1
|
Wang J, Qin M, Wang W, Xia Y, Wu G, Deng H, Lin Q. Konjac glucomannan/ carboxylated cellulose nanofiber-based edible coating with tannic acid maintains quality and prolongs shelf-life of mango fruit. Food Chem 2025; 478:143750. [PMID: 40058258 DOI: 10.1016/j.foodchem.2025.143750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Polysaccharide films containing antimicrobial agents have good prospects for application in the fruit industry. However, poor film-forming properties of polysaccharides remain a major challenge. In this work, the konjac glucomannan (KGM) was modified by cross-linking with carboxylated cellulose nanofibers (CNF) to form a composite coating film, and tannic acid (TA) was provided as an active ingredient to improve the antibacterial effect. The optimal formula was: CNF/KGM (w:w) 3.05:10, TA content was 0.40 %, and glycerol content was 0.57 %. KGM/CNF/TA film had good compatibility and a compact structure. The thermal stability and water contact angle of the composite film were higher than those of KGM. Furthermore, the KGM/CNF/TA film reduced the black spot incidence, maintained fruit firmness, decreased ethylene release and respiration rate, increased the antioxidant enzyme activities, and extended the shelf-life of mango. Thus, KGM/CNF/TA is expected to expand polysaccharide/ polymer composite application in the fruit industry.
Collapse
Affiliation(s)
- Jiaxin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mian Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yining Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nafan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Guang Wu
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province/ Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province/ Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China.
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; National Nafan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
2
|
Liang S, Zhang J, Huang S, Lan X, Wang W, Tang Y. Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers (Basel) 2025; 17:1066. [PMID: 40284331 PMCID: PMC12030516 DOI: 10.3390/polym17081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin, known for its excellent biocompatibility, strong aggregative properties, and low cost, has been extensively investigated as a promising material for food packaging. Among various fabrication methods, electrospinning stands out due to its simplicity, cost-effectiveness, high process controllability, and ability to produce nanofiber membranes with enhanced properties. This review provides a comprehensive overview of the sources, properties, and applications of gelatin, along with the fundamental principles of electrospinning and its applications in food packaging. Additionally, the common types of electrospinning techniques used in food packaging are also covered. In recent years, increasing research efforts have focused on gelatin-based electrospun nanofiber membranes for food packaging applications. The functionalization of electrospinning gelatin-based nanofiber membrane was realized by incorporating various active substances or combining it with other techniques, fulfilling the new requirements of food packaging. In this review, gelatin-based electrospun nanofiber membranes for food packaging applications are overviewed, with a particular emphasis on various types of modifications for the membranes aimed at meeting diverse application demands. Finally, the future perspectives and challenges in the research of gelatin-based electrospun nanofiber membranes for food packaging are discussed.
Collapse
Affiliation(s)
- Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Qiu M, Tian Y, Qu W, Ma Y, Zhao F, Jiang Y, Zhao Q, Man C. Postbiotic-biosynthesized silver nanoparticles anchored on covalent organic frameworks integrated into carboxymethyl chitosan-based film for enhancing antibacterial packaging. Int J Biol Macromol 2025; 291:139143. [PMID: 39722393 DOI: 10.1016/j.ijbiomac.2024.139143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Food packaging plays a vital role in guaranteeing the quality and safety of fresh products during the storage and distribution. Carboxymethyl chitosan (CMCS) is identified as a promising polymer for food packaging film owing to its film-forming ability, non-toxicity, and biodegradability. Nevertheless, the practical applications of pure CMCS film usually suffer from some limits owing to its poor antibacterial effect and mechanical strength. In this study, postbiotic-biosynthesized silver nanoparticles (AgNPs) anchored on covalent organic frameworks (COF) (namely COF-AgNP) were integrated into the CMCS film to enhance antibacterial packaging performance for preservation of fruits. Utilizing postbiotic as a reducing agent, COF-AgNPs composite nanomaterials were prepared by anchoring AgNPs on COF via in-situ reduction of Ag+. Furthermore, antibacterial packaging film was prepared using CMCS and COF-AgNPs (CMCS@COF-AgNPs) via a solution-casting method. Furthermore, characterization results proved that mechanical strength of CMCS@COF-AgNP films exhibited a gradual enhancement with the increased COFs-AgNPs content. Moreover, CMCS@COF-AgNP films exhibited an enhanced antibacterial activity and excellent biocompatibility. Importantly, CMCS@COF-AgNP coating can effectively preserve citrus quality and prolong its storage time. Therefore, CMCS@COF-AgNP films could be used as a promising and economically viable solution to diminish postharvest losses and prolong the shelf life of fresh products.
Collapse
Affiliation(s)
- Manyan Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yueling Tian
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenxuan Qu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Qianyu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Rodriguez OT, Valero MF, Gómez-Tejedor JA, Diaz L. Performance of Biodegradable Active Packaging in the Preservation of Fresh-Cut Fruits: A Systematic Review. Polymers (Basel) 2024; 16:3518. [PMID: 39771371 PMCID: PMC11679589 DOI: 10.3390/polym16243518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Fresh-cutting fruits is a common practice in markets and households, but their short shelf life is a challenge. Active packaging is a prominent strategy for extending food shelf life. A systematic review was conducted following the PRISMA guidelines to explore the performance and materials used in biodegradable active packaging for fresh-cut fruits. Sixteen studies were included from a search performed in July 2024 on Scopus and Web of Science databases. Only research articles in English on biodegradable active films tested on cut fruits were selected. Polysaccharides were the most employed polymer in film matrices (87.5%). Antioxidant and anti-browning activities were the active film properties that were most developed (62.5%), while plant extracts and essential oils were the most employed active agents (56.3%), and fresh-cut apples were the most commonly tested fruit (56.3%). Appropriate antioxidant, antibacterial, and barrier properties for fresh-cut fruit packaging were determined. Furthermore, there is a wide range of experimental designs to evaluate shelf-life improvements. In each case, shelf life was successfully extended. The findings show that different storage conditions, fruits, and material configurations can lead to different shelf-life extension performances. Thus, biodegradable active packaging for fresh-cut fruits has a strong potential for growth in innovative, sustainable, and functional ways.
Collapse
Affiliation(s)
- Oscar T. Rodriguez
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - Manuel F. Valero
- Energy, Materials and Environment Group GEMA, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia; (O.T.R.); (M.F.V.)
| | - José A. Gómez-Tejedor
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 Valencia, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Luis Diaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá, Chía 140013, Colombia
| |
Collapse
|
5
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Jia H, Jia Y, Ren F, Liu H. Enhancing bioactive compounds in plant-based foods: Influencing factors and technological advances. Food Chem 2024; 460:140744. [PMID: 39116769 DOI: 10.1016/j.foodchem.2024.140744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Plant-based foods are natural sources of phytochemicals, which exhibit free radical scavenging capacity. However, the bioaccessibility of phytochemicals in foods are limited due to their poor stability and solubility within food matrix. Moreover, chemical degradation induced by processing further diminish the levels of these bioactive compounds. This review explores the impacts of thermal and non-thermal processing on fruits and vegetables, emphasizing the application of emerging technologies to enhance food quality. Innovative non-thermal technologies, which align with sustainable and environmentally friendly principles of green development, are particularly promising. Supercritical CO2 and cold plasma can be applied in extraction of phytochemicals, and these extracts also can be used as natural preservatives in food products, as well as improve the texture and sensory properties of food products, offering significant potential to advance the field of food science and technology while adhering to eco-friendly practices.
