1
|
Luo F, Deng Y, Angelov B, Angelova A. Melatonin and the nervous system: nanomedicine perspectives. Biomater Sci 2025. [PMID: 40231558 DOI: 10.1039/d4bm01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The mechanism of action of melatonin on the nervous system, sleep, cognitive deficits, and aging is not fully understood. Neurodegenerative diseases (ND) are one of the leading causes of disability and mortality worldwide. Sleeping and cognitive impairments also represent common and serious public health problems, particularly deteriorating with the aging process. Melatonin, as a neuromodulatory hormone, regulates circadian rhythms and the sleep-wake cycle, with functions extending to antioxidant, anti-inflammatory, neuroprotective, and anti-aging properties. However, melatonin is a hydrophobic compound with relatively low water solubility and a short half-life. While melatonin can cross the blood-brain barrier, exogenous melatonin administered orally or intravenously has poor bioavailability, undergoes rapid metabolism in the circulation, and shows limited brain accumulation, ultimately compromising its therapeutic efficacy. In recent years, the convergence of melatonin research with nanomedicine ensures safe therapeutic uses, limited drug degradation, and perspectives for targeted drug delivery to the central nervous system. Here we outline the promising neurotherapeutic properties of nanomaterials as carriers loaded with melatonin drug alone or in combinations with other active molecules.
Collapse
Affiliation(s)
- Fucen Luo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No.1, Jinlian Road, Longwan District, Wenzhou, Zhejiang 325001, China
| | - Borislav Angelov
- Extreme Light Infrastructure ERIC, Department of Structural Dynamics, CZ-25241 Dolni Brezany, Czech Republic
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France.
| |
Collapse
|
2
|
Yoo D, Jung SY, Go D, Park JY, You DG, Jung WK, Li Y, Ding J, Park JH, Um W. Functionalized extracellular vesicles of mesenchymal stem cells for regenerative medicine. J Nanobiotechnology 2025; 23:219. [PMID: 40102934 PMCID: PMC11921732 DOI: 10.1186/s12951-025-03300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Stem cell-derived extracellular vesicles (EVs) have emerged as a safe and potent alternative to regenerative medicine in recent decades. Furthermore, the adjustment of EV functions has been recently enabled by certain stem cell preconditioning methods, providing an exceptional opportunity to enhance the therapeutic potential or confer additional functions of stem cell-derived EVs. In this review, we discuss the recent progress of functionalized EVs, based on stem cell preconditioning, for treating various organ systems, such as the musculoskeletal system, nervous system, integumentary system, cardiovascular system, renal system, and respiratory system. Additionally, we summarize the expected outcomes of preconditioning methods for stem cells and their EVs. With recent progress, we suggest considerations and future directions for developing personalized medicine based on preconditioned stem cell-derived EVs.
Collapse
Affiliation(s)
- Donghyeon Yoo
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Se Young Jung
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dabin Go
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ji Yeong Park
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Gil You
- Department of Chemical Engineering & Biotechnology, Tech University of Korea, Siheung, 15073, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Yuce Li
- College of Life Science and Health, Wuhan University of Science and Technology (WUST), Wuhan, 430065, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Wooram Um
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Choi S, Yu E, Park S, Oh SW, Kwon K, Kim G, Ha H, Shin HS, Min S, Song M, Cho JY, Lee J. Protective effect of melatonin against blue light-induced cell damage via the TRPV1-YAP pathway in cultured human epidermal keratinocytes. Biofactors 2025; 51:e70015. [PMID: 40183558 PMCID: PMC11970215 DOI: 10.1002/biof.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Although blue light has been known to negatively affect skin cells, its detailed signaling mechanisms and anti-blue light agents have not been clearly elucidated. We investigated the involvement of Yes-associated protein (YAP)-mediated Hippo signaling in blue light-induced apoptosis, depending on the degree of blue light exposure. Additionally, we elucidated the effects of melatonin on blue light-irradiated keratinocytes and examined their action mechanisms. After blue light irradiation, its effects and antagonizing effects of melatonin on cell proliferation, apoptosis, DNA damage, and transient receptor potential vanilloid 1 (TRPV1)/YAP-mediated signaling were examined in HaCaT cells using western blots, image analysis, flow cytometric analysis, co-immunoprecipitation, and immunocytochemistry. We found that melatonin treatment attenuated the reduced cell viability and increased production of reactive oxygen species (ROS) in response to blue light irradiation. In the experiments to investigate the mechanism of action of blue light and melatonin, we found that YAP changed its binding protein, either p73 or TEAD, depending on the degree of blue light exposure. Melatonin treatment reduced blue light-induced phosphorylation of TRPV1 and MST1/2. Upon treatment with capsazepine, an antagonist of TRPV1, MST1/2 activation also reduced. Furthermore, we found that prolonged blue light irradiation induced DNA damage, which in turn induced YAP-p73 nuclear translocation. These effects were also notably attenuated by melatonin. These findings indicate that depending on the duration of blue light irradiation, two different YAP-mediated Hippo signaling pathways are activated. Additionally, these findings suggest that melatonin could be a potential therapeutic agent for blue light-induced skin damage.
Collapse
Affiliation(s)
- Seoyoung Choi
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Eunbi Yu
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - See‐Hyoung Park
- Department of Bio and Chemical EngineeringHongik UniversitySejong CityKorea
| | - Sae Woong Oh
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Kitae Kwon
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Gyeonghyeon Kim
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Heejun Ha
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Hee Seon Shin
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Seokhyeon Min
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Minkyung Song
- Integrative Research of T cells Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
- Department of Biopharmaceutical ConvergenceSungkyunkwan UniversitySuwon CityKorea
| | - Jae Youl Cho
- Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and BioengineeringSungkyunkwan UniversitySuwon CityKorea
| |
Collapse
|
4
|
Han YY, Tian Y, Zhao BC, Liu KX. Ramelteon exposure and survival of critically Ill sepsis patients: a retrospective study from MIMIC-IV. BMC Anesthesiol 2024; 24:454. [PMID: 39696003 DOI: 10.1186/s12871-024-02851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The effect of ramelteon, a melatonin receptor agonist, on survival in septic patients remains unknown. The purpose of this retrospective cohort study was to explore the relationship between ramelteon exposure and survival outcomes in septic patients. METHODS Data from septic patients admitted to the intensive care unit (ICU) were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, with patients categorized into ramelteon exposure and non-exposure groups based on the use of ramelteon. The primary outcome was 30-day mortality, and secondary outcomes included 90-day mortality, in-hospital mortality, length of ICU stay, and hospital stay. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) were employed to address confounding variables. Kaplan-Meier (K-M) analysis and Cox proportional hazards regression models for stepwise regression were utilized to assess the impact of ramelteon exposure on survival. RESULTS This study included 22,152 unexposed patients and 2,708 exposed patients, resulting in 2,607 matched pairs after PSM. Following PSM, ramelteon exposure was associated with significantly lower in-hospital mortality (11.6% vs.19.7%, p < 0.001), 30-day mortality (13.4% vs. 23.2%, p < 0.001), and 90-day mortality (22.1% vs. 30%, p < 0.001).K-M curves demonstrated a significant difference in 30-day and 90-day mortality between the two groups (P < 0.001), irrespective of PSM application. Both PSM (hazard ratio [HR] = 0.53, 95% confidence intervals [CIs] 0.47-0.61, p < 0.001) and IPTW models (HR = 0.59, 95% CI 0.50-0.70, p < 0.001) indicated a significant positive effect of ramelteon usage on 30-day mortality among septic patients compared to the non-exposure group. CONCLUSIONS This exploratory, retrospective study suggests an association between ramelteon exposure and reduced 30-day and 90-day mortality in septic patients compared with the non-exposure group. Considering the limitations of the retrospective design and the potential for unmeasured confounding, well-designed prospective studies and randomized controlled trials will be needed to confirm these findings.
Collapse
Affiliation(s)
- Yun-Yang Han
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Tian
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Yuan L, Yao L, Ren X, Chen X, Li X, Xu Y, Jin T. Cartilage defect repair in a rat model via a nanocomposite hydrogel loaded with melatonin-loaded gelatin nanofibers and menstrual blood stem cells: an in vitro and in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:55. [PMID: 39347832 PMCID: PMC11442572 DOI: 10.1007/s10856-024-06820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024]
Abstract
Cartilage damage caused by injuries or degenerative diseases remains a major challenge in the field of regenerative medicine. In this study, we developed a composite hydrogel system for the delivery of melatonin and menstrual blood stem cells (MenSCs) to treat a rat model of cartilage defect. The composite delivery system was produced by incorporation of melatonin into the gelatin fibers and dispersing these fibers into calcium alginate hydrogels. Various characterization methods including cell viability assay, microstructure studies, degradation rate measurement, drug release, anti-inflammatory assay, and radical scavenging assay were used to characterize the hydrogel system. MenSCs were encapsulated within the nanocomposite hydrogel and implanted into a rat model of full-thickness cartilage defect. A 1.3 mm diameter drilled in the femoral trochlea and used for the in vivo study. Results showed that the healing potential of nanocomposite hydrogels containing melatonin and MenSCs was significantly higher than polymer-only hydrogels. Our study introduces a novel composite hydrogel system, combining melatonin and MenSCs, demonstrating enhanced cartilage repair efficacy, offering a promising avenue for regenerative medicine.
