1
|
Maleki Sedgi F, Mozaffari N, Pashaei MR, Hajizadeh-Sharafabad F. Effect of fermented soybean on metabolic outcomes, anthropometric indices, and body composition: a systematic review and meta-analysis of clinical trials. Food Funct 2025; 16:389-405. [PMID: 39763426 DOI: 10.1039/d4fo02668c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The aim of the current study was to systematically review and quantify the findings of randomized controlled trials (RCTs) assessing the effect of fermented soy products on anthropometric indices, body composition, and metabolic outcomes. PubMed, Scopus, and Web of Science were searched to identify the relevant articles from inception until March 2024. The weighted mean differences (WMD) and corresponding 95% confidence intervals (CI) were calculated as effect sizes and analyzed using the random-effects method. A total of 2205 records were found, of which 15 RCTs were eligible. Results demonstrated significant beneficial effects of fermented soy on body mass index (WMD = -0.14 kg m-2, 95% CI: -0.28, -0.01, P = 0.039), waist circumference (WMD = -1.50 cm, 95% CI: -2.94, -0.07, P = 0.04), visceral fat (WMD = -692.17 mm2, 95% CI: -1011.58, -372.77, P < 0.001), fasting plasma glucose (WMD = -6.39 mg dL-1, 95% CI: -10.38, -2.40, P = 0.002), and total cholesterol (WMD = -5.0 mg dL-1, 95% CI: -6.60, -3.39, P < 0.001) compared with controls. However, the responses of other parameters to fermented soy were not significant. Overall, fermented soy may confer health benefits on certain metabolic outcomes, anthropometric indices, and body composition.
Collapse
Affiliation(s)
- Fatemeh Maleki Sedgi
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nazanin Mozaffari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
2
|
Huang Z, Zhao Y, Yang W, Lang L, Sheng J, Tian Y, Gao X. Preparation of flavonoids from Amomum tsaoko and evaluation of their antioxidant and α-glucosidase inhibitory activities. Food Chem X 2025; 25:102177. [PMID: 39897968 PMCID: PMC11786917 DOI: 10.1016/j.fochx.2025.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/05/2025] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
Amomum tsaoko is an important homologous medicinal and food plant, and its fruit is rich in flavonoids. However, few studies have reported the preparation and bioactivity of flavonoids in A. tsaoko (ATF). In this study, the optimal conditions for ultrasound-assisted extraction of ATF were identified through response surface optimization. HPD300 was identified as the best resin for the purification of ATF, as it exhibited a Freundlich model-conformative adsorption isotherm. Among the different concentrations of ethanol, 20 % and 30 % resulted in higher flavonoid purity (>90 %) and stronger antioxidant and α-glucosidase inhibition activities. A widely targeted metabolomics assay revealed that the relative abundance of flavonoids in a mixture of 20 % and 30 % ethanol eluates was greater than 73 %, which mainly contained (+)-epicatechin, isoquercitrin, astragalin kaempferol-3-O-rutinoside, and procyanidin B2. These findings provide a theoretical basis for the in-depth development and potential use of ATF in the functional food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Zelin Huang
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lu Lang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Song X, Qian L, Zhang D, Wang X, Fu L, Chen M. Effectiveness of Differentiating Mold Levels in Soybeans with Electronic Nose Detection Technology. Foods 2024; 13:4064. [PMID: 39767006 PMCID: PMC11675939 DOI: 10.3390/foods13244064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
This study employed electronic nose technology to assess the mold levels in soybeans, conducting analyses on artificially inoculated soybeans with five strains of fungi and distinguishing them from naturally moldy soybeans. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to evaluate inoculated and naturally moldy samples. The results revealed that the most influential sensor was W2W, which is sensitive to organic sulfur compounds, followed by W1W (primarily responsive to inorganic sulfur compounds), W5S (sensitive to small molecular nitrogen oxides), W1S (responsive to short-chain alkanes such as methane), and W2S (sensitive to alcohols, ethers, aldehydes, and ketones). These findings highlight that variations in volatile substances among the moldy soybean samples were predominantly attributed to organic sulfur compounds, with significant distinctions noted in inorganic sulfur, nitrogen compounds, short-chain alkanes, and alcohols/ethers/aldehydes/ketones. The results of the PCA and LDA analyses indicated that while both methods demonstrated moderate effectiveness in distinguishing between different dominant fungal inoculations and naturally moldy soybeans, they were more successful in differentiating various levels of moldiness, achieving a discriminative accuracy rate of 82.72% in LDA. Overall, the findings suggest that electronic nose detection technology can effectively identify mold levels in soybeans.
Collapse
Affiliation(s)
- Xuejian Song
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Lili Qian
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xinhui Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
| | - Lixue Fu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
| | - Mingming Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.S.); (X.W.); (L.F.); (M.C.)
| |
Collapse
|
4
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen H, Aili R, Wang M, Qiu F. Transformation profiles of the isoflavones in germinated soybean based on UPLC-DAD quantification and LC-QTOF-MS/MS confirmation. Food Chem X 2024; 22:101413. [PMID: 38707783 PMCID: PMC11068514 DOI: 10.1016/j.fochx.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
Germinated soybean is one kind of food and a medicine. In the actual process of producing a large amount of naturally germinated soybean, it is difficult to strictly control the germination process conditions. However, sprout length may be more suitable as the terminal judgment indicator for naturally germinated soybean. An UPLC-DAD method was developed and validated to explore the transformation profiles of soybean isoflavones in germinated yellow or black soybean with different sprout lengths. Moreover, an LC - QTOF-MS/MS method was used to avoid false positive results. The contents of daidzein, glycitein, and genistein almost reached their corresponding maximum values when the sprout length ranged from 1.0 cm to 1.5 cm (P < 0.05). Therefore, yellow soybean is suggested to be the processing raw material with higher contents of those isoflavones, and the optimal sprout length for germinated soybean may be in the range of 1.0-1.5 cm.
Collapse
Affiliation(s)
| | | | - Manyuan Wang
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Feng Qiu
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Zheng Q, Wang F, Nie C, Zhang K, Sun Y, Al-Ansi W, Wu Q, Wang L, Du J, Li Y. Elevating the significance of legume intake: A novel strategy to counter aging-related mitochondrial dysfunction and physical decline. Compr Rev Food Sci Food Saf 2024; 23:e13342. [PMID: 38634173 DOI: 10.1111/1541-4337.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mitochondrial dysfunction increasingly becomes a target for promoting healthy aging and longevity. The dysfunction of mitochondria with age ultimately leads to a decline in physical functions. Among them, biogenesis dysfunction and the imbalances in the metabolism of reactive oxygen species and mitochondria as signaling organelles in the aging process have aroused our attention. Dietary intervention in mitochondrial dysfunction and physical decline during aging processes is essential, and greater attention should be directed toward healthful legume intake. Legumes are constantly under investigation for their nutritional and bioactive properties, and their consumption may yield antiaging and mitochondria-protecting benefits. This review summarizes mitochondrial dysfunction with age, discusses the benefits of legumes on mitochondrial function, and introduces the potential role of legumes in managing aging-related physical decline. Additionally, it reveals the benefits of legume intake for the elderly and offers a viable approach to developing legume-based functional food.
