1
|
Ravindra K, Kaur M, Mor S. Impacts of microplastics on gut health: Current status and future directions. Indian J Gastroenterol 2025:10.1007/s12664-025-01744-0. [PMID: 40268833 DOI: 10.1007/s12664-025-01744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND AND OBJECTIVES Microplastics are pervasive environmental pollutants, attracting significant concern due to their potential adverse effects on ecosystems and human health. This study hypothesizes that microplastics may significantly impact gastrointestinal (GI) health through various mechanisms. The objective of this systematic review is to explore the effects of microplastics on GI health, focusing on animal models such as mice, fish and earthworms. METHODS A systematic review approach was employed, analyzing studies that investigate the impact of microplastics on the gut microbiota, gut barrier integrity and GI inflammation. The review includes a synthesis of findings from multiple animal models. RESULTS The review reveals consistent evidence that microplastics can disrupt the gut microbiota, impair the gut barrier, and induce inflammatory responses in the GI tract. Statistical analysis shows a significant correlation between microplastic exposure and GI health deterioration across various animal models. CONCLUSIONS The findings underscore the harmful effects of microplastics on GI health, emphasizing the urgent need for policy interventions to reduce plastic pollution. Implementing measures to limit the production and usage of disposable plastics is crucial for mitigating the risks posed by microplastic contamination to promote environmental sustainability and safeguard human well-being.
Collapse
Affiliation(s)
- Khaiwal Ravindra
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| | - Manpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Suman Mor
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
2
|
Harini R, Sandhya K, Sunil CK, Natarajan V. Seaweed as a sink for microplastic contamination: Uptake, identifications and food safety implications. ENVIRONMENTAL RESEARCH 2025; 278:121631. [PMID: 40246268 DOI: 10.1016/j.envres.2025.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Microplastics (MPs) are a rising global concern, infiltrating marine ecosystems and food sources, including seaweed, which is widely consumed. This review examines the prevalence of MPs in seaweed, their role as pathways for MPs to enter marine food webs, and the potential risks to marine organisms and human health. Findings indicate that it contributes up to 45.5 % of total dietary microplastic (MP) intake through seaweed, with particularly high levels in South Asian regions, which is concerning. Factors such as seaweeds morphology, surface properties, epibionts, and environmental conditions influence MP uptake. Microplastic contamination in seaweed leads to bioaccumulation and biomagnification, affecting marine organisms through oxidative stress, growth disruption, immune issues, and metabolic disturbances. Seaweeds bioaccumulate heavy metals from seawater, and microplastics (MPs) attract these metals, increasing toxicity might enter food chain posing health risk. Simple methods like water washing can reduce MPs on seaweed surfaces. However, in this case, innovative detection methods and advanced removal technologies are still underexplored. Similarly, Microplastic (MP) contamination presents economic risks to the global seaweed industry, valued at USD 7.0 billion in 2023, with exports reaching 819,100 tonnes worth USD 3.21 billion. By 2024, the industry, dominated by Asian countries, had grown to USD 22.13 billion, but MP contamination threatens further expansion by undermining consumer confidence, reducing market value, and increasing regulatory scrutiny. Asia accounts for 47.9 % of global seafood MP contamination, the economic repercussions could be substantial. Future research should explore the long-term effects of environmental aging on microplastic debris in seaweeds related marine organisms, emphasizing food security and human health. Studies should also focus on the toxicological effects of micro- and Nano plastics (MNPs) from seaweed-based contaminants in human food consumption. Robust government initiatives and policies promoting a circular economy are crucial for effective management.
Collapse
Affiliation(s)
- Ravi Harini
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - K Sandhya
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - C K Sunil
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
3
|
Sankar S, Chandrasekaran N, Meivelu Moovendhan, Parvathi VD. Zebrafish and Drosophila as Model Systems for Studying the Impact of Microplastics and Nanoplastics ‐ A Systematic Review. ENVIRONMENTAL QUALITY MANAGEMENT 2025; 34. [DOI: 10.1002/tqem.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTMicroplastics and nanoplastics (MNPs) are byproducts of plastics created to benefit humanity, but improper disposal and inadequate recycling have turned them into a global menace that we can no longer conceal. As they interact with all living organisms, including humans, their mechanism of interaction and their perilous impact must be meticulously investigated. To uncover the secrets of MNPs, there must be model systems that exist to interlink the two major scenarios: they must represent the environmental impact and be relevant to humans. Therefore, zebrafish and Drosophila are perfect to describe these two cases, as they are well studied and relatable to humans. In this review, 39% zebrafish studies reported higher mortality and hatching rates at greater MNP concentrations, severe oxidative stress as seen by raised malondialdehyde (MDA) levels, and reduced superoxide dismutase (SOD) activity. About 50% of studies showed severe neurotoxic behavior with drop of locomotor activity, suggesting neurotoxicity. MNPs have a significant impact on fertility rate of Drosophila. More than half of the studies revealed genotoxicity in Drosophila as observed by wing spot assays and modified genomic expressions associated with stress and detoxification processes. These findings emphasize the potential of MNPs to bioaccumulate, impair physiological systems, and cause oxidative and neurobehavioral damage. This study underscores the importance for thorough risk evaluations of MNPs and their environmental and health consequences.
Collapse
Affiliation(s)
- Sudharsan Sankar
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Chennai Tamil Nadu India
| | | | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences (SIMATS) Chennai Tamil Nadu India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology Sri Ramachandra Institute of Higher Education and Research Chennai Tamil Nadu India
| |
Collapse
|
4
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
5
|
Chia RW, Atem NV, Lee JY, Cha J. Microplastic and human health with focus on pediatric well-being: a comprehensive review and call for future studies. Clin Exp Pediatr 2025; 68:1-15. [PMID: 39533740 PMCID: PMC11725616 DOI: 10.3345/cep.2023.01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 11/16/2024] Open
Abstract
Although humans are highly dependent on plastics from infancy to adolescence, these materials can degrade into ubiquitous microplastics (MPs) that affect individuals at every stage of life. However, information on the sources, mechanisms, detection techniques, and detrimental effects of MPs on children's health from infancy to adolescence is limited. Hence, here we identified and reviewed original research papers published in 2017-2023 across 11 database categories in PubMed, Google Scholar, Scopus, and Web of Science to improve our understanding of MPs with a focus on pediatric well-being. These studies found that milk and infant formulas are common sources of MP exposure in infants. Infant formula is the dominant source of MPs in babies, while plastic toys are a common source of MPs in toddlers. Adolescents are frequently exposed to MPs through the consumption of food contaminated with MPs and the use of plastics in food packaging. Water and air are sources of MP exposure in children from infancy through adolescence. This study thoroughly summarized how MP exposure in children of all ages causes cell damage and leads to adverse health effects such as cancer. With appropriate authorization from the relevant authorities, small amounts of human biological samples (10 g of feces) were collected from volunteers to assess the amounts of MPs in children with the aim of promoting pediatric well-being. The samples were then treated with Fenton's reagent, stored in glass jars, and filtered through nonplastic filters. Finally, MPs in children were quantified using stereomicroscopy and characterized using micro-Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research Institute for Earth Resources, Kangwon National University, Chuncheon, Korea
| | | | - Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon, Korea
- Research on Microplastics in Groundwater (RMPG), Kangwon National University, Chuncheon, Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon, Korea
- School of Science and Engineering, University of Missouri, Kansas City, MO, USA
| |
Collapse
|
6
|