Collapse
Affiliation(s)
- Libo Yuan
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Ling Yao
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xianzhen Ren
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xusheng Chen
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Xu Li
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| | - Tao Jin
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, China.
| |
Collapse
|
7
|
Guo B, Zhuang TT, Li CC, Li F, Shan SK, Zheng MH, Xu QS, Wang Y, Lei LM, Tang KX, Ouyang W, Duan JY, Wu YY, Cao YC, Ullah MHE, Zhou ZA, Lin X, Wu F, Xu F, Liao XB, Yuan LQ. MiRNA-132/212 encapsulated by adipose tissue-derived exosomes worsen atherosclerosis progression. Cardiovasc Diabetol 2024; 23:331. [PMID: 39252021 PMCID: PMC11386123 DOI: 10.1186/s12933-024-02404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Visceral adipose tissue in individuals with obesity is an independent cardiovascular risk indicator. However, it remains unclear whether adipose tissue influences common cardiovascular diseases, such as atherosclerosis, through its secreted exosomes. METHODS The exosomes secreted by adipose tissue from diet-induced obesity mice were isolated to examine their impact on the progression of atherosclerosis and the associated mechanism. Endothelial apoptosis and the proliferation and migration of vascular smooth muscle cells (VSMCs) within the atherosclerotic plaque were evaluated. Statistical significance was analyzed using GraphPad Prism 9.0 with appropriate statistical tests. RESULTS We demonstrate that adipose tissue-derived exosomes (AT-EX) exacerbate atherosclerosis progression by promoting endothelial apoptosis, proliferation, and migration of VSMCs within the plaque in vivo. MicroRNA-132/212 (miR-132/212) was detected within AT-EX cargo. Mechanistically, miR-132/212-enriched AT-EX exacerbates palmitate acid-induced endothelial apoptosis via targeting G protein subunit alpha 12 and enhances platelet-derived growth factor type BB-induced VSMC proliferation and migration by targeting phosphatase and tensin homolog in vitro. Importantly, melatonin decreases exosomal miR-132/212 levels, thereby mitigating the pro-atherosclerotic impact of AT-EX. CONCLUSION These data uncover the pathological mechanism by which adipose tissue-derived exosomes regulate the progression of atherosclerosis and identify miR-132/212 as potential diagnostic and therapeutic targets for atherosclerosis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Becaplermin/pharmacology
- Becaplermin/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/drug effects
- Exosomes/metabolism
- Exosomes/pathology
- Intra-Abdominal Fat/metabolism
- Intra-Abdominal Fat/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Obesity/metabolism
- Obesity/pathology
- Plaque, Atherosclerotic
- Signal Transduction
Collapse
Affiliation(s)
- Bei Guo
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Tong-Tian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Qiu-Shuang Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yi Wang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Li-Min Lei
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ke-Xin Tang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wenlu Ouyang
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jia-Yue Duan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yun-Yun Wu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Ye-Chi Cao
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Muhammad Hasnain Ehsan Ullah
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Zhi-Ang Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China.
| |
Collapse
|
8
|
Maisto M, Piccolo V, Marzocchi A, Maresca DC, Romano B, Summa V, Tenore GC, Ercolano G, Ianaro A. Nutraceutical formulation based on a synergic combination of melatonin and palmitoylethanolamide for the management of allergic events. Front Nutr 2024; 11:1417747. [PMID: 39257610 PMCID: PMC11385308 DOI: 10.3389/fnut.2024.1417747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The management of allergic events is a growing global health issue, especially in industrialized countries. This disease is an immune-mediated process, regulated by the interaction of IgE with an allergen, resulting in mast cell activation, which concerns the release of several immune-inflammatory modulators, i.e., histamine, β-hexosaminidase, COX-2, IL-6, and TNF-α, responsible for the main allergic-reaction associated symptoms. The aim of the present study was the efficacy evaluation of an alternative remedy, an innovative nutraceutical formulation (NF) based on the synergic combination of melatonin (MEL) and palmitoylethanolamide (PEA) for the prevention and treatment of immune disease. At first, the intestinal bioaccessibility of PEA and MEL in NF was assessed at 1.6 and 36%, respectively. Then the MEL and PEA ability to modulate the release of immune-inflammatory modulators in the human mast cell line (HMC-1.2) at their bioaccessible concentration was investigated. Our results underline that NF treatment was able to reduce COX-2 mRNA transcription levels (-30% vs. STIM, p < 0.0001) in stimulated HMC-1.2 and to contract COX-2 enzymatic activity directly (IC50: 152 μg/mL). Additionally, NF showed valuable ability in reducing histamine and β-hexosaminidase release in stimulated HMC-1.2, as well as in decreasing TNF-α and IL-6 mRNA transcription levels and protein production.
Collapse
Affiliation(s)
- Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Benedetta Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Makled S, Abbas H, Ali ME, Zewail M. Melatonin hyalurosomes in collagen thermosensitive gel as a potential repurposing approach for rheumatoid arthritis management via the intra-articular route. Int J Pharm 2024; 661:124449. [PMID: 38992734 DOI: 10.1016/j.ijpharm.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Despite the fact that several rheumatoid arthritis treatments have been utilized, none of them achieved complete joint healing and has been accompanied by several side effects that compromise patient compliance. This study aims to provide an effective safe RA treatment with minimum side effects through the encapsulation of melatonin (MEL) in hyalurosomes and loading these hyalurosomes in collagen thermos-sensitive poloxamer 407 (PCO) hydrogels, followed by their intra-articular administration in AIA model rats. In vitro characterization of MEL-hyalurosomes and PCO hydrogel along with in vivo evaluation of the selected formulation were conducted. Particle size, PDI and EE % of the selected formulation were 71.5 nm, 0.09 and 90 %. TEM micrographs demonstrated that the particles had spherical shape with no aggregation signs. Loading PCO hydrogels with MEL-hyalurosomes did not cause significant changes in pH although it increased its viscosity and injection time. FTIR analysis showed that no interactions were noted among the delivery system components. In vivo results revealed the superior effect of MEL-hyalurosomes PCO hydrogel over MEL-PCO hydrogel and blank PCO hydrogels in improving joint healing, cartilage repair, pannus formation and cell infiltrations. Also, MEL-hyalurosomes PCO hydrogel group showed comparable levels of TNF-α, IL1, MDA, NRF2 and HO-1 with the negative control group. These findings highlight the MEL encapsulation role in augmenting its pharmacological effects along with the synergistic effect of hyaluronic acid in hyalurosomes and collagen in PCO hydrogel in promoting joint healing.
Collapse
Affiliation(s)
- Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt.
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Egypt P.O. Box 22511, Damanhour, Egypt
| |
Collapse
|
10
|
Barrón-González M, Rivera-Antonio AM, Jarillo-Luna RA, Santiago-Quintana JM, Levaro-Loquio D, Pérez-Capistran T, Guerra-Araiza CH, Soriano-Ursúa MA, Farfán-García ED. Borolatonin limits cognitive deficit and neuron loss while increasing proBDNF in ovariectomised rats. Fundam Clin Pharmacol 2024; 38:730-741. [PMID: 38423984 DOI: 10.1111/fcp.12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Astrid M Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Rosa A Jarillo-Luna
- Laboratorio de Morfología, Sección de Estudios de Posgrado e Investigación, ESM-IPN, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - José M Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - David Levaro-Loquio
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Christian H Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Marvin A Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| | - Eunice D Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Ciudad de México, Mexico
| |
Collapse
|
11
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
12
|
Mineiro R, Cardoso MR, Pinheiro JV, Cipolla-Neto J, do Amaral FG, Quintela T. Overlapping action of melatonin and female reproductive hormones-Understand the impact in pregnancy and menopause. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:163-190. [PMID: 39059985 DOI: 10.1016/bs.apcsb.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Melatonin is an indolamine secreted to circulation by the pineal gland according to a circadian rhythm. Melatonin levels are higher during nighttime, and the principal function of this hormone is to organize the temporal night and day distribution of physiological adaptive processes. Besides hormonal pineal production, melatonin is synthesized in various organs and tissues like the ovaries or the placenta for local utilization. In addition to its function as a circadian messenger, melatonin is also associated with many physiological functions. For example, melatonin has antioxidant properties and is involved in the regulation of energy and bone metabolism, and reproduction. Melatonin impacts several stages of reproduction and the action across the hypothalamus-pituitary-gonadal axis is well described. However, it is not well understood how those actions impact the female reproductive hormones secretion nor the consequent physiological outcomes. Thus, the first part of this chapter describes the regulation of female reproductive hormone synthesis by melatonin. Moreover, melatonin and female reproductive hormones have coincident physiological functions. Life stages like pregnancy or menopause are characterized by alterations in the reproductive hormones secretion that may be associated with certain physiological stages. Therefore, the second part discusses whether melatonin fluctuations could have an overlapping role with reproductive hormones in contributing to clinical outcomes associated with pregnancy and menopause.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | | | - João Vieira Pinheiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
13
|
Sadłocha M, Toczek J, Major K, Staniczek J, Stojko R. Endometriosis: Molecular Pathophysiology and Recent Treatment Strategies-Comprehensive Literature Review. Pharmaceuticals (Basel) 2024; 17:827. [PMID: 39065678 PMCID: PMC11280110 DOI: 10.3390/ph17070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Endometriosis is an enigmatic disease, with no specific cause or trigger yet discovered. Major factors that may contribute to endometriosis in the pelvic region include environmental, epigenetic, and inflammatory factors. Most experts believe that the primary mechanism behind the formation of endometrial lesions is associated with Sampson's theory of "retrograde menstruation". This theory suggests that endometrial cells flow backward into the peritoneal cavity, leading to the development of endometrial lesions. Since this specific mechanism is also observed in healthy women, additional factors may be associated with the formation of endometrial lesions. Current treatment options primarily consist of medical or surgical therapies. To date, none of the available medical therapies have proven effective in curing the disorder, and symptoms tend to recur once medications are discontinued. Therefore, there is a need to explore and develop novel biomedical targets aimed at the cellular and molecular mechanisms responsible for endometriosis growth. This article discusses a recent molecular pathophysiology associated with the formation and progression of endometriosis. Furthermore, the article summarizes the most current medications and surgical strategies currently under investigation for the treatment of endometriosis.