Collapse
Affiliation(s)
- Qingwei Zheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feijie Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Waleed Al-Ansi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Zhou J, Sun F, Zhang W, Feng Z, Yang Y, Mei Z. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury. Front Pharmacol 2024; 15:1352760. [PMID: 38487170 PMCID: PMC10937431 DOI: 10.3389/fphar.2024.1352760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major contributor to poor prognosis of ischemic stroke. Flavonoids are a broad family of plant polyphenols which are abundant in traditional Chinese medicine (TCM) and have beneficial effects on several diseases including ischemic stroke. Accumulating studies have indicated that flavonoids derived from herbal TCM are effective in alleviating CIRI after ischemic stroke in vitro or in vivo, and exhibit favourable therapeutical potential. Herein, we systematically review the classification, metabolic absorption, neuroprotective efficacy, and mechanisms of TCM flavonoids against CIRI. The literature suggest that flavonoids exert potential medicinal functions including suppressing excitotoxicity, Ca2+ overloading, oxidative stress, inflammation, thrombin's cellular toxicity, different types of programmed cell deaths, and protecting the blood-brain barrier, as well as promoting neurogenesis in the recovery stage following ischemic stroke. Furthermore, we identified certain matters that should be taken into account in future research, as well as proposed difficulties and opportunities in transforming TCM-derived flavonoids into medications or functional foods for the treatment or prevention of CIRI. Overall, in this review we aim to provide novel ideas for the identification of new prospective medication candidates for the therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Yang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
8
|
Guo Q, Peng J, He Y. A Systematic Comparative Study on the Physicochemical Properties, Volatile Compounds, and Biological Activity of Typical Fermented Soy Foods. Foods 2024; 13:415. [PMID: 38338550 PMCID: PMC10855112 DOI: 10.3390/foods13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Fermented soy foods can effectively improve the unpleasant odor of soybean and reduce its anti-nutritional factors while forming aromatic and bioactive compounds. However, a differential analysis of characteristic flavor and function among different fermented soy foods has yet to be conducted. In this study, a systematic comparison of different fermented soy foods was performed using E-nose, HS-SMPE-GC×GC-MS, bioactivity validation, and correlation analysis. The results showed that soy sauce and natto flavor profiles significantly differed from other products. Esters and alcohols were the main volatile substances in furu, broad bean paste, douchi, doujiang, and soy sauce, while pyrazine substances were mainly present in natto. Phenylacetaldehyde contributed to the sweet aroma of furu, while 1-octene-3-ol played a crucial role in the flavor formation of broad bean paste. 2,3-Butanediol and ethyl phenylacetate contributed fruity and honey-like aromas to douchi, doujiang, and soy sauce, respectively, while benzaldehyde played a vital role in the flavor synthesis of douchi. All six fermented soy foods demonstrated favorable antioxidative and antibacterial activities, although their efficacy varied significantly. This study lays the foundation for elucidating the mechanisms of flavor and functionality formation in fermented soy foods, which will help in the targeted development and optimization of these products.
Collapse
Affiliation(s)
- Qingyan Guo
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Jiabao Peng
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
| | - Yujie He
- Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (J.P.); (Y.H.)
| |
Collapse
|
9
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
10
|
Bhaiyya R, Sharma SC, Singh RP. Biochemical characterization of bifunctional enzymatic activity of a recombinant protein (Bp0469) from Blautia producta ATCC 27340 and its role in the utilization of arabinogalactan oligosaccharides. Int J Biol Macromol 2023; 253:126736. [PMID: 37678698 DOI: 10.1016/j.ijbiomac.2023.126736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Human consumption of larch arabinogalactan has a significant effect on enhancing probiotic microflora in the gut, and it also promotes the production of short-chain fatty acids. Bacterial members of Lachnospiraceae family are important and play significant roles in maintaining our gut health. However, it is less known about biochemistry of members of this family by which they utilize non-cellulosic fiber in the gut. For enhancing this understanding, we studied that B. producta ATCC 27340 grew on arabinogalactan oligosaccharides (AGOs) as compared to polysaccharide form of arabinogalactan. Recombinant protein (Bp0469) was heterologously expressed in Escherichia coli BL21 (DE3) and revealed the optimum pH and temperature at 7.4 in phosphate buffer and 45 °C, respectively. Catalytic efficiency of recombinant Bp0469 for p-nitrophenyl (pNP)-α-L-arabinofuranoside was about half of pNP-β-D-galactopyranoside. It also cleaved natural substrates (lactose, arabinobiose and 3-O-(β-d-galactopyranosyl)-d-galactopyranose) and characterized AGOs in this study. Based on genomic, structural models, and biochemical characteristics, identified Bp0469 is a peculiar enzyme with two distinct domains that cleave α1-5 linked arabinobiose and β-D-Galp-1-3/4 linkages. Overall, the study enhances the knowledge on nutritional perspective of B. producta ATCC 27340 for thriving on non-cellulosic biomass, and identified enzyme can also be used for producing industrial important AGOs.
