1
|
Xu L, An X, Jiang H, Pei R, Li Z, Wen J, Pi W, Zhang Q. A novel Gordonia sp. PS3 isolated from the gut of Galleria mellonella larvae: Mechanism of polystyrene biodegradation and environmental toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137219. [PMID: 39893981 DOI: 10.1016/j.jhazmat.2025.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Plastic pollution is a global concern, with polystyrene (PS) being a major source of plastic waste. In this study, a PS-degrading bacterial strain, Gordonia sp. PS3, was isolated from the gut of Galleria mellonella larvae. After 40 days, strain PS3 exhibited a 33.59 ± 1.12 % degradation rate of PS-microplastics (PS-MPs). The biodegradation mechanism of PS by strain PS3 was investigated using genomics, molecular docking, and metabolomics. Degradation resulted in a significant decrease in molecular weight, disappearance of characteristic aromatic peaks, and the appearance of new functional groups (e.g., hydroxyl and carbonyl), indicating oxidative depolymerization and enhanced hydrophilicity. Four key enzymes involved in PS degradation were identified, with alkane 1-monooxygenase initiating cleavage of C-C bonds in PS and cytochrome P450 monooxygenase catalyzing oxidation of the aromatic ring. Metabolomics analysis revealed upregulation of proline, branched-chain amino acids, and polyamines, indicating oxidative stress response and energy acquisition during PS degradation. The PS degradation products showed no significant adverse effects on Arabidopsis thaliana growth, and PS residues were less harmful to G. mellonella larvae than untreated PS-MPs. This study presents a novel strain for PS biodegradation and provides new insights into the microbial degradation mechanism of PS and the safety of its degradation products.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huoyong Jiang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui Pei
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiehao Wen
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjie Pi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Liu R, Wei G, Yang Y, Wang J, Zhao S, Zhang B, Hao X, Liu K, Shao Z. Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea. ENVIRONMENTAL RESEARCH 2025; 268:120812. [PMID: 39798661 DOI: 10.1016/j.envres.2025.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific. The study was conducted via a submarine mooring system, anchored at four sites with water depths ranging from 1167 to 1735 m in an area of seamounts. High-throughput 16S rRNA gene sequencing revealed distinct bacterial diversities associated with specific plastic types and locations. The family Gordoniaceae was enriched by PS and PE plastics, while the abundance of Methyloligellaceae was significantly increased in the presence of PET. In the case of PA, Bdellovibrionaceae was enriched. Additionally, all plastic types promoted the relative abundance of Rhodobacteraceae and Sulfurimonadaceae families. Plastics appeared to stimulate bacterial communities involved in nitrate and sulfur cycling in seawater, suggesting that nitrogen and sulfur potentially play significant roles in plastic degradation in deep-sea environments. The dominant family Kordiimonadaceae was identified as a significantly different taxon in non-plastic seawater. Furthermore, the addition of plastics enhanced negative interactions among the bacterial communities in the surrounding seawater, with Proteobacteria and Bdellovibrionota selected for the core microbiome. Overall, this in situ deep-sea incubation revealed the response of indigenous microflora to man-made polymeric materials and highlighted the bacterial communities that may be involved in plastic degradation in oceanic areas.
Collapse
Affiliation(s)
- Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Yongpeng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Jiannan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xun Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Kaixin Liu
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
3
|
Yang X, Li G, Xiu W. Responses of a soil-inhabiting collembolan ( Entomobrya proxima Folsom) to organic fertilizer addition illustrated by functional traits and gut bacterial community. Front Microbiol 2025; 16:1509447. [PMID: 39967731 PMCID: PMC11832468 DOI: 10.3389/fmicb.2025.1509447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Organic fertilizer offers significant advantages for sustainable agricultural development compared to inorganic fertilizers and is increasingly becoming the predominant fertilizer strategy. Functional traits and gut microbiota of soil fauna are recognized as potential indicators of environmental changes. However, there is a dearth of research examining the correlation between functional traits and intestinal microorganisms in response to organic fertilizer. Methods In this study, we selected Entomobrya proxima Folsom, a predominant soil collembolan species found in cropland across North China, as our subject of study. We set treatments with no organic fertilizer (CK) and three different concentrations of organic fertilizer at 1% (O1), 6% (O2), and 10% (O3). Stereomicroscopy and high-throughput amplicon sequencing were employed to elucidate the response of soil fauna to organic fertilizer through host functional traits and associated gut microbial communities. Results The results indicated that the impact of organic fertilizer on the functional traits of collembolans was closely linked to the input concentration. Specifically, low input concentrations positively influenced all functional traits of Entomobrya proxima Folsom; conversely, higher input concentrations exerted an overall detrimental effect. For the gut bacterial community, the addition of organic fertilizer resulted in a significant decrease in abundance, adversely affected α-diversity, and significantly altered the structure of the gut bacterial community compared to CK. However, there was no significant effect of fertilizer concentration on these three parameters. The composition of the gut bacterial community varied due to the addition of organic fertilizer, with significant changes observed in the relative abundances of six phyla and three genera. Furthermore, body length and foreleg length may serve as potential indicators for characterizing the proportions of Alcanivorax and Sphingobacterium of gut bacterial community. Additionally, the assembly process of the gut bacterial community was strongly influenced by the amount of organic fertilizer added; this led to a narrowing niche width that is believed to contribute to an increase in species richness. Discussion In conclusion, adding organic fertilizer exerted multiple impacts on soil fauna, with effect sizes related to its concentration. These findings provide insights for conserving soil animals while maximizing their ecological functions and offer perspectives on optimizing sustainable agricultural management practices.
Collapse
Affiliation(s)
| | - Gang Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Weiming Xiu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| |
Collapse
|
4
|
Heyne RM, Chia CP. Genome Sequence of Gordonia terrae Bacteriophage Wheezy. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001407. [PMID: 39845266 PMCID: PMC11751726 DOI: 10.17912/micropub.biology.001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/15/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Bacteriophage Wheezy, a lytic phage with siphoviral morphology isolated using the host Gordonia terrae 3612, has a genome of 67,021 base pairs and is 65.9% GC. The genome sequence of Wheezy aligns most closely with subcluster CR2 phages Tracker and NatB6. Annotation of the full-length genome sequence of Phage Wheezy revealed 92 protein-coding genes and no tRNA genes.
Collapse
Affiliation(s)
- Rachel M. Heyne
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States
| | - Catherine P. Chia
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, United States
| |
Collapse
|
5
|
Felix K, Barkley A, Myers L, Ankrah NYD. Draft genome sequence of Gordonia sp. ABKF26, a potential petroleum, plastic, and rubber-degrading bacterium, isolated from St. Albans Bay, VT, USA. Microbiol Resour Announc 2024; 13:e0087624. [PMID: 39345208 PMCID: PMC11556103 DOI: 10.1128/mra.00876-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Here, we present the draft genome sequence of Gordonia sp. ABKF26, a potential petroleum, plastic, and rubber degrading bacterium isolated from Lake Champlain. The assembled genome comprises a 6.0-Mb chromosome with a GC content of 67.8%. Gordonia sp. ABKF26 is predicted to be lysogenized by one intact 52.2 Kbp prophage.