Collapse
Affiliation(s)
- Hanbing Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
7
|
Liu M, Wang Y, Su S, Long F, Zhong L, Hu J. Multifunctional bio-nanocomposite films integrated with essential oils@metal-phenolic network nanocapsules for durable fruit preservation. Int J Biol Macromol 2024; 278:134916. [PMID: 39182885 DOI: 10.1016/j.ijbiomac.2024.134916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Food spoilage exacerbates global hunger and poverty, necessitating urgent advancements in food shelf life extension methodologies. However, balancing antibacterial efficacy for food preservation with human and environmental safety remains a significant challenge. Natural essential oils (EOs), known for their potent antibacterial and antioxidant properties, offer eco-friendly alternatives, yet their high volatility and instability limit practical applications. Herein, we conducted the encapsulation of EOs within biocompatible metal phenolic networks (MPNs) to create EOs@MPN nanocapsules. Subsequently, these nanocapsules were integrated into bio-nanocomposite films composed of natural soy protein isolate (SPI) and carboxymethyl cellulose (CMC). The resulting films exhibited robust mechanical properties (Tensile Strength >10 MPa) and significantly enhanced antioxidant activity (7-fold higher than pure films). Importantly, the synergistic combination of EOs and MPNs conferred enhanced antibacterial efficacy. Safety assessments confirmed the bio-nanocomposite films' high biodegradability (> 90 %) and negligible cytotoxicity, ensuring environmental sustainability and human health safety. In practical applications, the bio-nanocomposite films effectively delayed the surface browning of fresh-cut fruits for up to 48 h, demonstrating a pronounced synergistic antioxidative effect against oxidation. Moreover, tomatoes and blueberries packaged with the bio-nanocomposite films still maintained freshness for up to 12 days, offering promising strategies for extending the shelf life of perishable fruits. These findings underscore the potential of EOs@MPN-based bio-nanocomposite films as sustainable solutions for food preservation and highlight their practical viability in mitigating food spoilage and enhancing food security globally.
Collapse
Affiliation(s)
- Ming Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Ying Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Shilong Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Feifei Long
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lizhuang Zhong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
8
|
Zhang Z, Yang W, Wang W, Duan X, Zhao R, Yu S, Chen J, Sun H. Electrospun O-quaternary ammonium chitosan/polyvinyl alcohol nanofibrous film by application of Box-Behnken design response surface method for eliminating pathogenic bacteria. Int J Biol Macromol 2024; 276:133750. [PMID: 39019375 DOI: 10.1016/j.ijbiomac.2024.133750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
In this study, O-quaternary ammonium chitosan (O-HTCC) containing bicationic antibacterial active groups was synthesized to develop an O-HTCC/PVA porous nanofibrous film to enhance antibacterial activity, leveraging surface modification and nano-porous structure design. Uniform and smooth nanofibrous structures (average diameter: 72-294 nm) were successfully obtained using a simple and feasible electrospinning method. A response surface model via Box-Behnken design (BBD) was used to clarify the interaction relationship between O-HTCC fiber diameter and three critical electrospinning parameters (O-HTCC concentration, applied voltage, feed flow rate), predicting that the minimum O-HTCC fiber diameter (174 nm) could be achieved with 7 wt% of O-HTCC concentration, 14 kV of voltage, and 0.11 mL/h of feed flow rate. Linear regression (R2 = 0.9736, Radj2 = 0.9716) and the Anderson Darling test demonstrated the excellent fit of the RSM-BBD model. Compared to N-HTCC/PVA nanofibrous film, the O-HTCC/PVA version showed increased growth inhibition and more effective antibacterial efficacies against Escherichia coli (E. coli) (~;86.34 %) and Staphylococcus aureus (S. aureus) (~;99.99 %). DSC revealed improved thermal stability with an increased melting temperature (238 °C) and endothermic enthalpy (157.7 J/g). This study holds potential for further development of antibacterial packaging to extend food shelf-life to reduce bacterial infection.
Collapse
Affiliation(s)
- Zhihang Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Weiqiao Yang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wenjuan Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Ruxia Zhao
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shangke Yu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Food Science College, Shenyang Agricultural University, Shenyang 110866, China
| | - Jie Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
9
|
Liao J, Wen R, Wang Y, Zhou Y, Zhang J. Film-Forming Capability and Antibacterial Activity of Surface-Deacetylated Chitin Nanocrystals: Role of Degree of Deacetylation. Biomacromolecules 2024; 25:5138-5148. [PMID: 39007299 DOI: 10.1021/acs.biomac.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Developing sustainable food-active packaging materials is a major issue in food preservation applications. Chitin nanocrystals (ChNCs) are regarded as unique bioderived nanomaterials due to their inherent nitrogen moiety. By tuning the chemical functionality of this nanomaterial, it is possible to affect its properties, such as film-forming capability and antibacterial activity. In this work, surface-deacetylated chitin nanocrystals (D-ChNCs) with different degrees of deacetylation (DDs) were prepared by partial deacetylation of native chitin and subsequent acid hydrolysis, and their film-forming capability and antibacterial activity were studied systematically. The D-ChNCs showed favorable film-forming ability and antibacterial activity, which are closely related to their DD. With the increase in DD (from 5.7% to 45.4%), the formed transparent films based on ChNCs showed gradually increased elongation at break (from 0.5% to 2.5%) and water contact angle (from 25.5° to 87.0°), but decreased break strength (from 3.13 to 0.89 MPa), Young's modulus (from 0.84 to 0.24 MPa), and water vapor permeability (from 4.7 × 10-10 to 4.1 × 10-10g/m s Pa). Moreover, the antibacterial activity of the D-ChNCs against E. coli and S. aureus also increased with the increase of DD. This study also found that the depolarization and potential dissipation of the bacterial cell membrane induced by the contact between amino-rich D-ChNCs and bacteria through electrostatic attraction are the possible mechanisms causing bacterial cell death. This study provides a basis for understanding the effects of DD on the film-forming capability and antibacterial activity of ChNCs, which is conducive to the design of novel active packaging films based on ChNCs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Ruizhi Wen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yijin Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|
10
|
Na X, Zou B, Zheng X, Yu X, Zhang L, Xu X, Du M, Wu C. One-step spraying of protein-anchored chitosan oligosaccharide antimicrobial coating for food preservation. Int J Biol Macromol 2024; 275:133330. [PMID: 38908638 DOI: 10.1016/j.ijbiomac.2024.133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The persistent global issues of unsafe food and food waste continue to exist. Microbial contamination stands out as a major cause of losses in perishable foods like vegetables and fruits. Herein, we report a self-assembling coating based on disulfide bond cleavage-induced bovine serum albumin (BSA), where the antimicrobial activity of chitosan oligosaccharide (COS) is stably anchored in the coating by electrostatic interactions during the unfolding-aggregation phase of BSA. The intrinsic antimicrobial activity of COS, combined with the positively charged and hydrophobic regions enriched on the BSA coating, significantly disrupts the integrity of bacterial structures. Furthermore, the BSA@COS coating can easily adhere in situ to the grooves on the surface of strawberries through a simple one-step spraying process, extending the shelf life of strawberries and bananas by nearly three times. This makes it a potential economic alternative to current commercial antimicrobial coatings, offering a solution to the rampant global issue of food waste.