Collapse
Affiliation(s)
- Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| |
Collapse
|
11
|
Sun J, Wei Y, Miao R, Zhang X, Zhang B, Zhang L, Zhao L. Comparison of the effects of different percentages of soy protein in the diet on patients with type 2 diabetic nephropathy: systematic reviews and network meta-analysis. Front Nutr 2023; 10:1184337. [PMID: 37693248 PMCID: PMC10484530 DOI: 10.3389/fnut.2023.1184337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Background Dietary soy protein (SP) is a potential intervention for protecting the kidneys and improving glucose and lipid metabolism. However, whether this effect is related to the percentage of SP intake remains unclear. Objective This study aims to review and analyze the results of randomized clinical trials (RCTs) in patients with type 2 diabetic nephropathy (T2DN) who received diets with different percentages of SP. Methods The databases: PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, China National Knowledge Infrastructure (CNKI), Chinese BioMedical Literature Database (CBM), WanFang, Weipu (VIP), and ClinicalTrials.gov were searched until February 2023, for RCTs on T2DN and SP. Results A total of six studies comprising 116 participants were included. The interventions were classified as 0% SP, 35% SP, and 100% SP. To improve serum creatinine (Scr), blood urea nitrogen (BUN), 24-h urine total protein (24hUTP), and glomerular filtration rate (GFR), a 35% SP diet was the most effective, compared to a 0% SP diet, which showed a mean difference of -154.00 (95% confidence interval: -266.69, -41.31) for 24hUTP. Although it had significant benefits for 24hUTP, great heterogeneity was observed. To improve the glycolipid metabolism-related markers such as cholesterol (CHO), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting blood glucose (FPG), and weight, the 35% SP diet demonstrated superior efficacy compared to the 0% SP diet. Specifically, the mean difference for CHO was -0.55 (95% confidence interval: -1.08, -0.03), and for LDL-C, it was -17.71 (95% confidence interval: -39.67, -4.24). The other indicators were not statistically significant. Most studies had concerns regarding the risk of bias. Conclusion The findings of this study demonstrate that both 35% and 100% SP diets are more effective than a diet with no SP in improving renal function and glucolipid metabolism in patients with T2DN. As a result, a diet incorporating 35% SP may be the optimal choice for individuals with T2DN. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=352638, identifier CRD42022352638.
Collapse
Affiliation(s)
- Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Letizia F, Fratianni A, Cofelice M, Testa B, Albanese G, Di Martino C, Panfili G, Lopez F, Iorizzo M. Antioxidative Properties of Fermented Soymilk Using Lactiplantibacillus plantarum LP95. Antioxidants (Basel) 2023; 12:1442. [PMID: 37507980 PMCID: PMC10376881 DOI: 10.3390/antiox12071442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In recent times, there has been a growing consumer interest in replacing animal foods with alternative plant-based products. Starting from this assumption, for its functional properties, soymilk fermented with lactic acid bacteria is gaining an important position in the food industry. In the present study, soymilk was fermented with Lactiplantibacillus plantarum LP95 at 37 °C, without the use of stabilizers as well as thickeners and acidity regulators. We evaluated the antioxidant capacity of fermented soymilk along with its enrichment in aglycone isoflavones. The conversion of isoflavone glucosides to aglycones (genistein, glycitein, and daidzein) was analyzed together with antioxidant activity (ABTS) measurements, lipid peroxidation measurements obtained by a thiobarbituric acid reactive substance (TBARS) assay, and apparent viscosity measurements. From these investigations, soymilk fermentation using Lp. plantarum LP95 as a starter significantly increased isoflavones' transformation to their aglycone forms. The content of daidzein, glycitein, and genistein increased after 24 h of fermentation, reaching levels of 48.45 ± 1.30, 5.10 ± 0.16, and 56.35 ± 1.02 μmol/100 g of dry weight, respectively. Furthermore, the antioxidant activity increased after 6 h with a reduction in MDA (malondialdehyde). The apparent viscosity was found to increase after 24 h of fermentation, while it slightly decreased, starting from 21 days of storage. Based on this evidence, Lp. plantarum LP95 appears to be a promising candidate as a starter for fermented soymilk production.
Collapse
Affiliation(s)
- Francesco Letizia
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Martina Cofelice
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Bruno Testa
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Catello Di Martino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Gianfranco Panfili
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Francesco Lopez
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy
| |
Collapse
|
13
|
Lyu B, Wang F, Li Y, Quek SY, Yu H. Editorial: Innovative high value-added processing of soybean and its by-products. Front Nutr 2023; 10:1240249. [PMID: 37441518 PMCID: PMC10334418 DOI: 10.3389/fnut.2023.1240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Bo Lyu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| | - Fengzhong Wang
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Li
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Siew Young Quek
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agriculture University, Changchun, China
- Soybean Research & Development Center, Division of Soybean Processing, Chinese Agricultural Research System, Changchun, China
| |
Collapse
|
14
|
Determination of γ-aminobutyric acid in fermented soybean products by HPLC coupled with pre-column derivatization. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Urrego-Pava F, Coy-Barrera E. Isoflavone Content and Nutritional-Related Properties of Debittered Seeds from Two Andean Lupin ( Lupinus mutabilis Sweet) Ecotypes Propagated in Two Soils. Foods 2023; 12:foods12091841. [PMID: 37174379 PMCID: PMC10178703 DOI: 10.3390/foods12091841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Lupinus mutabilis Sweet is a fabaceous plant native to the Andean highlands and produces seeds with valuable nutritional properties. Thus, as part of our research on native emerging food, the present study aimed at determining some nutritional and functional-related features of seeds from two L. mutabilis ecotypes after propagation in two different substrates commonly found in the Bogotá plateau. Propagated plants produced seeds that, after conventional debittering, exhibited attractive contents of soluble protein (24-39 g/100 g dry seed powder (dsp)), phenolic (787-1003 g/100 g dsp), isoflavone (1-104 g/100 g dsp), and iron (5.3-6.4 g/100 g dsp), as well as antioxidant capacity (39-78 µM/100 g dsp). Higher pH, humidity saturation, organic matter, and total nitrogen of silty loam soil promoted isoflavone accumulation and better antioxidant capacity at pH 4-7, and no soil effect was observed for total phenolic and iron contents. The profiles based on isoflavone aglycones were also recorded by liquid chromatography-mass spectrometry, detecting eleven main compounds with mutabilein as the most abundant isoflavone (38.3-104.3 g/100 g dsp). Finally, a formulation was developed to fabricate an emulsion-type drink based on the debittered, pulverized L. mutabilis seeds, resulting in different emulsifying capacities (19-100%) depending on the biopolymer stabilizer, being xanthan gum the best additive. The findings revealed an attractive Andean lupin profile to be used as a raw food material.