Collapse
Affiliation(s)
- Marcin Sadłocha
- Department of Gynecology, Obstetrics and Oncological Gynecology, The Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (J.T.); (R.S.)
| | - Jakub Toczek
- Department of Gynecology, Obstetrics and Oncological Gynecology, The Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (J.T.); (R.S.)
| | - Katarzyna Major
- Department of Neonatology, Municipal Hospital in Ruda Śląska, Wincentego Lipa 2, 41-703 Ruda Śląska, Poland;
| | - Jakub Staniczek
- Department of Gynecology, Obstetrics and Oncological Gynecology, The Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (J.T.); (R.S.)
| | - Rafał Stojko
- Department of Gynecology, Obstetrics and Oncological Gynecology, The Medical University of Silesia in Katowice, Markiefki 87, 40-211 Katowice, Poland; (J.T.); (R.S.)
| |
Collapse
|
14
|
Bostan SA, Yemenoglu H, Kose O, Akyildiz K, Mercantepe T, Saral S, Tumkaya L, Yilmaz A. Preventive effects of melatonin on periodontal tissue destruction due to psychological stress in rats with experimentally induced periodontitis. J Periodontal Res 2024; 59:500-511. [PMID: 38214233 DOI: 10.1111/jre.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE AND BACKGROUND Psychological stress is a potential modifiable environmental risk factor causally related to the exacerbation of periodontitis and other chronic inflammatory diseases. This animal study aimed to investigate comprehensively the preventive efficacy of systemic melatonin administration on the possible effects of restraint stress on the periodontal structures of rats with periodontitis. METHODS Forty-eight male Sprague Dawley rats were randomly divided into six groups: control, restraint stress (S), S-melatonin (S-Mel), experimental periodontitis (Ep), S-Ep, and S-Ep-Mel. Periodontitis was induced by placing a 3.0 silk suture in a sub-paramarginal position around the cervix of the right and left lower first molars of the rats and keeping the suture in place for 5 weeks. Restraint stress was applied simultaneously by ligation. Melatonin and carriers were administered to the control, S, Ep, and S-Ep groups intraperitoneally (10 mg/body weight/day, 14 days) starting on day 21 following ligation and subjection to restraint stress. An open field test was performed on all groups on day 35 of the study. Periodontal bone loss was measured via histological sections. Histomorphometric and immunohistochemical (RANKL and OPG) evaluations were performed on right mandibular tissue samples and biochemical (TOS (total oxidant status), TAS (total antioxidant status), OSI (oxidative stress index), IL-1β, IL-10, and IL-1β/IL-10) evaluations were performed on left mandibular tissue samples. RESULTS Melatonin significantly limited serum corticosterone elevation related to restraint stress (p < .05). Restraint stress aggravated alveolar bone loss in rats with periodontitis, while systemic melatonin administration significantly reduced stress-related periodontal bone loss. According to the biochemical analyses, melatonin significantly lowered IL-1β/IL-10, OSI (TOS/TAS), and RANKL/OPG rates, which were significantly elevated in the S-Ep group. CONCLUSION Melatonin can significantly prevent the limited destructive effects of stress on periodontal tissues by suppressing RANKL-related osteoclastogenesis and oxidative stress.
Collapse
Affiliation(s)
- Semih Alperen Bostan
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hatice Yemenoglu
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Oğuz Kose
- Department of Periodontology, School of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Medical Services and Techniques, School of Vocational Health Care Services, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Sinan Saral
- Department of Physiology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, School of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
15
|
Petrović D, Ilić MD, Simonović D, Stojanović M, Stanković M, Stanišić S, Stojanović S, Arsić N, Sokolović DT. The role of melatonin in preventing amiodarone-induced rat liver damage. Can J Physiol Pharmacol 2024; 102:374-382. [PMID: 38079620 DOI: 10.1139/cjpp-2023-0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Long-term exposure to amiodarone, an antiarrhythmic drug, can induce different organ damage, including liver. Cell damage included by amiodarone is a consequence of mitochondrial damage, reactive oxygen species production, and cell energy depletion leading to programmed cell death. In the present study, hepatoprotective potential of neurohormone melatonin (50 mg/kg/day) was evaluated in a chronic experimental model of liver damage induced by a 4-week application of amiodarone (70 mg/kg/day). The obtained results indicate that amiodarone induces an increase in xanthine oxidase activity, as well as the content of the lipid and protein oxidatively modified products and p53 levels. Microscopic analysis further corroborated the biochemical findings revealing hepatocyte degeneration, apoptosis, and occasional necrosis, with the activation of Kupffer cells. Coadministration of melatonin and amiodaron prevented an increase in certain damage associated parameters, due to its multiple targets. In conclusion, the application of melatonin together with amiodarone prevented an increase in tissue oxidative damage parameters and moderately prevented liver cell apoptosis, indicating that the damage of hepatocytes provoked by amiodarone supersedes the protective properties of melatonin in a given dose.
Collapse
Affiliation(s)
- Dejan Petrović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Marina Deljanin Ilić
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Dejan Simonović
- Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Milovan Stojanović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Milica Stanković
- Institute of Pathology, University Clinical Centre Niš, Niš, Serbia
| | - Slaviša Stanišić
- Department of Obstetrics and Gyanaecology, Faculty of Medicine, University of Pristina, Kosovska Mitrovica, Serbia
| | - Sanja Stojanović
- Faculty of Medicine, Institute for Treatment and Rehabilitation, University of Niš, Niška Banja, Niš, Serbia
| | - Nebojša Arsić
- Dom zdravlja Medveđa, Šetalište 5, 16240 Medveđa, Serbia
| | - Dušan T Sokolović
- Department of Biochemistry, Faculty of Medicine, University of Niš, Niš, Serbia
| |
Collapse
|
16
|
Zhang C, Shi Y, Liu C, Sudesh SM, Hu Z, Li P, Liu Q, Ma Y, Shi A, Cai H. Therapeutic strategies targeting mechanisms of macrophages in diabetic heart disease. Cardiovasc Diabetol 2024; 23:169. [PMID: 38750502 PMCID: PMC11097480 DOI: 10.1186/s12933-024-02273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.
Collapse
Affiliation(s)
- Chaoyue Zhang
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Changzhi Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shivon Mirza Sudesh
- Faculty of Medicine, St. George University of London, London, UK
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - Zhao Hu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yiming Ma
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| | - Hongyan Cai
- Cardiovascular Clinical Medical Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
17
|
Subhadarshini S, Taksande K. A Comprehensive Review on the Role of Melatonin's Anesthetic Applications in Pediatric Care. Cureus 2024; 16:e60575. [PMID: 38894785 PMCID: PMC11184532 DOI: 10.7759/cureus.60575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Anesthesia is critical to pediatric care, ensuring the safety and comfort of children undergoing medical procedures. With a growing interest in alternative anesthetic agents, melatonin has emerged as a promising candidate due to its sedative, analgesic, anti-inflammatory, and neuroprotective properties. This comprehensive review explores the potential applications of melatonin in pediatric anesthesia. We delve into the pharmacological characteristics of melatonin, its anesthetic properties, and its clinical applications in pediatric care, including preoperative sedation, adjunct to general anesthesia, postoperative pain management, and prevention of emergence delirium. Additionally, we discuss the safety profile of melatonin, potential adverse effects, and comparative analysis with traditional anesthetics. Finally, we highlight future research directions to provide insights into melatonin's role in pediatric anesthesia and its implications for clinical practice.
