001) compared with the placebo. However, no significant changes in anthropometric measures, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and high-density lipoprotein cholesterol (HDL-c) levels were observed after sour tea supplementation compared with the placebo (p > .05). Sour tea supplementation may be effective in improving serum TG, liver enzymes, and blood pressure in patients diagnosed with NAFLD. Further studies are needed to address the exact mechanism of action of these effects.
Collapse
Affiliation(s)
- Fatemeh Izadi
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Babak Tamizifar
- Isfahan Gastroenterology and Hepatology Research Center (lGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Entezari
- Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
45
|
Vali Y, Lee J, Boursier J, Spijker R, Löffler J, Verheij J, Brosnan MJ, Böcskei Z, Anstee QM, Bossuyt PM, Zafarmand MH, Levick C, Duffin K, Hyde C, Bauer T, Bedossa P, Leeming D, Daly A, Hanf R, Ortiz P, Oresic M, Schuppan D, Hanauer G, Chen Y, Shumbayawonda E, Bjerring PN, Zwinderman K. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: A systematic review and meta-analysis. J Hepatol 2020; 73:252-262. [PMID: 32275982 DOI: 10.1016/j.jhep.2020.03.036] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The enhanced liver fibrosis (ELF) test has been proposed for the non-invasive assessment of advanced fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). We performed a systematic review to estimate the accuracy of this test against biopsy. METHODS In this systematic review, we searched MEDLINE, Embase, Web of Science and the Cochrane Library for studies that included patients with NAFLD and that used both liver biopsy (as the reference standard) and the ELF test. Two authors independently screened the references, extracted the data and assessed the quality of included studies. Due to the variation in reported thresholds, we used a multiple thresholds random effects model for meta-analysis (diagmeta R-package). RESULTS The meta-analysis of 11 studies reporting advanced fibrosis and 5 studies reporting significant fibrosis showed that the ELF test had a sensitivity of >0.90 for excluding fibrosis at a threshold of 7.7. However, as a diagnostic test at high thresholds, the test only achieved specificity and positive predictive value >0.80 in very high prevalence settings (>50%). To achieve a specificity of 0.90 for advanced and significant fibrosis, thresholds of 10.18 (sensitivity: 0.57) and 9.86 (sensitivity: 0.55) were required, respectively. CONCLUSION The ELF test showed high sensitivity but limited specificity to exclude advanced and significant fibrosis at low cut-offs. The diagnostic performance of the test at higher thresholds was found to be more limited in low-prevalence settings. We conclude that clinicians should carefully consider the likely disease prevalence in their practice setting and adopt suitable test thresholds to achieve the desired performance. LAY SUMMARY The enhanced liver fibrosis test has been suggested as a non-invasive blood test to aid the diagnosis of severe liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). Our study results showed that the test has a high negative predictive value, especially in populations with low disease prevalence (likely encountered in primary care); so, it can exclude advanced fibrosis in patients with NAFLD. However, when prevalence is low, the positive predictive value of the enhanced liver fibrosis test is low, suggesting that additional strategies may be needed to make a positive diagnosis in such settings.
Collapse
Affiliation(s)
- Yasaman Vali
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands.