Collapse
Affiliation(s)
- Francisco Urrego-Pava
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
16
|
Effects of selected Bacillus strains on the biogenic amines, bioactive ingredients and antioxidant capacity of shuidouchi. Int J Food Microbiol 2023; 388:110084. [PMID: 36657185 DOI: 10.1016/j.ijfoodmicro.2022.110084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
The control of biogenic amines (BAs) is crucial to guarantee the safety of fermented soybean products. In this study, the BAs composition of eleven shuidouchi samples was analyzed, and the BAs degradation strains were selected from shuidouchi samples with a low BAs content. Then the influences of screened BAs degradation strains on BAs, total phenolics (TP), total flavonoids (TF), isoflavones and the antioxidant ability of fermented shuidouchi were evaluated. Results showed that the total BAs content of all shuidouchi samples was within the safe range, while the GZXQ, GZQY and GZMX samples had higher levels of tyramine. Meanwhile, 109 strains were isolated from the YNLJ, GZLG, GZMZ, GZDY, and YNHY sample. Bacillus tropicus A11, Bacillus siamensis D11, Bacillus subtilis T2, and B. subtilis U2 with higher BAs degradation capacity and lower BAs production ability were selected to ferment shuidouchi. These four Bacillus strains could effectively control the BAs concentration of fermented shuidouchi, especially B. tropicus A11 and B. siamensis D11. Furthermore, compared to naturally fermented shuidouchi, higher levels of antioxidant ability, TP, TF, daidzein, glyciein, and genistein were found in the shuidouchi fermented with selected strains. These findings demonstrated that these screened strains could be applied as potential candidates for the production of high quality shuidouchi.
Collapse
|
17
|
Song W, Sun S, Wu T, Yang R, Tian S, Xu C, Jiang B, Yuan S, Hou W, Wu C, Han T. Geographic distributions and the regionalization of soybean seed compositions across China. Food Res Int 2023; 164:112364. [PMID: 36737952 DOI: 10.1016/j.foodres.2022.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
As one of major food crops, soybean is grown over a broad ecological region in China with considerable variations in environmental conditions, and the seed compositions of soybeans are diverse among different regions. To clarify the spatial patterns of soybean seed compositions, crude oil, protein, and 11 categories of functional components were quantified in 1792 soybean samples collected from a vast range of soybean planting regions across China spanning from 2010 to 2017. The Kriging interpolation maps presented a clear north-to-south (high latitude to low latitude) increasing trend in contents of crude protein and dietary fiber and decreasing trend in contents of crude oil, phospholipids, saponins, and carotenoids. Soybeans with high-level of total oligosaccharide were concentrated in the central region. Based on the geographical distribution of soybean nutritional components, weather conditions, and cultivation systems, the soybean production areas in China were divided into three regions and 10 subregions. This study highlights the geographic distribution of soybean nutritional compositions and provides scientific evidence for guiding the construction of high-quality edible soybean production bases in China.
Collapse
Affiliation(s)
- Wenwen Song
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ruping Yang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Shiyan Tian
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailong Xu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Egea MB, De Sousa TL, Dos Santos DC, De Oliveira Filho JG, Guimarães RM, Yoshiara LY, Lemes AC. Application of Soy, Corn, and Bean By-products in the Gluten-free Baking Process: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
What Is the Relationship between Antioxidant Efficacy, Functional Composition, and Genetic Characteristics in Comparing Soybean Resources by Year? Antioxidants (Basel) 2022; 11:antiox11112249. [DOI: 10.3390/antiox11112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to analyze the physiological activity of 48 soybean resources harvested in 2020 to identify the soybean resources’ relationships with individual isoflavone compounds and their genetic properties. These data will subsequently be compared with the research results on soybeans harvested in 2019. Initially, with respect to the physiological activity (6 types) and substances (19 types), this study evaluated the differences between the cultivation year (two years), seed coat color (three colors), and the interaction of the year and seed coat color of soybeans through ANOVA. Among the physiological activities, there were differences in the estrogen, estrogen receptor alpha, and UCP-1 (uncoupling protein-1) activities depending on the cultivation year. Moreover, there were differences in NO (nitric oxide), revealing differences in the ABTS (2, 2′-azino-bis-3ethylbenzo-thiazoline-6-sulfonic acid) and DPPH (2, 2-diphenyl-2-picrylhydrazyl) radical scavenging activities due to the seed coat color and the interaction of the year and seed coat color. Soybeans harvested in 2020 exhibited increased ABTS, DPPH, and NO inhibitory activities and reduced estrogen, estrogen receptor alpha, and UCP-1 activities compared to those harvested in 2019. According to the ANOVA results, eight of the nineteen individual derivatives illustrated yearly differences, while three derivatives displayed differences due to the seed coat color. Secondly, according to the relationship between the efficacy, derivative substances, and genetic properties, it was determined that genistein 7-O-(2″-O-apiosyl)glucoside (F5) is the individual isoflavone derivative that affected the six types of physiological activity, on which the genome-wide association study (GWAS) showed no significant differences for genetic properties. These results were inconsistent with the 2019 data, where three types of individual compounds, including F5, were proposed as substances that correlated with efficacy and there was a high correlation with genetic properties. Therefore, this study selected B17, B23, B15, B24, and Y7 as excellent varieties that are stable and highly functional in the cultivation environment, producing only small annual differences. The results of this study will be utilized as basic data for predicting soybean varieties and their cultivation, which have high environmental stability under climate variation and properly retain the functional substances and efficacy.
Collapse
|
20
|
Yin Y, Tian X, He X, Yang J, Yang Z, Fang W. Exogenous melatonin stimulated isoflavone biosynthesis in NaCl-stressed germinating soybean (Glycine max L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:123-131. [PMID: 35671589 DOI: 10.1016/j.plaphy.2022.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (MT) has gained increasing attention due to its pleiotropic effects. In this study, the function of exogenous MT on the response to NaCl stress and isoflavone biosynthesis in germinating soybeans was investigated. Results showed the exogenous MT (100 μM) application neutralised the negative effects of NaCl stress (60 mM), induced sprout growth, biomass and fluorescence intensity of intracellular free calcium, decreased malondialdehyde, H2O2 content and fluorescence intensity of O2•-, and enhanced superoxide dismutase, catalase and peroxidas activities of germinating soybeans. Meanwhile, total flavonoids and different forms of isoflavone content were enhanced by MT application, not only companied by the up-regulated relative gene expression of cinnamic acid 4-hydroxylase chalcone reductase, chalcone isomerase 1A, isoflavone reductase and isoflavone synthase 1 that involved in isoflavone biosynthesis, but also increased activities of phenylalanine ammonia lyase and 4-coumarate coenzyme A ligase. Given the evidence from the present study, it's proposed that the exogenous MT could relieve NaCl stress and stimulate isoflavone biosynthesis in germinating soybeans.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xin Tian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, Jiangsu, 225009, PR China
| | - Zhengfei Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Weiming Fang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
21
|
Bodurlar Y, Caliskan M. Inhibitory activity of soybean (Glycine max L. Merr.) Cell Culture Extract on tyrosinase activity and melanin formation in alpha-melanocyte stimulating Hormone-Induced B16-F10 melanoma cells. Mol Biol Rep 2022; 49:7827-7836. [PMID: 35733058 DOI: 10.1007/s11033-022-07608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hyperpigmentation, which causes excessive melanin synthesis and accumulation, is an important issue in the cosmetic industry. Since compounds developed against hyperpigmentation often come with side effects such as skin irritation and contact dermatitis, new studies focus on the use of natural agents that have no side effects. METHODS AND RESULTS In this study, it was found that the effects of soybean cell culture extract (SCE) on alpha-melanocyte-stimulating hormone (α-MSH) induced melanogenesis in B16-F10 murine melanoma cells. The cells were incubated with SCE for 48 h after treatment with α‑MSH for 24 h to analysis the melanin content, cellular tyrosinase activity, and gene and protein expression. SCE at 1 mg/mL decreased melanin content and tyrosinase activity by 34% and 24%, respectively, compared to the α-MSH-treated group, which did not decrease cell viability. In addition, SCE (1 mg/mL) downregulated the expression of tyrosinase (TYR), tyrosinase-related protein (TRP)-1, tyrosinase-related protein (TRP)-2, and microphthalmia-associated transcription factor (MITF) genes 1.5-, 1.5-, 2-, and 2-fold, respectively. Furthermore, SCE inhibited the expression of TYR, TRP1, and TRP2 by decreasing the expression of MITF, as shown in a western blot assay. CONCLUSIONS This study suggests that SCE reveals dose-dependent inhibition of melanin synthesis through the suppression of tyrosinase activity as well as molecular levels of TYR, TRP1, TRP2, and MITF in B16-F10 murine melanoma cells. Therefore, SCE has the potential to be an effective and natural skin-whitening agent for application in the cosmetic industry.
