1
|
Abraham B, Oladzadabbasabadi N, Shakeela H, Brennan C, Mantri N, P N, Adhikari B. Cellulose and lignin nanoparticles from an Ayurvedic waste stream for essential oil-based active packaging to extend shelf life of strawberries. Int J Biol Macromol 2025; 309:142877. [PMID: 40203937 DOI: 10.1016/j.ijbiomac.2025.142877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Cellulose and lignin nanoparticles (NCP and LNP) were successfully extracted from Dashamoola spent material (DSM), a residue from an Ayurvedic decoction. NCP had a particle size of 493.6 nm and a zeta potential of -30.9 mV, indicating good colloidal stability. FTIR confirmed the removal of non-cellulosic components, while TGA demonstrated thermal stability, with major degradation between 260 °C and 350 °C. A semi-crystalline structure of nanocellulose was indicated via XRD analysis. Oil-in-water emulsions of tea tree oil (TTO) were prepared using NCP (C at 4 %), LNP (L at 4 %), and a combination blend (2 % each of C and L in CL_TTO), with 16 % TTO, all in w/v. Among these, CL_TTO emulsions had the smallest particle size and highest stability. PVOH-based films, prepared with a 4 % w/v mixture of CL_TTO emulsion, PVOH, and glycerol, demonstrated improved tensile strength, Young's modulus, water vapour barrier properties, and water repellence. These films blocked 95 % UV transmittance, providing appreciable protection to light-sensitive products. PVOH-CL_TTO films also exhibited strong antioxidant activity (85 % DPPH scavenging) and antimicrobial property against E. coli. These films extended the shelf life of strawberries by preserving lightness, firmness, and pH for 14 days under chilling (4 °C). These findings highlight the potential of NCP and LNP obtained from DSM for producing sustainable active packaging which would valorizing Ayurvedic waste stream.
Collapse
Affiliation(s)
- Billu Abraham
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | | | - Heeba Shakeela
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Nitin Mantri
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Nisha P
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; School of Science, RMIT University, Melbourne, VIC 3083, Australia.
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
2
|
Zhuo M, Liu C, Wang Q, Wang Z, Wang Y, Yu F, Zhang Y. Catharanthus roseus extract-assisted silver nanoparticles chitosan films with high antioxidant and antimicrobial properties for fresh food preservation. Int J Biol Macromol 2025; 309:142771. [PMID: 40185439 DOI: 10.1016/j.ijbiomac.2025.142771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Although the potential of chitosan (CS) -based biomass packaging materials for food preservation is encouraging, their use is severely constrained by the poor mechanical, UV, antioxidant, and solubility qualities. This study successfully combined silver nanoparticles made from Catharanthus roseus extracts with chitosan (CS-Ca-Ag) to enrich the functions of CS film. The films' Young's modulus values (45.489 MPa) were considerably raised after adding the extract-biosynthesized silver nanoparticles, in contrast to the chitosan film, and their water vapor permeability (2.386 × 10-12 g·mm-1·Pa-1·h-1) was greatly reduced. Furthermore, the antibacterial, antioxidant, and UV adsorption capabilities of CS-Ca-Ag films were significantly improved. The prepared Cs-Ca-Ag film had high biocompatibility and safety, making it suitable for strawberry coatings and chicken packaging. The CS-Ca-Ag film effectively limited the weight loss of fresh food, reduced nutrient loss, prevented microbial growth, and significantly extended food's shelf life. CS-based reinforced films containing Catharanthus roseus extract and silver nanoparticles showed potential food coating and packaging material applications.
Collapse
Affiliation(s)
- Mengru Zhuo
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Changhao Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qianbu Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ze Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yue Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fang Yu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Xu R, Wang L, Wang C, Ju C, Yang C, Jia X, Wang G, Yu S. Preparation, characterization, biological activity of 'Chuju' polysaccharides/chitosan and its application on the preservation of red grapes fruit. Int J Biol Macromol 2025; 301:140461. [PMID: 39884627 DOI: 10.1016/j.ijbiomac.2025.140461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
In order to improve the preservation of red grape fruits, 'Chuju' polysaccharides (CCP) were cross-linked with chitosan (CS) to create CCP/CS composites with varying ratios. These composites were comprehensively characterized using FT-IR, 13C NMR, and SEM, which confirmed a smooth film surface and a uniform distribution of CCP. The composite films demonstrated efficacy in maintaining the quality of red grapes by mitigating shriveling and significantly reducing firmness loss by 22.26 % and vitamin C degradation by 30.39 % in comparison to the untreated control group. Furthermore, the CCP-200 %/CS composite exhibited a markedly enhanced antibacterial effect against Botrytis cinerea, a fungus associated with red grapes, and displayed improved antioxidant activity. Correlation analysis suggests that the preservation mechanism of the CCP/CS composites on red grapes is likely linked to their capacity to inhibit spoilage bacteria and their antioxidant properties. Collectively, these findings indicate that CCP/CS composites may serve as a promising eco-friendly and sustainable alternative for food packaging applications.
Collapse
Affiliation(s)
- Ruibo Xu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Lingling Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Chi Wang
- College of Civil and Architecture Engineering, Chuzhou University, Chuzhou 239000, China
| | - Changfeng Ju
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Chuan Yang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Xiaoli Jia
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Gang Wang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China
| | - Shijun Yu
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China; An Hui Center of Chuju Planting and Deep Processing Engineering Research, Chuzhou University, Chuzhou 239000, China.
| |
Collapse
|
4
|
Singh B, Kumar N, Yadav A, Rohan, Bhandari K. Harnessing the Power of Bacteriocins: A Comprehensive Review on Sources, Mechanisms, and Applications in Food Preservation and Safety. Curr Microbiol 2025; 82:174. [PMID: 40053112 DOI: 10.1007/s00284-025-04155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The Sustainable Development Goals (SDGs) emphasize the importance of food safety, prolonged shelf life, and reduced food waste, all of which rely on effective food preservation methods. Bacteriocins, natural antimicrobial substances produced by lactic acid bacteria (LAB), have potential applications in food preservation. This review highlights the role of LAB-derived bacteriocins in preserving food. Bacteriocins are highly effective against foodborne infections because they target cell membranes, break down enzymes, and interfere with cellular activities. The following study used molecular docking to understand the interaction of bacteriocins and their mode of action. With their natural origin and specific action, bacteriocins offer a promising strategy for preventing foodborne diseases and extending shelf life without impacting sensory characteristics. However, challenges such as stable manufacturing, regulatory hurdles, and cost effectiveness hinder the wide adoption of bacteriocins. Nevertheless, LAB-derived bacteriocins offer a safe and efficient approach to improving food preservation, enhancing food safety, and reducing reliance on artificial preservatives. Moreover, immobilized bacteriocins have the potential to be integrated into antimicrobial packaging films, providing a targeted way to reduce the risk of foodborne pathogen contamination and improve food safety. Exploring novel bacteriocins presents exciting opportunities for advancing food preservation and safety. The present study also highlights recent advancements in food preservation through bacteriocins.
Collapse
Affiliation(s)
- Bharmjeet Singh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Nishant Kumar
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Aman Yadav
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Rohan
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kriti Bhandari
- Department of Biotechnology, Delhi Technological University, New Delhi, India.
| |
Collapse
|
5
|
Kaniyamparambil SH, Salim MH, Al Marzooqi F, Mettu S, Otoni CG, Banat F, Tardy BL. A comprehensive study on the potential of edible coatings with polysaccharides, polyphenol, and lipids for mushroom preservation. Int J Biol Macromol 2025; 306:141494. [PMID: 40020851 DOI: 10.1016/j.ijbiomac.2025.141494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Edible coatings have been widely explored as packaging substitutes. Application of edible coatings on mushrooms remains under-explored, due to its highly porous nature, with limited benefits to date. Herein, we thoroughly benchmark six polysaccharides, one polyphenol (lignin derivative), and three lipids as edible coatings for mushrooms, namely Agaricus bisporus. The study cross-correlates the dynamics of browning and weight retention, uniquely evaluated in three storage conditions. It was shown that polysaccharide and polyphenol coatings provided notable anti-browning (46 % and 44 % reduction by alginate and pectin respectively) and limited improvements in water retention (e.g., 10 % reduction by alginate and pectin), whereas lipids were found to outstandingly reduce both the mushroom's browning (80 % and 74 % reduction by coconut oil and wax respectively) and maintains weight (169 % and 149 % improvement by wax and coconut oil respectively) in ambient conditions after two days of storage. Scanning electron microscopy was used to explore the film forming potential of the coatings, revealing inadequate surface coverage by polysaccharides and polyphenol. Beyond the benchmarking provided herein, we expect that the analytical and experimental framework provided herein can help fast-track developments of highly efficient edible coating formulations.