| | - Jenny Lee
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, Angers University Hospital, Angers, France; HIFIH Laboratory, UPRES EA3859, Angers University, Angers, France
| | - René Spijker
- Medical Library AMC, Amsterdam, the Netherlands; Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - M Julia Brosnan
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Zsolt Böcskei
- Sanofi R&D, Translational Sciences Unit, Chilly Mazarin, France
| | - Quentin M Anstee
- The Newcastle Liver Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Patrick M Bossuyt
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Mohammad Hadi Zafarmand
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soleimani A, Motamedzadeh A, Zarrati Mojarrad M, Bahmani F, Amirani E, Ostadmohammadi V, Tajabadi-Ebrahimi M, Asemi Z. The Effects of Synbiotic Supplementation on Metabolic Status in Diabetic Patients Undergoing Hemodialysis: a Randomized, Double-Blinded, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2020; 11:1248-1256. [PMID: 30560426 DOI: 10.1007/s12602-018-9499-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study was conducted to evaluate the effects of synbiotic supplementation on metabolic profiles in diabetic patients undergoing hemodialysis (HD). This randomized, double-blinded, placebo-controlled clinical trial was performed in 60 diabetic HD patients. Participants were randomly assigned into two groups to receive either synbiotic capsule, containing Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum (2 × 109 CFU/g each), plus 0.8 g/day of inulin (n = 30) or placebo (n = 30) for 12 weeks. Synbiotic supplementation significantly decreased fasting plasma glucose (β - 13.56 mg/dL; 95% CI, - 23.82, - 3.30; P = 0.01), insulin levels (β - 5.49 μIU/mL; 95% CI, - 6.92, - 4.05; P < 0.001), and insulin resistance (β - 2.25; 95% CI, - 3.02, - 1.48; P < 0.001), while increased the quantitative insulin sensitivity check index (β 0.02; 95% CI, 0.01, 0.02; P < 0.001) compared with the placebo. Additionally, synbiotic intake resulted in a significant reduction in high-sensitivity C-reactive protein (β - 2930.48 ng/mL; 95% CI, - 3741.15, - 2119.80; P < 0.001) and malondialdehyde levels (β - 0.60 μmol/L; 95% CI, - 0.99, - 0.20; P = 0.003). Moreover, we found a significant increase in total antioxidant capacity (β 142.99 mmol/L; 95% CI, 61.72, 224.25; P = 0.001) and total glutathione levels (β 131.11 μmol/L; 95% CI, 89.35, 172.87; P < 0.001) in the synbiotic group compared with the placebo group. Overall, synbiotic supplementation for 12 weeks had beneficial effects on glycemic control, biomarkers of inflammation, and oxidative stress in diabetic patients under HD. This study was registered in the Iranian website (www.irct.ir) for registration of clinical trials (http://www.irct.ir: IRCT2017090133941N17). http://www.irct.ir: IRCT2017090133941N17.
Collapse
Affiliation(s)
- Alireza Soleimani
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Malihe Zarrati Mojarrad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Tajabadi-Ebrahimi
- Faculty member of Science department, science faculty, Islamic Azad University Tehran Central Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
47
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Metabolism and Interaction with Food Components. Int J Mol Sci 2020; 21:ijms21103688. [PMID: 32456257 PMCID: PMC7279363 DOI: 10.3390/ijms21103688] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe–nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
- Correspondence: ; Tel.: +39-0668-594061; Fax: +39-0668-592218
| | - Federica Del Chierico
- Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy;
| | - Lorenza Putignani
- Unit of Parasitology and Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, Piazza Sant’ Onofrio 4, 00165 Rome, Italy;
| |
Collapse
|
48
|
Talebi S, Karimifar M, Heidari Z, Mohammadi H, Asbaghi O, Hadi A, Marx W, Askari G. The effect of synbiotic supplementation on anthropometric indices, appetite, and constipation in people with hypothyroidism: A randomized, double-blind, placebo-controlled trial. Phytother Res 2020; 34:2712-2720. [PMID: 32363616 DOI: 10.1002/ptr.6710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/25/2022]
Abstract
Hypothyroidism and obesity are two highly prevalent conditions that appear to be closely related. Hypothyroidism is correlated with weight gain, loss of appetite, constipation, and a higher incidence of obesity. The present study aimed to investigate the effects of synbiotic supplementation on anthropometric indices, appetite, and constipation in subjects with hypothyroidism. Sixty subjects with hypothyroidism were assigned into two groups to receive either 500 mg/day of synbiotic (n = 30) or a placebo (n = 30) per day for 8 weeks. Anthropometric indices, appetite, and constipation were assessed at study baseline and end of the trial. At the end of trial, waist-to-hip ratio was significantly decreased in the synbiotic group (p = .030), whereas there were no significant differences between groups. We did not observe any statistically significant change in appetite or other anthropometric indices (p > .05). Compared with the placebo synbiotic supplementation led to a significant reduction in constipation (p = .048). The results of the present trial indicated that synbiotic supplementation may have favorable results in constipation among subjects with hypothyroidism for 8 weeks. Further studies with larger sample size and longer duration are needed to confirm our findings.