Collapse
Affiliation(s)
- Xiaokang Na
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Bowen Zou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Xueer Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Ling Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing & Safety Control, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Laboratory of Food Nutrition and Health, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Wang S, Zhang Y, Chen X, Mourdikoudis S, Fan S, Li H, Gómez-Graña S, Ren S, Zheng G. Disentangling the "tip-effects" enhanced antibacterial mechanism of Ag nanoparticles. Dalton Trans 2024; 53:12281-12290. [PMID: 38980694 DOI: 10.1039/d4dt01173b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Silver nanoparticles (Ag NPs) exhibit strong antibacterial activity and are widely used in industries such as medical, food and cosmetics. In this study, Ag nanospheres and Ag nanotriangles are selected as antibacterial agents to reveal the distinct mechanism of tip effects towards their antibacterial performance. A series of antibacterial experiments were implemented, including in situ monitoring as well as studying and determining the evolution of the inhibition zone, minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC) values, growth kinetics, bactericidal curve, bacterial morphologies and intracellular reactive oxygen species (ROS). Ag nanotriangles can eradicate E. coli and S. aureus at extremely low concentrations in comparison to Ag nanospheres, in particular under sunlight irradiation. The destroyed bacterial cell walls were examined by scanning electron microscopy. Through the investigation of ROS production, the generation efficiency of ROS is improved by the merit of sunlight irradiation thanks to the localized surface plasmon resonance (LSPR) properties of Ag NPs. However, a more significant improvement in ROS generation efficiency occurred in the presence of Ag nanotriangles contributed by the pronounced "tip effects". This study sheds light on the structure-performance relationship for the rational design of antibacterial agents.
Collapse
Affiliation(s)
- Shenli Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanping Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Xuan Chen
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Stefanos Mourdikoudis
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Shengshi Fan
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Haoyu Li
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Sergio Gómez-Graña
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain
| | - Shuncheng Ren
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Guangchao Zheng
- School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, P. R. China.
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
12
|
Ivanov Y, Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms 2024; 12:1378. [PMID: 39065146 PMCID: PMC11279212 DOI: 10.3390/microorganisms12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of antimicrobial food packaging is a very important and current goal, but it still difficult to implement in practice. Reducing microbial contamination and preserving food quality are very important tasks for food manufacturers as the use of antimicrobial packaging can preserve the health of consumers. On the other hand, the difficulty of degrading packaging materials, leading to environmental pollution, is also an important problem. These problems can be solved by using biodegradable biopolymers and antimicrobial agents in the production of food packaging. Very suitable antimicrobial agents are grape seed and skin extracts as they have high antioxidant and antimicrobial capacity and are obtained from grape pomace, a waste product of winemaking. The present review presents the valuable bioactive compounds contained in grape seeds and skins, the methods used to obtain the extracts, and their antimicrobial and antioxidant properties. Then, the application of grape seed and skin extracts for the production of antimicrobial packaging is reviewed. Emphasis is placed on antimicrobial packaging based on various biopolymers. Special attention is also paid to the application of the extract of grape skins to obtain intelligent indicator packages for the continuous monitoring of the freshness and quality of foods. The focus is mainly placed on the antimicrobial properties of the packaging against different types of microorganisms and their applications for food packaging. The presented data prove the good potential of grape seed and skin extracts to be used as active agents in the preparation of antimicrobial food packaging.
Collapse
Affiliation(s)
| | - Tzonka Godjevargova
- Department Biotechnology, University “prof. d-r A. Zlatarov”, 8010 Burgas, Bulgaria;
| |
Collapse
|
13
|
Cui F, Li L, Wang D, Li J, Li T. Nanomaterials with Enzyme-like Properties for Combatting Foodborne Pathogen Infections: Classifications, Mechanisms, and Applications in Food Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10179-10194. [PMID: 38685503 DOI: 10.1021/acs.jafc.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
During the transportation and storage of food, foodborne spoilage caused by bacterial and biofilm infection is prone to occur, leading to issues such as short shelf life, economic loss, and sensory quality instability. Therefore, the development of novel and efficient antibacterial agents capable of efficiently inhibiting bacteria throughout various stages of food processing, transportation, and storage is strongly recommended by researchers. The emergence of nanozymes is considered to be an effective candidate for inhibiting foodborne bacteria agents in the food industry. As potent antibacterial agents, nanozymes have the advantages of low cost, high stability, strong broad-spectrum antibacterial ability, and biocompatibility. Herein, we aim to summarize the classification status of various nanozymes. Furthermore, the general catalytic bacteriostatic mechanism of nanozymes against intracellular bacteria, planktonic bacteria, and biofilm activities are highlighted, mainly concerning the destruction of cell walls and/or membranes, reactive oxygen species regulation, HOBr/Cl generation, damage of intracellular components, and so forth. In particular, the review focuses on the pivotal role of nanozymes as antibacterial agents and delivery vehicles in the fields of food preservation applications. We look forward to the future prospects, especially in the field of food preservation, to promote broader applications based on antimicrobial nanozymes.
Collapse
Affiliation(s)
- Fangchao Cui
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lanling Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Dangfeng Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, China Light Industry Key Laboratory of Marine Fish Processing, College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| |
Collapse
|
14
|
Zhang X, Li X, Zhang H, Jiang S, Sun M, He T, Zhang T, Wu W. Self-supporting noncovalent Choline Alginate/Tannic acid/Ag antibacterial films for strawberry preservation. Int J Biol Macromol 2024; 265:130936. [PMID: 38493811 DOI: 10.1016/j.ijbiomac.2024.130936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Packaging materials with peculiar antibacterial properties can shield off and inhibit microorganism proliferation, thus achieving packaging goals such as fresh-keeping, good hygiene, and biosafety. Especially, antibacterial films made of biocompatible substances have received wide attentions, which could effectively extend the shelf life, enhance food security, and guarantee economic benefits. Herein, a self-supporting hybrid antibacterial film was prepared based on non-covalently linked choline hydroxide (ChOH) and alginic acid (HAlg). Then tannic acid (TA) and silver ions were added to improve the mechanical and antimicrobial properties of this hybrid film. The rich hydroxyl groups from TA not only form multiple hydrogen bonds with ChAlg, but can also in situ reduce silver ions to silver nanoparticles, which were confirmed with various characterizations. In addition, the quantitative antibacterial test proved that the antibacterial rate was significantly improved after adding silver ions, reaching >60 %. In an actual storage test, we found that choline cation (Ch+) captured in antibacterial film by electrostatic interaction could achieve sustained release, i.e. sustainable bacteriostasis, and keep strawberries fresh for 48 h at room temperature. This work offers a new strategy for preparing antibacterial films via non-covalent weak interactions, explored an alternative antibacterial film for food packaging applications.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China
| | - Huiling Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China
| | - Shasha Jiang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China
| | - Mingze Sun
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China
| | - Tao He
- Technology and Engineering Center for Multi-scale Functional Materials, Yantai University, Shandong 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China.
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Shandong 264005, China.
| |
Collapse
|
15
|
Gao Y, Zhong C, Qiu J, Zhao L, Xiong X. The highly selective rhodol-based putrescine probe and visual sensors for on-site detection of putrescine in food spoilage. Talanta 2024; 270:125615. [PMID: 38169275 DOI: 10.1016/j.talanta.2023.125615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Putrescine (Butane-1,4-diamine) has been regarded as a vital marker of spoiling protein-rich foods, especially meat and seafood. The detection of putrescine in food is considered a convenient and powerful method for evaluating the degree of spoilage of protein-rich foods. Herein, a novel rhodol-based fluorescent probe RSMA (formyl-rhodol Schiff base with methoxyaniline) was developed to detect putrescine. RSMA exhibited excellent linearity (R2 = 0.9912) in the concentration range of 0-45 μM of putrescine with a detection limit as low as 0.45 μM. Although RSMA had moderate responses to some aliphatic diamines, the selectivity of RSMA for putrescine was one of the best reported in the literature so far. Moreover, RSMA was successfully fabricated to solid-state sensors for on-site detection of putrescine in shrimp, that demonstrated its application in monitoring food spoilage.