Collapse
Affiliation(s)
- Sarath Haridas Kaniyamparambil
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Mohamed Hamid Salim
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates.
| | - Faisal Al Marzooqi
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Caio Gomide Otoni
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil; Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Fawzi Banat
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Blaise L Tardy
- Department of Chemical & Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Liu Y, Ding Y, Wang C, Luo J, Yao H, Zhang H, Xu L, Niu J. High-adhesion antimicrobial composite coating incorporating quaternary chitosan and tea tree oil for enhanced preservation of fruits and vegetables. Food Chem 2025; 465:142007. [PMID: 39549515 DOI: 10.1016/j.foodchem.2024.142007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
This study developed high-adhesion quaternary chitosan coatings using amphiphilic HACC-oleic acid conjugates (HACC-OA) to enhance fruit and vegetable preservation. HACC-OA demonstrated improved viscosity and adhesion, providing a stable carrier for tea tree oil (TTO). The resulting TTO@HACC-OA coatings exhibited significantly reduced contact angle (43.7°) and increased retention amount on strawberry surfaces. Furthermore, TTO@HACC-OA demonstrated a lower volatilization rate of TTO (27.8 %) compared to pure TTO (49.5 %) and an enhanced synergistic antimicrobial activity (EC50 = 1.51 mg/mL) against Botrytis cinerea Pers compared to HACC alone (EC50 = 1.58 mg/mL). Preservation experiments revealed that TTO@HACC-OA effectively maintained color and firmness, reduced decay index and weight loss, delayed decline in vitamin C content of strawberries, postponed increase in total phenolic content, and mitigated malondialdehyde accumulation. Therefore, the prepared TTO@HACC-OA composite coating with excellent adhesion ability and preservation effect holds great potential for applications in fruit and vegetable preservation.
Collapse
Affiliation(s)
- Ying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Yi Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Chao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Jian Luo
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Joint Research Center for Food Nutrition and Health of IHM, PR China
| | - Huanhuan Yao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Huili Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Long Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China
| | - Junfan Niu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, PR China.
| |
Collapse
|
7
|
Culqui-Arce C, Mori-Mestanza D, Fernández-Jeri AB, Cruzalegui RJ, Mori Zabarburú RC, Vergara AJ, Cayo-Colca IS, da Silva JG, Araujo NMP, Castro-Alayo EM, Balcázar-Zumaeta CR. Polymers Derived from Agro-Industrial Waste in the Development of Bioactive Films in Food. Polymers (Basel) 2025; 17:408. [PMID: 39940610 PMCID: PMC11819695 DOI: 10.3390/polym17030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This review explores the potential of biopolymers as sustainable alternatives to conventional plastics in food packaging. Biopolymers derived from plant or animal sources are crucial in extending food shelf life, minimizing degradation, and protecting against oxidative and microbial agents. Their physical and chemical properties, influenced by the raw materials used, determine their suitability for specific applications. Biopolymers have been successfully used in fruits, vegetables, meats, and dairy products, offering antimicrobial and antioxidant benefits. Consequently, they represent a functional and eco-friendly solution for the packaging industry, contributing to sustainability while maintaining product quality.
Collapse
Affiliation(s)
- Carlos Culqui-Arce
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Armstrong B. Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Robert J. Cruzalegui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Roberto Carlos Mori Zabarburú
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Alex J. Vergara
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru;
| | - Juliana Guimarães da Silva
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Nayara Macêdo Peixoto Araujo
- Institute of Technology, School of Food Engineering, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.G.d.S.); (N.M.P.A.)
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| | - César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01001, Peru; (C.C.-A.); (D.M.-M.); (A.B.F.-J.); (R.J.C.); (R.C.M.Z.); (A.J.V.); (E.M.C.-A.)
| |
Collapse
|
8
|
Patel D, Jha A, Shah J. Technological Aspects of Nanoemulsions for Post-harvest Preservation of Fruits and Vegetables. Comb Chem High Throughput Screen 2025; 28:551-560. [PMID: 38584565 DOI: 10.2174/0113862073297299240325084138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Recent times have witnessed a growing demand for sustainable technology for food preservation that can retain its freshness, promises lower contents of additives and preservatives, safe consumption, eco-friendly milder processing technologies and eco-friendlier packaging solutions. Application of Biopolymers has served as the most sustainable and viable option to its synthetic counterparts. These biopolymers have been incorporated to develop biodegradable packaging like edible films and coatings owing to their biological origin. Nanoemulsion technology offers a leap forward to upgrade the features of conventional biodegradable packaging items. The present review discusses various trends and perspectives of nanoemulsion technology in post-harvest preservation for enhancing the shelf life of fresh fruits and vegetables. It investigates the interconnectedness between food preservation techniques, biodegradable packaging materials made from biopolymers, and nanoemulsions. It further addresses the preservation challenges post-harvest and underscores the limitations of conventional preservation methods, advocating for eco-friendly alternatives with a specific focus on the potential of nanoemulsions in enhancing food safety and quality. This review elaborates on the composition, formulation techniques, nanoemulsion products and role of nanoemulsions in the management of foodborne pathogens. Furthermore, it examines the potential health hazards linked to the use of nanoemulsions and stresses the significance of a regulatory framework for food safety. In conclusion, this review offers insights into the promising prospects of using nanoemulsions in food preservation.
Collapse
Affiliation(s)
- Divyesh Patel
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, 388421, Gujarat, India
| | - Anamika Jha
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, 388421, Gujarat, India
| | - Jinal Shah
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Anand, 388421, Gujarat, India
| |
Collapse
|
9
|
Ullal N, Sahoo B, Sunil D, Kulkarni SD, Bhat K U, P J A. Yellow emissive and high fluorescence quantum yield carbon dots from perylene-3,4,9,10-tetracarboxylic dianhydride for anticounterfeiting applications. Dalton Trans 2024; 53:16287-16302. [PMID: 39311480 DOI: 10.1039/d4dt02219j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Forged products are widespread in the market and there is an immediate need to counter this growing menace. Anti-counterfeit techniques using fluorescent materials with covert features that appear hidden under daylight and display characteristic fluorescence upon specific source irradiation have gained popularity. Carbon dots (CDs) that can be prepared through facile synthesis from various raw materials are a class of fluorescent materials that provide tremendous opportunities to combat counterfeiting. This work focuses on the fabrication of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) derived CDs via the solvothermal approach and their subsequent purification using column chromatography. The fifth fraction obtained exhibited remarkable yellow emission (λem = 540 nm) with a high fluorescence quantum yield of 53.22% and a lifetime of 4 ns. The CDs appeared quasi-spherical during TEM imaging with an average diameter of 1-3 nm and appeared polycrystalline from the SAED pattern. The XPS and TEM-EDS results suggested carbon as the major element along with oxygen and nitrogen as the other heteroatoms. The water-based ecofriendly ink formulated using the CDs was printed on UV dull paper using the flexography technique. The print-proof paper samples appeared pale pink under daylight and fluorescent yellow upon 365 nm UV illumination. Moreover, the stability of the print was confirmed upon exposure to strong UV radiation cycles and abrasion resistance. Besides, the fluorescence emission remained unaltered even after 5 months of storage under room temperature conditions. The ink was used to print on PVC sheets and FBB boards with good stability against scuffing, suggesting its applicability in the packaging industry. The CDs could also serve as fluorescent markers for identifying post-consumer plastic packaging for a circular economy.