Collapse
Affiliation(s)
- Sepide Talebi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhgan Karimifar
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Wolfgang Marx
- iMPACT, School of Medicine, Deakin University, Melbourne, Victoria, Australia
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Scorletti E, Afolabi PR, Miles EA, Smith DE, Almehmadi A, Alshathry A, Childs CE, Fabbro SD, Beavis J, Moyses HE, Clough GF, Sethi JK, Patel J, Wright M, Breen DJ, Peebles C, Darekar A, Aspinall R, Fowell AJ, Dowman JK, Nobili V, Targher G, Delzenne NM, Bindels LB, Calder PC, Byrne CD. Synbiotics Alter Fecal Microbiomes, But Not Liver Fat or Fibrosis, in a Randomized Trial of Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1597-1610.e7. [PMID: 31987796 PMCID: PMC7613160 DOI: 10.1053/j.gastro.2020.01.031] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/05/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Dysbiosis of the intestinal microbiota has been associated with nonalcoholic fatty liver disease (NAFLD). We investigated whether administration of a synbiotic combination of probiotic and prebiotic agents affected liver fat content, biomarkers of liver fibrosis, and the composition of the fecal microbiome in patients with NAFLD. METHODS We performed a double-blind phase 2 trial of 104 patients with NAFLD in the United Kingdom. Participants (mean age, 50.8 ± 12.6 years; 65% men; 37% with diabetes) were randomly assigned to groups given the synbiotic agents (fructo-oligosaccharides, 4 g twice per day, plus Bifidobacterium animalis subspecies lactis BB-12; n = 55) or placebo (n = 49) for 10-14 months. Liver fat content was measured at the start and end of the study by magnetic resonance spectroscopy, and liver fibrosis was determined from a validated biomarker scoring system and vibration-controlled transient elastography. Fecal samples were collected at the start and end of the study, the fecal microbiome were analyzed by 16S ribosomal DNA sequencing. RESULTS Mean baseline and end-of-study magnetic resonance spectroscopy liver fat percentage values were 32.3% ± 24.8% and 28.5% ± 20.1% in the synbiotic group and 31.3% ± 22% and 25.2% ± 17.2% in the placebo group. In the unadjusted intention-to-treat analysis, we found no significant difference in liver fat reduction between groups (β = 2.8; 95% confidence interval, -2.2 to 7.8; P = .30). In a fully adjusted regression model (adjusted for baseline measurement of the outcome plus age, sex, weight difference, and baseline weight), only weight loss was associated with a significant decrease in liver fat (β = 2; 95% confidence interval, 1.5-2.6; P = .03). Fecal samples from patients who received the synbiotic had higher proportions of Bifidobacterium and Faecalibacterium species, and reductions in Oscillibacter and Alistipes species, compared with baseline; these changes were not observed in the placebo group. Changes in the composition of fecal microbiota were not associated with liver fat or markers of fibrosis. CONCLUSIONS In a randomized trial of patients with NAFLD, 1 year of administration of a synbiotic combination (probiotic and prebiotic) altered the fecal microbiome but did not reduce liver fat content or markers of liver fibrosis. (ClinicalTrials.gov, Number: NCT01680640).