Collapse
Affiliation(s)
- Kermisha Felix
- Biological Sciences Department, State University of New York at Plattsburgh, Plattsburgh, New York, USA
| | - Ashley Barkley
- Biological Sciences Department, State University of New York at Plattsburgh, Plattsburgh, New York, USA
| | - Luke Myers
- Lake Champlain Research Institute, State University of New York at Plattsburgh, Plattsburgh, New York, USA
| | - Nana Y. D. Ankrah
- Biological Sciences Department, State University of New York at Plattsburgh, Plattsburgh, New York, USA
| |
Collapse
|
6
|
Lin R, Li H, Wu H, Ren H, Kong X, Lu Z. Resting for viability: Gordonia polyisoprenivorans ZM27, a robust generalist for petroleum bioremediation under hypersaline stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124618. [PMID: 39067736 DOI: 10.1016/j.envpol.2024.124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
The intrinsic issue associated with the application of microbes for practical pollution remediation involves maintaining the expected activity of engaged strains or consortiums as effectively as that noted under laboratory conditions. Faced with various stress factors, degraders with dormancy ability are more likely to survive and exhibit degradation activity. In this study, a hydrocarbonoclastic and halotolerant strain, Gordonia polyisoprenivorans ZM27, was isolated via stimulation with resuscitation-promoting factor (Rpf). Long-term exposure to dual stresses of 10% NaCl and starvation induced ZM27 to enter a viable but nonculturable (VBNC)-like state, and ZM27 cells could be resuscitated upon Rpf stimulation. Notable changes in both morphological and physiological characteristics between VBNC-like ZM27 cells and resuscitated cells confirmed the response to Rpf and their robust resistance against harsh environments. Whole-genome sequencing and analysis indicated ZM27 could be a generalist degrader with dormancy ability. Subsequently, VBNC-like ZM27 was applied in a soil microcosm experiment to investigate the practical application potential under harsh conditions. VBNC-like ZM27 combined with Rpf stimulation exhibited the most effective biodegradation performance, and the initial n-hexadecane content (1000 mg kg-1) decreased by 63.29% after 14-day incubation. Based on 16S rRNA amplicon sequencing and analysis, Gordonia exhibited a positive response to Rpf stimulation. The relative abundance of genus Gordonia was negatively correlated with that of Alcanivorax, a genus of obligate hydrocarbon degrader with the greatest abundance during soil incubation. Based on the degradation profile and community analysis, generalist Gordonia may be more efficient in hydrocarbon degradation than specialist Alcanivorax under harsh conditions. The characteristics of ZM27, including its sustainable culturability under long-term stress, response to Rpf and robust performance in soil microcosms, are valuable for the remediation of petroleum pollution under stressful conditions. Our work validated the importance of dormancy and highlighted the underestimated role of low-activity degraders in petroleum remediation.
Collapse
Affiliation(s)
- Renzhang Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Awais M, Xiang Y, Shah N, Bilal H, Yang D, Hu H, Li T, Ji X, Li H. Unraveling the Role of Contaminants Reshaping the Microflora in Zea mays Seeds from Heavy Metal-Contaminated and Pristine Environment. MICROBIAL ECOLOGY 2024; 87:133. [PMID: 39467902 PMCID: PMC11519227 DOI: 10.1007/s00248-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Heavy metal (HM) contaminants are the emerging driving force for reshaping the microflora of plants by eradicating the non-tolerance and non-resistant microbes via their lethal effects. Seeds served as a prime source of ancestral microbial diversity hereditary transfer from generation to generation. However, the problem arises when they got exposed to metal contamination, does metal pollutant disrupt the delicate balance of microbial communities within seeds and lead to shifts in their microflora across generations. In this study, the endophytic community within Zea mays seeds was compared across three distinct regions in Yunnan province, China: a HM-contaminated site Ayika (AK), less-contaminated site Sanduoduo (SD), and a non-contaminated Site Dali (DL). High-throughput sequencing techniques were employed to analyze the microbial communities. A total of 492,177 high-quality reads for bacterial communities and 1,001,229 optimized sequences for fungal communities were obtained. These sequences were assigned to 502 and 239 operational taxonomic units (OTUs) for bacteria and fungi, respectively. A higher diversity was recorded in AK samples than in SD and DL. Microbial community structure analysis showed higher diversity and significant fluctuation in specific taxa abundance in the metal-polluted samples exhibiting higher response of microbial flora to HM. In AK samples, bacterial genera such as Gordonia and Burkholderia-Caballeronia-Paraburkholderia were dominant, while in SD Pseudomonas and Streptomyces were dominant. Among the fungal taxa, Fusarium, Saccharomycopsis, and Lecanicillium were prevalent in HM-contaminated sites. Our finding revealed the influential effect of HM contaminants on reshaping the seed microbiome of the Zea mays, showing both the resilience of certain important microbial taxa as well the shifts in the diversity in the contaminated and pristine conditions. The knowledge will benefit to develop effective soil remediation, reclamation, and crop management techniques, and eventually assisting in the extenuation of metal pollution's adverse effects on plant health and agricultural productivity.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yingying Xiang
- Department of Stomatology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650031, China
| | - Naila Shah
- Department of Botany, Gardan Campus, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Hazrat Bilal
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi, 330029, P.R. China
| | - Dezhi Yang
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Hu
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- Department of Environmental Science and Engineering & Medical Faculty, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Wu R, Xia H, Wu Y, Zhang S, Fang J, Wang Y, Wang H, Zhu Y, Liu L, Du S. Graphene oxide inhibits the transfer of ARGs in rice by reducing the root endophytic bacterial complexity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122241. [PMID: 39186855 DOI: 10.1016/j.jenvman.2024.122241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Antibiotic resistance genes (ARGs) as an emerging contaminant have attracted much attention for their transfer in agricultural ecosystems. Meanwhile, graphene oxide (GO), due to its high adsorption capacity and antibacterial properties, poses potential environmental ecological risks to the occurrence of ARGs, bacteria, and plant physiological ecology. However, the impact and mechanism of GO on the transfer of ARGs in host plants remain unclear. Therefore, this study selected rice as the research object and inoculated Bacillus subtilis carrying ARGs to investigate the influence of GO on the migration of ARGs into rice and its microbiological mechanism. The study found that GO had a certain inhibitory effect on the transfer of ARGs in rice. Although GO reduced the rhizosphere pH in rice, leading to a transition in endophytic bacteria from dominance by Burkholderia to dominance by Gordonia, this process did not directly affect the transfer of ARGs in rice. Further analysis of bacterial interactions revealed that GO could inhibit the transfer of ARGs in rice by reducing the network complexity of endophytic bacteria. Additionally, GO inhibited the formation of endophytic bacterial biofilms and mobile elements, which might affect ARGs' migration in rice. This study elucidated the key microbiological ecological processes of GO on the transfer of ARGs in rice, providing fundamental information for the ecological risk assessment of GO.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hanche Xia
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yue Wu
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo, 315040, China
| | - Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuying Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
9
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
10
|
Zivkovic Zaric R, Canovic P, Zaric M, Vuleta M, Vuleta Nedic K, Jovanovic J, Zornic N, Nesic J, Spasic M, Jakovljevic S, Ilic M, Jovanovic D, Todorovic Z, Arsenijevic P, Sovrlic M, Milovanovic J. Antimicrobial treatment in invasive infections caused by Gordonia bronchialis: systematic review. Front Med (Lausanne) 2024; 11:1333663. [PMID: 38515988 PMCID: PMC10957228 DOI: 10.3389/fmed.2024.1333663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Background Corynebacterium, Nocardia, Rhodococcus, Mycobacterium, as well as Gordonia genera belongs to the genus Gordonia, Actinomycetia class. Gordonia bronchialis is a nitrate-reducing, urease-producing, non-motile, force aerobe with a rod-like figure that is known to arrangement into sessile, cord-like groups. This systematic review aimed to establish whether and what invasive infections in humans were caused by Gordonia bronchialis, and to evaluate outcomes of administered antibiotic treatment. Methods We have registered this systematic review in PROSPERO database of systematic reviews and meta-analyses with the number CRD42022369974. Results A total of 24 publications were included (22 case reports and two case series) with 28 individual cases. The oldest patients had 92 years, and the youngest patients had 13 years. Clinical signs of infection were present in six patients (21%). All isolates were susceptible to ciprofloxacin, imipenem, and amikacin. Vancomycin was the most frequently used antibiotic with nine cases followed by ciprofloxacin, ceftriaxone, and amoxicillin/clavulanic acid. Conclusion Although there are no standardized recommendations to date, successful treatment with a favorable outcome has most often been carried out with fluoroquinolones, vancomycin with or without aminoglycosides, as well as carbapenems.