Collapse
Affiliation(s)
- Yong Gao
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350117, China.
| | - Chunli Zhong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianwen Qiu
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| | - Lan Zhao
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Xinyi Xiong
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
16
|
Dai L, Wang X, Mao X, He L, Li C, Zhang J, Chen Y. Recent advances in starch-based coatings for the postharvest preservation of fruits and vegetables. Carbohydr Polym 2024; 328:121736. [PMID: 38220350 DOI: 10.1016/j.carbpol.2023.121736] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Efficient and low-cost postharvest preservation of fruits and vegetables has always been one of the urgent problems to be solved in the food field. Due to the wide sources, good environmental and human safety, and high biodegradability, starch-based coating preservation method has great application prospects in the postharvest preservation of fruits and vegetables. However, starch materials also have the disadvantages of poor mechanical properties and easy water absorption performance, which makes it difficult to fully meet the requirements in practical production. Therefore, starch is often used in combination with other components to form composite materials. This paper began with an introduction to the preservation principles of edible starch-based coatings, including inherent properties and extra functional properties. Besides, the preservation principles of edible coatings and the recent advances in the field of fruit and vegetable preservation were also comprehensively reviewed, focusing on the preparation and application of starch-based coatings. The information will contribute to the further development of starch-based coatings to improve the postharvest preservation effect of fruits and vegetables.
Collapse
Affiliation(s)
- Limin Dai
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiuzhuang Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiayu Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linyu He
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Changwei Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Zhang
- School of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, China
| | - Yuan Chen
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
17
|
Borah A, Hazarika P, Duarah R, Goswami R, Hazarika S. Biodegradable Electrospun Membranes for Sustainable Industrial Applications. ACS OMEGA 2024; 9:11129-11147. [PMID: 38496999 PMCID: PMC10938411 DOI: 10.1021/acsomega.3c09564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
The escalating demand for sustainable industrial practices has driven the exploration of innovative materials, prominently exemplified by biodegradable electrospun membranes (BEMs). This review elucidates the pivotal role of these membranes across diverse industrial applications, addressing the imperative for sustainability. Furthermore, a comprehensive overview of biodegradable materials underscores their significance in electrospinning and their role in minimizing the environmental impact through biodegradability. The application of BEMs in various industrial sectors, including water treatment, food packaging, and biomedical applications, are extensively discussed. The environmental impact and sustainability analysis traverse the lifecycle of BEMs, evaluating their production to disposal and emphasizing reduced waste and resource conservation. This review demonstrates the research about BEMs toward an eco-conscious industrial landscape for a sustainable future.
Collapse
Affiliation(s)
- Akhil
Ranjan Borah
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pallabi Hazarika
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Runjun Duarah
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Rajiv Goswami
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnali Hazarika
- Chemical
Engineering Group and Centre for Petroleum Research, CSIR-North East
Institute of Science and Technology, Jorhat 785006, Assam, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Liu Y, Xia X, Li X, Wang F, Huang Y, Zhu B, Feng X, Wang Y. Design and characterization of edible chitooligosaccharide/fish skin gelatin nanofiber-based hydrogel with antibacterial and antioxidant characteristics. Int J Biol Macromol 2024; 262:130033. [PMID: 38342261 DOI: 10.1016/j.ijbiomac.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Botian Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xuyang Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China.
| |
Collapse
|
19
|
Mirzania F, Salimikia I, Ghasemian Yadegari J, Marzban A, Firouzi A, Nazarzadeh A, Aalaei J. Biological Activities of Zinc Oxide Nanoparticles Green Synthesized Using the Aqueous Extract of Dracocephalum kotschyi Boiss. Curr Drug Discov Technol 2024; 21:e271223224899. [PMID: 38151833 DOI: 10.2174/0115701638284118231220074251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dracocephalum kotschyi Boiss. is known as a native medicinal plant of Iran. OBJECTIVE In this study, aqueous extract of D. kotschyi was used to synthesize ZnO-NPs. To produce ZnO-NPs, aerial parts of D. kotschyi were powdered and then macerated for obtaining aqueous extract, after that, aqueous extract was used to reduse zinc nitrate to ZnO-NPs. METHODS To confirm nanoparticles synthesis, SEM, TEM, UV-Vis, FTIR, and XRD were used. The synthesized ZnO-NPs were studied for antimicrobial activities by microdilution method for calculating MIC and MBC. Analysis of ZnO-NPs confirmed successful synthesis by extract of D. kotschyi. RESULTS The sizes of ZnO-NPs were estimated 50-200 nm in diameter. Antibacterial and antifungal experiments showed potent activities against Staphylococos aureus, Pseudomonas aeruginosa and Candida albicans. The results of the studies showed that the nanoparticles synthesized with the aqueous extract of D. kotschyi have a much greater antimicrobial effect than the aqueous extract of D. kotschyi and zinc nanoparticles, each alone (MIC values 3.7 to 7.5 mg/ml). CONCLUSION The noteworthy point is that the inhibitory rate of synthesized zinc oxide nanoparticles is higher compared to broad-spectrum antibiotics, such as chloramphenicol (MIC values 15 mg/ml). Determining the therapeutic and toxic dose of this product for humans requires further investigation and clinical trials.
Collapse
Affiliation(s)
- Foroogh Mirzania
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Iraj Salimikia
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Javad Ghasemian Yadegari
- Department of Pharmacognosy, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, 381351698, Lorestan Province, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirmasoud Firouzi
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Nazarzadeh
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Javid Aalaei
- Student Research Committee, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
20
|
Li H, Chen Z, Zhang S, Hu CY, Xu X. Extrusion-blown oxidized starch/poly(butylene adipate-co-terephthalate) biodegradable active films with adequate material properties and antimicrobial activities for chilled pork preservation. Int J Biol Macromol 2023; 253:127408. [PMID: 37832616 DOI: 10.1016/j.ijbiomac.2023.127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Food safety concerns from spoilage and non-degradable packaging risk human health. Progress made in biodegradable plastic films, but limited study on biomass composite films with favorable morphological, mechanical, and inherent antibacterial properties for fresh meat preservation. Herein, we present a versatile packaging film created through the extrusion blowing process, combining oxidized starch (OST) with poly(butylene adipate-co-terephthalate) (PBAT). SEM analysis revealed even distribution of spherical OST particles on film's surface. FTIR spectra revealed new intermolecular hydrogen bonds between OST and PBAT. While combining OST slightly reduced tensile properties, all composite films met the required strength of 16.5 ± 1.39 MPa. Notably, films with 40 % OST showed over 98 % antibacterial rate against Staphylococcus aureus within 2 h. pH wasn't the main cause of bacterial growth inhibition; OST hindered growth by interfering with nutrient absorption and metabolism due to its carboxyl groups. Additionally, OST disrupted bacterial membrane integrity and cytoplasmic membrane potential. Remarkably, the OST/PBAT film excellently preserved chilled fresh pork, maintaining TVB-N level at 12.6 mg/100 g on day 6, microbial count at 105 CFU/g within 6-10 days, and sensory properties for 8 days. It extended pork's shelf life by two days compared to polyethylene film, suggesting an alternative to a synthetic material.