Collapse
Affiliation(s)
- Namratha Ullal
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Bibekananda Sahoo
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Surathkal 575025, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Suresh D Kulkarni
- Centre of Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Udaya Bhat K
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Surathkal 575025, Karnataka, India
| | - Anand P J
- Manipal Technologies Limited, Manipal 576104, Karnataka, India
| |
Collapse
|
10
|
Parveen N, Naik SVCS, Vanapalli KR, Sharma HB. Bioplastic packaging in circular economy: A systems-based policy approach for multi-sectoral challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173893. [PMID: 38889821 DOI: 10.1016/j.scitotenv.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Bioplastics have long been publicized as a sustainable plastic packaging alternative; however, their widespread industrialization is still embryonic due to complex challenges spanning multiple sectors. This review critically analyses the bioplastic lifecycle and provides a holistic evaluation of both the opportunities and potential trade-offs along their value chain. Their lifecycle is divided into three sectors: 1) resources, extraction, and manufacturing, 2) product consumption which discusses availability, consumer perception, and marketing strategies, and 3) end-of-life (EoL) management which includes segregation, recycling, and disposal. In the production phase, the primary challenges include selection of suitable raw feedstocks and addressing the techno-economic constraints of manufacturing processes. To tackle these challenges, it is recommended to source sustainable feedstocks from innovative, renewable, and waste materials, adopt green synthesis mechanisms, and optimize processes for improved efficiency. The consumption phase encompasses challenges related to market availability, cost competitiveness, and consumer perception of bioplastics. Localizing feedstock sourcing and production, leveraging the economics of scale, and promoting market demand for recycled bioplastics can positively influence the market dynamics. Additionally, dispelling misconceptions about degradability through proper labeling, and employing innovative marketing strategies to enhance consumer perception of the mechanical performance and quality of bioplastics is crucial. During the EoL management phase, major challenges include inadequate awareness, inefficient segregation protocols, and bioplastics with diverse properties that are incompatible with existing waste management infrastructure. Implementing a standardized labeling system with clear representation of suitable EoL techniques and integrating sensors and machine learning-based sorting technologies will improve segregation efficiency. Further, establishing interconnected recycling streams that clearly define the EoL pathways for different bioplastics is essential to ensure circular waste management systems. Finally, designing a comprehensive systems-based policy framework that incorporates technical, economic, environmental, and social drivers is recommended to promote bioplastics as a viable circular packaging solution.
Collapse
Affiliation(s)
- Naseeba Parveen
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India
| | - S V Chinna Swami Naik
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology Mizoram, Aizawl 796012, India.
| | - Hari Bhakta Sharma
- Department of Civil Engineering, Sikkim Manipal Institute of Technology, Rangpo, Sikkim 737136, India
| |
Collapse
|
11
|
Priyadarshi R, El-Araby A, Rhim JW. Chitosan-based sustainable packaging and coating technologies for strawberry preservation: A review. Int J Biol Macromol 2024; 278:134859. [PMID: 39163966 DOI: 10.1016/j.ijbiomac.2024.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
12
|
Sapna, Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. PROGRESS IN ORGANIC COATINGS 2024; 193:108537. [DOI: 10.1016/j.porgcoat.2024.108537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Priyadarshi R, Jayakumar A, de Souza CK, Rhim JW, Kim JT. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13417. [PMID: 39072989 DOI: 10.1111/1541-4337.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | | | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
14
|
Adhikary ND, Bains A, Tosif MM, Chawla P, Ali N, Ansari MA, Dhull SB, Goksen G. Development of ternary polymeric film based on modified mango seed kernel starch, carboxymethyl cellulose, and gum acacia to extend the shelf-life of bun-bread. Int J Biol Macromol 2024; 273:132915. [PMID: 38844289 DOI: 10.1016/j.ijbiomac.2024.132915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Non-conventional starch sources have attracted substantial attention due to their preferred physicochemical and mechanical properties similar to conventional sources. This study aimed to enhance the mechanical properties of mango seed kernel starch (MSKS) based films reinforced with carboxymethyl cellulose (CMC) and gum acacia (GA). Physical modification of MSKS was carried out using microwave-assisted at 180 W for 1 min. SEM results confirmed the oval and irregular shape of starch. The particle size of native starch (NS) (754.9 ± 20.4 nm) was higher compared to modified starch (MS) 336.6 ± 88.9 nm with a surface charge of -24.80 ± 3.92 to -34.87 ± 3.92 mV, respectively. Several functional groups including hydroxyl (OH) and carboxyl (CH) were confirmed in NS and MS. Different ratios of the MS, NS, CMC, and GA were used for the fabrication of films. Results revealed the higher tensile strength of M/C/G-1 (57.45 ± 0.05 nm) and M/C/G-2 (50.77 ± 0.58), compared to control C-4 (100 % native starch) (4.82 ± 0.04) respectively. The ternary complex provided excellent permeability against moisture and the film with a higher starch concentration confirmed the uniform thickness (0.09-0.10 mm). Furthermore, selected films (M/C/G-1 and M/C/G-2) reduced the microbial growth and weight loss of the bun compared to the control (C-4) film. Thus, the ternary complex maintained the freshness of the bun-bread for 14 days. It can be potentially used as a cost-effective and eco-friendly packaging material for food applications.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mansuri M Tosif
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sanju Bala Dhull
- Department of Food Science & Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye.
| |
Collapse
|
15
|
Khadsai S, Janmanee R, Sam-Ang P, Nuanchawee Y, Rakitikul W, Mankhong W, Likittrakulwong W, Ninjiaranai P. Influence of Crosslinking Concentration on the Properties of Biodegradable Modified Cassava Starch-Based Films for Packaging Applications. Polymers (Basel) 2024; 16:1647. [PMID: 38931996 PMCID: PMC11207420 DOI: 10.3390/polym16121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Chitosan/modified cassava starch/curcumin (CS/S/Cur) films with a crosslinker were developed via the solvent casting technique for the application of food packaging. The effects of citric acid (CA) as a natural crosslinker were assessed at different concentrations (0-10.0%, w/w, on a dry base on CS and S content). To measure the most favorable film, chemical structure and physical, mechanical, and thermal properties were investigated. Successful crosslinking between CS and S was seen clearly in the Fourier Transform Infrared (FTIR) spectra. The properties of the water resistance of the CS/S/Cur films crosslinked with CA were enhanced when compared to those without CA. Furthermore, it was found that the addition of CA crosslinking would improve the mechanical properties of composite films to some extent. It had been reported that the CA crosslinking level of 7.5 wt% of CS/S/Cur film demonstrated high performance in terms of physical properties. The tensile strength of the crosslinked film increased from 8 ± 1 MPa to 12 ± 1 MPa with the increasing content of CA, while water vapor permeability (WVP), swelling degree (SD), and water solubility (WS) decreased. An effective antioxidant scavenging activity of the CS/S/Cur film decreased with an increase in CA concentrations. This study provides an effective pathway for the development of active films based on polysaccharide-based film for food packaging applications.
Collapse
Affiliation(s)
- Sudarat Khadsai
- Faculty of Science and Technology, Thepsatri Rajabhat University, Lopburi 15000, Thailand;
| | - Rapiphun Janmanee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Pornpat Sam-Ang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Yossawat Nuanchawee
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| | - Waleepan Rakitikul
- Program of Chemical Technology, Faculty of Science and Technology, Chiang Rai Rajabhat University, Chiang Rai 57100, Thailand;
| | - Wilawan Mankhong
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Wirot Likittrakulwong
- Program of Animal Science, Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand;
| | - Padarat Ninjiaranai
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand; (R.J.); (P.S.-A.); (Y.N.)
| |
Collapse
|
16
|
Yan K, Liu K, Chang J, Jing Z, Li J, Yu Y, Zhang S. Inhibition Mechanism of Water-Soluble Chitosan-Curdlan Composite Coating on the Postharvest Pathogens of Serratia marcescens and Pseudomonas syringae in Cherry Tomatoes. Microorganisms 2024; 12:1149. [PMID: 38930531 PMCID: PMC11206094 DOI: 10.3390/microorganisms12061149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Cherry tomatoes, a very popular fruit, are highly susceptible to microbial infestation, which cause significant economic losses. In order to preserve cherry tomatoes better, we treat them with a Chitosan (CTS) and Curdlan (CUR) composite coating. The lowest inhibitory concentration of CTS/CUR composite coating on Serratia marcescens and Pseudomonas syringae, the growth curves, and the changes of the cell lysis rate were determined to explore the inhibitory mechanism of CTS/CUR composite coating on Serratia marcescens and Pseudomonas syringae and the microscopic morphology of Serratia marcescens and Pseudomonas syringae was observed using scanning electron microscopy at the same time. The results showed that the CTS/CUR composite coating could effectively inhibit the growth of Serratia marcescens and Pseudomonas, and the inhibitory effect reflected the concentration-dependent characteristics. The electron microscopy results indicated that the inhibition of Serratia marcescens and Pseudomonas syringae by the CTS/CUR composite coating might originate from its disruptive effect on the cell wall and cell membrane of the bacterium.