Collapse
Affiliation(s)
- Radica Zivkovic Zaric
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Petar Canovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milan Zaric
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Vuleta
- Department of Cardiology, General Hospital Dragisa Misovic, Belgrade, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Katarina Vuleta Nedic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Nuclear Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovan Jovanovic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Zornic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Nesic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marko Spasic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Stefan Jakovljevic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milena Ilic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dalibor Jovanovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Petar Arsenijevic
- University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miroslav Sovrlic
- Faculty of Medical Sciences, Center for Harm Reduction of Biological and Chemical Hazards, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
11
|
Liu W, Xing X, Dong Q, Liu X, Li W. Isolation and identification of the alga-symbiotic bacterium Gordonia and characterisation of its exopolysaccharide. Nat Prod Res 2024; 38:523-529. [PMID: 36102747 DOI: 10.1080/14786419.2022.2123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
An exopolysaccharide (EPS)-producing bacterium TD18, isolated from the culture broth of green alga Scenedesmus obliquus, was identified as Gordonia terrae based on the 100% identity of 16S rRNA sequences and designated Gordonia terrae TD18. The results of compositional and structural analyses and physiochemical tests show that (1) the exopolysaccharide produced by G. terrae TD18 (TD18-EPS) is an acidic hetero-polysaccharide with a molecular weight of 23 kDa, consisting of glucose, mannose, galactose and glucuronic acid, and (2) TD18-EPS is of high thermal stability with a degradation temperature of 308 °C, the solution of which is non-Newtonian pseudoplastic fluid exhibiting good emulsifying properties over a wide range of temperatures, pH and NaCl concentrations. Hence, Gordonia terrae TD18 is the first alga-symbiotic Gordonia strain identified thus far, while TD18-EPS is unique in terms of composition and structure, different from the known Gordonia EPS, with excellent physiochemical properties and thus has potential applications in industry.
Collapse
Affiliation(s)
- Wang Liu
- Department of Bioengineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Xiangying Xing
- Department of Applied Chemistry, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Qinglin Dong
- Department of Bioengineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaohang Liu
- Department of Bioengineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| | - Wenna Li
- Department of Bioengineering, School of Chemical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
12
|
Pino-Rosa S, Medina-Pascual MJ, Carrasco G, Garrido N, Villalón P, Valiente M, Valdezate S. Focusing on Gordonia Infections: Distribution, Antimicrobial Susceptibilities and Phylogeny. Antibiotics (Basel) 2023; 12:1568. [PMID: 37998770 PMCID: PMC10668661 DOI: 10.3390/antibiotics12111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
The immunosuppression conditions and the presence of medical devices in patients favor the Gordonia infections. However, the features of this aerobic actinomycete have been little explored. Strains (n = 164) were characterized with 16S rDNA and secA1 genes to define their phylogenetic relationships, and subjected to broth microdilution to profile the antimicrobial susceptibilities of Gordonia species that caused infections in Spain during the 2005-2021 period. Four out of the eleven identified species were responsible for 86.0% of the infections: Gordonia sputi (53.0%), Gordonia bronchialis (18.3%), Gordonia terrae (8.5%) and Gordonia otitidis (6.1%). Respiratory tract infections (61.6%) and bacteremia (21.9%) were the most common infections. The secA1 gene resolved the inconclusive identification, and two major clonal lineages were observed for G. sputi and G. bronchialis. Species showed a wide antimicrobial susceptibility profile. Cefoxitin resistance varies depending on the species, reaching 94.2% for G. sputi and 36.0% for G. terrae. What is noteworthy is the minocycline resistance in G. sputi (11.5%), the clarithromycin resistance in G. bronchialis secA1 lineage II (30.0%) and the amoxicillin-clavulanate and cefepime resistance in G. terrae (21.4% and 42.8%, respectively). G. sputi and G. bronchialis stand out as the prevalent species causing infections in Spain. Resistance against cefoxitin and other antimicrobials should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvia Valdezate
- Reference and Research Laboratory for Taxonomy, National Centre of Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (S.P.-R.); (M.J.M.-P.); (G.C.); (N.G.); (P.V.); (M.V.)
| |
Collapse
|
13
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
14
|
Liu R, Zhao S, Zhang B, Li G, Fu X, Yan P, Shao Z. Biodegradation of polystyrene (PS) by marine bacteria in mangrove ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130056. [PMID: 36183512 DOI: 10.1016/j.jhazmat.2022.130056] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Plastics pollution poses a new threat to marine ecosystems. Mangrove locating at estuary worldwide is probably the most heavily polluted area trapping various plastics transported from terrestrial and nearby marine aquaculture. Expanded polystyrene (EPS) is one of most common plastic debris therein and even in the plastic garbage. Here we showed the bacterial diversity of the polystyrene-degrading microbial community from EPS waste sites from a subtropical mangrove area. After enrichment with EPS, the degradation consortia were obtained. They shared a similar community structure dominated by bacteria of Sphingomonadaceae, Rhodanobacteraceae, Rhizobiaceae, Dermacoccaceae, Rhodocyclaceae, Hyphomicrobiaceae, and Methyloligellaceae. Diverse bacteria standing for the first member of the genera of Novosphingobium, Gordonia, Stappia, Mesobacillus, Alcanivorax, Flexivirga, Cytobacillus, Thioclava, and Thalassospira showed PS degradation capability as a pure culture. Further, PS biodegradation of Gordonia sp. and Novosphingobium sp. was quantified by weight loss, in addition to obvious morphological and structural changes of the PS films observed by SEM, ATR-FTIR, and contact angle analysis. The formation of new oxygen-containing functional groups implied the degradation pathway of oxidation. Although the degradation rates ranged from 2.7% to 7.7% after one month in lab and possibly lower in situ, their role in EPS removal is unneglectable.
Collapse
Affiliation(s)
- Renju Liu
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Xiaoteng Fu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China
| | - Peisheng Yan
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zongze Shao
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen 361005, PR China; School of Fisheries and life, Shanghai Ocean University, Shanghai 201306, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
15
|
Comparative Genomic Analysis of the Hydrocarbon-Oxidizing Dibenzothiophene-Desulfurizing Gordonia Strains. Microorganisms 2022; 11:microorganisms11010004. [PMID: 36677296 PMCID: PMC9861168 DOI: 10.3390/microorganisms11010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
A number of actinobacteria of the genus Gordonia are able to use dibenzothiophene (DBT) and its derivatives as the only source of sulfur, which makes them promising agents for the process of oil biodesulfurization. Actinobacteria assimilate sulfur from condensed thiophenes without breaking the carbon-carbon bonds, using the 4S pathway encoded by the dszABC operon-like structure. The genome of the new dibenzothiophene-degrading hydrocarbon-oxidizing bacterial strain Gordonia amicalis 6-1 was completely sequenced and the genes potentially involved in the pathways of DBT desulfurization, oxidation of alkanes and aromatic compounds, as well as in the osmoprotectant metabolism in strain 6-1 and other members of the genus Gordonia, were analyzed. The genome of G. amicalis strain 6-1 consists of a 5,105,798-bp circular chromosome (67.3% GC content) and an 86,621-bp circular plasmid, pCP86 (65.4% GC content). This paper presents a comparative bioinformatic analysis of complete genomes of strain 6-1 and dibenzothiophene-degrading Gordonia strains 1D and 135 that do not have the dsz operon. The assumption is made about the participation in this process of the region containing the sfnB gene. Genomic analysis supported the results of phenomenological studies of Gordonia strains and the possibility of their application in the bioremediation of oil-contaminated environments and in the purification of oil equipment from oil and asphalt-resin-paraffin deposits.
Collapse
|
16
|
Complete Genome Sequences of Genamy16 and NovaSharks, Two Gordonia rubripertincta Bacteriophages Isolated from Soil in Southeastern Florida. Microbiol Resour Announc 2022; 11:e0097322. [PMID: 36326520 PMCID: PMC9753606 DOI: 10.1128/mra.00973-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We report on two actinobacteriophages, Genamy16 and NovaSharks, that were isolated from soil in Florida using Gordonia rubripertincta NRRL B-16540. The genomes of both phages are ~65,000 bp, with similar GC contents, and, based on gene content similarity to phages in the Actinobacteriophage Database, were assigned to phage cluster DV.