Collapse
Affiliation(s)
- Yildiz Bodurlar
- R&D department, ACTV Biotechnology Lab. Ind. and Trade Inc. Comp, 34197, Istanbul, Turkey.
| | - Mahmut Caliskan
- Faculty of Sciences, Department of Biology, Biotechnology Division, Istanbul University, 34452, Istanbul, Turkey
| |
Collapse
|
22
|
Dulf EH, Vodnar DC, Danku A, Martău AG, Teleky BE, Dulf FV, Ramadan MF, Crisan O. Mathematical Modeling and Optimization of Lactobacillus Species Single and Co-Culture Fermentation Processes in Wheat and Soy Dough Mixtures. Front Bioeng Biotechnol 2022; 10:888827. [PMID: 35814014 PMCID: PMC9260078 DOI: 10.3389/fbioe.2022.888827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction patterns in various conditions. For example, LAB can bring added quality to bread by releasing several bioactive compounds when adding soy flour to wheat flour, thus revealing the great potential for functional food development. In the present work, the fermentation of three soy and wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to obtain the optimal amount of final product; creating a mathematical model can gain important information and aids in the optimization of the process. Consequently, mathematical modeling is used to optimize the fermentation process by following these LAB’s growth kinetics and viability. The present work uses both multiple regression and artificial neural networks (ANN) to obtain the necessary mathematical model, useful in both prediction and process optimization. The main objective is to find a model with optimal performances, evaluated using an ANOVA test. To validate each obtained model, the simulation results are compared with the experimental data.
Collapse
Affiliation(s)
- Eva-H. Dulf
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C. Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Alex Danku
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adrian Gheorghe Martău
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Francisc V. Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- *Correspondence: Francisc V. Dulf,
| | - Mohamed Fawzy Ramadan
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ovidiu Crisan
- Department of Organic Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Li F, Zhang J, Wang Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit Rev Anal Chem 2022; 54:333-354. [PMID: 35533108 DOI: 10.1080/10408347.2022.2073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
Collapse
Affiliation(s)
- Fengjiao Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
24
|
Hu Q, Liao W, Zhang Z, Shi S, Hou S, Ji N, Zhang X, Zhang Q, Liao Y, Li L, Zhu Z, Chen Y, Chen J, Yu F, Yang Q, Xiao H, Fu C, Du H, Wang Q, Cao H, Xiao H, Li R. The hepatoprotective effects of plant-based foods based on the "gut-liver axis": a prospective review. Crit Rev Food Sci Nutr 2022; 63:9136-9162. [PMID: 35466839 DOI: 10.1080/10408398.2022.2064423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ningping Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xinjie Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yangyang Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fangkun Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
25
|
Lee CH, Yang H, Yoon Park JH, Kim JE, Lee KW. Orobol from enzyme biotransformation attenuates Dermatophagoides farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Food Funct 2022; 13:4592-4599. [PMID: 35355022 DOI: 10.1039/d1fo04362e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orobol, a metabolite of genistein, is rare in natural soybean. Several studies have revealed the immune-controlling effects of orobol on inflammatory diseases. Furthermore, a few studies have demonstrated that orobol decreases pro-inflammatory compounds resulting in the alleviation of allergic reactions. However, the relationship between orobol and atopic dermatitis (AD) in animal models has not been revealed. Therefore, we sought to investigate the effects of orobol on AD-like symptoms. AD-like symptoms and skin lesions were induced by repeated topical application of Dermatophagoides farinae extract (DFE) on the skin of NC/Nga mice. Topical application of orobol attenuated DFE-induced AD-like symptoms and transepidermal water loss and increased skin hydration. Histopathological analysis revealed that orobol alleviated DFE-induced eosinophil and mast cell infiltration into the skin. These observations occurred concomitantly with the downregulation of inflammatory markers including serum TARC, MDC, and IgE. In addition, orobol alleviated dorsal Th2 cytokines such as IL-4 and IL-13. Pre-treatment of orobol decreased the activity of the MAPKs and NF-κB signalling cascade in the TNFα/IFNγ-induced HaCaT cell line. These results suggest that orobol, a natural dietary isoflavone, has therapeutic efficacy for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chang Hyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Yang
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea.