Collapse
Affiliation(s)
| | | | | | | | | | - Youwei Yu
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (K.L.); (Z.J.); (J.L.)
| | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (K.Y.); (K.L.); (Z.J.); (J.L.)
| |
Collapse
|
17
|
Hong W, Xie C, Zhao J, Dai Z. Application of plasma-activated hydrogen peroxide solution synergized with Ag@SiO 2 modified polyvinyl alcohol coating for strawberry preservation. Heliyon 2024; 10:e31239. [PMID: 38803948 PMCID: PMC11129012 DOI: 10.1016/j.heliyon.2024.e31239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
To extend the postharvest storage time of strawberries, this study aims to prepare a composite coating using plasma-activated hydrogen peroxide solution (PAH) synergized with nano-Ag@SiO2 by blending method to modify polyvinyl alcohol (PVA) solution. Results showed that the viscosity and the swelling rate of PVA significantly decreased with the addition of Ag@SiO2 at 0.18 %. Meanwhile, the elongation at break and the tensile strength of PVA increased to 0.87 MPa and 214 %. When the addition of Ag@SiO2 was 0.18 % and the composite ratio of PAH to PVA was 1:1, the composites could inactivate the pathogenic bacteria at 2 h. During the storage of strawberries, the initial colony counts on the surface of strawberries could be reduced by about 1 lg CFU/g after coating with the composite film. Moreover, with the extension of the storage time to 7 d, the respiratory intensity, colony counts, and rot index in the strawberries were 65.7 mg/(kg•h), 4.05 log CFU/g, and 38.7 %. Meanwhile, the superoxide dismutase activity and Vc content were 944 U/g and 690 μg/g, respectively. Overall, this study provides ideas and the theoretical basis for applying composite films in fruit preservation.
Collapse
Affiliation(s)
- Wenlong Hong
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Chunqin Xie
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Jianying Zhao
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| | - Zhaoqi Dai
- College of Tea and Food Technology, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China
| |
Collapse
|
18
|
Olunusi SO, Ramli NH, Fatmawati A, Ismail AF, Okwuwa CC. Revolutionizing tropical fruits preservation: Emerging edible coating technologies. Int J Biol Macromol 2024; 264:130682. [PMID: 38460636 DOI: 10.1016/j.ijbiomac.2024.130682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tropical fruits, predominantly cultivated in Southeast Asia, are esteemed for their nutritional richness, distinctive taste, aroma, and visual appeal when consumed fresh. However, postharvest challenges have led to substantial global wastage, nearly 50 %. The advent of edible biopolymeric nanoparticles presents a novel solution to preserve the fruits' overall freshness. These nanoparticles, being edible, readily available, biodegradable, antimicrobial, antioxidant, Generally Recognized As Safe (GRAS), and non-toxic, are commonly prepared via ionic gelation owing to the method's physical crosslinking, simplicity, and affordability. The resulting biopolymeric nanoparticles, with or without additives, can be employed in basic formulations or as composite blends with other materials. This study aims to review the capabilities of biopolymeric nanoparticles in enhancing the physical and sensory aspects of tropical fruits, inhibiting microbial growth, and prolonging shelf life. Material selection for formulation is crucial, considering coating materials, the fruit's epidermal properties, internal and external factors. A variety of application techniques are covered such as spraying, and layer-by-layer among others, including their advantages, and disadvantages. Finally, the study addresses safety measures, legislation, current challenges, and industrial perspectives concerning fruit edible coating films.
Collapse
Affiliation(s)
- Samuel Olugbenga Olunusi
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nor Hanuni Ramli
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Adam Fatmawati
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Ahmad Fahmi Ismail
- Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200, Bandar Indera Mahkota Razak, Kuantan, Pahang, Malaysia
| | - Chigozie Charity Okwuwa
- Faculty Chemical and Process Engineering and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| |
Collapse
|
19
|
Devi LS, Jaiswal AK, Jaiswal S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr Res Food Sci 2024; 8:100720. [PMID: 38559379 PMCID: PMC10978484 DOI: 10.1016/j.crfs.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
In the evolving landscape of food packaging, lipid-based edible films and coatings are emerging as a sustainable and effective solution for enhancing food quality and prolonging shelf life. This critical review aims to offer a comprehensive overview of the functional properties, roles, and fabrication techniques associated with lipid-based materials in food packaging. It explores the unique advantages of lipids, including waxes, resins, and fatty acids, in providing effective water vapor, gas, and microbial barriers. When integrated with other biopolymers, such as proteins and polysaccharides, lipid-based composite films demonstrate superior thermal, mechanical, and barrier properties. The review also covers the application of these innovative coatings in preserving a wide range of fruits and vegetables, highlighting their role in reducing moisture loss, controlling respiration rates, and maintaining firmness. Furthermore, the safety aspects of lipid-based coatings are discussed to address consumer and regulatory concerns.
Collapse
Affiliation(s)
- L. Susmita Devi
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, BTR, Assam, 783370, India
| | - Amit K. Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging & Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, D07 ADY7, Ireland
- Sustainability and Health Research Hub, Technological University Dublin, City Campus, Grangegorman, Dublin, D07 H6K8, Ireland
| |
Collapse
|
20
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
21
|
Mohammad ZH, Ahmad F. Nanocoating and its application as antimicrobials in the food industry: A review. Int J Biol Macromol 2024; 254:127906. [PMID: 37935295 DOI: 10.1016/j.ijbiomac.2023.127906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Nanocoatings are ultra-thin layers on the nanoscale (<100 nm) that are deposited on the substrate to improve their properties and functionality. These nanocoatings provide significant advantages compared to traditional coating, including stain resistance, antimicrobial and antioxidant activities, odor control and delivery of active agents, and liquid repellence properties. In the food industry, nanocoating is widely used in the food packaging sector. In this regard, nanocoating offers antimicrobials and antioxidant properties to active food packaging by incorporating active bioactive compounds into materials used in already existing packaging. The application of nanocoating is applied to these kinds of food packaging with nano coating to improve shelf life, safety, and quality of food packaging. In smart/intelligent packaging, the active packaging coating is promising food packaging, which is designed by releasing preservatives and nanocoating as an antimicrobial, antifungal, antioxidant, barrier coating, and self-cleaning food contact surfaces. In addition, nanocoating can be used for food contact surfaces, kitchen utensils, and food processing equipment to create antimicrobial, antireflective, and dirt-repellent properties. These are critical properties for food processing, especially for meat and dairy processing facilities, which can reduce biofilm formation and prevent cross-contamination. Recently, appreciable growth in the development of the application of nanocoating as edible films for coating food products has emerged to improve food safety issues. In this regard, much scientific research in the area of nanocoating fruits and vegetables, and other food products was performed to address food safety issues. Hence, this promising technology can be a great addition to the agricultural and food industries. Thus, this review addresses the most relevant information about this technology and the applications of nanocoating in the food industry.
Collapse
Affiliation(s)
- Zahra H Mohammad
- Conrad N. Hilton College of Hotel and Restaurant Management, University of Houston, Houston, TX 77204-3028, USA
| | - Faizan Ahmad
- Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
22
|
Cai M, Zhang X, Zhong H, Li C, Shi C, Cui H, Lin L. Ethyl cellulose/gelatin-carboxymethyl chitosan bilayer films doped with Euryale ferox seed shell polyphenol for cooked meat preservation. Int J Biol Macromol 2024; 256:128286. [PMID: 38000577 DOI: 10.1016/j.ijbiomac.2023.128286] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
This study evaluated the effects of an edible bilayer containing polyphenols from the Euryale ferox seed shell on ready-to-eat cooked beef products, including the physical, mechanical, antioxidant, and antibacterial capabilities. Here, the bilayer films were prepared by layer-by-layer solution pouring using hydrophobic ethyl cellulose (EC) as the outer layer, and hydrophilic gelatin/carboxymethyl chitosan (GC) as the inner layer. By adjusting the proportion of gelatin to carboxymethyl chitosan, the optical, mechanical, and barrier characteristics of bilayer films were markedly enhanced. Extracted polyphenol (EP) from shell of the Euryale ferox seed performed potent antibacterial property against Listeria monocytogenes (L. monocytogenes). The addition of EP to the inner layer of the optimized bilayer film further improved the mechanical and barrier properties of films, and as expected, the film exhibited antioxidant and antibacterial abilities. Additionally, cooked beef and cooked chicken preservation tests indicated that the active bilayer film showed good inhibition of L. monocytogenes and delayed lipid oxidation in ready-to-eat meat products, and significantly delayed the pH, moisture loss, color and texture changes. This study developed multifunctional bilayer active edible films, which has a great potential in the preservation ready-to-eat cooked meat products.