Collapse
|
17
|
Sánchez-Suárez J, Díaz L, Coy-Barrera E, Villamil L. Specialized Metabolism of Gordonia Genus: An Integrated Survey on Chemodiversity Combined with a Comparative Genomics-Based Analysis. BIOTECH 2022; 11:53. [PMID: 36412754 PMCID: PMC9680422 DOI: 10.3390/biotech11040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the phylum Actinomycetota (formerly Actinobacteria) have historically been the most prolific providers of small bioactive molecules. Although the genus Streptomyces is the best-known member for this issue, other genera, such as Gordonia, have shown interesting potential in their specialized metabolism. Thus, we combined herein the result of a comprehensive literature survey on metabolites derived from Gordonia strains with a comparative genomic analysis to examine the potential of the specialized metabolism of the genus Gordonia. Thirty Gordonia-derived compounds of different classes were gathered (i.e., alkaloids, amides, phenylpropanoids, and terpenoids), exhibiting antimicrobial and cytotoxic activities, and several were also isolated from Streptomyces (e.g., actinomycin, nocardamin, diolmycin A1). With the genome data, we estimated an open pan-genome of 57,901 genes, most of them being part of the cloud genome. Regarding the BGCs content, 531 clusters were found, including Terpenes, RiPP-like, and NRPS clusters as the most frequent clusters. Our findings demonstrated that Gordonia is a poorly studied genus in terms of its specialized metabolism production and potential applications. Nevertheless, given their BGCs content, Gordonia spp. are a valuable biological resource that could expand the chemical spectrum of the phylum Actinomycetota, involving novel BGCs for inspiring innovative outlines for synthetic biology and further use in biotechnological initiatives. Therefore, further studies and more efforts should be made to explore different environments and evaluate other bioactivities.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Luis Díaz
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
18
|
Riesco R, Rose JJA, Batinovic S, Petrovski S, Sánchez-Juanes F, Seviour RJ, Goodfellow M, Trujillo ME. Gordonia pseudamarae sp. nov., a home for novel actinobacteria isolated from stable foams on activated sludge wastewater treatment plants. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The taxonomic status of two
Gordonia
strains, designated BEN371 and CON9T, isolated from stable foams on activated sludge plants was the subject of a polyphasic study which also included the type strains of
Gordonia
species and three authenticated
Gordonia amarae
strains recovered from such foams. Phylogenetic analyses of 16S rRNA gene sequences showed that these isolates formed a compact cluster suggesting a well-supported lineage together with a second branch containing the
G. amarae
strains. A phylogenomic tree based on sequences of 92 core genes extracted from whole genome sequences of the isolates, the
G. amarae
strains and
Gordonia
type strains confirmed the assignment of the isolates and the
G. amarae
strains to separate but closely associated lineages. Average nucleotide index (ANI) and digital DNA–DNA hybridisation (dDDH) similarities showed that BEN371 and CON9T belonged to the same species and had chemotaxonomic and morphological features consistent with their assignment to the genus
Gordonia
. The isolates and the
G. amarae
strains were distinguished using a range of phenotypic features and by low ANI and dDDH values of 84.2 and 27.0 %, respectively. These data supplemented with associated genome characteristics show that BEN371 and CON9T represent a novel species of the genus
Gordonia
. The name proposed for members of this taxon is Gordonia pseudamarae sp. nov. with isolate CON9T (=DSM 43602T=JCM 35249T) as the type strain.
Collapse
Affiliation(s)
- Raúl Riesco
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| | - Jayson J. A. Rose
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Fernando Sánchez-Juanes
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, CSIC, Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain
| | - Robert J. Seviour
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
19
|
Zhou J, Wu C, Pang S, Yang L, Yao M, Li X, Xia S, Rittmann BE. Dissimilatory and Cytoplasmic Antimonate Reductions in a Hydrogen-Based Membrane Biofilm Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14808-14816. [PMID: 36201672 DOI: 10.1021/acs.est.2c04939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A hydrogen-based membrane biofilm reactor (H2-MBfR) was operated to investigate the bioreduction of antimonate [Sb(V)] in terms of Sb(V) removal, the fate of Sb, and the pathways of reduction metabolism. The MBfR achieved up to 80% Sb(V) removal and an Sb(V) removal flux of 0.55 g/m2·day. Sb(V) was reduced to Sb(III), which mainly formed Sb2O3 precipitates in the biofilm matrix, although some Sb(III) was retained intracellularly. High Sb(V) loading caused stress that deteriorated performance that was not recovered when the high Sb(V) loading was removed. The biofilm community consisted of DSbRB (dissimilatory Sb-reduction bacteria), SbRB (Sb-resistant bacteria), and DIRB (dissimilatory iron-reducing bacteria). Dissimilatory antimonate reduction, mediated by the respiratory arsenate reductase ArrAB, was the main reduction route, but respiratory reduction coexisted with cytoplasmic Sb(V)-reduction mediated by arsenate reductase ArsC. Increasing Sb(V) loading caused stress that led to increases in the expression of arsC gene and intracellular accumulation of Sb(III). By illuminating the roles of the dissimilatory and cytoplasmic Sb(V) reduction mechanism in the biofilms of the H2-MBfR, this study reveals that the Sb(V) loading should be controlled to avoid stress that deteriorates Sb(V) reduction.
Collapse
Affiliation(s)
- Jingzhou Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Chengyang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Mengying Yao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Xiaodi Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona85287-5701, United States
| |
Collapse
|
20
|
Evans MV, Drake JM. A Data-driven Horizon Scan of Bacterial Pathogens at the Wildlife-livestock Interface. ECOHEALTH 2022; 19:246-258. [PMID: 35666334 PMCID: PMC9168633 DOI: 10.1007/s10393-022-01599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Many livestock diseases rely on wildlife for the transmission or maintenance of the pathogen, and the wildlife-livestock interface represents a potential site of disease emergence for novel pathogens in livestock. Predicting which pathogen species are most likely to emerge in the future is an important challenge for infectious disease surveillance and intelligence. We used a machine learning approach to conduct a data-driven horizon scan of bacterial associations at the wildlife-livestock interface for cows, sheep, and pigs. Our model identified and ranked from 76 to 189 potential novel bacterial species that might associate with each livestock species. Wildlife reservoirs of known and novel bacteria were shared among all three species, suggesting that targeting surveillance and/or control efforts towards these reservoirs could contribute disproportionately to reducing spillover risk to livestock. By predicting pathogen-host associations at the wildlife-livestock interface, we demonstrate one way to plan for and prevent disease emergence in livestock.
Collapse
Affiliation(s)
- Michelle V Evans
- MIVEGEC, Institut de Recherche pour le Développement, 34000, Montpellier, France.
- Odum School of Ecology, University of Georgia, Athens, 30606, USA.
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, 30606, USA.
| | - John M Drake
- Odum School of Ecology, University of Georgia, Athens, 30606, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, 30606, USA
| |
Collapse
|
21
|
Effects of dietary supplementation with tropical microfungi Mucor circinelloides and Trichoderma harzianum powder on growth performance, bacterial communities, and the biomass nutritional profile of white shrimp grow-out culture (Litopenaeus vannamei). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Mormeneo Bayo S, Palacián Ruíz MP, Asin Samper U, Millán Lou MI, Pascual Catalán A, Villuendas Usón MC. Pacemaker-induced endocarditis by Gordonia bronchialis. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:255-257. [PMID: 35577444 DOI: 10.1016/j.eimce.2020.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/03/2020] [Indexed: 06/15/2023]
Abstract
PURPOSE Gordonia species are known to be opportunistic human pathogens causing secondary infections. We present the second case in the world of endocarditis caused by Gordonia bronchialis and a review of all the cases of endocarditis caused by Gordonia spp. METHODS The identification was performed by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing were performed to confirm the identification. Antimicrobial susceptibility was performed by MIC test Strip on Mueller-Hinton agar supplemented with 5% defibrinated sheep blood according to Clinical and Laboratory Standards Institute. RESULTS Pacemaker-induced endocarditis due to Gordonia bronchialis infection was determined in an 88-year old woman. The patient was treated with ceftriaxone and ciprofloxacin until completing 6 weeks from the pacemaker explant with a good evolution. CONCLUSION The case presented supports the pathogenic role of Gordonia bronchialis as an opportunistic pathogen and highlights the high risk of suffering infections caused by environmental bacteria.