Collapse
Affiliation(s)
- Huan Li
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Zhuo Chen
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China; Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
21
|
Dang X, Yu Z, Wang X, Li N. Eco-Friendly Cellulose-Based Nonionic Antimicrobial Polymers with Excellent Biocompatibility, Nonleachability, and Polymer Miscibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50344-50359. [PMID: 37862609 DOI: 10.1021/acsami.3c10902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
This study aims to prepare natural biomass-based nonionic antimicrobial polymers with excellent biocompatibility, nonleachability, antimicrobial activity, and polymer miscibility. Two new cellulose-based nonionic antimicrobial polymers (MIPA and MICA) containing many terminal indole groups were synthesized using a sustainable one-pot method. The structures and properties of the nonionic antimicrobial polymers were characterized using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), gel chromatography (GPC), and other analytical techniques. The results showed that microcrystalline cellulose (MCC) molecules combined with indole derivatives through an esterification reaction to produce MICA and MIPA. The crystallinity of the prepared MICA and MIPA molecules decreased after MCC modification; their morphological structure changed from short fibrous to granular and showed better thermal stability and solubility. The paper diffusion method showed that both nonionic polymers had good bactericidal effects against the two common pathogenic bacteria Escherichia coli (E. coli, inhibition zone diameters >22 mm) and Staphylococcus aureus (S. aureus, inhibition zone diameters >38 mm). Moreover, MICA and MIPA showed good miscibility with biodegradable poly(vinyl alcohol) (PVA), and the miscible cellulose-based composite films (PVA-MICA and PVA-MIPA) showed good phase compatibility, light transmission, thermal stability (maximum thermal decomposition temperature >300 °C), biocompatibility, biological cell activity (no cytotoxicity), nonleachability, antimicrobial activity, and mechanical properties (maximum fracture elongation at >390%).
Collapse
Affiliation(s)
- Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Zhenfu Yu
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Xuechuan Wang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Nan Li
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
22
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
23
|
Na X, Zou B, Zheng X, Du M, Zhu B, Wu C. Synergistic Antimicrobial Hybrid Bio-Surface Formed by Self-Assembled BSA Nanoarchitectures with Chitosan Oligosaccharide. Biomacromolecules 2023; 24:4093-4102. [PMID: 37602440 DOI: 10.1021/acs.biomac.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Innovation in green, convenient, and sustainable antimicrobial packaging materials for food is an inevitable trend to address global food waste challenges caused by microbial contamination. In this study, we developed a biogenic, hydrophobic, and antimicrobial protein network coating for food packaging. Experimental results show that disulfide bond breakage can induce the self-assembly of bovine albumin (BSA) into protein networks driven by hydrophobic interactions, and chitosan oligosaccharide (COS) with antimicrobial activity can be stably bound in this network by electrostatic interactions. The inherent antimicrobial activity of COS and the numerous hydrophobic regions on the surface of the BSA-network give the BSA@COS-network significant in vitro antimicrobial ability. More importantly, the BSA@COS-network coating can prolong the onset of spoilage of strawberries in various packaging materials by nearly 3-fold in storage. This study shows how surface functionalization via protein self-assembly is integrated with the biological functioning of natural antibacterial activity for advanced food packaging applications.
Collapse
Affiliation(s)
- Xiaokang Na
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Bowen Zou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian 116034, China
- National Engineering Research Centre of Seafood, Dalian 116034, China
| |
Collapse
|
24
|
Khubiev OM, Egorov AR, Lobanov NN, Fortalnova EA, Kirichuk AA, Tskhovrebov AG, Kritchenkov AS. Novel Highly Efficient Antibacterial Chitosan-Based Films. BIOTECH 2023; 12:50. [PMID: 37489484 PMCID: PMC10366851 DOI: 10.3390/biotech12030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
In this study, we elaborated new chitosan-based films reinforced by iron(III)-containing chitosan nanoparticles Fe(III)-CS-NPs at different concentrations. We found that the optimum concentration of Fe(III)-CS-NPs for the improvement of antibacterial and mechanical properties of the films was 10% (σb = ca. 8.8 N/mm2, εb = ca. 41%, inhibition zone for S. aureus = ca. 16.8 mm and for E. coli = ca. 11.2 mm). Also, using the click-chemistry approach (thiol-ene reaction), we have synthesized a novel water-soluble cationic derivative of chitin. The addition of this derivative of chitin to the chitosan polymer matrix of the elaborated film significantly improved its mechanical (σb = ca. 11.6 N/mm2, εb = ca. 75%) and antimicrobial (inhibition zone for S. aureus = ca. 19.6 mm and for E. coli = ca. 14.2 mm) properties. The key mechanism of the antibacterial action of the obtained films is the disruption of the membranes of bacterial cells. The elaborated antibacterial films are of interest for potential biomedical and food applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Nikolai N Lobanov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Elena A Fortalnova
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
25
|
Dutta D, Sit N. Application of natural extracts as active ingredient in biopolymer based packaging systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1888-1902. [PMID: 35698604 PMCID: PMC9177344 DOI: 10.1007/s13197-022-05474-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 10/28/2022]
Abstract
Active packaging systems come under novel techniques and are creating demands in food packaging aspects. They are specially designed for food products where shelf life is a key driving factor. Their wide range of functionality preserves the color, texture, smell, and taste of the food item retaining their freshness and edibility for longer than any other methods available on market. An active ingredient in packaging systems enables efficient consumable quality which resulted in reduced complaints from consumers. However, techniques must be inexpensive and environment-friendly. The use of biodegradable packaging systems reinforced by exploiting natural compounds forms the latest trend to attract consumer demand in substituting synthetic preservatives in foods that can protect against food spoilage. Natural extracts have gained commercial importance in active packaging nowadays for the delivery of safe and high-quality foods that are being employed in both fresh and processed produce. Development and use of innovative active packaging systems in varied forms are expected to increase in the future for food safety, quality, and stability. The review overviews the beneficial effects of plant acquired components in modulating product quality in packaged form for commercial aspects in the market.