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institute of Convergence Technology, Seoul National University, 8 Gyeonggi-do, 16229, Suwon, Republic of Korea
| |
Collapse
|
26
|
Huang Z, Liu H, Zhao L, He W, Zhou X, Chen H, Zhou X, Zhou J, Liu Z. Evaluating the effect of different processing methods on fermented soybean whey-based tofu quality, nutrition, and flavour. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Physiological Effects of Green-Colored Food-Derived Bioactive Compounds on Cancer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-colored foods, such as broccoli, sprouts, soybean, and green leafy vegetables are considered one of the representative healthy foods for containing various functional ingredients that can combat chronic diseases, including diabetes, obesity, and cancer. Herein, we reviewed the anti-cancer activities and the underlying mechanisms of some important bioactive compounds, such as sulforaphane, catechins, chlorophyll, isoflavone, indole dervatives, and lutein, present in green-colored foods. In vivo and clinical studies suggest that sulforaphane, a sulfur-containing compound found in cruciferous vegetables, can ameliorate prostate and breast cancer symptoms by arresting cell-cycle progression and modulating Ki67 and HDAC expression. A green tea compound, known as epigallocatechin-3-gallate (EGCG), has shown remarkable anti-cancer effects against prostate cancer and lung adenocarcinoma in human trials through its antioxidative defense and immunomodulatory functions. Chlorophyll, a natural pigment found in all green plants, can regulate multiple cancer-related genes, including cyclin D1, CYP1A, CYP1B1, and p53. Epidemiological studies indicate that chlorophyll can substantially reduce aflatoxin level and can mitigate colon cancer in human subjects. Remarkably, the consumption of soy isoflavone has been found to be associated with the lower incidence and mortality of breast and prostate cancers in East Asia and in Canada. In vivo and in vitro data point out that isoflavone has modulatory effects on estrogen and androgen signaling pathways and the expression of MAPK, NfκB, Bcl-2, and PI3K/AKT in different cancer models. Other green food bioactive compounds, such as indole derivatives and lutein, also exhibited suppressing effects in rodent models of lung, liver, stomach, cervical, and prostate cancers. In addition, some micronutrients, such as folate, riboflavin, retinoic acid, and vitamin D3 present in green foods, also showed potential cancer suppressing effects. Taken together, these data suggest potential chemopreventive functions of the bioactive compounds from green-colored foods. This paper could be beneficial for further research on the anti-carcinogenic effects of green-colored food-derived compounds, in order to develop green chemotherapeutics for cancers.
Collapse
|
28
|
Dery B, Zaixiang L. Scanning Electron Microscopy (SEM) as an Effective Tool for Determining the Morphology and Mechanism of Action of Functional Ingredients. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bede Dery
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Lou Zaixiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
29
|
Sajid M, Stone SR, Kaur P. Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids. Front Bioeng Biotechnol 2021; 9:673270. [PMID: 34277582 PMCID: PMC8282456 DOI: 10.3389/fbioe.2021.673270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavonoids are well-known plant secondary metabolites that have gained importance in recent time due to their multiple nutraceutical and pharmaceutical applications. In plants, isoflavonoids play a role in plant defense and can confer the host plant a competitive advantage to survive and flourish under environmental challenges. In animals, isoflavonoids have been found to interact with multiple signaling pathways and have demonstrated estrogenic, antioxidant and anti-oncologic activities in vivo. The activity of isoflavonoids in the estrogen pathways is such that the class has also been collectively called phytoestrogens. Over 2,400 isoflavonoids, predominantly from legumes, have been identified so far. The biosynthetic pathways of several key isoflavonoids have been established, and the genes and regulatory components involved in the biosynthesis have been characterized. The biosynthesis and accumulation of isoflavonoids in plants are regulated by multiple complex environmental and genetic factors and interactions. Due to this complexity of secondary metabolism regulation, the export and engineering of isoflavonoid biosynthetic pathways into non-endogenous plants are difficult, and instead, the microorganisms Saccharomyces cerevisiae and Escherichia coli have been adapted and engineered for heterologous isoflavonoid synthesis. However, the current ex-planta production approaches have been limited due to slow enzyme kinetics and traditionally laborious genetic engineering methods and require further optimization and development to address the required titers, reaction rates and yield for commercial application. With recent progress in metabolic engineering and the availability of advanced synthetic biology tools, it is envisaged that highly efficient heterologous hosts will soon be engineered to fulfill the growing market demand.
Collapse
Affiliation(s)
| | | | - Parwinder Kaur
- UWA School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Sleiman HK, de Oliveira JM, Langoni de Freitas GB. Isoflavones alter male and female fertility in different development windows. Biomed Pharmacother 2021; 140:111448. [PMID: 34130202 DOI: 10.1016/j.biopha.2021.111448] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Isoflavones are a group of secondary metabolites found in plants belonging to the class of phytoestrogens. These, because they have a chemical structure similar to the endogenous hormone 17β-estradiol, act as endocrine disruptors over the different development window periods. This study aimed to evaluate male and female reproductive systems' responses when exposed to isoflavones during the development window. It is characterized as a bibliographic review, built after analyzing clinical and preclinical articles indexed in English, Portuguese, and Spanish published in the last ten years. The isoflavones, aglycone or glucosides, have essential therapeutic properties in the relief of postmenopausal symptoms in women, reduce the proliferation of cancers, in addition to being antioxidants. On the other hand, they can still behave in a similar way to 17β-estradiol, binding to hormone receptors and acting as endocrine disruptors over the gestational period until pre-puberty, negatively affecting the development of the reproductive system. The effects on reproduction are not dose-response but are influenced by the type of isoflavone and period. There are variations in the serum concentration of hormones and action on their negative feedback on the hypothalamic-pituitary-testicular axis in males. Reproductive functions are also affected by spermatogenesis, such as decreased sperm count, lower reproductive performance, reduced litter size, low sperm production, and reduced seminal vesicle size. In females, puberty is reached later, irregular estrous cycle, reduced weight of the ovary, uterus, lower serum levels of estradiol and progesterone, reduced fertility, or interrupted fertility. At the end of the analysis of the selected publications, it can be concluded that despite the beneficial therapeutic effects in the face of pathologies, the unknown consumption of doses and types of isoflavones in food can damage the development and reproduction of individuals. Therefore, further studies must be carried out to elucidate the usual safe doses of the analyzed phytoestrogen. Greater control over insertion in foods targeted at pediatric consumers should be implemented until we have adequate safety.
Collapse
Affiliation(s)
| | - Jeane Maria de Oliveira
- Laboratory of Medicinal Chemistry and Biotechnology (LaQuiMB), Department of Biochemistry and Pharmacology, Federal University of Piauí, Piauí, Brazil
| | - Guilherme Barroso Langoni de Freitas
- Department of Pharmacy, State University of Centro-Oeste, Parana, Brazil; Program in Biotechnology in Human and Animal Health - (PPGBiotec), State University of Ceará, Ceará, Brazil.