Collapse
Affiliation(s)
- Saray Mormeneo Bayo
- Servicio de Microbiología, Hospital Universitario Miguel Servet Zaragoza, Spain.
| | | | - Uxua Asin Samper
- Servicio de Medicina Interna y Enfermedades Infecciosas, Hospital Universitario Miguel Servet Zaragoza, Spain
| | | | - Ascensión Pascual Catalán
- Servicio de Medicina Interna y Enfermedades Infecciosas, Hospital Universitario Miguel Servet Zaragoza, Spain
| | | |
Collapse
|
23
|
Suzina NE, Sorokin VV, Polivtseva VN, Klyueva VV, Emelyanova EV, Solyanikova IP. From Rest to Growth: Life Collisions of Gordonia polyisoprenivorans 135. Microorganisms 2022; 10:465. [PMID: 35208919 PMCID: PMC8879720 DOI: 10.3390/microorganisms10020465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
In the process of evolution, living organisms develop mechanisms for population preservation to survive in unfavorable conditions. Spores and cysts are the most obvious examples of dormant forms in microorganisms. Non-spore-forming bacteria are also capable of surviving in unfavorable conditions, but the patterns of their behavior and adaptive reactions have been studied in less detail compared to spore-forming organisms. The purpose of this work was to study the features of transition from dormancy to active vegetative growth in one of the non-spore-forming bacteria, Gordonia polisoprenivorans 135, which is known as a destructor of such aromatic compounds as benzoate, 3-chlorobenzoate, and phenol. It was shown that G. polyisoprenivorans 135 under unfavorable conditions forms cyst-like cells with increased thermal resistance. Storage for two years does not lead to complete cell death. When the cells were transferred to fresh nutrient medium, visible growth was observed after 3 h. Immobilized cells stored at 4 °C for at least 10 months regenerated their metabolic activity after only 30 min of aeration. A study of the ultrathin organization of resting cells by transmission electron microscopy combined with X-ray microanalysis revealed intracytoplasmic electron-dense spherical membrane ultrastructures with significant similarity to previously described acidocalcisomas. The ability of some resting G. polyisoprenivorans 135 cells in the population to secrete acidocalcisome-like ultrastructures into the extracellular space was also detected. These structures contain predominantly calcium (Ca) and, to a lesser extent, phosphorus (P), and are likely to serve as depots of vital macronutrients to maintain cell viability during resting and provide a quick transition to a metabolically active state under favorable conditions. The study revealed the features of transitions from active growth to dormant state and vice versa of non-spore-forming bacteria G. polyisoprenivorans 135 and the possibility to use them as the basis of biopreparations with a long shelf life.
Collapse
Affiliation(s)
- Nataliya E. Suzina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Vladimir V. Sorokin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 117312 Moscow, Russia;
| | - Valentina N. Polivtseva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Violetta V. Klyueva
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| | - Elena V. Emelyanova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
| | - Inna P. Solyanikova
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Biochemistry and Physiology of Microorganisms, 142290 Pushchino, Russia; (N.E.S.); (V.N.P.); (E.V.E.)
- Institute of Pharmacy, Chemistry and Biology, Regional Microbiological Center, Department of Biotechnology and Microbiology, Belgorod National Research University, 308015 Belgorod, Russia;
| |
Collapse
|
24
|
Mechanistic Understanding of Gordonia sp. in Biodesulfurization of Organosulfur Compounds. Curr Microbiol 2022; 79:82. [PMID: 35107610 DOI: 10.1007/s00284-022-02770-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
Although conventional oil refining process like hydrodesulfurization (HDS) is capable of removing sulfur compounds present in crude oil, it cannot desulfurize recalcitrant organosulfur compounds such as dibenzothiophenes (DBTs), benzothiophenes (BTs), etc. Biodesulfurization (BDS) is a process of selective removal of sulfur moieties from DBT or BT by desulfurizing microbes. Therefore, BDS can be used as a complementary and economically feasible technology to achieve deep desulfurization of crude oil without affecting the calorific value. In the recent past, members of biodesulfurizing actinomycete genus Gordonia, isolated from versatile environments like soil, activated sludge, human beings etc. have been greatly exploited in the field of petroleum refining technology. The bacterium Gordonia sp. is slightly acid-fast and has been used for unconventional but potential oil refining processes like BDS in petroleum refineries. Gordonia sp. is unique in a way, that it can desulfurize both aliphatic and aromatic organosulfurs without affecting the calorific value of hydrocarbon molecules. Till date, approximately six different species and nineteen strains of the genus Gordonia have been recognized for BDS activity. Various factors such as enzyme specificity, availability of essential cofactors, feedback inhibition, toxicity of organic pollutants and the oil-water separations limit the desulfurization rate of microbial biocatalyst and influence its commercial applications. The current review selectively highlights the role of this versatile genus in removing sulfur from fossil fuels, mechanisms and future prospects on sustainable environment friendly technologies for crude oil refining.
Collapse
|
25
|
Liu Y, Wu J, Liu Y, Wu X. Biological Process of Alkane Degradation by Gordonia sihwaniensis. ACS OMEGA 2022; 7:55-63. [PMID: 35036678 PMCID: PMC8756779 DOI: 10.1021/acsomega.1c01708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/19/2023]
Abstract
With the development of the petroleum industry, oil pollution has become widespread. It is harmful to the digestive, immune, reproductive, and nervous systems of fishes, wild animals, and humans, causing severe threats to ecological safety and human health. Gordonia has increasingly attracted attention in the treatment of alkane pollution for its outstanding performance against hydrophobic refractory substances. However, the lack of knowledge about alkane uptake and degradation restricts the application of gordonia. In this paper, we studied the strain lys1-3 of Gordonia sihwaniensis isolated from coal chemical wastewater, which showed good alkane degradation performance by lys1-3. It is found that stimulated by an alkane, lys1-3 secreted biosurfactants, which emulsified large alkane particles to smaller particles. By active transport, unmodified alkane was transferred into cells and produced a large amount of acid, which was secreted out of the cells.
Collapse
Affiliation(s)
- Yinsong Liu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Jingchun Wu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Yikun Liu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Xiaolin Wu
- PetroChina
Daqing Oilfield Co. Ltd., Institute of Exploration
and Development, Daqing 163002, China
| |
Collapse
|
26
|
Bruno V, Tjon J, Lin S, Groves H, Kazmi K, Zappitelli M, Harvey E. Peritoneal dialysis-related peritonitis caused by Gordonia bronchialis: first pediatric report. Pediatr Nephrol 2022; 37:217-220. [PMID: 34633526 PMCID: PMC8503381 DOI: 10.1007/s00467-021-05313-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Gordonia species, aerobic, weakly acid-fast, Gram-positive bacilli, are a rare cause of peritonitis in patients undergoing peritoneal dialysis (PD). We report the first pediatric case of PD-related peritonitis caused by Gordonia bronchialis. CASE PRESENTATION A 13-year-old girl with chronic kidney disease (CKD) stage 5D, on continuous cycling PD (CCPD) for 8 years, presented with cloudy PD effluent, with no abdominal discomfort or fever. Intra-peritoneal (IP) loading doses of vancomycin and ceftazidime were started at home after obtaining a PD effluent sample, which showed WBC 2,340 × 10 /L (59% neutrophils) and Gram-positive bacilli. On admission, she was clinically well and afebrile, with no history of methicillin-resistant Staphylococcus aureus (MRSA) infection, so vancomycin was discontinued, and IP ceftazidime and cefazolin were started, following a loading dose of intravenous cefazolin. Gordonia species grew after 5 days of incubation and later identified as Gordonia bronchialis. IP vancomycin was restarted as monotherapy, empirically for a total of 3 weeks therapy. A 2-week course of oral ciprofloxacin was added, based on susceptibility testing. PD catheter replacement was advised due to the risk of recurrence but was refused. A relapse occurred 16 days after discontinuing antibiotics, successfully treated with a 2-week course of IP ceftazidime and vancomycin. The PD catheter was removed and hemodialysis initiated. She received a further 2-week course of oral ciprofloxacin and amoxicillin-clavulanate post PD catheter removal. CONCLUSIONS Gordonia bronchialis is an emerging pathogen in PD peritonitis and appears to be associated with a high risk of relapse. PD catheter replacement is strongly suggested.