Collapse
Affiliation(s)
- Ditimoni Dutta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| |
Collapse
|
26
|
Jafarzadeh S, Forough M, Kouzegaran VJ, Zargar M, Garavand F, Azizi-Lalabadi M, Abdollahi M, Jafari SM. Improving the functionality of biodegradable food packaging materials via porous nanomaterials. Compr Rev Food Sci Food Saf 2023; 22:2850-2886. [PMID: 37115945 DOI: 10.1111/1541-4337.13164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/30/2023]
Abstract
Non-biodegradability and disposal problems are the major challenges associated with synthetic plastic packaging. This review article discusses a new generation of biodegradable active and smart packaging based on porous nanomaterials (PNMs), which maintains the quality and freshness of food products while meeting biodegradability requirements. PNMs have recently gained significant attention in the field of food packaging due to their large surface area, peculiar structures, functional flexibility, and thermal stability. We present for the first time the recently published literature on the incorporation of various PNMs into renewable materials to develop advanced, environmentally friendly, and high-quality packaging technology. Various emerging packaging technologies are discussed in this review, along with their advantages and disadvantages. Moreover, it provides general information about PNMs, their characterization, and fabrication methods. It also briefly describes the effects of different PNMs on the functionality of biopolymeric films. Furthermore, we examined how smart packaging loaded with PNMs can improve food shelf life and reduce food waste. The results indicate that PNMs play a critical role in improving the antimicrobial, thermal, physicochemical, and mechanical properties of natural packaging materials. These tailor-made materials can simultaneously extend the shelf life of food while reducing plastic usage and food waste.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- School of Civil and Mechanical Engineering, Curtin University, Bentley, Western Australia, Australia
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, Çankaya, Turkey
| | | | - Masoumeh Zargar
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Ireland
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
27
|
Wang L, Dekker M, Heising J, Zhao L, Fogliano V. Food matrix design can influence the antimicrobial activity in the food systems: A narrative review. Crit Rev Food Sci Nutr 2023; 64:8963-8989. [PMID: 37154045 DOI: 10.1080/10408398.2023.2205937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antimicrobial agents are safe preservatives having the ability to protect foods from microbial spoilage and extend their shelf life. Many factors, including antimicrobials' chemical features, storage environments, delivery methods, and diffusion in foods, can affect their antimicrobial activities. The physical-chemical characteristics of the food itself play an important role in determining the efficacy of antimicrobial agents in foods; however the mechanisms behind it have not been fully explored. This review provides new insights and comprehensive knowledge regarding the impacts of the food matrix, including the food components and food (micro)structures, on the activities of antimicrobial agents. Studies of the last 10 years regarding the influences of the food structure on the effects of antimicrobial agents against the microorganisms' growth were summarized. The mechanisms underpinning the loss of the antimicrobial agents' activity in foods are proposed. Finally, some strategies/technologies to improve the protection of antimicrobial agents in specific food categories are discussed.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Matthijs Dekker
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Jenneke Heising
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, PR China
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
28
|
Rao Z, Lei X, Chen Y, Ling J, Zhao J, Ming J. Facile fabrication of robust bilayer film loaded with chitosan active microspheres for potential multifunctional food packing. Int J Biol Macromol 2023; 231:123362. [PMID: 36690235 DOI: 10.1016/j.ijbiomac.2023.123362] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The utilization of microcarriers is an effective technique to protect and slow down the release of active ingredients, while the combination of microcarriers and film materials is an important way to expand the application scenario of active ingredients. The aim of this study was to develop a simple and facile strategy for designing a multifunctional bilayer bioactive film that combines stable mechanical properties, sustained-release characteristics for active ingredients with good antioxidant and antibacterial properties. The EGCG-loaded chitosan active microspheres were prepared by sol-gel method, and then the carboxymethyl cellulose solution containing the active microspheres was assembled onto the carboxymethyl chitosan gel substrate based on intermolecular hydrogen bonding to construct a film with a stable bilayer structure. The results indicated that the bilayer film had dense microstructure and excellent mechanical strength (37.05 MPa), and exhibited UV-blocking properties and excellent gas barrier performance. Meanwhile, the loading of active ingredients (EGCG) in the microspheres enabled the bilayer film to exhibit excellent antioxidant and antibacterial properties, and the controlled release of EGCG by the film was sustainable and showed pH responsiveness. The results of this work provide a new perspective for the design and development of bio-based active packaging film with tunable functional characteristics.
Collapse
Affiliation(s)
- Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jiang Ling
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
29
|
Wang W, Zhang W, Li L, Deng W, Liu M, Hu J. Biodegradable starch-based packaging films incorporated with polyurethane-encapsulated essential-oil microcapsules for sustained food preservation. Int J Biol Macromol 2023; 235:123889. [PMID: 36870661 DOI: 10.1016/j.ijbiomac.2023.123889] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Novel starch-based packaging films with sustained antibacterial activity were successfully made by incorporating polyurethane-encapsulated essential-oil microcapsules (EOs@PU) as an alternative synthetic preservative for food preservation. Herein, three essential oils (EOs) were blended to make composite essential oils with a more harmonious aroma and higher antibacterial ability and encapsulated into polyurethane (PU) to form EOs@PU microcapsules based on interfacial polymerization. The morphology of the constructed EOs@PU microcapsules was regular and uniform with an average size of approximately 3 μm, thus enabling high loading capacity (59.01 %). As such, we further integrated the obtained EOs@PU microcapsules into potato starch to prepare food packaging films for sustained food preservation. Consequently, the prepared starch-based packaging films incorporated with EOs@PU microcapsules had an excellent UV blocking rate (>90 %) and low cell toxicity. Notably, the long-term release of EOs@PU microcapsules gave the packaging films a sustained antibacterial ability, prolonging the shelf life of fresh blueberries and raspberries at 25 °C (> 7 days). Furthermore, the biodegradation rate of food packaging films cultured with natural soil was 95 % after 8 days, clarifying the excellent biodegradability of the packaging films for environmental protection. As demonstrated, the biodegradable packaging films provided a natural and safe strategy for food preservation.
Collapse
Affiliation(s)
- Wei Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weiwei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Ming Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
30
|
Yu J, Liu X, Xu S, Shao P, Li J, Chen Z, Wang X, Lin Y, Renard CMGC. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr Rev Food Sci Food Saf 2023; 22:1030-1057. [PMID: 36579838 DOI: 10.1111/1541-4337.13099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/30/2022]
Abstract
The problems with plastic materials and the good film-forming properties of polysaccharides motivated research in the development of polysaccharide-based films. In the last 5 years, there has been an explosion of publications on using green solvents, including ionic liquids (ILs), and deep eutectic solvents (DESs) as candidates to substitute the conventional solvents/plasticizers for preparations of desired polysaccharide-based films. This review summarizes related properties and recovery of ILs and DESs, a series of green preparation strategies (including pretreatment solvents/reaction media, ILs/DESs as components, extraction solvents of bioactive compounds added into films), and inherent properties of polysaccharide-based films with/without ILs and DESs. Major reported advantages of these new solvents are high dissolving capacity of certain ILs/DESs for polysaccharides (i.e., up to 30 wt% for cellulose) and better plasticizing ability than traditional plasticizers. In addition, they frequently display intrinsic antioxidant and antibacterial activities that facilitate ILs/DESs applications in the processing of polysaccharide-based films (especially active food packaging films). ILs/DESs in the film could also be further recycled by water or ethanol/methanol treatment followed by drying/evaporation. One particularly promising approach is to use bioactive cholinium-based ILs and DESs with good safety and plasticizing ability to improve the functional properties of prepared films. Whole extracts by ILs/DESs from various byproducts can also be directly used in films without separation/polishing of compounds from the extracting agents. Scaling-up, including costs and environmental footprint, as well as the safety and applications in real foods of polysaccharide-based film with ILs/DESs (extracts) deserves more studies.