Collapse
Affiliation(s)
- Sikha Subhadarshini
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Karuna Taksande
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Hakami AY, Alghamdi BS, Alshehri FS. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Front Pharmacol 2024; 15:1373746. [PMID: 38738177 PMCID: PMC11082292 DOI: 10.3389/fphar.2024.1373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
19
|
Romeo A, Kazsoki A, Musumeci T, Zelkó R. A Clinical, Pharmacological, and Formulation Evaluation of Melatonin in the Treatment of Ocular Disorders-A Systematic Review. Int J Mol Sci 2024; 25:3999. [PMID: 38612812 PMCID: PMC11011996 DOI: 10.3390/ijms25073999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Melatonin's cytoprotective properties may have therapeutic implications in treating ocular diseases like glaucoma and age-related macular degeneration. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. This study aims to summarize the screened articles on melatonin's clinical, pharmacological, and formulation evaluation in treating ocular disorders. The identification of relevant studies on the topic in focus was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. The studies were searched in the following databases and web search engines: Pubmed, Scopus, Science Direct, Web of Science, Reaxys, Google Scholar, Google Patents, Espacenet, and Patentscope. The search time interval was 2013-2023, with the following keywords: melatonin AND ocular OR ophthalmic AND formulation OR insert AND disease. Our key conclusion was that using melatonin-loaded nano-delivery systems enabled the improved permeation of the molecule into intraocular tissues and assured controlled release profiles. Although preclinical studies have demonstrated the efficacy of developed formulations, a considerable gap has been observed in the clinical translation of the results. To overcome this failure, revising the preclinical experimental phase might be useful by selecting endpoints close to clinical ones.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| |
Collapse
|
20
|
Vohra A, Karnik R, Desai M, Vyas H, Kulshrestha S, Upadhyay KK, Koringa P, Devkar R. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiol Int 2024; 41:548-560. [PMID: 38557404 DOI: 10.1080/07420528.2024.2329205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Chronic consumption of a high-calorie diet coupled with an altered sleep-wake cycle causes disruption of circadian clock that can impact the gut microbiome leading to metabolic syndrome and associated diseases. Herein, we investigate the effects of a high fat high fructose diet (H) alone or in combination with photoperiodic shifts induced chronodisruption (CD) on gut microbiota of C57BL/6J male mice. Further, the merits of daily evening intraperitoneal administration of melatonin in restoring gut microbiota are studied herein. Experimental groups viz. H, CD and HCD mice recorded higher levels of serum pro-inflammatory cytokines (TNF-α and IL-6) and lower levels of the anti-inflammatory cytokine, IL-10. These findings correlate with a concomitant increase in the transcripts of TLR4, TNF-α, and IL-6 in small intestine of the said groups. A decrement in mRNA levels of Ocln, ZO-1 and Vdr in these groups implied towards an altered gut permeability. These results were in agreement with the observed decrement in percentage abundance of total gut microflora and Firmicutes: Bacteroidetes (F/B) ratio. Melatonin administration accounted for lower-level inflammation (serum and gut) along with an improvement in gut permeability markers. The total abundance of gut microflora and F/B ratio showed an improvement in all the melatonin-treated groups and the same is the highlight of this study. Taken together, our study is the first to report perturbations in gut microbiota resulting due to a combination of photoperiodic shifts induced CD and a high fat high calorie diet-induced lifestyle disorder. Further, melatonin-mediated rejuvenation of gut microbiome provides prima facie evidence of its role in improving gut dysbiosis that needs a detailed scrutiny.
Collapse
Affiliation(s)
- Aliasgar Vohra
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Department of Neurology, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Rhydham Karnik
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Dr Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Mansi Desai
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Hitarthi Vyas
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shruti Kulshrestha
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Kapil Kumar Upadhyay
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Sciences & A.H., Anand Agricultural University, Anand, India
| | - Ranjitsinh Devkar
- Division of Chronobiology and Metabolic Endocrinology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
21
|
Xin X, Liu J, Liu X, Xin Y, Hou Y, Xiang X, Deng Y, Yang B, Yu W. Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS NANO 2024; 18:8307-8324. [PMID: 38437643 DOI: 10.1021/acsnano.3c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.
Collapse
Affiliation(s)
- Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, P. R. China
| | - Xinchan Liu
- VIP Integrated Department of Stomatological Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yu Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
22
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
24
|
Liu X, Li J, Shi M, Fu J, Wang Y, Kang W, Liu J, Zhu F, Huang K, Chen X, Liu Y. Melatonin improves cholestatic liver disease via the gut-liver axis. J Pineal Res 2024; 76:e12929. [PMID: 38047407 DOI: 10.1111/jpi.12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023]
Abstract
Cholestatic liver disease is characterized by disturbances in the intestinal microbiota and excessive accumulation of toxic bile acids (BA) in the liver. Melatonin (MT) can improve liver diseases. However, the underlying mechanism remains unclear. This study aimed to explore the mechanism of MT on hepatic BA synthesis, liver injury, and fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed and Mdr2-/- mice. MT significantly improved hepatic injury and fibrosis with a significant decrease in hepatic BA accumulation in DDC-fed and Mdr2-/- mice. MT reprogramed gut microbiota and augmented fecal bile salt hydrolase activity, which was related to increasing intestinal BA deconjugation and fecal BA excretion in both DDC-fed and Mdr2-/- mice. MT significantly activated the intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) axis and subsequently inhibited hepatic BA synthesis in DDC-fed and Mdr2-/- mice. MT failed to improve DDC-induced liver fibrosis and BA synthesis in antibiotic-treated mice. Furthermore, MT provided protection against DDC-induced liver injury and fibrosis in fecal microbiota transplantation mice. MT did not decrease liver injury and fibrosis in DDC-fed intestinal epithelial cell-specific FXR knockout mice, suggesting that the intestinal FXR mediated the anti-fibrosis effect of MT. In conclusion, MT ameliorates cholestatic liver diseases by remodeling gut microbiota and activating intestinal FXR/FGF-15 axis-mediated inhibition of hepatic BA synthesis and promotion of BA excretion in mice.
Collapse
Affiliation(s)
- Xianjiao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengdie Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jun Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Yubo Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Weili Kang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinyan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu, China
- MOE Joint International Research, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
26
|
Wang X, Yao X, Sun Z, Jin Y, Yan Z, Jiang H, Ouyang Y, Yuan WE, Wang C, Fan C. An extracellular matrix mimicking alginate hydrogel scaffold manipulates an inflammatory microenvironment and improves peripheral nerve regeneration by controlled melatonin release. J Mater Chem B 2023; 11:11552-11561. [PMID: 37982207 DOI: 10.1039/d3tb01727c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Low efficiency of nerve growth and unstable release of loaded drugs have become a major problem in repairing peripheral nerve injury. Many intervention strategies were focused on simple drug loading, but have still been less effective. The key challenge is to establish a controlled release microenvironment to enable adequate nerve regeneration. In this study, we fabricate a multilayered compound nerve scaffold by electrospinning: with an anti-adhesive outer layer of polycaprolactone and an ECM-like inner layer consisting of a melatonin-loaded alginate hydrogel. We characterized the scaffold, and the loaded melatonin can be found to undergo controlled release. We applied them to a 15 mm rat model of sciatic nerve injury. After 16 weeks, the animals in each group were evaluated and compared for recovery of motor function, electrophysiology, target organ atrophy status, regenerative nerve morphology and relative protein expression levels of neural markers, inflammatory oxidative stress, and angiogenesis. We identify that the scaffold can improve functional ability evidenced by an increased sciatic functional index and nerve electrical conduction level. The antioxidant melatonin loaded in the scaffold reduces inflammation and oxidative stress in the reinnervated nerves, confirmed by increased HO-1 and decreased TNF-α levels in regenerating nerves. The relative expression of fast-type myosin was elevated in the target gastrocnemius muscle. An improvement in angiogenesis facilitates neurite extension and axonal sprouting. This scaffold can effectively restore the ECM-like microenvironment and improve the quality of nerve regeneration by controlled melatonin release, thus enlightening the design criteria on nerve scaffolds for peripheral nerve injury in the future.