Santonicola S, Volgare M, Rossi F, Castaldo R, Cocca M, Colavita G. Detection of fibrous microplastics and natural microfibers in fish species (Engraulis encrasicolus, Mullus barbatus and Merluccius merluccius) for human consumption from the Tyrrhenian sea. CHEMOSPHERE 2024; 363:142778. [PMID: 38971436 DOI: 10.1016/j.chemosphere.2024.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The occurrence of natural/artificial and synthetic microfibers was assessed in three commercial fish species (Engraulis encrasicolus, Mullus barbatus, Merluccius merluccius) from the Tyrrhenian Sea sold for human consumption. The gastrointestinal tracts of n. 150 samples were analyzed, the isolated microfibers were classified applying a morphological approach, based on the analysis of their morphological features, coupled with the identification of the chemical composition of a subsample of microfibers. All the species contained microfibers at levels ranging from 0 to 49 items/individual and the number of ingested microfibers significantly differed between pelagic and demersal fishes. The evaluation of fiber morphologies highlighted that natural/artificial microfibers were the most numerous among the isolated microfibers, while the dominant colors were blue, black, and clear in all the species. Chemical characterization confirmed the morphological identification and indicated cellulose and polyester as the most common polymer types. Considering the analytical issues that may affect the evaluation of microfiber pollution, the results pointed out the importance of an accurate morphological approach that allows the distinction between different fiber types, before the spectroscopic analyses. Moreover, the implementation of fast and accessible methods to identify microfibers in fish species intended for human consumption will be beneficial also to make an adequate risk assessment to consumer health.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125, Naples, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100, Campobasso, Italy
| | - Rachele Castaldo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy
| |
Collapse
|
7
|
Muhib MI, Rahman MM. How do fish consume microplastics? An experimental study on accumulation pattern using Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39303-39317. [PMID: 38811458 DOI: 10.1007/s11356-024-33782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study was to investigate microplastic (MP) exposure by Nile tilapia (Oreochromis niloticus) in laboratory conditions. A total of 150 tilapia fishes were equally distributed randomly in 15 different glass tanks with five experimental conditions. Observed results depicted that the presence of MPs in different organs was mainly accumulated from the fish feed rather than externally added MPs in the culture tanks. It was also revealed that the gastrointestinal tract (GIT) was found to be the most susceptible to MPs accumulation followed by gills and muscles in order. However, muscle contained the least size of MPs followed by GITs and gills. A statistical test showed significant correlations among the average length and weight of fish with MP exposure. A filamentous shape was found to be dominant in both GITs and gills while fragment shape was dominant in muscles. FTIR results revealed a total of 12 different polymers in the fish of which two polymers (polyvinyl alcohol and ethylene vinyl acetate) were not detected in the feed-only tanks. Polypropylene (PP) and polyethylene terephthalate (PET) were found to be dominant polymers in all the experimental GIT, gills, and muscle organs. FESEM results indicated the presence of different textures including cracks, edges, flakes, scratches, grooves, and adhering particles. EDX results exhibited the presence of Na, Si, K, Ni, Cu, Zn, As, and Cd in the analyzed samples that may pose additional health risks. Thus, this study could act as baseline data for laboratory-based studies of aquaculture species in future research.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| |
Collapse
|
8
|
König Kardgar A, Doyle D, Warwas N, Hjelleset T, Sundh H, Carney Almroth B. Microplastics in aquaculture - Potential impacts on inflammatory processes in Nile tilapia. Heliyon 2024; 10:e30403. [PMID: 38726173 PMCID: PMC11079099 DOI: 10.1016/j.heliyon.2024.e30403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Aquaculture is essential for meeting the growing global demand for fish consumption. However, the widespread use of plastic and the presence of microplastics in aquaculture systems raise concerns about their impact on fish health and the safety of aquaculture products. This study focused on the Nile tilapia (Oreochromis niloticus), one of the most important aquaculture fish species globally. The aim of this study was to investigate the effects of dietary exposure to a mixture of four conventional fossil fuel-based polymers (microplastics) on the health of adult and juvenile Nile tilapia. Two experiments were conducted, with 36 juvenile tilapia (10-40 g weight) exposed for 30 days and 24 adult tilapia (600-1000 g) exposed for 7 days, the former including a natural particle (kaolin) treatment. In the adult tilapia experiment, no significant effects on intestinal health (Ussing chamber method), oxidative stress, or inflammatory pathways (enzymatic and genetic biomarkers) were observed after exposure to the microplastic mixture. However, in the juvenile tilapia experiment, significant alterations in inflammatory pathways were observed following 30 days of exposure to the microplastic mixture, indicating potential adverse effects on fish health. These results highlight the potential negative impacts of microplastics on fish health and the economics and safety of aquaculture.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Darragh Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niklas Warwas
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Terese Hjelleset
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Elkaliny NE, Alzamel NM, Moussa SH, Elodamy NI, Madkor EA, Ibrahim EM, Elshobary ME, Ismail GA. Macroalgae Bioplastics: A Sustainable Shift to Mitigate the Ecological Impact of Petroleum-Based Plastics. Polymers (Basel) 2024; 16:1246. [PMID: 38732716 PMCID: PMC11085313 DOI: 10.3390/polym16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The surge in global utilization of petroleum-based plastics, which notably heightened during the COVID-19 pandemic, has substantially increased its harm to ecosystems. Considering the escalating environmental impact, a pivotal shift towards bioplastics usage is imperative. Exploring and implementing bioplastics as a viable alternative could mitigate the ecological burden posed by traditional plastics. Macroalgae is a potential feedstock for the production of bioplastics due to its abundance, fast growth, and high cellulose and sugar content. Researchers have recently explored various methods for extracting and converting macroalgae into bioplastic. Some of the key challenges in the production of macroalgae bioplastics are the high costs of large-scale production and the need to optimize the extraction and conversion processes to obtain high-quality bioplastics. However, the potential benefits of using macroalgae for bioplastic production include reducing plastic waste and greenhouse gas emissions, using healthier materials in various life practices, and developing a promising area for future research and development. Also, bioplastic provides job opportunities in free enterprise and contributes to various applications such as packaging, medical devices, electronics, textiles, and cosmetics. The presented review aims to discuss the problem of petroleum-based plastic, bioplastic extraction from macroalgae, bioplastic properties, biodegradability, its various applications, and its production challenges.
Collapse
Affiliation(s)
- Nehal E. Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Nurah M. Alzamel
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Shaaban H. Moussa
- Department of Biology, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Nour I. Elodamy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Engy A. Madkor
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Esraa M. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan A. Ismail
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Gamarro EG, Rojas DLS, Garcinuño Martínez RM, Paniagua González G, Hernando PF. Occurrence of common plastic additives and contaminants in raw, steamed and canned mussel samples from different harvesting areas using MSPD-HPLC methodology. Food Res Int 2024; 181:114109. [PMID: 38448097 DOI: 10.1016/j.foodres.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024]
Abstract
Microplastics are a complex mix of chemicals containing polymers and certain plastic additives such as bisphenols and phthalates. These particles are porous materials that can also sorb contaminants from their surroundings, and leach chemicals from the particle under certain circumstances. Aquatic animals can ingest microplastic particles, which mostly bioaccumulate in the gastrointestinal tract of animals. In terms of dietary exposure, small animals consumed whole such as mussels, contribute more to the dietary intake of microplastic particles. Plastic additives and contaminants are not chemically bound to the polymers, and certain processing methods or cooking processes result in the release of these chemicals that leach from the plastic particles, leaving them more available for absorption when ingested. Analytical methods are crucial for a better understanding of the occurrence of plastic additives and contaminants in aquatic products, and to know certain circumstances and treatments that influence human exposure. This study uses an MSPD-HPLC methodology for the simultaneous determination of 9 analytes (BPA, BPF, BPS, DEP, DBP, DEHP, DDD, DDT, and DDE) analyzing, for the first time, the occurrence of these chemicals in raw, steamed and canned mussels of two different harvesting areas (Atlantic and the Mediterranean), becoming one of the most efficient methodologies for determining the presence of these analytes in very complex food matrices, able to define the changes in cooking and processing activities. The results showed that the heat and pressure treatment could influence the migration of plastic additives from microplastic particles present in mussels to the cooking liquids.