Collapse
Affiliation(s)
- Valentina Bruno
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
| | - James Tjon
- Department of Pharmacy, The Hospital for Sick Children, Toronto, ON Canada
| | - Sandy Lin
- Department of Nursing, The Hospital for Sick Children, Toronto, ON Canada
| | - Helen Groves
- Department of Paediatrics, University of Toronto, Toronto, ON Canada ,Division of Infectious Diseases, The Hospital for Sick Children, Toronto, ON Canada
| | - Kescha Kazmi
- Department of Paediatrics, University of Toronto, Toronto, ON Canada ,Division of Infectious Diseases, The Hospital for Sick Children, Toronto, ON Canada
| | - Michael Zappitelli
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada ,Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Elizabeth Harvey
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada ,Department of Paediatrics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
27
|
Santoiemma PP, Oyon DE, Tate MC, Bolon MK. An Unusual Case of Gordonia sputi Cerebral Infection. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Ma Y, Xu M, Liu H, Yu T, Guo P, Liu W, Jin X. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana. AMB Express 2021; 11:111. [PMID: 34331149 PMCID: PMC8324697 DOI: 10.1186/s13568-021-01272-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gordonia sp. are members of the actinomycete family, their contribution to the environment improvement and environmental protection by their biological degradation ability, but there are few studies on the antimicrobial activity of their secondary metabolites. Our team isolated and purified an actinomycete WA 4-31 from the intestinal tract of Periplaneta americana, firstly identified the strain WA 4-31 by the morphological characteristics and the phylogenetic analyses, and found it was completely homologous to the strain of Gordonia terrae from the Indian desert. Meanwhile, actinomycin D (1), actinomycin X2 (2), mojavensin A (3) and cyclic (leucine-leucne) dipeptide (4) were obtained from the EtOAc extract from the broth of WA 4-31. Compounds 1–4 showed anti-fungus activities against Candida albicans, Aspergillus niger, A. fumigatus and Trichophyton rubrum, also anti-MRSA and inhibited Escherichia coli in different degree. Interestingly, we found when 3 was mixed with 4 with ratio of 1:1, the activity of the mixture on anti-Candida albicans was better than the single. Besides, compounds 1–3 had varying degrees of antiproliferative activities on CNE-2 and HepG-2 cell lines. These indicated that Gordonia rare actinomycete from the intestinal tract of Periplaneta americana possessed a potential as a source of active secondary metabolites.
Collapse
|
29
|
Zhang G, Huang Y, Yang J, Lai XH, Jin D, Lu S, Cheng Y, Yang C, Pu J, Liang J, Huang Y, Xu J. Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov., isolated from Tibetan Plateau wildlife. Int J Syst Evol Microbiol 2021; 71. [PMID: 34280084 DOI: 10.1099/ijsem.0.004897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Four mesophilic and Gram-stain-positive strains (zg-686T/zg-691 and HY186T/HY189) isolated from Tibetan Plateau wildlife (PR China) belong to the genus Gordonia according to 16S rRNA gene and genomic sequence-based phylogenetic/genomic results. They have a DNA G+C content range of 67.4-68.3 mol% and low DNA relatedness (19.2-27.6 %) with all available genomes in the genus Gordonia. Strains zg-686T/zg-691 and HY186T/HY189 had C18 : 1ω9c, C18 : 0 10-methyl, C16 : 1 ω7c/C16 : 1ω6c and C16 : 0 as major cellular fatty acids. The polar lipids detected in strains zg-686T and HY186T included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidyl inositol mannoside and phosphatidylinositol. The respiratory quinones comprised MK8(H2) (10.8 %) and MK9(H2) (89.2 %) for strain zg-686T, and MK6 (7.7 %), MK8(H2) (8.4 %), MK8(H4) (3.1 %) and MK9(H2) (80.8 %) for strain HY186T. Optimal growth conditions were pH 7.0, 35-37 °C and 0.5-1.5 % NaCl (w/v) for strains pair zg-686T/zg-691, and pH 7.0, 28 °C and 1.5 % (w/v) NaCl for strains pair HY186T/HY189. Based on these genotypic and phenotypic results, these four strains could be classified as two different novel species in the genus Gordonia, for which the names Gordonia jinghuaiqii sp. nov. and Gordonia zhaorongruii sp. nov. are proposed. The type strains are zg-686T (=GDMCC 1.1715T =JCM 33890T) and HY186T (=CGMCC 4.7607T =JCM 33466T), respectively.
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Caixin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ying Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
30
|
Complete and Circularized Bacterial Genome Sequence of Gordonia sp. Strain X0973. Microbiol Resour Announc 2021; 10:10/9/e01479-20. [PMID: 33664146 PMCID: PMC7936644 DOI: 10.1128/mra.01479-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gordonia sp. strain X0973 is a Gram-positive, weakly acid-fast, aerobic actinomycete obtained from a human abscess with Gordonia araii NBRC 100433T as its closest phylogenetic neighbor. Here, we report using Illumina MiSeq and PacBio reads to assemble the complete and circular genome sequence of 3.75 Mbp with 3,601 predicted coding sequences.
Collapse
|
31
|
Mormeneo Bayo S, Palacián Ruíz MP, Asin Samper U, Millán Lou MI, Pascual Catalán A, Villuendas Usón MC. Pacemaker-induced endocarditis by Gordonia bronchialis. Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(20)30412-2. [PMID: 33446400 DOI: 10.1016/j.eimc.2020.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Gordonia species are known to be opportunistic human pathogens causing secondary infections. We present the second case in the world of endocarditis caused by Gordonia bronchialis and a review of all the cases of endocarditis caused by Gordonia spp. METHODS The identification was performed by matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing were performed to confirm the identification. Antimicrobial susceptibility was performed by MIC test Strip on Mueller-Hinton agar supplemented with 5% defibrinated sheep blood according to Clinical and Laboratory Standards Institute. RESULTS Pacemaker-induced endocarditis due to Gordonia bronchialis infection was determined in an 88-year old woman. The patient was treated with ceftriaxone and ciprofloxacin until completing 6 weeks from the pacemaker explant with a good evolution. CONCLUSION The case presented supports the pathogenic role of Gordonia bronchialis as an opportunistic pathogen and highlights the high risk of suffering infections caused by environmental bacteria.
Collapse
Affiliation(s)
- Saray Mormeneo Bayo
- Servicio de Microbiología, Hospital Universitario Miguel Servet Zaragoza, Spain.
| | | | - Uxua Asin Samper
- Servicio de Medicina Interna y Enfermedades Infecciosas, Hospital Universitario Miguel Servet Zaragoza, Spain
| | | | - Ascensión Pascual Catalán
- Servicio de Medicina Interna y Enfermedades Infecciosas, Hospital Universitario Miguel Servet Zaragoza, Spain
| | | |
Collapse
|
32
|
Moopantakath J, Imchen M, Siddhardha B, Kumavath R. 16s rRNA metagenomic analysis reveals predominance of Crtl and CruF genes in Arabian Sea coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140699. [PMID: 32679495 DOI: 10.1016/j.scitotenv.2020.140699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis. In this study, sediment from several distinct biosystems (mangrove, seashore, estuary, river, lake, salt pan and island) across the Arabian coastal region of India were collected and analyzed though 16s rRNA metagenomic and whole genome approach to elucidated the dominant representative genre, haloarcheal diversity, and the prevalence of Crtl and CruF genes. We found that the microbial diversity in mangrove sediment (794 OTUs) was highest and lowest in lake and river (558-560 OTUs). Moreover, the bacterial domain dominated in all biosystems (96.00-99.45%). Top 10 abundant genera were involved in biochemical cycles such as sulfur, methane, ammonia, hydrocarbon degradation, and antibiotics production. The Archaea was mainly composed of Haloarchaea, Methanobacteria, Methanococci, Methanomicrobia and Crenarchaeota. Carotenoid gene, Crtl, was observed in a major portion (abundance 60%; diversity 45%) of microbial community. Interestingly, we found that all species under haloarcheal class that were represented in fresh as well as marine biosystems encodes CruF gene (bacterioruberin carotenoid). Our study demonstrates the high microbial diversity in various ecosystems, enrichment of Crtl gene, and also shows that Crtl and CruF genes are highly abundant in haloarcheal genera. The finding of ecosystems specific Crtl and CruF encoding genera opens up a promising area in bioprospecting the carotenoid derivatives from the wide range of natural biosystems.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Madangchanok Imchen
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India.