Collapse
Affiliation(s)
- Xu Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiquan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunyang Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Duan Y, Yang Y, Zhu W, Wan L, Wang G, Yue J, Bao Q, Shao J, Wan X. Melatonin intervention to prevent delirium in the intensive care units: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne) 2023; 14:1191830. [PMID: 37564987 PMCID: PMC10410466 DOI: 10.3389/fendo.2023.1191830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Objective To determine the preventive effect of melatonin on delirium in the intensive care units. Methods We conducted a systematic search of the PubMed, Cochrane Library, Science, Embase, and CNKI databases, with retrieval dates ranging from the databases' inception to September 2022. Controlled trials on melatonin and placebo for preventing delirium in the intensive care units were included. The meta-analysis was performed using Review Manager software (version 5.3) and Stata software (version 14.0). Results Six studies involving 2374 patients were included in the meta-analysis. The results of the meta-analysis showed that melatonin did not reduce the incidence of delirium in ICU patients (odds ratio [OR]: 0.71; 95% confidence interval [CI]: 0.46 to 1.12; p = 0.14). There was a strong hetero-geneity between the selected studies (I2 = 74%). Subgroup analysis results showed that melatonin reduced the incidence of delirium in cardiovascular care unit (CCU) patients (OR: 0.52; 95% CI: 0.37 to 0.73; p=0.0001), but did not in general intensive care unit (GICU) patients (OR: 1.14; 95% CI: 0.86 to 1.50; p=0.35). In terms of the secondary outcomes, there were no significant differences in all-cause mortality (OR: 0.85; 95% CI: 0.66 to 1.09; p=0.20), length of ICU stay (mean difference [MD]: 0.33; 95% CI: -0.53 to 1.18; p=0.45), or length of hospital stay (MD: 0.51; 95% CI: -1.17 to 2.19; p=0.55). Conclusion Melatonin reduced the incidence of delirium in CCU patients, but did not significantly reduce the incidence of delirium in GICU patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022367665.
Collapse
Affiliation(s)
- Yushan Duan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Yuan Yang
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Weihua Zhu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Linjun Wan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinxi Yue
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qi Bao
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jianlin Shao
- Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xiaohong Wan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
29
|
González-Flores D, López-Pingarrón L, Castaño MY, Gómez MÁ, Rodríguez AB, García JJ, Garrido M. Melatonin as a Coadjuvant in the Treatment of Patients with Fibromyalgia. Biomedicines 2023; 11:1964. [PMID: 37509603 PMCID: PMC10377739 DOI: 10.3390/biomedicines11071964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Fibromyalgia syndrome (FMS) is a chronic widespread pain syndrome that is accompanied by fatigue, sleep disturbances, anxiety, depression, lack of concentration, and neurocognitive impairment. As the currently available drugs are not completely successful against these symptoms and frequently have several side effects, many scientists have taken on the task of looking for nonpharmacological remedies. Many of the FMS-related symptoms have been suggested to be associated with an altered pattern of endogenous melatonin. Melatonin is involved in the regulation of several physiological processes, including circadian rhythms, pain, mood, and oxidative as well as immunomodulatory balance. Preliminary clinical studies have propounded that the administration of different doses of melatonin to patients with FMS can reduce pain levels and ameliorate mood and sleep disturbances. Moreover, the total antioxidant capacity, 6-sulfatoxymelatonin and urinary cortisol levels, and other biological parameters improve after the ingestion of melatonin. Recent investigations have proposed a pathophysiological relationship between mitochondrial dysfunction, oxidative stress, and FMS by looking at certain proteins involved in mitochondrial homeostasis according to the etiopathogenesis of this syndrome. These improvements exert positive effects on the quality of life of FMS patients, suggesting that the use of melatonin as a coadjuvant may be a successful strategy for the management of this syndrome.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
| | - Laura López-Pingarrón
- Oxidative Stress and Aging Research Group, Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Yolanda Castaño
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Nursing, Merida University Center, University of Extremadura, 06006 Badajoz, Spain
| | - María Ángeles Gómez
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| | - Ana B Rodríguez
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| | - Joaquín J García
- Oxidative Stress and Aging Research Group, Department of Pharmacology, Physiology, Legal and Forensic Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Garrido
- Neuroimmunophysiology and Chrononutrition Research Group, University of Extremadura, 06006 Badajoz, Spain
- Department of Physiology, Science Faculty, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
30
|
Dou X, Luo Q, Xie L, Zhou X, Song C, Liu M, Liu X, Ma Y, Liu X. Medical Prospect of Melatonin in the Intervertebral Disc Degeneration through Inhibiting M1-Type Macrophage Polarization via SIRT1/Notch Signaling Pathway. Biomedicines 2023; 11:1615. [PMID: 37371708 PMCID: PMC10296002 DOI: 10.3390/biomedicines11061615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The study aims to explore the medical prospect of melatonin (MLT) and the underlying therapeutic mechanism of MLT-mediated macrophage (Mφ) polarization on the function of nucleus pulposus (NP) in intervertebral disc degeneration (IDD). RAW 264.7 Mφs were induced by lipopolysaccharide (LPS) to simulate Mφ polarization and the inflammatory reaction of Mφs with or without MLT were detected. Conditioned medium (CM) collected from these activated Mφs with or without MLT treatment were further used to incubate NP cells. The oxidative stress, inflammation and extracellular matrix (ECM) metabolism in NP cells were determined. Then, the changes in SIRT1/Notch signaling were detected. The agonist (SRT1720) and inhibitor (EX527) of SIRT1 were used to further explore the association among MLT. The interaction between SIRT1 and NICD was detected by immunoprecipitation (IP). Finally, puncture-induced rat IDD models were established and IDD degrees were clarified by X-ray, MRI, H&E staining and immunofluorescence (IF). The results of flow cytometry and inflammation detection indicated that LPS could induce M1-type Mφ polarization with pro-inflammatory properties. MLT significantly inhibited the aforementioned process and inhibited M1-type Mφ polarization, accompanied by the alleviation of inflammation. Compared with those without MLT, the levels of oxidative stress, pro-inflammatory cytokines and ECM catabolism in NP cells exposed to CM with MLT were markedly downregulated in a dose-dependent manner. The inhibition of SIRT1 and the enhancement of Notch were observed in activated Mφs and they can be reversed after MLT treatment. This prediction was further confirmed by using the SRT1720 and EX527 to activate or inhibit the signaling. The interaction between SIRT1 and NICD was verified by IP. In vivo study, the results of MRI, Pfirrmann grade scores and H&E staining demonstrated the degree of disc degeneration was significantly lower in the MLT-treated groups when compared with the IDD control group. The IF data showed M1-type Mφ polarization decreased after MLT treatment. MLT could inhibit M1-type Mφ polarization and ameliorate the NP cell injury caused by inflammation in vitro and vivo, which is of great significance for the remission of IDD. The SIRT1/Notch signaling pathway is a promising target for MLT to mediate Mφ polarization.
Collapse
Affiliation(s)
- Xinyu Dou
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Qipeng Luo
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Linzhen Xie
- Peking University Fourth School of Clinical Medicine, Beijing 100035, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Chunyu Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Meijuan Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| | - Yunlong Ma
- Pain Medical Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China; (X.D.)
- Beijing Key Laboratory of Spinal Disease Research, Beijing 100191, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing 100191, China
| |
Collapse
|
31
|
Qin T, Feng D, Zhou B, Bai L, Zhou S, Du J, Xu G, Yin Y. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol 2023; 120:110282. [PMID: 37224647 DOI: 10.1016/j.intimp.2023.110282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Melatonin, a ubiquitous hormone, is principally secreted from pineal gland in mammals and possesses strong antioxidant and anti-inflammatory properties. However, its specific roles in the immune functions of dendritic cells (DCs) during acute lung injury (ALI) remain unknown. In this study, we found that melatonin restored the body weight, decreased the lung weight/body weight ratio, alleviated the histopathological lung injury, and decreased the levels of cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-12p70, IL-17, and IL-10) in bronchoalveolar lavage fluid of the lipopolysaccharide (LPS)-induced ALI murine model. Moreover, melatonin inhibited the major histocompatibility complex II (MHCII) expression of lung CD11b+ DCs after LPS challenge in vivo. In vitro, melatonin reversed the shape index, promoted the endocytosis, and inhibited phenotypic expression of MHCII, CD40, CD80, and CD86 in LPS-activated DCs. Furthermore, melatonin decreased the expression of an activated marker, CD69, and the secretion of pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-17) after LPS challenge. It hampered the LPS-activated DCs migration by downregulating the C-C chemokine receptor 7 (CCR7) expression, and then weakened the ability of LPS-induced DCs to stimulate allogeneic CD4+ T cell proliferation. Melatonin shaped the immune function of DCs in a nuclear factor erythroid-2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) axis-dependent manner. These findings indicate that melatonin protects DCs from ALI-induced immunological stress and may be used to develop novel DC-targeting strategies for ALI therapy.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Danni Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bangyue Zhou
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lirong Bai
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengjie Zhou
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Jiangtao Du
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gang Xu
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Guangling College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
32
|
Chan YT, Tan HY, Lu Y, Zhang C, Cheng CS, Wu J, Wang N, Feng Y. Pancreatic melatonin enhances anti-tumor immunity in pancreatic adenocarcinoma through regulating tumor-associated neutrophils infiltration and NETosis. Acta Pharm Sin B 2023; 13:1554-1567. [PMID: 37139434 PMCID: PMC10150138 DOI: 10.1016/j.apsb.2023.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment contributes to poor prognosis of pancreatic adenocarcinoma (PAAD) patients. Proper regulation could improve survival. Melatonin is an endogenous hormone that delivers multiple bioactivities. Here we showed that pancreatic melatonin level is associated with patients' survival. In PAAD mice models, melatonin supplementation suppressed tumor growth, while blockade of melatonin pathway exacerbated tumor progression. This anti-tumor effect was independent of cytotoxicity but associated with tumor-associated neutrophils (TANs), and TANs depletion reversed effects of melatonin. Melatonin induced TANs infiltration and activation, therefore induced cell apoptosis of PAAD cells. Cytokine arrays revealed that melatonin had minimal impact on neutrophils but induced secretion of Cxcl2 from tumor cells. Knockdown of Cxcl2 in tumor cells abolished neutrophil migration and activation. Melatonin-induced neutrophils presented an N1-like anti-tumor phenotype, with increased neutrophil extracellular traps (NETs) causing tumor cell apoptosis through cell-to-cell contact. Proteomics analysis revealed that this reactive oxygen species (ROS)-mediated inhibition was fueled by fatty acid oxidation (FAO) in neutrophils, while FAO inhibitor abolished the anti-tumor effect. Analysis of PAAD patient specimens revealed that CXCL2 expression was associated with neutrophil infiltration. CXCL2, or TANs, combined with NET marker, can better predict patients' prognosis. Collectively, we discovered an anti-tumor mechanism of melatonin through recruiting N1-neutrophils and beneficial NET formation.