Collapse
Affiliation(s)
- E Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy; Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - D L Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - R M Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| | - G Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain.
| | - P Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED). Avda. Esparta s/n, Ctra. de Las Rozas-Madrid (M-505) Km. 5, 28232, Las Rozas Madrid, Spain
| |
Collapse
|
11
|
Malloggi C, Nalbone L, Bartalena S, Guidi M, Corradini C, Foti A, Gucciardi PG, Giarratana F, Susini F, Armani A. The Occurrence of Microplastics in Donax trunculus (Mollusca: Bivalvia) Collected along the Tuscany Coast (Mediterranean Sea). Animals (Basel) 2024; 14:618. [PMID: 38396586 PMCID: PMC10886031 DOI: 10.3390/ani14040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Microplastics (MPs) (0.1 µm-5 mm particles) have been documented in oceans and seas. Bivalve molluscs (BMs) can accumulate MPs and transfer to humans through the food chain. BMs (especially mussels) are used to assess MPs' contamination, but the genus Donax has not been thoroughly investigated. The aim of this study was to detect and characterize MPs in D. trunculus specimens collected along the Tuscan coast (Italy), and to assess the potential risk for consumers. The samples (~10 g of tissue and intervalval liquid from 35 specimens) were digested using a solution of 10% KOH, subjected to NaCl density separation, and filtered through 5 μm pore-size filters. All items were morphologically classified and measured, and their mean abundance (MA) was calculated. Furthermore, 20% of them were analyzed by Raman spectroscopy and, based on the obtained results, the MA was recalculated (corrected MA) and the annual human exposure was estimated. In the 39 samples analyzed, 85 items fibers (n = 45; 52.94%) and fragments (n = 40; 47.06%) were found. The MA was 0.23 ± 0.17 items/grww. Additionally, 83.33% of the items were confirmed as MPs (polyethylene and polyethylene terephthalate). Based on the correct MA (0.18 MPs/grww), D. trunculus consumers could be exposed to 19.2 MPs/per capita/year. The health risk level of MPs was classified as level III (moderate).
Collapse
Affiliation(s)
- Chiara Malloggi
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (M.G.)
| | - Luca Nalbone
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell’Annunziata, 98168 Messina, Italy; (L.N.); (F.G.)
| | - Silvia Bartalena
- Experimental Zooprophylactic Institute of Latium and Tuscany M. Aleandri, UOT Toscana Nord, SS Dell’ Abetone e del Brennero 4, 56123 Pisa, Italy; (S.B.); (F.S.)
| | - Margherita Guidi
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (M.G.)
| | - Carlo Corradini
- Experimental Zooprophylactic Institute of Latium and Tuscany M. Aleandri, Via Appia Nuova, 1411, 00178 Roma, Italy;
| | - Antonino Foti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Processi Chimico-Fisici (IPCF), Viale F. Stagno D’Alcontres 27, 98158 Messina, Italy; (A.F.); (P.G.G.)
| | - Pietro G. Gucciardi
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Processi Chimico-Fisici (IPCF), Viale F. Stagno D’Alcontres 27, 98158 Messina, Italy; (A.F.); (P.G.G.)
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell’Annunziata, 98168 Messina, Italy; (L.N.); (F.G.)
| | - Francesca Susini
- Experimental Zooprophylactic Institute of Latium and Tuscany M. Aleandri, UOT Toscana Nord, SS Dell’ Abetone e del Brennero 4, 56123 Pisa, Italy; (S.B.); (F.S.)
| | - Andrea Armani
- FishLab, Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (C.M.); (M.G.)
| |
Collapse
|
12
|
Azhagesan A, Rajendran D, Varghese RP, George Priya Doss C, Chandrasekaran N. Assessment of polystyrene nano plastics effect on human salivary α-amylase structural alteration: Insights from an in vitro and in silico study. Int J Biol Macromol 2024; 257:128650. [PMID: 38065455 DOI: 10.1016/j.ijbiomac.2023.128650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The study found that the enzyme activity of human salivary α-amylase (α-AHS) was competitively inhibited by nanoplastic polystyrene (PS-NPs), with a half-inhibitory concentration (IC50) of 92 μg/mL, while the maximum reaction rate (Vmax) remained unchanged at 909 μg/mL•min. An increase in the concentration of PS-NPs led to a quenching of α-AHS fluorescence with a slight red shift, indicating a static mechanism. The binding constant (Ka) and quenching constant (Kq) were calculated to be 2.92 × 1011 M-1 and 1.078 × 1019 M-1• S-1 respectively, with a hill coefficient (n) close to one and an apparent binding equilibrium constant (KA) of 1.54 × 1011 M-1. Molecular docking results suggested that the interaction between α-AHS and PS-NPs involved π-anion interactions between the active site Asp197, Asp300 residues, and van der Waals force interactions affecting the Tyr, Trp, and other residues. Fourier transform infrared (FT-IR) and circular dichroism (CD) analyses revealed conformational changes in α-AHS, including a loss of secondary structure α-helix and β-sheet. The study concludes that the interaction between α-AHS and PS-NPs leads to structural and functional changes in α-AHS, potentially impacting human health. This research provides a foundation for further toxicological analysis of MPs/NPs in the human digestive system.
Collapse
Affiliation(s)
- Ananthaselvam Azhagesan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Rinku Polachirakkal Varghese
- Department of Integrative Biology, School of BioSciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India.
| |
Collapse
|
13
|
Yi J, Ma Y, Ruan J, You S, Ma J, Yu H, Zhao J, Zhang K, Yang Q, Jin L, Zeng G, Sun D. The invisible Threat: Assessing the reproductive and transgenerational impacts of micro- and nanoplastics on fish. ENVIRONMENT INTERNATIONAL 2024; 183:108432. [PMID: 38219542 DOI: 10.1016/j.envint.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Micro- and nanoplastics (MNPs), emerging as pervasive environmental pollutants, present multifaceted threats to diverse ecosystems. This review critically examines the ability of MNPs to traverse biological barriers in fish, leading to their accumulation in gonadal tissues and subsequent reproductive toxicity. A focal concern is the potential transgenerational harm, where offspring not directly exposed to MNPs exhibit toxic effects. Characterized by extensive specific surface areas and marked surface hydrophobicity, MNPs readily adsorb and concentrate other environmental contaminants, potentially intensifying reproductive and transgenerational toxicity. This comprehensive analysis aims to provide profound insights into the repercussions of MNPs on fish reproductive health and progeny, highlighting the intricate interplay between MNPs and other pollutants. We delve into the mechanisms of MNPs-induced reproductive toxicity, including gonadal histopathologic alterations, oxidative stress, and disruptions in the hypothalamic-pituitary-gonadal axis. The review also underscores the urgency for future research to explore the size-specific toxic dynamics of MNPs and the long-term implications of chronic exposure. Understanding these aspects is crucial for assessing the ecological risks posed by MNPs and formulating strategies to safeguard aquatic life.