Collapse
Affiliation(s)
- Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hang Zhong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
23
|
Wibowo C, Salsabila S, Muna A, Rusliman D, Wasisto HS. Advanced biopolymer-based edible coating technologies for food preservation and packaging. Compr Rev Food Sci Food Saf 2024; 23:e13275. [PMID: 38284604 DOI: 10.1111/1541-4337.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2023] [Accepted: 11/03/2023] [Indexed: 01/30/2024]
Abstract
Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.
Collapse
Affiliation(s)
- Condro Wibowo
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
| | - Syahla Salsabila
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - Aulal Muna
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | - David Rusliman
- Department of Food Technology, Faculty of Agriculture, Universitas Jenderal Soedirman, Purwokerto, Indonesia
- PT Foodfuture Icon Nusantara, Purwokerto, Indonesia
| | | |
Collapse
|
24
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
25
|
Abdikakharovich SA, Rauf MA, Khattak S, Shah JA, Al-Keridis LA, Alshammari N, Saeed M, Igorevich SA. Exploring the antibacterial and dermatitis-mitigating properties of chicken egg white-synthesized zinc oxide nano whiskers. Front Cell Infect Microbiol 2023; 13:1295593. [PMID: 38099219 PMCID: PMC10719619 DOI: 10.3389/fcimb.2023.1295593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO-NPs) have garnered considerable interest in biomedical research primarily owing to their prospective therapeutic implications in combatting pathogenic diseases and microbial infections. The primary objective of this study was to examine the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) using chicken egg white (albumin) as a bio-template. Furthermore, this study aimed to explore the potential biomedical applications of ZnO NWs in the context of infectious diseases. Methods The NWs synthesized through biological processes were observed using electron microscopy, which allowed for detailed examination of their characteristics. The results of these investigations indicated that the NWs exhibited a size distribution ranging from approximately 10 to 100 nm. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) mapping analyses successfully corroborated the size, dimensions, and presence of biological constituents during their formation. In this study, XTT assay and confocal imaging were employed to provide evidence of the efficacy of ZnO-NWs in the eradication of bacterial biofilms. The target bacterial strains were Staphylococcus aureus and Escherichia coli. Furthermore, we sought to address pertinent concerns regarding the biocompatibility of the ZnO-NWs. This was achieved through comprehensive evaluation of the absence of cytotoxicity in normal HEK-293T and erythrocytes. Results The findings of this investigation unequivocally confirmed the biocompatibility of the ZnO-NWs. The biosynthesized ZnO-NWs demonstrated a noteworthy capacity to mitigate the dermatitis-induced consequences induced by Staphylococcus aureus in murine models after a therapeutic intervention lasting for one week. Discussion This study presents a comprehensive examination of the biosynthesis of zinc oxide nanowhiskers (ZnO-NWs) derived from chicken egg whites. These findings highlight the considerable potential of biosynthesized ZnO-NWs as a viable option for the development of therapeutic agents targeting infectious diseases. The antibacterial efficacy of ZnO-NWs against both susceptible and antibiotic-resistant bacterial strains, as well as their ability to eradicate biofilms, suggests their promising role in combating infectious diseases. Furthermore, the confirmed biocompatibility of ZnO-NWs opens avenues for their safe use in biomedical applications. Overall, this research underscores the therapeutic promise of ZnO-NWs and their potential significance in future biomedical advancements.
Collapse
Affiliation(s)
| | - Mohd A. Rauf
- School of Life Sciences, Henan University, Kaifeng, Henan, China
- Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | - Junaid Ali Shah
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
- College of Life Sciences, Jilin University, Changchun, China
| | | | - Nawaf Alshammari
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Sadykov Aslan Igorevich
- Department of Dermatology, Ferghana Medical Institute of Public Health, Ferghana, Uzbekistan
| |
Collapse
|
26
|
Wani NR, Dar AH, Dash KK, Pandey VK, Srivastava S, Jan SY, Deka P, Sabahi N. Recent advances in the production of bionanomaterials for development of sustainable food packaging: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116948. [PMID: 37611789 DOI: 10.1016/j.envres.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/08/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Polymers originating from natural macromolecule based polymeric materials have gained popularity due to the demand for green resources to develop unique, eco-friendly, and high-quality biopolymers. The objective of this review is to address the utilization of bionanomaterials to improve food quality, safety, security, and shelf life. Bionanomaterials are synthesized by integrating biological molecules with synthetic materials at the nanoscale. Nanostructured materials derived from biopolymers such as cellulose, chitin, or collagen can be employed for the development of sustainable food packaging. Green materials are cost-effective, biocompatible, biodegradable, and renewable. The interaction of nanoparticles with biological macromolecules must be analyzed to determine the properties of the packaging film. The nanoparticles control the growth of bacteria that cause food spoiling by releasing distinctive chemicals. Bio-nanocomposites and nanoencapsulation systems have been used in antimicrobial bio-based packaging solutions to improve the efficiency of synergism. Nanomaterials can regulate gas and moisture permeability, screen UV radiation, and limit microbial contamination, keeping the freshness and flavor of the food. Food packaging based on nanoparticles embedded biopolymers can alleviate environmental concerns by lowering the amount of packaging materials required and enhancing packaging recyclability. This results in less waste and a more eco-sustainable approach to food packaging. The study on current advances in the production of bionanomaterials for development of sustainable food packaging involves a detailed investigation of the available data from existing literature, as well as the compilation and analysis of relevant research results using statistical approaches.
Collapse
Affiliation(s)
- Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, 192122, India.
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India.
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Shivangi Srivastava
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Suhaib Yousuf Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Pinky Deka
- Department of Applied Biology, University of Science & Technology Meghalaya, Techno City, 793200, India
| | - Najmeh Sabahi
- Department of Food Science and Technology, Tabriz University, Tabriz, Iran
| |
Collapse
|
27
|
Cruz RMS, Albertos I, Romero J, Agriopoulou S, Varzakas T. Innovations in Food Packaging for a Sustainable and Circular Economy. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:135-177. [PMID: 38460998 DOI: 10.1016/bs.afnr.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Packaging is fundamental to maintaining the quality of food, but its contribution with a negative footprint to the environment must be completely changed worldwide to reduce pollution and climate change. Innovative and sustainable packaging and new strategies of reutilization are necessary to reduce plastic waste accumulation, maintain food quality and safety, and reduce food losses and waste. The purpose of this chapter is to present innovations in food packaging for a sustainable and circular economy. First, to present the eco-design packaging approach as well as new strategies for recycled or recyclable materials in food packaging. Second, to show current trends in new packaging materials developed from the use of agro-industrial wastes as well as new methods of production, including 3D/4D printing, electrostatic spinning, and the use of nanomaterials.
Collapse
Affiliation(s)
- Rui M S Cruz
- Department of Food Engineering, Institute of Engineering, Universidade do Algarve, Campus da Penha, Faro, Portugal; MED-Mediterranean Institute for Agriculture, Environment and Development and CHANGE-Global Change and Sustainability Institute, Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, Faro, Portugal.
| | - Irene Albertos
- Nursing Department, Nursing Faculty, University of Valladolid, Valladolid, Spain
| | - Janira Romero
- Faculty of Sciences and Art, Universidad Católica de Ávila (UCAV), Calle Canteros s/n, Ávila, Spain
| | - Sofia Agriopoulou
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of Peloponnese, Tripoli, Greece
| |
Collapse
|
28
|
Stępień A, Tkaczewska J, Nowak N, Grzebieniarz W, Goik U, Żmudziński D, Jamróz E. Sugar-Free, Vegan, Furcellaran Gummy Jellies with Plant-Based Triple-Layer Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6443. [PMID: 37834583 PMCID: PMC10573701 DOI: 10.3390/ma16196443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Increasing consumer awareness of the impact of nutrition on health and the growing popularity of vegan diets are causing a need to look for new plant-based formulations of standard confectionery products with high energy density and low nutritional value, containing gelatin. Therefore, the aim of this study was to develop vegan and sugar-free gummy jellies based on an algae-derived polysaccharide-furcellaran (FUR). Until now, FUR has not been used as a gel-forming agent despite the fact that its structure-forming properties show high potential in the production of vegan confectionery. The basic formulation of gummy jellies included the addition of soy protein isolate and/or inulin. The final product was characterized regarding its rheological, antioxidant, mechanical and physicochemical properties. Eco-friendly packaging for the jellies composed of a three-layer polymer film has also been developed. It was observed that the highest values of textural parameters were obtained in jellies containing the addition of soy protein isolate, whose positive effect was also found on antioxidant activity. Before drying, all furcellaran-based gel systems showed G' and G" values characteristic of strong elastic hydrogels. Storing jellies for a week under refrigeration resulted in an increase in hardness, a decrease in moisture content and reduced water activity values. Overall, our study indicates the high potential of furcellaran both as a gelling agent in confectionery products and as a base polymer for their packaging.