| |
Collapse
|
31
|
Privatti RT, Rodrigues CEDC. An Overview of the Composition, Applications, and Recovery Techniques of the Components of Okara Aimed at the Biovalorization of This Soybean Processing Residue. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rafaela Torrezan Privatti
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| |
Collapse
|
32
|
Kim IS, Kim CH, Yang WS. Physiologically Active Molecules and Functional Properties of Soybeans in Human Health-A Current Perspective. Int J Mol Sci 2021; 22:4054. [PMID: 33920015 PMCID: PMC8071044 DOI: 10.3390/ijms22084054] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Gyunggi-Do 16419, Korea
- Samsung Advanced Institute of Health Science and Technology, Gyunggi-Do 16419, Korea
| | | |
Collapse
|
33
|
Tepavčević V, Cvejić J, Poša M, Bjelica A, Miladinović J, Rizou M, Aldawoud TM, Galanakis CM. Classification and discrimination of soybean (Glycine max (L.) Merr.) genotypes based on their isoflavone content. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Teleky BE, Martău GA, Vodnar DC. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy-Wheat Flour Dough Fermentation. Foods 2020; 9:E1894. [PMID: 33353037 PMCID: PMC7766497 DOI: 10.3390/foods9121894] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
In contemporary food production, an important role is given to the increase in the nutritional quality of foodstuff. In the bakery industry, one of the main cereals used is wheat flour (WF), which creates bread with proper sensory evaluation but is nutritionally poor. Soy-flour (SF) has increased nutrient content, and its consumption is recommended due to several health benefits. Dough fermentation with lactic acid bacteria (LAB) increases bread shelf life, improves flavor, and its nutritional quality, mostly due to its high organic acid production capability. In the present study, the addition of SF to WF, through fermentation with the cocultures of Lactobacillus plantarum and Lactobacillus casei was analyzed. Three different batches were performed by using WF supplemented with SF, as follows: batch A consisting of 90% WF and 10% SF; batch B-95% WF and 5% SF; batch C-100% WF. The fermentation with these two LABs presented several positive effects, which, together with increased SF content, improved the dough's rheological and physicochemical characteristics. The dynamic rheological analysis exhibited a more stable elastic-like behavior in doughs supplemented with SF (G' 4936.2 ± 12.7, and G″ 2338.4 ± 9.1). Organic acid production changes were the most significant, especially for the lactic, citric, and tartaric content.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (B.-E.T.); (G.A.M.)
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
35
|
Sánchez M, González-Burgos E, Gómez-Serranillos MP. The pharmacology and clinical efficacy of matricaria recutita L.: a systematic review of in vitro, in vivo studies and clinical trials. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1834577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Marta Sánchez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense De Madrid (UCM), Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense De Madrid (UCM), Madrid, Spain
| | - M. Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense De Madrid (UCM), Madrid, Spain
| |
Collapse
|
36
|
Potential Impacts of Soil Tillage System on Isoflavone Concentration of Soybean as Functional Food Ingredients. LAND 2020. [DOI: 10.3390/land9100386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Soybean is an important natural source of isoflavones, but their concentration is likely to be influenced by external factors, such as climatic conditions and soil tillage systems. However, there is minimal information about the effects of such external factors on the isoflavone concentration in soybeans grown in Europe. Therefore, in this study, field experiments were established in Romania to investigate the potential impacts of three different soil tillage systems—conventional, minimum tillage and no-tillage—on crop yields and the isoflavone concentration of soybeans for three experimental years, 2014–2016. Our experimental results indicated that the soil tillage systems had little impact on the soybean yields each year. However, the 2016 yield was found to be higher than the 2014 and 2015 yields under all three soil systems. For every experimental year, the higher yield was recorded by the conventional system, followed by the minimum tillage system and no-tillage system under first weed control (weed control two (wct2): S-metolaclor 960 g/L, imazamox 40 g/L and propaquizafop 100 g/L). Likewise, the soil tillage system did not have a significant influence on the total isoflavone concentrations. Nevertheless, we noticed some variations in the individual isoflavone concentration (daidzin, genistin, glycitin, daidzein, genistein) in each year. Altogether, the minimum tillage and no-tillage systems may be employed as a suitable soil tillage system in soybean farming without an impact on the total isoflavone.
Collapse
|
37
|
Li C, Liu H, Yang J, Mu J, Wang R, Zhao X. Effect of soybean milk fermented with Lactobacillus plantarum HFY01 isolated from yak yogurt on weight loss and lipid reduction in mice with obesity induced by a high-fat diet. RSC Adv 2020; 10:34276-34289. [PMID: 35519026 PMCID: PMC9056763 DOI: 10.1039/d0ra06977a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023] Open
Abstract
Soybean milk fermented with Lactobacillus plantarum HFY01 (LP-HFY01) was used for weight and lipid reduction in mice with obesity induced by a high-fat diet. We evaluated the gastrointestinal tolerance in vitro, organ index, body fat rate, pathological changes, serum index, mRNA expression and changes of isoflavones in soybean milk. Results indicated that LP-HFY01 exhibited good tolerance to pH 3.0 artificial gastric juice (69.87 ± 0.04%) and 0.3% bile salt (15.94 ± 0.3%). LP-HFY01-fermented soybean milk reduced the body fat rate and liver index of obese mice (p < 0.05). Organ sections showed that LP-HFY01-fermented soybean milk improved fatty degeneration and liver cell damage caused by a high-fat diet. LP-HFY01-fermented soybean milk inhibited increases in low-density lipoprotein cholesterol (LDL-c), triglyceride (TG), alkaline phosphatase (AKP), and glutamic oxaloacetic transaminase (GOT) and the decrease in high-density lipoprotein cholesterol (HDL-c) in the serum of obese mice, and inhibited CCAAT/enhancer-binding protein-α (C/EBP-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) mRNA expression, as well as activated cuprozinc-superoxide dismutase (SOD1) and lipoprotein lipase (LPL) mRNA expression in the liver and epididymal fat of obese mice (p < 0.05). Daidzin, glycitin, daidzein, glycitein, genistein, and genistin contents in soybean milk were determined before and after fermentation by high-performance liquid chromatography (HPLC); the daidzin and genistin contents in the fermented soybean milk decreased, whereas the daidzein and genistein contents increased significantly. Therefore, the LP-HFY01-fermented soybean milk strongly inhibits obesity induced by a high-fat diet, and shows good potential for utilization.