Collapse
Affiliation(s)
- Yau-tuen Chan
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Hor-yue Tan
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Chien-shan Cheng
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
- Department of Traditional Chinese Medicine, Shanghai Jiaotong University, School of Medicine Affiliated Ruijin Hospital, Shanghai 200025, China
| | - Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Therapeutic effects of melatonin on endometriosis, targeting molecular pathways: Current knowledge and future perspective. Pathol Res Pract 2023; 243:154368. [PMID: 36774757 DOI: 10.1016/j.prp.2023.154368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Endometriosis, the very serious disease in women creates a huge financial burden worldwide, which is comparable to diabetes mellitus. In addition to the typical pelvic pain, endometriosis is related to low life quality and decreased work efficiency; clinical consequences include mood complaints, metabolic impairments, inflammation, immunologic problems, and elevated malignancy risks. Several risk factors are correlated with endometriosis including elevated oxidative and nitrosative stress, long-lasting inflammation, raised immune tolerance, as well as autoimmunity. Melatonin is a natural molecule present throughout both the plant and animal kingdoms. It has numerous functions as an antioxidant and anti-inflammatory agent. Due to the anti-proliferative, antioxidant, anti-inflammatory, and anti-invasive features of melatonin, it performances as a beneficial agent to limit endometriosis; this involves several pathways including antiestrogenic, antioxidant, anti-inflammatory, and anti-apoptosis effects, as well as reducing the growth of E2-induced endometriotic tissue. Moreover, melatonin can favor sleep quality and decrease the unwanted signs in the patients. However, most of the data on melatonin accured from experimental works and additional clinical trials are needed. This review summarizes what is currently known regarding the influence of melatonin on endometriosis. AVAILABILITY OF DATA AND MATERIAL: Not applicable.
Collapse
|
34
|
Maity J, Dey T, Banerjee A, Chattopadhyay A, Das AR, Bandyopadhyay D. Melatonin ameliorates myocardial infarction in obese diabetic individuals: The possible involvement of macrophage apoptotic factors. J Pineal Res 2023; 74:e12847. [PMID: 36456538 DOI: 10.1111/jpi.12847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
In recent days, the hike in obesity-mediated epidemics across the globe and the prevalence of obesity-induced cardiovascular disease has become one of the chief grounds for morbidity and mortality. This epidemic-driven detrimental events in the cardiac tissues start with the altered distribution and metabolism pattern of high-density lipoprotein and low-density lipoprotein (LDL) leading to cholesterol (oxidized LDL) deposition on the arterial wall and atherosclerotic plaque generation, followed by vascular spasms and infarction. Subsequently, obesity-triggered metabolic malfunctions induce free radical generation which may further trigger pro-inflammatory signaling and nuclear factor kappa-light-chain-enhancer of activated B cells transcriptional factor, thus inducing interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase. This terrifying cardiomyopathy can be further aggravated in type 2 diabetes mellitus, thereby making obese diabetic patients prone toward the development of myocardial infarction (MI) or stroke in comparison to their nondiabetic counterparts. The accelerated oxidative stress and pro-inflammatory response induced cardiomyocyte hypertrophy, followed by apoptosis in obese diabetic individuals, causing progression of athero-thrombotic vascular disease. Being an efficient antioxidative and anti-inflammatory indolamine, melatonin effectively inhibits lipid peroxidation, pro-inflammatory reactions, thereby resolving free radical-induced myocardial damages along with maintaining antioxidant reservoir to preserve cardiovascular integrity. Prolonged melatonin treatment maintains balanced body weight and serum total cholesterol concentration by inhibiting cholesterol synthesis and promoting cholesterol catabolism. Additionally, melatonin promotes macrophage polarization toward the anti-inflammatory state, providing a proper shield during the recovery period. Therefore, the protective role of melatonin in maintaining the lipid metabolism homeostasis and blocking the atherosclerotic plaque rupture could be targeted as the possible therapeutic strategy for the management of obesity-induced acute MI. This review aimed at orchestrating the efficacy of melatonin in ameliorating irrevocable oxidative cardiovascular damage induced by the obesity-diabetes correlation.
Collapse
Affiliation(s)
- Juin Maity
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Tiyasa Dey
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | - Adrita Banerjee
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Asish R Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Debasish Bandyopadhyay
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, Kolkata, India
| |
Collapse
|
35
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
36
|
Yang S, Zeng H, Jiang L, Fu C, Gao L, Zhang L, Zhang Y, Zhang X, Zhu L, Zhang F, Chen J, Huang J, Zeng Q. Melatonin reduces melanogenesis by inhibiting the paracrine effects of keratinocytes. Exp Dermatol 2023; 32:511-520. [PMID: 36620869 DOI: 10.1111/exd.14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/28/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Keratinocytes regulate melanogenesis in a paracrine manner. Previous studies have shown that melatonin can directly inhibit melanin production in the melanocytes. However, it is unclear whether melatonin can also indirectly regulate melanogenesis through the keratinocytes. In this study, we explored the role of melatonin in regulating keratinocyte-mediated melanogenesis using reconstructed human epidermis (RHE). Melatonin showed an inhibitory effect on melanin synthesis in this model. Furthermore, the conditioned media from melatonin-treated HaCaT cells downregulated melanogenesis-related genes, including MITF, TYR, TYRP1, DCT and RAB27A in the pigment MNT1 cells, and decreased levels of phosphorylated ERK, JNK and p38. RNA sequencing further showed that mitochondrial functions and oxidative stress pathway in the MNT1 cells were inhibited by the conditioned medium from melatonin-treated HaCaT cells. Furthermore, melatonin reduced the secretion of ET-1 and PTGS2 from HaCaT cells by inhibiting the JAK2/STAT3 signalling pathway. In conclusion, melatonin downregulates the paracrine factors ET-1 and PTGS2 in the keratinocytes by inhibiting the JAK2/STAT3 pathway, which reduces melanin production in pigment cells. Thus, melatonin has a potential therapeutic effect on skin pigmentation disorders.
Collapse
Affiliation(s)
- Siyu Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yushan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Li N, Zhai K, Yin Q, Gu Q, Zhang X, Melencion MG, Chen Z. Crosstalk between melatonin and reactive oxygen species in fruits and vegetables post-harvest preservation: An update. Front Nutr 2023; 10:1143511. [PMID: 36937352 PMCID: PMC10020600 DOI: 10.3389/fnut.2023.1143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Fruits and vegetables contain numerous nutrients, such as vitamins, minerals, phenolic compounds, and dietary fibers. They reduce the incidence of cardiovascular diseases and the risk of certain chronic diseases, and improve the antioxidant and anti-inflammatory capacity. Moreover, melatonin was found in various fruits and vegetables species. Melatonin acts as a multifunctional compound to participate in various physiological processes. In recent years, many advances have been found that melatonin is also appraised as a key modulator on the fruits and vegetables post-harvest preservation. Fruits and vegetables post-harvest usually elicit reactive oxygen species (ROS) generation and accumulation. Excess ROS stimulate cell damage, protein structure destruction, and tissue aging, and thereby reducing their quality. Numerous studies find that exogenous application of melatonin modulates ROS homeostasis by regulating the antioxidant enzymes and non-enzymatic antioxidants systems. Further evidences reveal that melatonin often interacts with hormones and other signaling molecules, such as ROS, nitric oxide (NO), hydrogen sulfide (H2S), and etc. Among these 'new' molecules, crosstalks of melatonin and ROS, especially the H2O2 produced by RBOHs, are provided in fruits and vegetables post-harvest preservation in this review. It will provide reference for complicated integration of both melatonin and ROS as signal molecules in future study.