Collapse
Affiliation(s)
- Anna Stępień
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Joanna Tkaczewska
- Department of Animal Products Processing, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland;
| | - Nikola Nowak
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Wiktoria Grzebieniarz
- Department of Chemistry, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (N.N.); (W.G.)
| | - Urszula Goik
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Daniel Żmudziński
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Balicka Street 122, PL-30-149 Cracow, Poland; (U.G.); (D.Ż.)
| | - Ewelina Jamróz
- Department of Product Packaging, Cracow University of Economics, Rakowicka Street 27, PL-31-510 Cracow, Poland;
| |
Collapse
|
29
|
Arifin HR, Utaminingsih F, Djali M, Nurhadi B, Lembong E, Marta H. The Role of Virgin Coconut Oil in Corn Starch/NCC-Based Nanocomposite Film Matrix: Physical, Mechanical, and Water Vapor Transmission Characteristics. Polymers (Basel) 2023; 15:3239. [PMID: 37571131 PMCID: PMC10422339 DOI: 10.3390/polym15153239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Corn starch-based nanocomposite films usually have low moisture barrier properties. Adding virgin coconut oil (VCO) as a hydrophobic component can improve the nanocomposite film's characteristics, especially the film's permeability and elongation properties. This study aimed to determine the role of VCO with various concentrations (0, 3, 5 wt%) on the physical, mechanical, and water vapor transmission characteristics of corn starch/NCC-based nanocomposite films. Adding 3% VCO to the film showed the lowest WVTR value by 4.721 g/m2.h. At the same time, the value of tensile strength was 4.243 MPa, elongation 69.28%, modulus of elasticity 0.062 MPa, thickness 0.219 mm, lightness 98.77, and water solubility 40.51%. However, adding 5 wt% VCO to the film increased the film's elongation properties by 83.87%. The SEM test showed that adding VCO formed a finer structure with pores in several areas. The FTIR films showed that adding VCO caused a slightly higher absorption peak shift at the O-H groups and new absorption peaks at wave numbers 1741 cm-1 and 1742 cm-1. The results of this study may provide opportunities for the development of nanocomposite films as biodegradable packaging in the future.
Collapse
Affiliation(s)
- Heni Radiani Arifin
- Departement of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.U.); (M.D.); (B.N.); (E.L.); (H.M.)
| | | | | | | | | | | |
Collapse
|
30
|
Bose I, Roy S, Yaduvanshi P, Sharma S, Chandel V, Biswas D. Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4840. [PMID: 37445154 DOI: 10.3390/ma16134840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.
Collapse
Affiliation(s)
- Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Pallvi Yaduvanshi
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Somesh Sharma
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Vinay Chandel
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Deblina Biswas
- Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| |
Collapse
|
31
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan-based nanocomposites as coatings and packaging materials for the postharvest improvement of agricultural product: A review. Carbohydr Polym 2023; 309:120666. [PMID: 36906369 DOI: 10.1016/j.carbpol.2023.120666] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
The perishability nature of harvested fruits and vegetables, along with the effect of environmental factors, storage conditions, and transportation, reduce the products' quality and shelf-life. Considerable efforts have been allocated to alternate conventional coatings based on new edible biopolymers for packaging. Chitosan is an attractive alternative to synthetic plastic polymers due to its biodegradability, antimicrobial activity, and film-forming properties. However, its conservative properties can be improved by adding active compounds, limiting microbial agents' growth and biochemical and physical damages, and enhancing the stored products' quality, shelf-life, and consumer acceptability. Most of the research on chitosan-based coatings focuses on antimicrobial or antioxidant properties. Along with the advancement of polymer science and nanotechnology, novel chitosan blends with multiple functionalities are required and should be fabricated using numerous strategies, especially for application during storage. This review discusses recent developments in using chitosan as a matrix to fabricate bioactive edible coatings and their positive impacts on increasing the quality and shelf-life of fruits and vegetables.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
32
|
Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242:124826. [PMID: 37178889 DOI: 10.1016/j.ijbiomac.2023.124826] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based food packaging films are gaining increasing popularity, as consumers' demands for sustainable alternatives and environmental concerns associated with synthetic plastic packaging grow. In this research work, chitosan-based active antimicrobial films reinforced with eugenol nanoemulsion (EuNE), Aloe vera gel, and zinc oxide nanoparticles (ZnONPs) were fabricated and characterized for their solubility, microstructure, optical properties, antimicrobial and antioxidant activities. The rate of release of EuNE from the fabricated films was also evaluated to determine active nature of the films. The EuNE droplet size was about 200 nm, and they were uniformly distributed throughout the film matrices. Incorporation of EuNE in chitosan drastically improved UV-light barrier property of the fabricated composite film by 3 to 6 folds, while maintaining their transparency. The XRD spectra of the fabricated films showed good compatibility between the chitosan and the incorporated active agents. The incorporation of ZnONPs significantly improved their antibacterial properties against foodborne bacteria and tensile strength about 2-folds, whereas incorporation of EuNE and AVG improved DPPH scavenging activities of the chitosan film up to 95 %, respectively.
Collapse
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| |
Collapse
|
33
|
Kumar S, Reddy ARL, Basumatary IB, Nayak A, Dutta D, Konwar J, Purkayastha MD, Mukherjee A. Recent progress in pectin extraction and their applications in developing films and coatings for sustainable food packaging: A review. Int J Biol Macromol 2023; 239:124281. [PMID: 37001777 DOI: 10.1016/j.ijbiomac.2023.124281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
Perishable foods like fruits and vegetables, meat, fish, and dairy products have short shelf-life that causes significant postharvest losses, which poses a major challenge for food supply chains. Biopolymers have been extensively studied as sustainable alternatives to synthetic plastics, and pectin is one such biopolymer that has been used for packaging and preservation of foods. Pectin is obtained from abundantly available low-cost sources such as agricultural or food processing wastes and by products. This review is a complete account of pectin extraction from agro-wastes, development of pectin-based composite films and coatings, their characterizations, and their applications in food packaging and preservation. Compared to conventional chemical extraction, supercritical water, ultrasound, and microwave assisted extractions are a few examples of modern and more efficient pectin extraction processes that generate almost no hazardous effluents, and thus, such extraction techniques are more environment friendly. Pectin-based films and coatings can be functionalized with natural active agents such as essential oils and other phytochemicals to improve their moisture barrier, antimicrobial and antioxidant properties. Application of pectin-based active films and coatings effectively improved shelf-life of fresh cut-fruits, vegetables, meat, fish, poultry, milk, and other food perishable products.
Collapse
|
34
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
35
|
Ma Y, Zhao J, Wang Y, Pang B, Wu Y, Gao C. Poly(lactic acid) based Pearl Layer Moistureproof Membrane for Flexible Laminated Packaging. Macromol Rapid Commun 2023; 44:e2200868. [PMID: 36755508 DOI: 10.1002/marc.202200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/29/2023] [Indexed: 02/10/2023]
Abstract
The development of bio-based polymer materials, such as polylactic acid (PLA) -based polymers, is an effective strategy to reduce dependence on petrochemical-based polymers. However, the preparation of bio-based polymers with high barrier properties is a major challenge. To overcome this challenge, a nacreous layer structure with a ' brick and mud ' pattern is mimicked to improve the overall performance of the material. In this paper, Poly (L -lactic acid) (PLLA) and Polypropylene Glycol (PPG) was combined to prepare bio-based polyurethane (PU-PLLA), which is used as the slurry structure of nacreous layer. The bio-based biomimetic composite membrane (PU-PLLA/BN) is then obtained by adding boron nitride (BN, brick structure of pearl layer) to it. The water vapor permeability test results show that the permeability of PU-PLLA material can be reduced by more than 50% by 5 wt.% BN, which is because the addition of BN can increase the length and tortuosity of the gas molecular diffusion path in the composite. Therefore, this pearl-inspired PU-PLLA/BN film has excellent moisture resistance, which opens up a broad road for the practical application of PLLA in flexible laminated packaging.