| |
Collapse
|
33
|
Lee GE, Kim JJ, Kim HS, Sul WJ. Metagenomic analysis of the dust particles collected from the suction tube and the suction funnel of a dermatological laser smoke evacuator system. Lasers Med Sci 2020; 36:1249-1260. [PMID: 33079312 DOI: 10.1007/s10103-020-03165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
In the last few decades, there has essentially been an explosion in the use of lasers in medicine, especially in the area of cosmetic dermatology. Potentially harmful substances are liberated when tissues are vaporized with laser. This creates numerous risks, including the spread of infectious disease. Smoke evacuators are devices that capture and filter laser plume, thereby maintaining a safe environment for the surgical team and patient. Our aim was to characterize the microbial community structure within the suction tube and funnel of the smoke evacuator system, identify their origin, and evaluate pathogenicity. Dust particles were collected from the instruments with a cotton swab. DNA was extracted from the swabs and the transport media, and sequencing was performed using the Illumina HiSeq Xplatform. Metagenomic analysis was conducted using the Empowering the Development of Genomics Expertise (EDGE) Bioinformatics pipeline and custom Python scripts. The most abundant bacterial species were Micrococcus luteus and Brevibacterium casei in the suction tube, and Dermacoccus sp. Ellin 185 and Janibacter hoylei in the suction funnel. A total of 15 medium- to high-quality metagenome-assembled genomes (MAGs) were constructed where we found 104 antibiotic-resistant genes (ARGs) and 741 virulence factors. Findings indicate that the suction tube and funnel are likely a reservoir of virulence factor genes and ARGs, which can possibly be passed on to other bacteria via horizontal gene transfer. We would like to emphasize the health risk these microorganisms pose and the need to reevaluate the current hygiene standards with regard to the smoke evacuator system.
Collapse
Affiliation(s)
- Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Jin Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Hei Sung Kim
- Dr Philip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, South Korea. .,Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, South Korea.
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea.
| |
Collapse
|
34
|
Sowani H, Kulkarni M, Zinjarde S. Uptake and detoxification of diesel oil by a tropical soil Actinomycete Gordonia amicalis HS-11: Cellular responses and degradation perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114538. [PMID: 32305803 DOI: 10.1016/j.envpol.2020.114538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
A tropical soil Actinomycete, Gordonia amicalis HS-11, has been previously demonstrated to degrade unsaturated and saturated hydrocarbons (squalene and n-hexadecane, respectively) in an effective manner. In present study, G. amicalis HS-11 degraded 92.85 ± 3.42% of the provided diesel oil [1% (v/v)] after 16 days of aerobic incubation. The effect of different culture conditions such as carbon source, nitrogen source, pH, temperature, and aeration on degradation was studied. During degradation, this Actinomycete synthesized surface active compounds (SACs) in an extracellular manner that brought about a reduction in surface tension from 69 ± 2.1 to 30 ± 1.1 mN m-1 after 16 days. The morphology of cells grown on diesel was monitored by using a Field Emission Scanning Electron Microscope. Diesel-grown cells were longer and clumped with smooth surfaces, possibly due to the secretion of SACs. The interaction between the cells and diesel oil was studied by Confocal Laser Scanning Microscope. Some cells were adherent on small diesel droplets and others were present in the non-attached form thus confirming the emulsification ability of this organism. The fatty acid profiles of the organism grown on diesel oil for 48 h were different from those on Luria Bertani Broth. The genotoxicity and cytotoxicity of diesel oil before and after degradation were determined. Cytogenetic parameters such as mitotic index (MI); mitosis distribution and chromosomal aberration (type and frequency) were assessed. Oxidative stress was evaluated by measuring levels of catalase, superoxide dismutase and concentration of malondialdehyde. On the basis of these studies it was deduced that the degradation metabolites were relatively non-toxic.
Collapse
Affiliation(s)
- Harshada Sowani
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Mohan Kulkarni
- Department of Chemistry, Biochemistry Division, Savitribai Phule Pune University, Pune, 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
35
|
Xie Y, Zhou S, Xu Y, Wu W, Xia W, Zhang R, Huang D, Huang X. Gordonia mangrovi sp. nov., a novel actinobacterium isolated from mangrove soil in Hainan. Int J Syst Evol Microbiol 2020; 70:4537-4543. [PMID: 32667871 DOI: 10.1099/ijsem.0.004310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel actinobacterium, designated strain HNM0687T, was isolated from mangrove soil samples collected from Hainan Province, PR China and its polyphasic taxonomy was studied. Based on the results of 16S rRNA gene sequence analysis, strain HNM0687T was closely related to Gordonia bronchialis NBRC 16047T (98.7 %), Gordonia rhizosphera NBRC 16068T (98.2 %), Gordonia oryzae RS15-1ST (97.9 %), Gordonia polyisoprenivorans NBRC 16320T (97.7 %) and Gordonia sediminis AMA 120T (97.7 %). Genome-based comparisons revealed a clear distinction in average nucleotide identity values between strain HNM0687T and its closely related strains (74.4-78.3 %). Strain HNM0687T contained meso-diaminopimelic acid, arabinose and galactose in whole-cell hydrolysates. Mycolic acid was present. The menaquinones of strain HNM0687T were MK-9(H2) and MK-7(H2). The phospholipids of the isolate were composed of diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C16 : 0, C16 : 1 ω7c/C16 : 1 ω6c, C18 : 010-methyl (TBSA), C18 : 0 and C18 : 1 ω9c. Based on its genotypic, chemotaxonomic and phenotypic characteristics, it is concluded that strain HNM0687T represents a novel species of the genus Gordonia for which the name Gordonia mangrovi sp. nov. is proposed. The type strain is HNM0687T (=CCTCC AA 2019074 T=KCTC 49383 T).
Collapse
Affiliation(s)
- Yuhui Xie
- College of Tropical Crops, Hainan University, Haikou 570228, PR China.,Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou 570228, PR China
| | - Shuangqing Zhou
- Institute of Horticulture, Hainan University, Haikou 570228, PR China
| | - Yun Xu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou 570228, PR China
| | - Wenqiang Wu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou 570228, PR China
| | - Wei Xia
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Rongping Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Xiaolong Huang
- Key Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou 570228, PR China
| |
Collapse
|
36
|
Complete Genome Sequence of
Gordonia
sp. Strain JH63, Isolated from Human Skin. Microbiol Resour Announc 2020; 9:9/11/e00059-20. [PMID: 32165382 PMCID: PMC7067950 DOI: 10.1128/mra.00059-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We isolated Gordonia sp. strain JH63, which has steroid-degrading abilities, from human skin. The complete genome sequence showed that this strain possesses a 5,175,911-bp chromosome and a 162,832-bp plasmid with 4,525 and 159 coding sequences, respectively. We isolated Gordonia sp. strain JH63, which has steroid-degrading abilities, from human skin. The complete genome sequence showed that this strain possesses a 5,175,911-bp chromosome and a 162,832-bp plasmid with 4,525 and 159 coding sequences, respectively.
Collapse
|
37
|
First report of cis-1,4-polyisoprene degradation by Gordonia paraffinivorans. Braz J Microbiol 2019; 50:1051-1062. [PMID: 31440991 DOI: 10.1007/s42770-019-00143-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
The use of rubber has increased over the years, leading to a series of environmental problems due to its indefinite decomposition time. Bioremediation employing microorganisms have drawn an increasing interest and originated several studies of microbial rubber degradation. Genome sequencing and in silico analysis demonstrated that G. paraffinivorans MTZ041 isolate encodes the lcp gene (Latex Clearing Protein), responsible for expressing an enzyme that performs the first step in the assimilation of synthetic and natural rubber. Growth curves and scanning electron microscopy (SEM) were conducted for MTZ041 in natural (NR) and synthetic rubber (IR) as sole carbon source during 11 weeks. After 80 days, robust growth was observed and SEM analysis revealed the presence of bacilli and the formation of biofilm-like structures on natural and synthetic rubber. This is the first report of a G. paraffinivorans rubber degrader. Given the complexity of this substrate and the relative small number of microorganisms with this ability, the description and characterization of MTZ041 is of great importance on bioremediation processes of rubber products.