Collapse
Affiliation(s)
- Na Li
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou, China
| | - Qin Yin
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Merced G. Melencion
- Biology Department, Center for Biodiversity Research and Extension in Mindanao, Central Mindanao University, Musuan, Philippines
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| | - Ziping Chen
- Anhui Promotion Center for Technology Achievements Transfer, Anhui Academy of Science and Technology, Hefei, China
- *Correspondence: Merced G. Melencion, ; Ziping Chen,
| |
Collapse
|
38
|
Abdollahzade N, Mihanfar A, Majidinia M. Molecular mechanisms underlying ameliorative impact of melatonin against age-dependent chronic arsenic toxicity in rats' brains. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1010-1024. [PMID: 35546266 DOI: 10.1002/jez.2603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of random molecular damage such as oxidative DNA damage and inflammation is extremely found to be involved in the aging process. Due to extreme energy requirements and high lipid levels, the brain is more susceptible to oxidative damage during aging especially under exposure to toxic elements such as arsenic. Therefore, this study was aimed to evaluate the ameliorative effects of melatonin, as a neurohormone, on the arsenic-induced behavioral abnormalities, and the underlying mechanisms. Forty-eight rats, as young and old aged groups were exposed to 5.55 g/kg body weight arsenic for 4 weeks and then 10 mg/kg melatonin for 2 weeks. Our results showed that arsenic led to anxiety-like behavioral abnormalities in rats. Increased oxidative stress-induced damage to DNA, lipids and proteins, decreased potential of antioxidant defense system, induced apoptosis, elevated inflammation, and alteration in the histology of cortical region of brains are observed in the rats exposed to arsenic. These effects were more prominent in aged rats in comparison to young rats. Melatonin successfully attenuates arsenic induced adverse effects on the brain in both age groups. In conclusion, our study shows that melatonin has significant ameliorative impact on age-dependent cytotoxicity of arsenic in rats' brains.
Collapse
Affiliation(s)
- Naseh Abdollahzade
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ainaz Mihanfar
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
39
|
Pang Y, Li Y, Zhang Y, Wang H, Lang J, Han L, Liu H, Xiong X, Gu L, Wu X. Effects of inflammation and oxidative stress on postoperative delirium in cardiac surgery. Front Cardiovasc Med 2022; 9:1049600. [PMID: 36505383 PMCID: PMC9731159 DOI: 10.3389/fcvm.2022.1049600] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
The past decade has witnessed unprecedented medical progress, which has translated into cardiac surgery being increasingly common and safe. However, complications such as postoperative delirium remain a major concern. Although the pathophysiological changes of delirium after cardiac surgery remain poorly understood, it is widely thought that inflammation and oxidative stress may be potential triggers of delirium. The development of delirium following cardiac surgery is associated with perioperative risk factors. Multiple interventions are being explored to prevent and treat delirium. Therefore, research on the potential role of biomarkers in delirium as well as identification of perioperative risk factors and pharmacological interventions are necessary to mitigate the development of delirium.
Collapse
Affiliation(s)
- Yi Pang
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongfa Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junhui Lang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - He Liu
- Department of Anesthesiology, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou Central Hospital, Huzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Wu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China,*Correspondence: Xiaomin Wu,
| |
Collapse
|
40
|
Melatonin Function and Crosstalk with Other Phytohormones under Normal and Stressful Conditions. Genes (Basel) 2022; 13:genes13101699. [PMID: 36292584 PMCID: PMC9602040 DOI: 10.3390/genes13101699] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.
Collapse
|
41
|
Muñoz-Jurado A, Escribano BM, Agüera E, Caballero-Villarraso J, Galván A, Túnez I. SARS-CoV-2 infection in multiple sclerosis patients: interaction with treatments, adjuvant therapies, and vaccines against COVID-19. J Neurol 2022; 269:4581-4603. [PMID: 35788744 PMCID: PMC9253265 DOI: 10.1007/s00415-022-11237-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. The results regarding the increased risk of infection due to treatment are contradictory. B-cell depletion therapies may cause patients to have a lower probability of generating a detectable neutralizing antibody titer. However, more studies are needed to help understand how this virus works, paying special attention to long COVID and the neurological symptoms that it causes.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
| | - Begoña M. Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Clinical Analysis Service, Reina Sofía University Hospital, Cordoba, Spain
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain
| |
Collapse
|
42
|
Wang K, Chen YS, Chien HW, Chiou HL, Yang SF, Hsieh YH. Melatonin inhibits NaIO3-induced ARPE-19 cell apoptosis via suppression of HIF-1α/BNIP3-LC3B/mitophagy signaling. Cell Biosci 2022; 12:133. [PMID: 35986432 PMCID: PMC9389659 DOI: 10.1186/s13578-022-00879-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Age-related macular degeneration (AMD) leads to gradual central vision loss and eventual irreversible blindness. Melatonin, an endogenous hormone, exhibits anti-inflammatory and antitumor effects; however, the role it plays in AMD remains unclear. Herein, we investigated the anti-AMD molecular mechanism of melatonin after sodium iodate (NaIO3) treatment of ARPE-19 cells in vitro and in animal models with the goal of improving the therapeutic effect. Results The in vitro results showed that melatonin protected against NaIO3-induced cell viability decline, mitochondrial dysfunction and apoptosis in ARPE-19 cells, and melatonin also alleviated NaIO3-induced reactive oxygen species (ROS) production, mitochondrial dysfunction and mitophagy activation. Melatonin reduced NaIO3-induced mitophagy activation through HIF-1α-targeted BNIP3/LC3B transcription, whereas ROS inhibition realized with N-acetylcysteine (NAC, a ROS inhibitor) combined with melatonin reduced the effect of NaIO3 on mitophagy. An animal model of AMD was established to confirm the in vitro data. Mouse tail vein injection of NaIO3 and melatonin was associated with enhanced repair of retinal layers within 7 days, as observed by optical coherence tomography (OCT) and hematoxylin and eosin (H&E) staining. A reduction in BNIP3 and HIF-1α levels, as determined by immunohistochemistry (IHC) assay, was also observed. Conclusions These results indicate that melatonin attenuated NaIO3-induced mitophagy of ARPE-19 cells via reduction in ROS-mediated HIF-1α targeted BNIP3/LC3B signaling in vitro and in vivo. Melatonin may be a potential therapeutic drug in the treatment of AMD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00879-3.
Collapse
|
43
|
Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Farid A, Moussa P, Youssef M, Haytham M, Shamy A, Safwat G. Melatonin relieves diabetic complications and regenerates pancreatic beta cells by the reduction in NF-kB expression in streptozotocin induced diabetic rats. Saudi J Biol Sci 2022; 29:103313. [PMID: 35707823 PMCID: PMC9189213 DOI: 10.1016/j.sjbs.2022.103313] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.
Collapse
Affiliation(s)
- Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, Egypt
| | - Passant Moussa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Manar Youssef
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Merna Haytham
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ali Shamy
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
45
|
Palimi T, Zilaee M, Rajaei E, Karandish M. Effects of Melatonin on Sleep Quality and Disease Activity in Patients With Rheumatoid Arthritis. SLEEP MEDICINE RESEARCH 2022. [DOI: 10.17241/smr.2022.01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background and Objective In rheumatoid arthritis (RA) patients sleep disturbance is one of serious and prevalent problems. Considering the known effects of melatonin on sleep quality and inflammation, this study aimed to investigate melatonin supplementation effect on quality of sleep and disease activity in patients with RA.Methods In this randomized, placebo-controlled trial (double-blind), 64 RA patients were selected and divided into experimental and placebo groups randomly; experimental group received 3 mg/d of melatonin and another group consumed placebo for 60 days. Before and after the investigation, assessment of the quality of sleep determined using the Pittsburgh Sleep Quality Index (PSQI). Disease Activity Score-28 (DAS28) and the Visual Analogue Scale (VAS) questionnaires were used for evaluation of disease activity and pain intensity, respectively.Results Melatonin significantly reduced PSQI, DAS28 and VAS scores, when values compared with baseline. In contrast to placebo group, good sleep quality within the melatonin group increased significantly compared to baseline and this improvement in sleep quality was significant when compared between groups. The scores of DAS28 and pain VAS at the end of trial were significantly reduced compared to the baseline in both groups. However, reduction in the DAS28 and VAS scores of the melatonin group were stronger than reductions in the placebo receiving group.Conclusions This study results revealed that melatonin was safe and effective in improving sleep quality and reducing DAS28 and pain VAS scores in RA patients.