Collapse
Affiliation(s)
- Eleonora Scorletti
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom; Department of Gastroenterology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Paul R. Afolabi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Elizabeth A. Miles
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Debbie E. Smith
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Amal Almehmadi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Albandri Alshathry
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline E. Childs
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Stefania Del Fabbro
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josh Beavis
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen E. Moyses
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Geraldine F. Clough
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jaswinder K. Sethi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Janisha Patel
- Hepatology, Department of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark Wright
- Hepatology, Department of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David J. Breen
- Department of Radiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Charles Peebles
- Department of Radiology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard Aspinall
- Department of Hepatology, Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital, Portsmouth, UK
| | - Andrew J. Fowell
- Department of Hepatology, Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital, Portsmouth, UK
| | - Joanna K. Dowman
- Department of Hepatology, Portsmouth Hospitals NHS Trust, Queen Alexandra Hospital, Portsmouth, UK
| | - Valerio Nobili
- Hepatology, Gastroenterology and Nutrition Unit, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy,Department of Pediatric, University "La Sapienza", Rome, Italy
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B. Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Philip C. Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Christopher D. Byrne
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| |
Collapse
|
50
|
Zheng HJ, Guo J, Wang Q, Wang L, Wang Y, Zhang F, Huang WJ, Zhang W, Liu WJ, Wang Y. Probiotics, prebiotics, and synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:577-598. [PMID: 32329633 DOI: 10.1080/10408398.2020.1740645] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to quantify the effects of probiotic, prebiotic, and synbiotic supplementation on biomarkers of inflammation and oxidative stress, as well as lipid profiles among patients with chronic kidney disease (CKD). Electronic databases, including PubMed, the Cochrane Database, and the Web of Science were searched from January 1, 2000, to May 15, 2019. All RCTs that investigated the effect of prebiotics, probiotics, and synbiotics on a circulating (serum and plasma) inflammatory marker (C-reactive protein [CRP]), oxidative stress indicators (malondialdehyde [MDA], glutathione [GSH], and total anti-oxidant capacity [TAC]); and lipid profiles (total cholesterol [TC], triglycerides [TG], low-density lipoprotein cholesterol [LDL-c], and high-density lipoprotein cholesterol [HDL-c]) among patients with CKD were included. Data were pooled and expressed as a standardized mean difference (SMD) with a 95% confidence interval (CI). The protocol for this meta-analysis is registered with PROSPERO; No. CRD42019139090. Thirteen trials that included 671 patients were identified for analysis. The methodological quality varied across studies. Meta-analysis indicated that microbial therapies significantly reduced CRP (SMD, -0.75; 95% CI, -1.03 to -0.47; p = 0.000), MDA (SMD, -1.06; 95% CI, -1.59 to -0.52; p = 0.000), TC (SMD, -0.33; 95% CI, -0.52 to -0.13; p = 0.000), and LDL-c (SMD, -0.44; 95% CI, -0.86 to -0.02; p = 0.000) levels; they also increased the GSH (SMD, 0.44; 95% CI, 0.25 to 0.65; p = 0.000), TAC (SMD, 0.61; 95% CI, 0.07 to 1.15; p = 0.000), and HDL-c (SMD, 0.45; 95% CI, 0.03 to 0.87; p = 0.000) levels in CKD patients, as compared to the placebo groups; however, there was no statistically significant TG concentration among patients with CKD. Subgroup analyses showed that other key factors, such as the duration of intervention, participants' baseline body mass index (BMI), type of intervention, and age, had an effect of microbial therapies on outcomes. This meta-analysis supports the potential use of probiotic, prebiotic, and synbiotic supplements in the improvement of established biomarkers of inflammation and oxidative stress, as well as lipid profiles among patients with CKD, which are well-known cardiovascular risk factors. Further research into these interventions should consider the limitations of our study to explore the effect of long-term administration of these supplements in the CKD population.
Collapse
Affiliation(s)
- Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qiuhong Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liansheng Wang
- The Community Health Service Center of Wangzuo in Fengtai District, Beijing, China
| | - Yahui Wang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Jun Huang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|