Collapse
Affiliation(s)
- Jia Yi
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Si You
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Zhao
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing 402160, China
| | - Da Sun
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Rabari V, Rakib MRJ, Trivedi J, Idris AM, Malafaia G. Microplastics occurrence in commercial crab (Portunus segnis) from the western coast of India and pollution indices: First investigation and evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167500. [PMID: 37778552 DOI: 10.1016/j.scitotenv.2023.167500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MP) pollution has increased drastically due to improper plastic waste management. The present study aimed to investigate the MPs contamination in the commercially important brachyuran crab Portunus segnis of Gujarat State, India. One hundred fifty crab specimens were collected from three principal fishing harbors in Gujarat. The collected specimens were analyzed for MP extraction using a previously documented protocol. The chemical composition of extracted MPs was assessed with ATR-FTIR. The average abundance of MPs contamination was recorded as 0.82 ± 0.58 MPs/g and 2.02 ± 1.48 MPs/individual. Findings of Contamination Factor (CF) revealed that study site Jakhau was identified as a low-contamination site, while Okha and Veraval were considered moderately contaminated. The H index has identified study sites Jakhau and Veraval as class IV risk categories, while study site Okha fell into the class V risk category. PRI value revealed the very high contamination of MPs in all the study sites. The guts were recorded as being more contaminated with MPs than the gills. The average abundance of MP contamination in males (0.77 ± 0.14 MPs/g in Jakhau, 1.19 ± 0.77 MPs/g in Okha, and 0.82 ± 0.43 MPs/g in Veraval) was recorded higher than in females (0.33 ± 0.11 MPs/g in Jakhau, 0.8 ± 0.49 MPs/g in Okha, and 0.75 ± 0.41 MPs/g in Veraval) in all the study sites. The average abundance of MP contamination varied significantly between males and females. Fibers were found dominantly in all study sites, followed by fragments, films, and foams. Black and blue-colored MPs with 1-2 mm sizes were found more abundantly. The chemical composition of the extracted MPs revealed polyethylene, nylon, polyurethane, and polystyrene as polymer compositions. Overall, the present study highlighted the MP contamination in commercially important crabs that can be used as a basis for further studies on ecotoxicology and seafood safety.
Collapse
Affiliation(s)
- Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
15
|
Mosconi G, Panseri S, Magni S, Malandra R, D’Amato A, Carini M, Chiesa L, Della Torre C. Plastic Contamination in Seabass and Seabream from Off-Shore Aquaculture Facilities from the Mediterranean Sea. J Xenobiot 2023; 13:625-640. [PMID: 37987441 PMCID: PMC10660701 DOI: 10.3390/jox13040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
We characterized the presence of plastics in different organs of the gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some off-shore aquaculture facilities of the Mediterranean Sea. Plastics were detected in 38% of analyzed fish. Higher contamination was observed in fish from Turkey and Greece with respect to Italy, without significant differences between the geographical areas. Plastics accumulated mostly in the gastrointestinal tract and, to a lower extent, in the muscle, which represents the edible part of fish. Based on the particle detected, a maximum amount of 0.01 plastic/g wet weight (w.w.) can occur in muscles, suggesting a low input for humans through consumption. A large portion of the particles identified was represented by man-made cellulose-based fibers. The characterization of the polymeric composition suggests that plastics taken up by fish can have land-based and pelagic origins, but plastics can be introduced also from different aquaculture practices.
Collapse
Affiliation(s)
- Giacomo Mosconi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | - Stefano Magni
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Renato Malandra
- ATS Milano-Città Metropolitana, Veterinary Unit, 20122 Milan, Italy;
| | - Alfonsina D’Amato
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (A.D.); (M.C.)
| | - Marina Carini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (A.D.); (M.C.)
| | - Luca Chiesa
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy; (G.M.); (S.P.); (L.C.)
| | | |
Collapse
|
16
|
Zhang C, Wang F, Wang Q, Zou J, Zhu J. Species-specific effects of microplastics on juvenile fishes. Front Physiol 2023; 14:1256005. [PMID: 37601638 PMCID: PMC10436232 DOI: 10.3389/fphys.2023.1256005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Microplastics contamination have been extensively reported in aquatic ecosystem and organisms. It is wildly acknowledged that the ingestion, accumulation and elimination of microplastics in fishes are species-specific, which mainly depending on the feeding behavior. This study aimed to investigate the effects of microplastics on the morphology and inflammatory response in intestines of fishes with different feeding types. Largemouth bass (carnivorous fish), grass carp (herbivorous fish) and Jian carp (omnivorous fish) were used as organism model. The contributing concentration and size of microplastics were explored as well as the response time and legacy effect in fishes. Two different sizes of polystyrene microplastics (80 nm and 8 μm) were set at three concentrations. And samples were analyzed at different exposure times and depuration times. Histological analysis indicated that multiple abnormalities in intestines were presented in three species fishes after acute exposure microplastics. The mRNA abundance of immune-related genes in the intestine tissues of fishes were significantly fluctuant. There were differential expressions of genes coping with differential sizes and concentrations of microplastics exposure in different fishes. The reason for the difference effects of microplastics on fishes was still unclear but could be due to the difference in the structure and function of the digestive system. These results provided a theoretical basis to further analysis of the mechanism of fish intestinal pathology caused by microplastics.
Collapse
Affiliation(s)
- Chaonan Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fei Wang
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Junjie Zhu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
17
|
Nugawela NPPS, Mahaliyana AS, Abhiram G, Abeygunawardena AP. A meta-analytic review of microplastic pollution in the Indian Ocean: Ecological health and seafood safety risk implications. MARINE POLLUTION BULLETIN 2023; 193:115213. [PMID: 37392589 DOI: 10.1016/j.marpolbul.2023.115213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The Indian Ocean (IO) currently bears the second largest plastic load and therefore, has a high potential for microplastic (MP) pollution. Despite the findings from individual studies, the overall MP pollution in the IO is still unclear. Therefore, this meta-analytic review aimed to identify the overall MP contamination state, its ecological health and seafood safety risk implications, and identify future priority areas for MP research in the IO. The data for the occurrence of MPs in seawater, sediment and marine biota in the IO were analysed. Concentrations of MPs in surface water and sediment were in a wide range (surface water: 0.01 to 372,000.00 particles per m3; sediment: 36.80 to 10,600.00 items per kg, respectively) while lower range (0.016 to 10.65 particles per individual) was observed in biota. The meta-analysis indicated that PE was the most abundant polymer type in all three matrices and PE prevalence was higher in sediment. Fibres were the most prevalent MP shape of all three matrices in the IO. The Higher MP accumulation was identified in shrimps (p < 0.05) than the fish species. Results further confirmed that MPs do not magnify along the food chain (p > 0.05). Ecological risk and hazardous effects increased with the presence of polyvinyl chloride (PVC), polyurethane (PUR) and PA due to their high hazardous scores. Overall results indicated that IO is in the high-risk category due to the elevated levels of MP pollution with reference to all three matrices.
Collapse
Affiliation(s)
- N P P S Nugawela
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - A S Mahaliyana
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka.
| | - G Abhiram
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - A P Abeygunawardena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| |
Collapse
|
18
|
Multisanti CR, Riolo K, Impellitteri F, Chebbi I, Faggio C, Giannetto A. Short-term in vitro exposure of Pinctada imbricata's haemocytes to Quaternium-15: exploring physiological and cellular responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104198. [PMID: 37391050 DOI: 10.1016/j.etap.2023.104198] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Since the 2000s, the pearl oyster Pinctada imbricata (Röding, 1798) has become established along the transitional waterways of the "Capo Peloro Lagoon" natural reserve, where it is now abundant due to its adaptability to different hydrological, climatic, environmental, and pollution conditions. This study aims to evaluate haemocyte immune-mediated responses in vitro to quaternium-15, a common pollutant in aquatic ecosystems. Cell viability and phagocytosis activity decreased when exposed to 0.1 or 1mg/L of quaternium-15. Moreover, decreasing phagocytosis was confirmed by gene expression modulation of actin, involved in cytoskeleton rearrangement. Effects on oxidative stress-related genes were also assessed (Cat, MnSod, Zn/CuSod, GPx). The qPCR data revealed alterations in antioxidant responses through gene dose- and time-dependent modulation. This study presents insights into the physiological responses and cellular mechanisms of P. imbricata haemocytes to environmental stressors, indicating that this species is useful as a novel bioindicator for future toxicological studies.