Collapse
Affiliation(s)
- Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang NHU Co., Ltd, Xinchang, China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shanlin Xu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ping Shao
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | - Zhirong Chen
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, China
| | - Yang Lin
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
31
|
Wang D, Cui F, Ren L, Li J, Li T. Quorum-quenching enzymes: Promising bioresources and their opportunities and challenges as alternative bacteriostatic agents in food industry. Compr Rev Food Sci Food Saf 2023; 22:1104-1127. [PMID: 36636773 DOI: 10.1111/1541-4337.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
The problems of spoilage, disease, and biofilm caused by bacterial quorum-sensing (QS) systems have posed a significant challenge to the development of the food industry. Quorum-quenching (QQ) enzymes can block QS by hydrolyzing or modifying the signal molecule, making these enzymes promising new candidates for use as antimicrobials. With many recent studies of QQ enzymes and their potential to target foodborne bacteria, an updated and systematic review is necessary. Thus, the goals of this review were to summarize what is known about the effects of bacterial QS on the food industry; discuss the current understanding of the catalytic mechanisms of QQ enzymes, including lactonase, acylase, and oxidoreductase; and describe strategies for the engineering and evolution of QQ enzymes for practical use. In particular, this review focuses on the latest progress in the application of QQ enzymes in the field of food. Finally, the current challenges limiting the systematic application of QQ enzymes in the food industry are discussed to help guide the future development of these important enzymes.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Likun Ren
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
32
|
Wang Z, Chen Y, Zhang N, Zhang RX, He R, Ju X, Mamadalieva NZ. Plant protein nanogel–based patchy Janus particles with tunable anisotropy for perishable food preservation. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Affiliation(s)
- Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Yao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Nan Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Rui Xue Zhang
- Institute of Medical Research Northwestern Polytechnical University Xi'an Shaanxi China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing China
| | - Nilufar Z. Mamadalieva
- Laboratory of Chemistry of Glycosides Institute of the Chemistry of Plant Substances AS RUz Tashkent Uzbekistan
| |
Collapse
|
33
|
Firmanda A, Fahma F, Warsiki E, Syamsu K, Arnata IW, Sartika D, Suryanegara L, Qanytah, Suyanto A. Antimicrobial mechanism of nanocellulose composite packaging incorporated with essential oils. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Takahashi H, Sovadinova I, Yasuhara K, Vemparala S, Caputo GA, Kuroda K. Biomimetic antimicrobial polymers—Design, characterization, antimicrobial, and novel applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1866. [PMID: 36300561 DOI: 10.1002/wnan.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function. These studies have helped inform SARs, mechanism of action, and general physicochemical factors that influence the activity and properties of antimicrobial polymers. However, there are still lingering questions in this field regarding 3D structural patterning, bioavailability, and applicability to alternative targets. In this review, we present a perspective on the development and characterization of several antimicrobial polymers and discuss novel applications of these molecules emerging in the field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Hiroshima Japan
| | - Iva Sovadinova
- RECETOX, Faculty of Science Masaryk University Brno Czech Republic
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology Nara Institute of Science and Technology Nara Japan
- Center for Digital Green‐Innovation Nara Institute of Science and Technology Nara Japan
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences CIT Campus Chennai India
- Homi Bhabha National Institute Training School Complex Mumbai India
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - Kenichi Kuroda
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor Michigan USA
| |
Collapse
|
35
|
Luo J, Xia G, Liu L, Ji A, Luo Q. Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO 2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis. Foods 2022; 11:3286. [PMID: 37431032 PMCID: PMC9601993 DOI: 10.3390/foods11203286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 07/24/2023] Open
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value.
Collapse
Affiliation(s)
- Jinjie Luo
- Correspondence: ; Tel.: +86-023-58105722
| | | | | | | | | |
Collapse
|
36
|
Shi J, Wu R, Li Y, Ma L, Liu S, Liu R, Lu P. Antimicrobial food packaging composite films prepared from hemicellulose/polyvinyl alcohol/potassium cinnamate blends. Int J Biol Macromol 2022; 222:395-402. [PMID: 36176221 DOI: 10.1016/j.ijbiomac.2022.09.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Hemicellulose and its derivatives have attracted extensive attention as packaging materials and various methods have been utilized to improve its film formation properties. To make use of the byproduct in dissolving pulp production, hemicellulose collected from waste water was modified by carboxymethylation and blended with polyvinyl alcohol (PVA) to prepare composite film by solution casting method. Potassium cinnamate (PC) was further incorporated to endow the film with antibacterial activity. The properties of the composite films were characterized. Due to the good compatibility and intermolecular interactions, the composite film exhibited moderate oxygen barrier property (3.64-12.21 cm3 μm m-2 d-1 KPa-1). The flexibility of the film was improved compared with pure PVA film although tensile strength was decreased. The film had good UV barrier properties and good antibacterial properties due to the introduction of PC. GAB model could be used to predict moisture sorption of the composite films. Moreover, the obtained film showed good performance in cherry tomato preservation. This work provided a prospective route for utilization of hemicellulose recovered from waste water for high value-added products.
Collapse
Affiliation(s)
- Jiahui Shi
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rina Wu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yanan Li
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liyan Ma
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuai Liu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
37
|
Tian X, Zhao K, Teng A, Li Y, Wang W. A rethinking of collagen as tough biomaterials in meat packaging: assembly from native to synthetic. Crit Rev Food Sci Nutr 2022; 64:957-977. [PMID: 35997287 DOI: 10.1080/10408398.2022.2111401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the high moisture-associated typical rheology and the changeable and harsh processing conditions in the production process, packaging materials for meat products have higher requirements including a sufficient mechanical strength and proper ductility. Collagen, a highly conserved structural protein consisting of a triple helix of Gly-X-Y repeats, has been proved to be suitable packaging material for meat products. The treated animal digestive tract (i.e. the casing) is the perfect natural packaging material for wrapping meat into sausage. Its thin walls, strong toughness and impact resistance make it the oldest and best edible meat packaging. Collagen casing is another wisdom of meat packaging, which is made by collagen fibers from hide skin, presenting a rapid growth in casing market. To strengthen mechanical strength and barrier behaviors of collagen-based packaging materials, different physical, chemical, and biological cross-linking methods are springing up exuberantly, as well as a variety of reinforcement approaches including nanotechnology. In addition, the rapid development of biomimetic technology also provides a good research idea and means for the promotion of collagen's assembly and relevant mechanical properties. This review can offer some reference on fundamental theory and practical application of collagenous materials in meat products.
Collapse
Affiliation(s)
- Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - KaiXuan Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Anguo Teng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
38
|
Dai J, Sameen DE, Zeng Y, Li S, Qin W, Liu Y. An overview of tea polyphenols as bioactive agents for food packaging applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fang Y, Wu W, Qin Y, Liu H, Lu K, Wang L, Zhang M. Recent development in antibacterial activity and application of nanozymes in food preservation. Crit Rev Food Sci Nutr 2022; 63:9330-9348. [PMID: 35452320 DOI: 10.1080/10408398.2022.2065660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.
Collapse
Affiliation(s)
- Yan Fang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Wanfeng Wu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Haoqiang Liu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Kang Lu
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Liang Wang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, China
- The Xinjiang Key laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
40
|
Jaiswal KK, Banerjee I, Dutta S, Verma R, Gunti L, Awasthi S, Bhushan M, Kumar V, Alajmi MF, Hussain A. Microwave-assisted polycrystalline Ag/AgO/AgCl nanocomposites synthesis using banana corm (rhizome of Musa sp.) extract: Characterization and antimicrobial studies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Liu F, Li M, Wang Q, Yan J, Han S, Ma C, Ma P, Liu X, McClements DJ. Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Crit Rev Food Sci Nutr 2022; 63:6423-6444. [PMID: 35213241 DOI: 10.1080/10408398.2022.2033683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are numerous challenges facing the modern food and agriculture industry that urgently need to be addressed, including feeding a growing global population, mitigating and adapting to climate change, decreasing pollution, waste, and biodiversity loss, and ensuring that people remain healthy. At the same time, foods should be safe, affordable, convenient, and delicious. The latest developments in science and technology are being deployed to address these issues. Some of the most important elements within this modern food design approach are encapsulated by the MATCHING model: Meat-reduced; Automation; Technology-driven; Consumer-centric; Healthy; Intelligent; Novel; and Globalization. In this review article, we focus on four key aspects that will be important for the creation of a new generation of healthier and more sustainable foods: emerging raw materials; structural design principles for creating innovative products; developments in eco-friendly packaging; and precision nutrition and customized production of foods. We also highlight some of the most important new developments in science and technology that are being used to create future foods, including food architecture, synthetic biology, nanoscience, and sensory perception.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2022.2033683.