Collapse
|
38
|
Sangkanu S, Suriyachadkun C, Phongpaichit S. Gordonia sediminis sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2019; 69:1814-1820. [DOI: 10.1099/ijsem.0.003399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Suthinee Sangkanu
- 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanwit Suriyachadkun
- 2BIOTEC Culture Collection, Biodiversity and Biotechnological Resource Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Souwalak Phongpaichit
- 3Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- 4Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
39
|
Agamennone V, Le NG, van Straalen NM, Brouwer A, Roelofs D. Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida. Sci Rep 2019; 9:7308. [PMID: 31086216 PMCID: PMC6513849 DOI: 10.1038/s41598-019-43828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/27/2019] [Indexed: 02/07/2023] Open
Abstract
The microbiome associated with an animal's gut and other organs is considered an integral part of its ecological functions and adaptive capacity. To better understand how microbial communities influence activities and capacities of the host, we need more information on the functions that are encoded in a microbiome. Until now, the information about soil invertebrate microbiomes is mostly based on taxonomic characterization, achieved through culturing and amplicon sequencing. Using shotgun sequencing and various bioinformatics approaches we explored functions in the bacterial metagenome associated with the soil invertebrate Folsomia candida, an established model organism in soil ecology with a fully sequenced, high-quality genome assembly. Our metagenome analysis revealed a remarkable diversity of genes associated with antimicrobial activity and carbohydrate metabolism. The microbiome also contains several homologs to F. candida genes that were previously identified as candidates for horizontal gene transfer (HGT). We suggest that the carbohydrate- and antimicrobial-related functions encoded by Folsomia's metagenome play a role in the digestion of recalcitrant soil-born polysaccharides and the defense against pathogens, thereby significantly contributing to the adaptation of these animals to life in the soil. Furthermore, the transfer of genes from the microbiome may constitute an important source of new functions for the springtail.
Collapse
Affiliation(s)
- Valeria Agamennone
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.
- Department of Microbiology and Systems Biology, TNO, Zeist, The Netherlands.
| | - Ngoc Giang Le
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nico M van Straalen
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - Dick Roelofs
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Sowani H, Kulkarni M, Zinjarde S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 2019; 37:382-402. [DOI: 10.1016/j.biotechadv.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
41
|
Silva NM, de Oliveira AMSA, Pegorin S, Giusti CE, Ferrari VB, Barbosa D, Martins LF, Morais C, Setubal JC, Vasconcellos SP, da Silva AM, de Oliveira JCF, Pascon RC, Viana-Niero C. Characterization of novel hydrocarbon-degrading Gordonia paraffinivorans and Gordonia sihwensis strains isolated from composting. PLoS One 2019; 14:e0215396. [PMID: 30998736 PMCID: PMC6472744 DOI: 10.1371/journal.pone.0215396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/01/2019] [Indexed: 01/10/2023] Open
Abstract
Hydrocarbons are important environmental pollutants, and the isolation and characterization of new microorganisms with the ability to degrade these compounds are important for effective biodegradation. In this work we isolated and characterized several bacterial isolates from compost, a substrate rich in microbial diversity. The isolates were obtained from selective culture medium containing n-hexadecane, aiming to recover alkane-degraders. Six isolates identified as Gordonia by MALDI-TOF and 16S rRNA sequencing had the ability to degrade n-hexadecane in three days. Two isolates were selected for genomic and functional characterization, Gordonia paraffinivorans (MTZ052) and Gordonia sihwensis (MTZ096). The CG-MS results showed distinct n-hexadecane degradation rates for MTZ052 and MTZ096 (86% and 100% respectively). The genome sequence showed that MTZ052 encodes only one alkane degrading gene cluster, the CYP153 system, while MTZ096 harbors both the Alkane Hydroxylase (AH) and the CYP153 systems. qPCR showed that both gene clusters are induced by the presence of n-hexadecane in the growth medium, suggesting that G. paraffinivorans and G. sihwensis use these systems for degradation. Altogether, our results indicate that these Gordonia isolates have a good potential for biotransformation of hydrocarbons.
Collapse
Affiliation(s)
- Natalia Maria Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Stefania Pegorin
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Camila Escandura Giusti
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vitor Batista Ferrari
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo, Diadema, Brazil
| | - Deibs Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Cristina Viana-Niero
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Santos JD, Vitorino I, De la Cruz M, Díaz C, Cautain B, Annang F, Pérez-Moreno G, Gonzalez Martinez I, Tormo JR, Martín JM, Urbatzka R, Vicente FM, Lage OM. Bioactivities and Extract Dereplication of Actinomycetales Isolated From Marine Sponges. Front Microbiol 2019; 10:727. [PMID: 31024503 PMCID: PMC6467163 DOI: 10.3389/fmicb.2019.00727] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery.
Collapse
Affiliation(s)
- José D Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Inês Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Mercedes De la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Bastien Cautain
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Ignacio Gonzalez Martinez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jose R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Jesús M Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Francisca M Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| |
Collapse
|
43
|
Nahurira R, Wang J, Yan Y, Jia Y, Fan S, Khokhar I, Eltoukhy A. In silico genome analysis reveals the metabolic versatility and biotechnology potential of a halotorelant phthalic acid esters degrading Gordonia alkanivorans strain YC-RL2. AMB Express 2019; 9:21. [PMID: 30715639 PMCID: PMC6362181 DOI: 10.1186/s13568-019-0733-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
Members of genus Gordonia are known to degrade various xenobitics and produce secondary metabolites. The genome of a halotorelant phthalic acid ester (PAEs) degrading actinobacterium Gordonia alkanivorans strain YC-RL2 was sequenced using Biosciences RS II platform and Single Molecular Real-Time (SMRT) technology. The reads were assembled de novo by hierarchical genome assembly process (HGAP) algorithm version 2. Genes were annotated by NCBI Prokaryotic Genome Annotation Pipeline. The generated genome sequence was 4,979,656 bp with an average G+C content of 67.45%. Calculation of ANI confirmed previous classification that strain YC-RL2 is G. alkanivorans. The sequences were searched against KEGG and COG databases; 3132 CDSs were assigned to COG families and 1808 CDSs were predicted to be involved in 111 pathways. 95 of the KEGG annotated genes were predicted to be involved in the degradation of xenobiotics. A phthalate degradation operon could not be identified in the genome indicating that strain YC-RL2 possesses a novel way of phthalate degradation. A total of 203 and 22 CDSs were annotated as esterase/hydrolase and dioxygenase genes respectively. A total of 53 biosynthetic gene clusters (BGCs) were predicted by antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) bacterial version 4.0. The genome also contained putative genes for heavy metal metabolism. The strain could tolerate 1 mM of Cd2+, Co2+, Cu2+, Ni2+, Zn2+, Mn2+ and Pb2+ ions. These results show that strain YC-RL2 has a great potential to degrade various xenobiotics in different environments and will provide a rich genetic resource for further biotechnological and remediation studies.
Collapse
Affiliation(s)
- Ruth Nahurira
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Junhuan Wang
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yanchun Yan
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yang Jia
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Shuanghu Fan
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ibatsam Khokhar
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Adel Eltoukhy
- Biological Laboratory, Department of Biology, Graduate School of Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
44
|
Ercibengoa Arana M, Alonso M, Idigoras P, Vicente D, Marimón JM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) score algorithm for identification of Gordonia species. AMB Express 2018; 8:121. [PMID: 30039201 PMCID: PMC6056354 DOI: 10.1186/s13568-018-0650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Gordonia species differentiation is a tedious task. Herein, Gordonia identification was performed according to the standard Bruker score system and a recently proposed score for Gram positive rods identification (≥ 1.5 genus level and ≥ 1.7 species level). New scores significantly improved the identification at genus and species level.
Collapse
|