Collapse
Affiliation(s)
- Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Kristian Riolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168, Messina, Italy.
| | - Imen Chebbi
- Laboratory of Biodiversity and Aquatic Ecosystems, Faculty of Science, University of Sfax, BP, 3038, Tunisia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 - Messina, Italy.
| |
Collapse
|
19
|
Subaramaniyam U, Allimuthu RS, Vappu S, Ramalingam D, Balan R, Paital B, Panda N, Rath PK, Ramalingam N, Sahoo DK. Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front Physiol 2023; 14:1217666. [PMID: 37435307 PMCID: PMC10331820 DOI: 10.3389/fphys.2023.1217666] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/15/2023] [Indexed: 07/13/2023] Open
Abstract
Microplastics and pesticides are emerging contaminants in the marine biota, which cause many harmful effects on aquatic organisms, especially on fish. Fish is a staple and affordable food source, rich in animal protein, along with various vitamins, essential amino acids, and minerals. Exposure of fish to microplastics, pesticides, and various nanoparticles generates ROS and induces oxidative stress, inflammation, immunotoxicity, genotoxicity, and DNA damage and alters gut microbiota, thus reducing the growth and quality of fish. Changes in fish behavioral patterns, swimming, and feeding habits were also observed under exposures to the above contaminants. These contaminants also affect the Nrf-2, JNK, ERK, NF-κB, and MAPK signaling pathways. And Nrf2-KEAP1 signalling modulates redox status marinating enzymes in fish. Effects of pesticides, microplastics, and nanoparticles found to modulate many antioxidant enzymes, including superoxide dismutase, catalase, and glutathione system. So, to protect fish health from stress, the contribution of nano-technology or nano-formulations was researched. A decrease in fish nutritional quality and population significantly impacts on the human diet, influencing traditions and economics worldwide. On the other hand, traces of microplastics and pesticides in the habitat water can enter humans by consuming contaminated fish which may result in serious health hazards. This review summarizes the oxidative stress caused due to microplastics, pesticides and nano-particle contamination or exposure in fish habitat water and their impact on human health. As a rescue mechanism, the use of nano-technology in the management of fish health and disease was discussed.
Collapse
Affiliation(s)
- Udayadharshini Subaramaniyam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Rethi Saliya Allimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Shanu Vappu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Divya Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Ranjini Balan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Niranjan Panda
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Nirmaladevi Ramalingam
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
20
|
Santonicola S, Volgare M, Cocca M, Dorigato G, Giaccone V, Colavita G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals (Basel) 2023; 13:1736. [PMID: 37889673 PMCID: PMC10252135 DOI: 10.3390/ani13111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/15/2023] Open
Abstract
The omnipresence of microfibers in marine environments has raised concerns about their availability to aquatic biota, including commercial fish species. Due to their tiny size and wide distribution, microfibers may be ingested by wild-captured pelagic or benthic fish and farmed species. Humans are exposed via seafood consumption. Despite the fact that research on the impact of microfibers on marine biota is increasing, knowledge on their role in food security and safety is limited. The present review aims to examine the current knowledge about microfiber contamination in commercially relevant fish species, their impact on the marine food chain, and their probable threat to consumer health. The available information suggests that among the marine biota, edible species are also contaminated, but there is an urgent need to standardize data collection methods to assess the extent of microfiber occurrence in seafood. In this context, natural microfibers should also be investigated. A multidisciplinary approach to the microfiber issue that recognizes the interrelationship and connection of environmental health with that of animals and humans should be used, leading to the application of strategies to reduce microfiber pollution through the control of the sources and the development of remediation technologies.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | | | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
21
|
Wang S, Zheng L, Shen M, Zhang L, Wu Y, Li G, Guo C, Hu C, Zhang M, Sui Y, Dong X, Lv L. Habitual feeding patterns impact polystyrene microplastic abundance and potential toxicity in edible benthic mollusks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161341. [PMID: 36603620 DOI: 10.1016/j.scitotenv.2022.161341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
That increasing microplastics (MPs, <5 mm) eventually end up in the sediment which may become a growing menace to diverse benthic lives is worthy of attention. In this experiment, three edible mollusks including one deposit-feeding gastropod (Bullacta exarate) and two filter-feeding bivalves (Cyclina sinensis and Mactra veneriformis) were exposed to polystyrene microplastic (PS-MP) for 7 days and depurated for 3 days. PS-MP numbers in the digestive system and non-digestive system, digestive enzymes, oxidative stress indexes, and a neurotoxicity index of three mollusks were determined at day 0, 3, 7, 8 and 10. After seven-day exposure, the PS-MP were found in all three mollusks' digestive and non-digestive systems. And PS-MP in M. veneriformis (9.57 ± 2.19 items/individual) was significantly higher than those in C. sinensis (3.00 ± 2.16 items/individual) and B. exarate (0.83 ± 1.07 items/individual) at day 7. Three-day depuration could remove most of the PS-MP in the mollusks, and higher PS-MP clearance rates were found in filter-feeding C. sinensis (77.78 %) and M. veneriformis (82.59 %) compared to surface deposit-feeding B. exarate (50.00 %). The digestive enzymes of B. exarate significantly reacted to PS-MP exposure, while oxidative responses were found in C. sinensis. After three-day depuration, the changes of digestive enzymes and the oxidative states were fixed, but neurotoxicity induced by PS-MP was not recoverable. Besides, it is noteworthy that changes of digestive enzymes and acetylcholinesterase are related to feeding patterns.
Collapse
Affiliation(s)
- Senyang Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Zheng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Mengyan Shen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Longsheng Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Yiting Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanbo Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cunzhi Hu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Mingming Zhang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China; Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Germany.
| | - Xuexing Dong
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China.
| | - Linlan Lv
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224002, China
| |
Collapse
|
22
|
Jimoh JO, Rahmah S, Mazelan S, Jalilah M, Olasunkanmi JB, Lim LS, Ghaffar MA, Chang YM, Bhubalan K, Liew HJ. Impact of face mask microplastics pollution on the aquatic environment and aquaculture organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120769. [PMID: 36455766 DOI: 10.1016/j.envpol.2022.120769] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Microplastic pollution in our environment, especially water bodies is an emerging threat to food security and human health. Inevitably, the outbreak of Covid-19 has necessitated the constant use of face masks made from polymers such as polypropylene, polyurethane, polyacrylonitrile, polystyrene, polycarbonate, polyethylene, or polyester which eventually will disintegrate into microplastic particles. They can be broken down into microplastics by the weathering action of UV radiation from the sun, heat, or ocean wave-current and precipitate in natural environments. The global adoption of face masks as a preventive measure to curb the spread of Covid-19 has made the safe management of wastes from it cumbersome. Microplastics gain access into aquaculture facilities through water sources and food including planktons. The negative impacts of microplastics on aquaculture cannot be overemphasized. The impacts includes low growth rates of animals, hindered reproductive functions, neurotoxicity, low feeding habit, oxidative stress, reduced metabolic rate, and increased mortality rate among aquatic organisms. With these, there is every tendency of microplastic pollution to negatively impact fish production through aquaculture if the menace is not curbed. It is therefore recommended that biodegradable materials rather than plastics to be considered in the production of face mask while recycle of already produced ones should be encouraged to reduce waste.
Collapse
Affiliation(s)
- Jeremiah Olanipekun Jimoh
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Department of Fisheries and Aquaculture, Federal University, Oye Ekiti, Ekiti State, Nigeria
| | - Sharifah Rahmah
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Suhairi Mazelan
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohamad Jalilah
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - John Bunmi Olasunkanmi
- Department of Fisheries and Aquaculture, Federal University, Oye Ekiti, Ekiti State, Nigeria
| | - Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Mazlan Abd Ghaffar
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Yu Mei Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Higher Institution Centre of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Science, Harbin, China.
| |
Collapse
|
23
|
Akkajit P, Khongsang A, Thongnonghin B. Microplastics accumulation and human health risk assessment of heavy metals in Marcia opima and Lingula anatina, Phuket. MARINE POLLUTION BULLETIN 2023; 186:114404. [PMID: 36463718 DOI: 10.1016/j.marpolbul.2022.114404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The concerns over potential health risk from the consumption of Marcia opima (M. optima) and lingulata (Lingula anatina) contaminated by heavy metals (Cd, Pb and Zn) and microplastics in the eastern part of Phuket, Southern Thailand has been assessed. The abundance of microplastics in Marcia opima and Lingulata were 1.86 and 1.24 items/individual, respectively and followed the order: polyethylene terephthalate > polyester > polyvinyl alcohol and polyvinyl chloride. Integrated risk indices using the daily intake (EDIs) for heavy metals consumption (from 0.00001 to 0.00712 mg kg-1 per day) are not exceeded the standards set by the ministry of public health Thailand to pose potential carcinogenic health risk individually. The bioaccumulations and hazard quotient values (<1) showed no risk exists concerning the levels of exposure, however, monitoring heavy metals concentration and microplastic contaminations on a regular basis are necessary to prioritize the local people health from pollutants exposure.