Collapse
Affiliation(s)
- Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Moting Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shuang Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | | |
Collapse
|
42
|
Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem 2022; 370:131026. [PMID: 34509938 DOI: 10.1016/j.foodchem.2021.131026] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.
Collapse
Affiliation(s)
- Yaowen Liu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China; CaliforniaNano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Dur E Sameen
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Wang
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Lu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- Collegeof Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
43
|
Lin R, Cheng S, Tan M. Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel ( Scomber scombrus) storage. Food Funct 2022; 13:2098-2108. [PMID: 35107471 DOI: 10.1039/d1fo03426j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antimicrobial materials prepared from natural products could provide new ways to preserve seafood and extend the shelf life. Herein, four kinds of fluorescent carbon dots were prepared using onion, ginger, garlic, and fish through one-step hydrothermal synthesis. The four prepared carbon dots were nearly spherical and nanosized, with amorphous structure, neutral charge and good water dispersibility. The onion and garlic carbon dots contained more sulfur elements than the ginger and fish carbon dots. Interestingly, the onion carbon dots exhibited the best antibacterial activity against Pseudomonas fragi with good stability over a wide pH range. In addition, the onion carbon dots also exhibited antimicrobial activity against representative Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The minimum inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of onion carbon dots against Pseudomonas fragi were 2 mg mL-1 and 4 mg mL-1, respectively. The integrity of the cell wall and the cell membrane were damaged for Pseudomonas fragi, and the extracellular alkaline phosphatase (AKP) and ATP activity also increased after exposure to the onion carbon dots, thus leading to a decrease in the cell viability and alteration of the cellular morphology for Pseudomonas fragi. Furthermore, the preservation effect of onion carbon dots on Atlantic mackerel evaluated by storage at 4 °C revealed that the onion carbon dots significantly reduced drip loss, total volatile basic nitrogen (TVB-N) value and total viable counts (TVC) value, and extended the shelf life of Atlantic mackerel by 2 days. This finding suggests that onion carbon dots have potential to be applied as a bacteriostatic agent for aquatic products.
Collapse
Affiliation(s)
- Rong Lin
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shasha Cheng
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
44
|
Shar AS, Zhang C, Song X, Weng Y, Du Q. Design of Novel PLA/OMMT Films with Improved Gas Barrier and Mechanical Properties by Intercalating OMMT Interlayer with High Gas Barrier Polymers. Polymers (Basel) 2021; 13:3962. [PMID: 34833261 PMCID: PMC8624431 DOI: 10.3390/polym13223962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Polymer/clay composites are an innovative class of materials. In this study, we present a facile method for the preparation of biodegradable and robust PLA/organomodified montmorillonite (OMMT) composite films with excellent gas barrier performance. When the design of PLA/OMMT composite films, in addition to making OMMT have good intercalation effect in the matrix, the compatibility of intercalating polymer and matrix should also be considered. In this work, two polymers with high gas barrier properties, namely poly(vinyl alcohol) (PVA) and ethylene vinyl alcohol copolymer (EVOH), were selected to intercalate OMMT. The morphology and microstructures of the prepared PLA/PVA/OMMT and PLA/EVOH/OMMT composites were characterized by the X-ray diffraction measurement, scanning electron microscopy, and differential scanning calorimetry. It was shown that the good dispersibility of PVA in the PLA matrix, rather than the intercalation effect, was responsible for the improved gas barrier and mechanical properties of PLA/PVA/OMMT composite. The elongation at break increases from 4.5% to 22.7% when 1 wt % PVA is added to PLA/OMMT. Moreover, gas barrier of PLA/PVA1/OMMT measured as O2 permeability is 52.8% higher than that of neat PLA. This work provides a route to intercalate OMMT interlayer with high gas barrier polymers and thus can be a useful reference to fabricate PLA/OMMT composites with improved gas barrier and mechanical properties. A comparison of oxygen permeabilities with existing commercial packaging films indicates that the biodegradable PLA/PVA/OMMT may serve as a viable substitute for packaging film applications.
Collapse
Affiliation(s)
- Abdul Shakoor Shar
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Xieqing Song
- Fenghua Research Institute of Ningbo University of Technology, Ningbo 315500, China;
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Qiuyue Du
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China;
| |
Collapse
|
45
|
Li F, Zhe T, Ma K, Li R, Li M, Liu Y, Cao Y, Wang L. A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52998-53008. [PMID: 34723456 DOI: 10.1021/acsami.1c12243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Food packaging with efficient antibacterial ability is highly desirable and challenging in facing the crisis of microbial contamination. However, most present packaging is based on metal-based antibacterial agents and requires a time-consuming antibacterial process. Here, the unique packaging (CC/BB films) featuring aggregation-induced emission behavior and photodynamic inactivation activity is prepared by dispersing self-assembled berberine-baicalin nanoparticles (BB NPs) into a mixed matrix of sodium carboxymethylcellulose-carrageenan (CC). The superiority of this design is that this packaging film can utilize sunlight to generate reactive oxygen species, thus eradicating more than 99% of E. coli and S. aureus within 60 min. Also, this film can release BB NPs to inactivate bacteria under all weather conditions. Surprisingly, the CC/BB nanocomposite film presented excellent mechanical performances (29.80 MPa and 38.65%), hydrophobicity (117.8°), and thermostability. The nanocomposite film is validated to be biocompatible and effective in protecting chicken samples, so this work will provide novel insights to explore safe and efficient antibacterial food packaging.
Collapse
Affiliation(s)
- Fan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Taotao Zhe
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaixuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruixia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyan Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
46
|
Liu Y, Sameen DE, Ahmed S, Dai J, Qin W. Antimicrobial peptides and their application in food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Sameen DE, Ahmed S, Lu R, Li R, Dai J, Qin W, Zhang Q, Li S, Liu Y. Electrospun nanofibers food packaging: trends and applications in food systems. Crit Rev Food Sci Nutr 2021; 62:6238-6251. [PMID: 33724097 DOI: 10.1080/10408398.2021.1899128] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Food safety is a bottleneck problem. In order to provide information about advanced and unique food packaging technique, this study summarized the advancements of electrospinning technique. Food packaging is a multidisciplinary area involving food science, food engineering, food chemistry, and food microbiology, and the interest in maintaining the freshness and quality of foods has grown considerably. For this purpose, electrospinning technology has gained much attention due to its unique functions and superior processing. Sudden advancements of electrospinning have been rapidly incorporated into research. This review summarized some latest information about food packaging and different materials used for the packaging of various foods such as fruits, vegetables, meat, and processed items. Also, the use of electrospinning and materials used for the formation of nanofibers are discussed in detail. However, in food industry, the application of electrospun nanofibers is still in its infancy. In this study, different parameters, structures of nanofibers, features and fundamental properties are described briefly, while polymers fabricated through electrospinning with advances in food packaging films are described in detail. Moreover, this comprehensive review focuses on the polymers used for the electrospinning of nanofibers as packaging films and their applications for variety of foods. This will be a valuable source of information for researchers studying various polymers for electrospinning for application in the food packaging industry.
Collapse
Affiliation(s)
- Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China.,California Nano Systems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|