Collapse
Affiliation(s)
- Ying Ma
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingming Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanqing Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Pang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
36
|
Gelatin films functionalized by lignocellulose nanocrystals-tannic acid stabilized Pickering emulsions: Influence of cinnamon essential oil. Food Chem 2023; 401:134154. [DOI: 10.1016/j.foodchem.2022.134154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
|
37
|
Kim Y, Ma L, Huang K, Nitin N. Bio-based antimicrobial compositions and sensing technologies to improve food safety. Curr Opin Biotechnol 2023; 79:102871. [PMID: 36621220 DOI: 10.1016/j.copbio.2022.102871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Microbial contamination of food products is a significant challenge that impacts food safety and quality. This review focuses on bio-based technologies for enhancing the decontamination of raw foods during postharvest processing, preventing cross-contamination, and rapidly detecting microbial risks. The bio-based antimicrobial compositions include bio-based antimicrobial delivery systems and coatings. The antimicrobial delivery systems are developed using cell-based carriers, microbubbles, and lipid-based colloidal particles. The antimicrobial coatings are engineered by incorporating biopolymers with conventional antimicrobials or cell-based antimicrobial carriers. The bio-based sensing approaches focus on replacing antibodies with more stable and cost-effective bio-receptors, including antimicrobial peptides, bacteriophages, DNAzymes, and engineered liposomes. Together, these approaches can reduce microbial contamination risks and enhance the in-situ detection of microbes.
Collapse
Affiliation(s)
- Yoonbin Kim
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Luyao Ma
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Nitin Nitin
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Mujtaba M, Lipponen J, Ojanen M, Puttonen S, Vaittinen H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158328. [PMID: 36037892 DOI: 10.1016/j.scitotenv.2022.158328] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Currently, petroleum-based synthetic plastics are used as a key barrier material in the paper-based packaging of several food and nonfood goods. This widespread usage of plastic as a barrier lining is not only harmful to human and marine health, but it is also polluting the ecosystem. Researchers and food manufacturers are focused on biobased alternatives because of its numerous advantages, including biodegradability, biocompatibility, non-toxicity, and structural flexibility. When used alone or in composites/multilayers, these biobased alternatives provide strong barrier qualities against grease, oxygen, microbes, air, and water. According to the most recent literature reports, biobased polymers for barrier coatings are having difficulty breaking into the business. Technological breakthroughs in the field of bioplastic production and application are rapidly evolving, proffering new options for academics and industry to collaborate and develop sustainable packaging solutions. Existing techniques, such as multilayer coating of nanocomposites, can be improved further by designing them in a more systematic manner to attain the best barrier qualities. Modified nanocellulose, lignin nanoparticles, and bio-polyester are among the most promising future candidates for nanocomposite-based packaging films with high barrier qualities. In this review, the state-of-art and research advancements made in biobased polymeric alternatives such as paper and board barrier coating are summarized. Finally, the existing limitations and potential future development prospects for these biobased polymers as barrier materials are reviewed.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland; VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Juha Lipponen
- Aalto University, Bioproduct and Biosystems, 02150 Espoo, Finland
| | - Mari Ojanen
- Kemira Oyj, Energiakatu 4, 00101 Helsinki, Finland
| | | | - Henri Vaittinen
- Valmet Technologies, Wärtsilänkatu 100, 04440 Järvenpää, Finland
| |
Collapse
|
39
|
Development and Characterization of Biocomposite Films Based on Polysaccharides Derived from Okra Plant Waste for Food Packaging Application. Polymers (Basel) 2022; 14:polym14224884. [PMID: 36433011 PMCID: PMC9692357 DOI: 10.3390/polym14224884] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based composite films were developed using mucilage polysaccharides (OLP) and carboxymethyl cellulose (CMC) extracted from okra leafstalk wastes. The rheological properties of biocomposite OLP/CMC film-forming solutions were characterized using the Power-law model, and fabricated films were characterized for their potential food packaging applications. OLP/CMC solutions exhibited pseudo-plastic fluid characteristics and differences in rheological behavior (n, 0.478-0.743), and flow consistency (K, 1.731-9.154) with increasing content of OLP (5 to 30 % w/w of CMC) were associated with variations in the physical, mechanical, and barrier properties of films. Surface hydrophobicity (24%) increased and oxygen (39%) and water vapor (32%) permeability reduced in OLP/CMC films containing up to 10% OLP. Moreover, a higher content of OLP enhanced the antioxidant activity and thermal stability of OLP/CMC films. Subsequently, OLP/CMC was applied as a coating to preserve cherry tomatoes for 14 days at 30 °C. Quality deterioration characterized by high weight loss (22%), firmness loss (74.62%), and discoloration (∆E, 21.26) occurred in uncoated tomatoes and were within unusable/unmarketable limits based on their visual quality score. In contrast, OLP/CMC effectively minimized quality losses, and coated tomatoes exceeded the limit of marketability after 14 days of storage. This study successfully applied value-added polysaccharides derived from okra plant residues for edible food packaging.
Collapse
|
40
|
Kahya N, Kestir SM, Öztürk S, Yolaç A, Torlak E, Kalaycıoğlu Z, Akın-Evingür G, Erim FB. Antioxidant and antimicrobial chitosan films enriched with aqueous sage and rosemary extracts as food coating materials: Characterization of the films and detection of rosmarinic acid release. Int J Biol Macromol 2022; 217:470-480. [PMID: 35835308 DOI: 10.1016/j.ijbiomac.2022.07.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
Chitosan films containing aqueous extracts of sage and rosemary were prepared as a potential food coating material with antioxidant and antibacterial properties. The effect of adding extracts at different concentrations on the mechanical, physical, and optical properties of the films was investigated. The addition of the extracts significantly increased Young's modulus values of the films compared to the chitosan film, and a significant decrease was observed in the swelling percentage and water vapor permeability of the films. Since all the prepared films were ionically cross-linked, the increase in water solubility of the films with the addition of the extract was at a low level. The release of rosmarinic acid, which is found in significant amounts in both plants, from the films was monitored by the capillary electrophoresis. The antioxidant properties imparted to the films by the addition of plant extracts were determined by DPPH and FRAP methods. The addition of plant extracts increased the antimicrobial property of chitosan films against Staphylococcus aureus and Escherichia coli. Films containing sage and rosemary extracts showed potential for use as food coating materials.
Collapse
Affiliation(s)
- Nilay Kahya
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Sacide Melek Kestir
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Seray Öztürk
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Alara Yolaç
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Emrah Torlak
- Necmettin Erbakan University, Department of Molecular Biology and Genetics, Konya, Turkey
| | - Zeynep Kalaycıoğlu
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Gülşen Akın-Evingür
- Piri Reis University, Department of Industrial Engineering, Tuzla, Istanbul, Turkey
| | - F Bedia Erim
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey.
| |
Collapse
|
41
|
Guo J, Dong S, Ye M, Wu X, Lv X, Xu H, Li M. Effects of Hydroxypropyl Methylcellulose on Physicochemical Properties and Microstructure of κ-Carrageenan Film. Foods 2022; 11:foods11193023. [PMID: 36230097 PMCID: PMC9563755 DOI: 10.3390/foods11193023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
We investigated the effects of different proportions of hydroxypropyl methylcellulose (HPMC) on the properties of κ-carrageenan film. Biodegradable κ-carrageenan/HPMC films (κCHM film) were prepared by the solution casting method and their physicochemical properties were evaluated. The results show that the addition of HPMC enhanced oxygen barrier capacity, mechanical properties (tensile strength and elongation at break) and thermal stability. Notably, when the addition of HPMC increased to 6% of κ-carrageenan (w:w), the κCHM-6 film not only effectively improved water resistance, including lower water solubility, water vapor permeability and higher water contact angle, but also made the structure of the κCHM-6 film more compact. Moreover, rheological measurement and atomic force microscopy characterization showed that κ-carrageenan had suitable compatibility with HPMC. Attenuated total reflection–Fourier transform infrared spectroscopy analysis further confirmed the enhancement of hydrogen bond interactions. This finding could contribute to promoting the potential application of κCHM film in food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mei Li
- Correspondence: ; Tel.: +86-151-2931-8871
| |
Collapse
|
42
|
Nian L, Wang M, Sun X, Zeng Y, Xie Y, Cheng S, Cao C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit Rev Food Sci Nutr 2022; 64:2304-2339. [PMID: 36123805 DOI: 10.1080/10408398.2022.2122924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.