Collapse
Affiliation(s)
- Pensiri Akkajit
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket, Thailand.
| | - Audomlak Khongsang
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket, Thailand
| | - Boonnisa Thongnonghin
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Phuket, Thailand; Graduate School, Prince of Songkla University, Hat Yai campus, Songkhla 90110, Thailand
| |
Collapse
|
24
|
Elvevoll EO, James D, Toppe J, Gamarro EG, Jensen IJ. Food Safety Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to Consumption of Sea Cucumbers. Foods 2022; 11:3992. [PMID: 36553734 PMCID: PMC9778379 DOI: 10.3390/foods11243992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The global production of sea cucumbers was 245 thousand tons in 2020. Sea cucumbers are important food items in Asian and Pacific cuisines, the highest proportion being consumed in China as "bêche-de-mer" dried, gutted, boiled and salted body wall. However, consumption of sea cucumbers is expanding in China and globally, and the high demand has led to decline in populations of sea cucumbers, due to overexploitation. Aquaculture, together with novel fisheries on new species in new regions is easing the demand. Thus, an assessment of food safety is warranted. A literature search on food hazards was performed. A high proportion of the selected papers concerned heavy metals and metalloid hazards, such as mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As). No specific maximum limits (MLs) have been set for contents of these in sea cucumbers. Thus, the contents were compared with maximum limits set for aquatic animals in general or bivalve molluscs if available. With regard to Hg and Cd levels, none of the samples exceeded limits set by the European Commission or the National Standard of China, while for Pb, samples from highly industrialised areas exceeded the limits. Surprisingly, data on contaminants such as POPs, including dioxins and dl-PCB, PAH and PFAS as well as microbial hazards were scarce. The availability of fresh sea cucumber has increased due to aquaculture. To preserve the original flavour some consumers are reported to prefer to eat raw sea cucumber products, sashimi and sushi, which inevitably causes challenges from the microbial food safety perspective. Altogether, this paper highlights specific needs for knowledge, in particular when harvesting new species of sea cucumbers or in industrialized regions. Systematic monitoring activities, appropriate guidelines and regulations are highly warranted to guide the utilization of sea cucumbers.
Collapse
Affiliation(s)
- Edel Oddny Elvevoll
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
| | - David James
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Jogeir Toppe
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Esther Garrido Gamarro
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Ida-Johanne Jensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, N-9037 Tromsoe, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
25
|
Pappoe C, Palm LMND, Denutsui D, Boateng CM, Danso-Abbeam H, Serfor-Armah Y. Occurrence of microplastics in gastrointestinal tract of fish from the Gulf of Guinea, Ghana. MARINE POLLUTION BULLETIN 2022; 182:113955. [PMID: 35878475 DOI: 10.1016/j.marpolbul.2022.113955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, there has been a growing concern about microplastics pollution in global aquatic habitats and its potential impact on human health. This study was carried out to determine the presence of microplastics in fish of economic importance in Ghana. Microplastics were found to be abundant in all investigated samples, with 68 % of the fishes contaminated with microplastics and a total of 133 plastic items identified in the fish. The presence of fibers, black coloured particles, and microplastics in the size range of 0.5-1.0 mm was the most abundant in the samples examined. Three polymers specifically, polyethylene, polyvinyl acetate, and polyamide were identified in the study. The presence of microplastics in the fishes investigated may pose severe ecological and health concerns, and hence comprehensive policies targeted at preventing plastic pollution of Ghana's maritime environment is warranted.
Collapse
Affiliation(s)
| | - Linda Maud N-D Palm
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Dzifa Denutsui
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana
| | - Charles Mario Boateng
- Department of Marine and Fisheries Sciences, University of Ghana, P. O. Box LG 99, Accra, Ghana
| | - Harriet Danso-Abbeam
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana; Environmental Resources Research Centre, Ghana Atomic Energy Commission, P. O. Box LG 80, Legon, Ghana.
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, P. O. Box AE 1, Atomic, Ghana
| |
Collapse
|
26
|
Covernton GA, Dietterle M, Pearce CM, Gurney-Smith HJ, Dower JF, Dudas SE. Depuration of anthropogenic particles by Pacific oysters (Crassostrea gigas): Feasibility and efficacy. MARINE POLLUTION BULLETIN 2022; 181:113886. [PMID: 35816820 DOI: 10.1016/j.marpolbul.2022.113886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic particles (APs) generated from both natural and synthetic materials are widespread in the aquatic environment and contaminate seafood products, including shellfish. Depuration, involving the placement of filter-feeding shellfish in clean water for a period of time, often several days, is used to reduce contaminant concentrations, but the practicality of its use by the shellfish industry for APs has not yet been examined. In the present study, cultured adult Pacific oysters (Crassostrea gigas) were depurated for 10 days in a facility with limited airflow and filtered seawater. On average, there was a 73 % reduction in oyster AP concentration after 5 days, but no further reduction at 10 days, potentially due to the difficulty in depurating some particles or to re-contamination from the experimental environment. Long-term feasibility for industry will depend on future guidelines for safe AP consumption levels and the practicality and financial feasibility of creating and running clean facilities.
Collapse
Affiliation(s)
| | - Maggie Dietterle
- Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | - Christopher M Pearce
- University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada; Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7, Canada
| | - Helen J Gurney-Smith
- University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | - John F Dower
- University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sarah E Dudas
- University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| |
Collapse
|
27
|
Lu X, Deng DF, Huang F, Casu F, Kraco E, Newton RJ, Zohn M, Teh SJ, Watson AM, Shepherd B, Ma Y, Dawood MA, Rios Mendoza LM. Chronic exposure to high-density polyethylene microplastic through feeding alters the nutrient metabolism of juvenile yellow perch ( Perca flavescens). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:143-158. [PMID: 35573095 PMCID: PMC9079722 DOI: 10.1016/j.aninu.2022.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/30/2021] [Accepted: 01/30/2022] [Indexed: 01/02/2023]
Abstract
Microplastics are emergent contaminants threatening aquatic organisms including aquacultured fish. This study investigated the effects of high-density polyethylene (HDPE, 100 to 125 μm) on yellow perch (Perca flavescens) based on integrative evaluation including growth performance, nutritional status, nutrient metabolism, fish health, and gut microbial community. Five test diets (0, 1, 2, 4, or 8 g HDPE/100 g diet) containing 41% protein and 10.5% lipid were fed to juvenile perch (average body weight, 25.9 ± 0.2 g; n = 15) at a feeding rate of 1.5% to 2.0% body weight daily. The feeding trial was conducted in a flow-through water system for 9 wk with 3 tanks per treatment and 15 yellow perch per tank. No mortality or HDPE accumulation in the fish was found in any treatments. Weight gain and condition factor of fish were not significantly impacted by HDPE (P > 0.05). Compared to the control group, fish fed the 8% HDPE diet had significantly decreased levels of protein and ash (P < 0.05). In response to the increasing levels of HDPE exposure, the hepatosomatic index value, hepatocyte size, and liver glycogen level were increased, but lipid content was reduced in the liver tissues. Compared to the control treatment, fish fed the 8% HDPE diet had significant accumulations of total bile acids and different metabolism pathways such as bile acid biosynthesis, pyruvate metabolism, and carnitine synthesis. Significant enterocyte necrosis was documented in the foregut of fish fed the 2% or 8% HDPE diet; and significant cell sloughing was observed in the midgut and hindgut of fish fed the 8% HDPE diet. Fish fed the 2% HDPE diet harbored different microbiota communities compared to the control fish. This study demonstrates that HDPE ranging from 100 to 125 μm in feed can be evacuated by yellow perch with no impact on growth. However, dietary exposure to HDPE decreased whole fish nutrition quality, altered nutrient metabolism and the intestinal histopathology as well as microbiota community of yellow perch. The results indicate that extended exposure may pose a risk to fish health and jeopardize the nutrition quality of aquacultured end product. This hypothesis remains to be investigated further.