Collapse
Affiliation(s)
- Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Huilin Liu
- Department of Clinical Nutrition, Chongqing University Three Gorges Hospital Chongqing 500101 China
| | - Jiao Yang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| | - Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- College of Biological and Chemical Engineering, Chongqing University of Education Chongqing 400067 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education Chongqing 400067 China +86-23-6265-3650
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education Chongqing 400067 China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
38
|
Isoflavone-enriched whole soy milk powder stimulates osteoblast differentiation. Journal of Food Science and Technology 2020; 58:595-603. [PMID: 33568853 DOI: 10.1007/s13197-020-04572-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Functional foods with high nutritive values and potential therapeutic potential is a prerequisite for today's ailing world. Soybeans exert beneficial effects on human health. It contains plentiful polyunsaturated fatty acids and dietary fibers along with several isoflavonoids having bioactivity for improving health. Recent studies have shown that soybean isoflavones can have a positive effect on bone growth. The current study was designed to observe any impact of isoflavone-enriched soy milk powder (I-WSM) on inducing osteogenic properties at cellular and molecular levels. Precisely, we have evaluated the effect of I-WSM on the bone differentiation process. Our results show that I-WSM has the ability to stimulate osteogenic properties in osteoblasts both at the initial and terminal stages of differentiation. Treatment of I-WSM on osteoblasts demonstrates the inductive effect on the expression of osteogenic transcriptional factors like Runx2 and Osterix. Moreover, I-WSM increased the expression of the extracellular matrix protein osteocalcin, required for the formation of scaffold for bone mineralization. The estrogen signaling pathway was utilized by I-WSM to induce osteogenic activity. Taken together, here we report the cellular and molecular events mediated by I-WSM to exert an osteogenic effect in osteoblasts, which will help to understand its mechanism of action and project it as a remedy for the bone-related disease. Taken together, I-WSM has the ability to exert the osteogenic effect in osteoblasts via the estrogen signaling pathway and thus might be projected as a remedy for a bone-related disease like osteoporosis.
Collapse
|
39
|
Shahzad R, Shehzad A, Bilal S, Lee IJ. Bacillus amyloliquefaciens RWL-1 as a New Potential Strain for Augmenting Biochemical and Nutritional Composition of Fermented Soybean. Molecules 2020; 25:E2346. [PMID: 32443519 PMCID: PMC7288071 DOI: 10.3390/molecules25102346] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Soybean (Glycine max L.) is a good source of natural antioxidants and commonly consumed as fermented products such as cheonggukjang, miso, tempeh, and sufu in Asian countries. The aim of the current study was to examine the influence of novel endophytic bacterial strain, Bacillus amyloliquefaciens RWL-1 as a starter for soybean fermentation. During fermentation, the cooked soybeans were inoculated with different concentrations (1%, 3%, and 5%) of B. amyloliquefaciens RWL-1. The changes in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activities, total phenolic contents, isoflavones (Daidzin, Genistin, Glycitin, Daidzein, Glycitein, and Genistein), amino acids (aspartic acid, threonine, serine, glutamic acid, glycine, alanine, cysteine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, lysine, histidine, arginine, and proline) composition, and minerals (calcium, copper, iron, potassium, magnesium, manganese, sodium, nickel, lead, arsenic, and zinc) were investigated. The level of antioxidants, total phenolic contents, isoflavones, and total amino acids were higher in fermented soybean inoculated with 1% B. amyloliquefaciens RWL-1 after 60 h of fermentation as compared to control, 3% and 5% B. amyloliquefaciens RWL-1. Additionally, fermented soybean inoculated with 5% B. amyloliquefaciens RWL-1 showed the highest values for mineral contents. Changes in antioxidant activities and bioactive compounds depended on the concentration of the strain used for fermentation. From these results, we conclude that fermented soybean has strong antioxidant activity, probably due to its increased total phenolic contents and aglycone isoflavone that resulted from fermentation. Such natural antioxidants could be used in drug and food industries and can be considered to alleviate oxidative stress.
Collapse
Affiliation(s)
- Raheem Shahzad
- Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Saqib Bilal
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
40
|
Abstract
Biochemical processes present complex mechanisms and can be described by various computational models. Complex systems present a variety of problems, especially the loss of intuitive understanding. The present work uses fractional-order calculus to obtain mathematical models for erythritol and mannitol synthesis. The obtained models are useful for both prediction and process optimization. The models present the complex behavior of the process due to the fractional order, without losing the physical meaning of gain and time constants. To validate each obtained model, the simulation results were compared with experimental data. In order to highlight the advantages of fractional-order models, comparisons with the corresponding integer-order models are presented.
Collapse
|
41
|
Son HU, Yoon EK, Yoo CY, Park CH, Bae MA, Kim TH, Lee CH, Lee KW, Seo H, Kim KJ, Lee SH. Effects of Synergistic Inhibition on α-glucosidase by Phytoalexins in Soybeans. Biomolecules 2019; 9:828. [PMID: 31817312 PMCID: PMC6995600 DOI: 10.3390/biom9120828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
To determine the mechanism of action of the effects of phytoalexins in soybeans, we analyzed α-glucosidase inhibition kinetics using Michaelis-Menten plots and Lineweaver-Burk plots. The results showed that the type of inhibition with glyceollin was competitive, that of genistein was noncompetitive, that of daidzein was uncompetitive, and luteolin showed a mixed mode of action. The Ki values were determined using a Dixon plot as glyceollin, 18.99 μM; genistein, 15.42 μM; luteolin, 16.81 μM; and daidzein, 9.99 μM. Furthermore, potential synergistic effects between glyceollin and the three polyphenols were investigated. A combination of glyceollin and luteolin at a ratio of 3:7 exhibited synergistic effects on α-glucosidase inhibition, having a combination index (CI) of 0.64244, according to the CI-isobologram equation. Collectively, these results showed that a combination of glyceollin and luteolin has the potential to inhibit α-glucosidase activity via a synergistic mode of inhibition.
Collapse
Affiliation(s)
- Hyeong-U Son
- School of Food Science & Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (H.-U.S.); (E.-K.Y.); (C.-Y.Y.)
| | - Eun-Kyeong Yoon
- School of Food Science & Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (H.-U.S.); (E.-K.Y.); (C.-Y.Y.)
| | - Chi-Yeol Yoo
- School of Food Science & Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (H.-U.S.); (E.-K.Y.); (C.-Y.Y.)
| | - Chul-Hong Park
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA;
| | - Myung-Ae Bae
- Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Tae-Ho Kim
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu 41940, Korea;
| | - Chang Hyung Lee
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.H.L.); (K.W.L.)
| | - Ki Won Lee
- Major in Biomodulation, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (C.H.L.); (K.W.L.)
| | - Hogyun Seo
- School of Life Sciences, KNU Creative BioResearch Group, Institute of Microorganisms, Kyungpook National University, Daegu 41566, Korea; (H.S.); (K.-J.K.)
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Institute of Microorganisms, Kyungpook National University, Daegu 41566, Korea; (H.S.); (K.-J.K.)
| | - Sang-Han Lee
- School of Food Science & Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea; (H.-U.S.); (E.-K.Y.); (C.-Y.Y.)
- knu BnC, Daegu 41566, Korea
| |
Collapse
|