Collapse
|
46
|
Ciortea VM, Borda MI, Motoașcă I, Șușman S, Ciubean AD, Pintea AL, Ungur RA, Iliescu MG, Irsay L. Influence of melatonin on systemic inflammatory status and bone histopathological modifications in female rats with surgically induced menopause. BALNEO AND PRM RESEARCH JOURNAL 2022. [DOI: 10.12680/balneo.2022.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background. Melatonin, N-acetyl-5-methoxy-tryptamine is the major secretion product of the pineal gland with important anti-inflammatory and antioxidant properties, also being an im-portant marker of bone remodelling associated with menopause. Objectives. The aim of our study was to evaluate the effect of the co-administration of melatonin and estrogen on systemic inflammatory status and bone histopathological modifications in surgically induced menopau-sal female rats. Materials and methods. The study was performed on a number of 40 female rats, Wistar breed, which underwent bilateral surgical ovariectomy. Within 14 days postoperative, hormone replacement therapy with estrogen or estrogen with melatonin was initiated, in differ-ent doses. The treatment was administered for 12 consecutive weeks. At the end of the treatment we measured the serum levels of IL-6 and TNF-α. The femoral bones were harvested after sacri-ficing the animals and the thickness of the cortical bones was measured and histologically ana-lysed.
Results. Serum values of inflammatory markers were negatively correlated with melatonin ad-ministration, the differences being more important at higher doses of melatonin (for both IL-6 and TNF-α the difference between group E_2M with estrogen substitution and melatonin in double dose and control group W, without hormone replacement, was highly statistically signif-icant with p <0.0001). Bone diameters improved in the case of female rats that received hormone replacement with estrogen and higher dose of melatonin (p = 0.0004 between group E_2M, with hormone replacement and group W, control group). Conclusions. Melatonin improved inflam-matory status and bone histopathological changes in ovariectomized female rats.
Keywords: melatonin, estrogen replacement therapy, inflammation, low bone density
Collapse
Affiliation(s)
- Viorela Mihaela Ciortea
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | - Monica Ileana Borda
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | | | - Sergiu Șușman
- Department of Histology, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Alina Deniza Ciubean
- Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania
| | - Alina Liliana Pintea
- Dental Medicine and Nursing Department, ”Lucian Blaga” University of Sibiu, Faculty of Medi-cine, Academic Emergency Hospital of Sibiu, Romania
| | - Rodica Ana Ungur
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| | | | - Laszlo Irsay
- 1 Department of Rehabilitation, ”Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Romania 2 Clinical Rehabilitation Hospital Cluj-Napoca, Romania
| |
Collapse
|
47
|
Barrón-González M, Rosales-Hernández MC, Abad-García A, Ocampo-Néstor AL, Santiago-Quintana JM, Pérez-Capistran T, Trujillo-Ferrara JG, Padilla-Martínez II, Farfán-García ED, Soriano-Ursúa MA. Synthesis, In Silico, and Biological Evaluation of a Borinic Tryptophan-Derivative That Induces Melatonin-like Amelioration of Cognitive Deficit in Male Rat. Int J Mol Sci 2022; 23:3229. [PMID: 35328650 PMCID: PMC8952423 DOI: 10.3390/ijms23063229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Antonio Abad-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Ana L. Ocampo-Néstor
- Departamento de Nefrología, Hospital General de México, “Dr. Eduardo Liceaga”, Dr. Balmis 148, Alc. Cuauhtémoc, Mexico City 06720, Mexico;
| | - José M. Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - José G. Trujillo-Ferrara
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| |
Collapse
|
48
|
Eftimie Totu E, Mănuc D, Totu T, Cristache CM, Buga RM, Erci F, Cristea C, Isildak I. Considerations on the Controlled Delivery of Bioactive Compounds through Hyaluronic Acid Membrane. MEMBRANES 2022; 12:membranes12030303. [PMID: 35323778 PMCID: PMC8949277 DOI: 10.3390/membranes12030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: The standard treatment for periodontal disease, a chronic inflammatory state caused by the interaction between biofilms generated by organized oral bacteria and the local host defense response, consists of calculus and biofilm removal through mechanical debridement, associated with antimicrobial therapy that could be delivered either systemically or locally. The present study aimed to determine the effectiveness of a hyaluronic acid membrane matrix as a carrier for the controlled release of the active compounds of a formulation proposed as a topical treatment for periodontal disease, and the influence of pH on the complex system’s stability. (2) Methods: The obtained hyaluronic acid (HA) hydrogel membrane with dispersed melatonin (MEL), metronidazole (MZ), and tetracycline (T) was completely characterized through FTIR, XRD, thermal analysis, UV-Vis and fluorescence spectroscopy, fluorescence microscopy, zeta potential and dielectric analysis. The MTT viability test was applied to check the cytotoxicity of the obtained membranes, while the microbiological assessment was performed against strains of Staphylococcus spp. and Streptococcus spp. The spectrophotometric investigations allowed to follow up the release profile from the HA matrix for MEL, MZ, and T present in the topical treatment considered. We studied the behavior of the active compounds against the pH of the generated environment, and the release profile of the bioactive formulation based on the specific comportment towards pH variation. The controlled delivery of the bioactive compounds using HA as a supportive matrix was modeled applying Korsmeyer–Peppas, Higuchi, first-order kinetic models, and a newly proposed pseudo-first-order kinetic model. (3) Results: It was observed that MZ and T were released at higher active concentrations than MEL when the pH was increased from 6.75, specific for patients with periodontitis, to a pH of 7.10, characterizing the healthy patients. Additionally, it was shown that for MZ, there is a burst delivery up to 2.40 × 10−5 mol/L followed by a release decrease, while for MEL and T a short release plateau was recorded up to a concentration of 1.80 × 10−5 mol/L for MEL and 0.90 × 10−5 mol/L for T, followed by a continuous release; (4) Conclusions: The results are encouraging for the usage of the HA membrane matrix as releasing vehicle for the active components of the proposed topical treatment at a physiological pH.
Collapse
Affiliation(s)
- Eugenia Eftimie Totu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1–7 Polizu St., 011061 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Daniela Mănuc
- Department of Public Health, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Tiberiu Totu
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Corina Marilena Cristache
- Department of Dental Techniques, Faculty of Midwifery and Nursing (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Roxana-Mădălina Buga
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Fatih Erci
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Yeni Meram Boulevard Kasim Halife Street, Meram, Konya 42090, Turkey;
| | - Camelia Cristea
- Biotechnologies Center, University of Agriculture and Veterinary Medicine, 42 Blvd. Mărăşti, 011464 Bucharest, Romania;
| | - Ibrahim Isildak
- Department of Bioengineering, Yildiz Campus Barbaros Bulvari, Yildiz Technical University, Istanbul 34343, Turkey;
| |
Collapse
|
49
|
Balaji TM, Varadarajan S, Jagannathan R, Gupta AA, Raj AT, Patil S, Fageeh HI, Fageeh HN. Melatonin levels in periodontitis vs. the healthy state: A systematic review and meta-analysis. Oral Dis 2022; 28:284-306. [PMID: 33063408 DOI: 10.1111/odi.13679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The aim was to provide a comprehensive qualitative and quantitative assessment of any potential differences in melatonin levels in periodontitis vs. the healthy state. The keyword combination "melatonin" AND "periodontitis" was searched in Web of Science, PubMed, and Scopus. Qualitative analysis and quantitative analysis were performed on articles satisfying the inclusion criteria. Only 14 studies were included in the systematic review, out of which only 10 had quantitative data compatible with a meta-analysis. Ten studies demonstrated low melatonin in periodontitis, three studies demonstrated an initial reduction in melatonin levels followed by elevation with worsening of periodontitis, and one study showed an elevation in melatonin levels in the transition from a healthy state to periodontitis. Grading of recommendations assessment, development, and evaluation revealed that all the included studies had low to very low overall evidence. The meta-analysis revealed a significant reduction (p < .0001) in salivary melatonin levels in chronic periodontitis (3.26 ± 3.44 pg/ml) compared with healthy controls (5.27 ± 5.39 pg/ml), with a mean difference of 2.65 ± 7.84 and a confidence interval of 1.94-3.36. The significantly lower salivary melatonin levels in periodontitis must be inferred with caution given the low quality of the included studies.
Collapse
Affiliation(s)
| | - Saranya Varadarajan
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | | | - Archana A Gupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr.D.Y.Patil Vidyapeeth, Pune, India
| | - A Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hammam Ibrahim Fageeh
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Hytham N Fageeh
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
50
|
Wibrow B, Martinez FE, Myers E, Chapman A, Litton E, Ho KM, Regli A, Hawkins D, Ford A, van Haren FMP, Wyer S, McCaffrey J, Rashid A, Kelty E, Murray K, Anstey M. Prophylactic melatonin for delirium in intensive care (Pro-MEDIC): a randomized controlled trial. Intensive Care Med 2022; 48:414-425. [DOI: 10.1007/s00134-022-06638-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022]
|