Collapse
Affiliation(s)
- Xing Lu
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Dong-Fang Deng
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
- Corresponding author.
| | - Fei Huang
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Fabio Casu
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Emma Kraco
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Merry Zohn
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Swee J. Teh
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Aaron M. Watson
- South Carolina Department of Natural Resources, Charleston, SC, 29412, USA
| | - Brian Shepherd
- USDA/ARS/School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Ying Ma
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Mahmound A.O. Dawood
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, 53204, USA
| | - Lorena M. Rios Mendoza
- Department of Natural Sciences, Marine Resources Research Institute, University of Wisconsin, Superior, WI, 54880, USA
| |
Collapse
|
28
|
Tigchelaar M, Leape J, Micheli F, Allison EH, Basurto X, Bennett A, Bush SR, Cao L, Cheung WW, Crona B, DeClerck F, Fanzo J, Gelcich S, Gephart JA, Golden CD, Halpern BS, Hicks CC, Jonell M, Kishore A, Koehn JZ, Little DC, Naylor RL, Phillips MJ, Selig ER, Short RE, Sumaila UR, Thilsted SH, Troell M, Wabnitz CC. The vital roles of blue foods in the global food system. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Ogunola SO, Reis-Santos P, Wootton N, Gillanders BM. Microplastics in decapod crustaceans sourced from Australian seafood markets. MARINE POLLUTION BULLETIN 2022; 179:113706. [PMID: 35567960 DOI: 10.1016/j.marpolbul.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastic abundance and characteristics were assessed in five decapod crustaceans purchased from seafood markets and collected in coastal waters around Australia (South Australia, New South Wales, Queensland, Northern Territory, and Western Australia). Three species of prawns (king, banana and tiger prawns) and two species of crabs (blue-swimmer and mud crabs) were analysed. Muscle tissues and gastro-intestinal tracts in prawns, and gastro-intestinal tracts in crabs, were chemically digested, with microplastic identification verified using Fourier Transform Infrared spectroscopy. Forty-eight percent of crustaceans contained microplastics. Prawns and crabs had 0.8 ± 0.1 and 1.6 ± 0.1 pieces per individual, respectively, with spatial patterns evident. Microplastics were predominantly fibres (98%) of blue (58%) and black (24%) colours with polyolefin including polyester the most prevalent polymers. Overall, compared to a systematic review we performed of microplastics in decapod crustaceans worldwide, microplastic loads in crustaceans from Australia were in the lower range of plastic contamination.
Collapse
Affiliation(s)
- Solomon O Ogunola
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Nina Wootton
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
30
|
A Meta-Analysis of the Characterisations of Plastic Ingested by Fish Globally. TOXICS 2022; 10:toxics10040186. [PMID: 35448447 PMCID: PMC9027263 DOI: 10.3390/toxics10040186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
Abstract
Plastic contamination in the environment is common but the characterisation of plastic ingested by fish in different environments is lacking. Hence, a meta-analysis was conducted to identify the prevalence of plastic ingested by fish globally. Based on a qualitative analysis of plastic size, it was determined that small microplastics (<1 mm) are predominantly ingested by fish globally. Furthermore, our meta-analysis revealed that plastic fibres (70.6%) and fragments (19.3%) were the most prevalent plastic components ingested by fish, while blue (24.2%) and black (18.0%) coloured plastic were the most abundant. Polyethylene (15.7%) and polyester (11.6%) were the most abundant polymers. Mixed-effect models were employed to identify the effects of the moderators (sampling environment, plastic size, digestive organs examined, and sampling continents) on the prevalence of plastic shape, colour, and polymer type. Among the moderators, only the sampling environment and continent contributed to a significant difference between subgroups in plastic shape and polymer type.
Collapse
|
31
|
Dang F, Wang Q, Huang Y, Wang Y, Xing B. Key knowledge gaps for One Health approach to mitigate nanoplastic risks. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:11-22. [PMID: 38078201 PMCID: PMC10702905 DOI: 10.1016/j.eehl.2022.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2023]
Abstract
There are increasing concerns over the threat of nanoplastics to environmental and human health. However, multidisciplinary barriers persist between the communities assessing the risks to environmental and human health. As a result, the hazards and risks of nanoplastics remain uncertain. Here, we identify key knowledge gaps by evaluating the exposure of nanoplastics in the environment, assessing their bio-nano interactions, and examining their potential risks to humans and the environment. We suggest considering nanoplastics a complex and dynamic mixture of polymers, additives, and contaminants, with interconnected risks to environmental and human health. We call for comprehensive integration of One Health approach to produce robust multidisciplinary evidence to nanoplastics threats at the planetary level. Although there are many challenges, this holistic approach incorporates the relevance of environmental exposure and multi-sectoral responses, which provide the opportunity to identify the risk mitigation strategies of nanoplastics to build resilient health systems.
Collapse
Affiliation(s)
- Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingyu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
32
|
Rawle DJ, Dumenil T, Tang B, Bishop CR, Yan K, Le TT, Suhrbier A. Microplastic consumption induces inflammatory signatures in the colon and prolongs a viral arthritis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152212. [PMID: 34890673 DOI: 10.1016/j.scitotenv.2021.152212] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Global microplastic (MP) contamination and the effects on the environment are well described. However, the potential for MP consumption to affect human health remains controversial. Mice consuming ≈80 μg/kg/day of 1 μm polystyrene MPs via their drinking water showed no weight loss, nor were MPs detected in internal organs. The microbiome was also not significantly changed. MP consumption did lead to small transcriptional changes in the colon suggesting plasma membrane perturbations and mild inflammation. Mice were challenged with the arthritogenic chikungunya virus, with MP consumption leading to a significantly prolonged arthritic foot swelling that was associated with elevated Th1, NK cell and neutrophil signatures. Immunohistochemistry also showed a significant increase in the ratio of neutrophils to monocyte/macrophages. The picture that emerges is reminiscent of enteropathic arthritis, whereby perturbations in the colon are thought to activate innate lymphoid cells that can inter alia migrate to joint tissues to promote inflammation.