Collapse
Affiliation(s)
- Linyu Nian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Mengjun Wang
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xiaoyang Sun
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yan Zeng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yao Xie
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Anwar MM, Aly SSH, Nasr EH, El-Sayed ESR. Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. AMB Express 2022; 12:116. [PMID: 36070053 PMCID: PMC9452608 DOI: 10.1186/s13568-022-01459-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
In this paper, gamma-irradiation was successfully used to intensify the yield of Zinc oxide nanoparticles (ZnONPs) produced by the fungus Alternaria tenuissima as a sustainable and green process. The obtained data showed that 500 Gy of gamma-irradiation increased ZnONPs' yield to approximately four-fold. The synthesized ZnONPs were then exploited to develop active Carboxymethyl Cellulose films by casting method at two different concentration of ZnONPs 0.5% and 1.0%. The physicochemical, mechanical, antioxidant, and antimicrobial properties of the prepared films were evaluated. The incorporation of ZnONPs in the Carboxymethyl Cellulose films had significantly decreased solubility (from 78.31% to 66.04% and 59.72%), water vapor permeability (from 0.475 g m-2 to 0.093 g m-2 and 0.026 g m-2), and oxygen transfer rate (from 24.7 × 10-2 to 2.3 × 10-2 and 1.8 × 10-2) of the respective prepared films. Meanwhile, tensile strength (from 183.2 MPa to 203.34 MPa and 235.94 MPa), elongation (from 13.0% to 62.5% and 83.7%), and Yang's modulus (from 325.344 to 1410.0 and 1814.96 MPa) of these films were increased. Moreover, the antioxidant and antimicrobial activities against several human and plant pathogens the prepared of Carboxymethyl Cellulose-ZnONPs films were significantly increased. In conclusion, the prepared Carboxymethyl Cellulose-ZnONPs films showed enhanced activities in comparison with Carboxymethyl Cellulose film without NPs. With these advantages, the fabricated Carboxymethyl Cellulose-ZnONPs films in this study could be effectively utilized as protective edible coating films of food products.
Collapse
Affiliation(s)
- Mervat M Anwar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sanaa S H Aly
- Food Engineering and Packing Department, Agriculture Research Centre, Food Technology Research Institute, Giza, Egypt
| | - Essam H Nasr
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
44
|
Aristi Capetillo A, Bauer F, Chaminade C. Emerging Technologies Supporting the Transition to a Circular Economy in the Plastic Materials Value Chain. CIRCULAR ECONOMY AND SUSTAINABILITY 2022; 3:1-30. [PMID: 36065416 PMCID: PMC9434076 DOI: 10.1007/s43615-022-00209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
Abstract
Plastic waste has come to the forefront of academic and political debates as a global problem that demands an urgent solution. Promoted by policymakers, academia, and corporations alike, the circular economy model presents a viable path to reach more sustainable levels of development. Emerging and disruptive technologies can catalyse the transition to a circular economy, but their application to the transition of the plastic materials realm is not fully understood. Based on a systematic review of the literature, this paper aims to understand the role of key emerging technologies in the transition towards a circular economy in the plastic materials value chain, their potential impact, as well as the barriers of adoption and diffusion. Employing the ReSOLVE framework, the analysis reveals that rather than individual technologies, four technology sets associated with Industry 4.0, distributed economies, bio-based systems, and chemical recycling stand as major enablers of this transition. The complementarity of technologies and the change needed from a systemic perspective are discussed along with a proposal for governance and practical implementation pathway to overcome barriers and resistance to the transition.
Collapse
Affiliation(s)
| | - Fredric Bauer
- Environmental and Energy Systems Studies, Lund University, Lund, Sweden
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
| | - Cristina Chaminade
- CIRCLE – Centre for Innovation Research, Lund University, Lund, Sweden
- Department of Economic History, Lund University, Lund, Sweden
- Department of Business and Management, Aalborg University, Aalborg, Denmark
| |
Collapse
|
45
|
Susmita Devi L, Kalita S, Mukherjee A, Kumar S. Carnauba wax-based composite films and coatings: recent advancement in prolonging postharvest shelf-life of fruits and vegetables. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Sun C, Cao J, Wang Y, Huang L, Chen J, Wu J, Zhang H, Chen Y, Sun C. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocoll 2022; 125:107374. [DOI: 10.1016/j.foodhyd.2021.107374] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
47
|
Ezati P, Roy S, Rhim JW. Pectin/gelatin-based bioactive composite films reinforced with sulfur functionalized carbon dots. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Sultan M, Hafez OM, Saleh MA. Quality assessment of lemon (Citrus aurantifolia, swingle) coated with self-healed multilayer films based on chitosan/carboxymethyl cellulose under cold storage conditions. Int J Biol Macromol 2022; 200:12-24. [PMID: 34973265 DOI: 10.1016/j.ijbiomac.2021.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 12/30/2022]
Abstract
The polyelectrolyte multilayer self-healing coating film of chitosan and carboxymethyl cellulose (PEM-SH) tended to maintain high sensory quality and control physiological and pathological decay of lemon fruits under cold storage. The PEM-SH film was characterized by ATR-IR, XRD, X-ray photoelectron spectroscopy, SEM analysis, swelling ratio, self-healing, and mechanical characteristics. The 3-layered film (3L) exhibited the optimum barrier properties; WVP: 3.32 ± 0.06 g. mm. k Pa-1.h-1.m-2 and GTR: 0.256 ± 0.032 cc.M-2.day-1. The moisture sorption isotherm data were fitted with BET, GAB, and Peleg models and three models showed applicability. The coated fruits exhibit superior features of fruit quality such as reduced weight loss %, respiration rate, and decay symptoms appearance. The 3L-coated fruit showed the lower pectinase enzyme activity (0.689 Ug-1 FW) up to 60 days. As well as, increased total soluble solids, keeping vitamin C of loss and decreasing percentage acidity of juice up to 60 days.
Collapse
Affiliation(s)
- Maha Sultan
- Packaging Materials, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| | - Omaima M Hafez
- Pomology Departments, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| | - Malaka A Saleh
- Pomology Departments, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), Dokki, Giza P.O. 12622, Egypt
| |
Collapse
|
49
|
Aguilar-Veloz LM, Calderón-Santoyo M, Carvajal-Millan E, Martínez-Robinson K, Ragazzo-Sánchez JA. Artocarpus heterophyllus Lam. leaf extracts added to pectin-based edible coating for Alternaria sp. control in tomato. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Roy S, Priyadarshi R, Ezati P, Rhim JW. Curcumin and its uses in active and smart food packaging applications - a comprehensive review. Food Chem 2021; 375:131885. [PMID: 34953241 DOI: 10.1016/j.foodchem.2021.131885] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Active and intelligent food packaging is an innovative technology to prevent food contamination and ensure food quality and safety. Active packaging protects the food from microbial contamination, while smart or intelligent packaging enables monitoring the freshness of the food or quality change in real-time. Curcumin, one of the most well-known natural colorants, has received a lot of attention for its excellent functional properties and ability to change color with changes in pH. Curcumin, the golden component of turmeric, a spice widely used in food since ancient times, is a cost-effective and abundant biomaterial with various biological properties such as antioxidant, antibacterial, antiviral, antitumor, and anti-inflammatory. Recently, active packaging or intelligent packaging systems have been actively developed using the functional properties of curcumin. In this review, we briefly reviewed curcumin's basic biological functions and discussed comprehensive and recent progress in using curcumin in various polymer-based active and smart food packaging applications.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Parya Ezati
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|