Collapse
Affiliation(s)
- Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron R Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029 and 4072, Australia.
| |
Collapse
|
33
|
Zhang C, Zuo Z, Wang Q, Wang S, Lv L, Zou J. Size Effects of Microplastics on Embryos and Observation of Toxicity Kinetics in Larvae of Grass Carp (Ctenopharyngodon idella). TOXICS 2022; 10:toxics10020076. [PMID: 35202262 PMCID: PMC8877553 DOI: 10.3390/toxics10020076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Microplastics have caused great concern in recent years. However, few studies have compared the toxicity of different sizes of microplastics in fishes, especially commercial fishes, which are more related to human health. In the present study, we revealed the effects of varying sizes of microplastics on grass carp embryos and larvae using scanning electron microscopy (SEM) and fluorescence imaging. Embryos were exposed to 80 nm and 8 μm microplastics at concentrations of 5, 15, and 45 mg/L. Toxicity kinetics of various sizes of fluorescent microplastics were analyzed through microscopic observation in the larvae. Results found that nanoplastics could not penetrate the embryo’s chorionic membrane, instead they conglutinated or aggregated on the chorion. Our results are the first to explore the defense mechanisms of commercial fish embryos against microplastics. Larvae were prone to ingesting their own excrement, resulting in microplastic flocculants winding around their mouth. For the first time, it was found that excreted microplastics could be reconsumed by fish and reaccumulated in the oral cavity. Microplastics of a certain size (1 μm) could be accumulated in the nasal cavity. We speculate that the presence of a special groove structure in the nasal cavity of grass carp larvae may manage to seize the microplastics with a particular size. As far as we know, this is the first report of microplastics being found in the nasal passages of fish. Fluorescence images clearly recorded the toxicity kinetics of microplastics in herbivorous fish.
Collapse
Affiliation(s)
- Chaonan Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Z.); (Z.Z.); (Q.W.); (S.W.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Z.); (Z.Z.); (Q.W.); (S.W.)
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Z.); (Z.Z.); (Q.W.); (S.W.)
| | - Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Z.); (Z.Z.); (Q.W.); (S.W.)
| | - Liqun Lv
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China;
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Z.); (Z.Z.); (Q.W.); (S.W.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
34
|
Nikolić M, Milošković A, Jakovljević M, Radenković M, Veličković T, Đuretanović S, Kojadinović N, Nikolić M, Simić V. The first observation of the presence of microplastics in wild common bleak (Alburnus alburnus L.) and standardization of extraction protocols. KRAGUJEVAC JOURNAL OF SCIENCE 2022. [DOI: 10.5937/kgjsci2244267n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The presence of microplastics (MPs) in the gastrointestinal tract, muscle, and whole-body samples of common bleak Alburnus alburnus L. from Gruža Reservoir (Central Serbia) was studied for the first time. Different protocols for MPs extraction were applied to determine the most efficient one. The study aimed to modify existing protocols to be cost-effective, efficient in digestion, and with no detrimental effect on potentially present MPs polymers. In this study, the digestion with 10% KOH during 48 h at 40°C was efficient for the gastrointestinal tract and muscle. Digestion with 10% KOH during 72 h at 40°C was the most efficient for whole-body samples. The usage of NaClO proved successful in digestion of the gastrointestinal tract overnight at room temperature. Fibers detected in the samples are assumed to be of plastic origin. The general goal was to establish a protocol for extracting MPs from fish tissue in wild populations to obtain results and determine the degree of pollution.
Collapse
|
35
|
Esposito G, Prearo M, Renzi M, Anselmi S, Cesarani A, Barcelò D, Dondo A, Pastorino P. Occurrence of microplastics in the gastrointestinal tract of benthic by-catches from an eastern Mediterranean deep-sea environment. MARINE POLLUTION BULLETIN 2022; 174:113231. [PMID: 34933217 DOI: 10.1016/j.marpolbul.2021.113231] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Concern about microplastic pollution little is known about levels in deep-sea species; to fill this knowledge gap, levels of microplastics in the gastrointestinal (GI) tracts of 34 fish from eight different deep-sea by-catches: blackmouth catshark, lesser spotted dogfish, and velvet belly, armless snake eel, hollowsnout grenadier, phaeton dragonet, royal flagfin, and slender snipe eel were measured. All were collected at the same site (east Sardinia, Mediterranean Sea; 40°10'12.49″N, 9°44'12.31″E) using a bottom gillnet at depths between -820/250 and -1148 ft./350 m. Microplastics (MPs) were retrieved in 16 out of 34 fish. At least one microplastic item was found in 48% (33%, E. spinax - 75%, G. melastomus) of the samples. The most frequent was polyethylene (PE), with nine items (filaments, films, fragments) found in five specimens. This preliminary study of by-catches adds new data on MPs ingestion by species inhabiting a deep-sea environment of the Mediterranean.
Collapse
Affiliation(s)
- Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy
| | - Alberto Cesarani
- Department of Agriculture, University of Sassari, Viale Italia 39/a, 07100 Sassari, Italy
| | - Damià Barcelò
- Institute of Environmental Assessment and Water Research, IDAEA - CSIC, C/ Jordi Girona 18 - 26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA - CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Alessandro Dondo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle D'Aosta, Via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
36
|
Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microplastics (MPs), classified as plastic debris less than 5 mm in size, are widely found in various aquatic environments. However, there have been few studies regarding their potential threat under aquaculture conditions. The aim of this study was to investigate the general health, intestinal morphology and microbiota of virgin polypropylene MPs (3–4 mm) on largemouth bass (Micropterus salmoides) over a 28-d exposure period. Four groups were divided according to whether the MPs were added in water or in food. The results disproved the hypothesis that MPs expose may adversely affect the growth of fish. Largemouth bass expelled MPs with minimal harm to the organism. MPs exposure had no significant effect on the community composition or diversity of intestinal microbial, although it could partly influence intestinal morphology, and the recombination process of the intestinal microbial community. Fish may be more sensitive to answer MPs exposure in water than in feed. Proteobacteria could potentially be pathogenic bacteria phylum in fish gut when affected by MPs. This research represents an innovative attempt to investigate the impact of virgin MPs on largemouth bass using a manipulative feeding experiment. The results could provide new insight on commercial fish health when challenged with MPs pollution.
Collapse
|
37
|
Puskic PS, Coghlan AR. Minimal meso-plastics detected in Australian coastal reef fish. MARINE POLLUTION BULLETIN 2021; 173:113074. [PMID: 34872169 DOI: 10.1016/j.marpolbul.2021.113074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Recording plastic ingestion across various species and spatial scales is key to elucidating the impact of plastic pollution on coastal and marine ecosystems. The effect of plastic ingestion on the diets, physiologies, and behaviors of selected fish species are well documented under laboratory settings. However, prevalence of plastic ingestion in wild fish across latitudinal gradients is yet to be widely documented; with a substantial lack of research in the Southern Hemisphere. We analyzed the gut content of reef fish across ~30o latitude of the east coast of Australia. Of 876 fish examined from 140 species (83 genera and 37 families), 12 individuals had visible (meso-plastics detectable to the naked eye) plastics present in the gut. Here, we present a first-look at plastic ingestion for coastal species with this region.
Collapse
Affiliation(s)
- Peter S Puskic
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia; Centre for Marine Sociology, University of Tasmania, Hobart, Tasmania, Australia
| | - Amy R Coghlan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
38
|
Willer DF, Nicholls RJ, Aldridge DC. Opportunities and challenges for upscaled global bivalve seafood production. NATURE FOOD 2021; 2:935-943. [PMID: 37118255 DOI: 10.1038/s43016-021-00423-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Slow growth in the bivalve mariculture sector results from production inefficiencies, food safety concerns, limited availability of convenience products and low consumer demand. Here we assess whether bivalves could meet mass-market seafood demand across the bivalve value chain. We explore how bivalve production could become more efficient, strategies for increasing edible meat yield and how food safety could be improved through food processing technologies and new depuration innovations. Finally, we examine barriers to consumer uptake, such as food allergen prevalence and bivalve preparation challenges, highlighting that appealing and convenient bivalve food products could provide consumers with nutritious and sustainable seafood options-and contribute positively to global food systems.
Collapse
Affiliation(s)
- David F Willer
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
39
|
Bacha AUR, Nabi I, Zhang L. Mechanisms and the Engineering Approaches for the Degradation of Microplastics. ACS ES&T ENGINEERING 2021; 1:1481-1501. [DOI: 10.1021/acsestengg.1c00216] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Aziz-Ur-Rahim Bacha
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Iqra Nabi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples’ Republic of China
| |
Collapse
|
40
|
Owen S, Cureton S, Szuhan M, McCarten J, Arvanitis P, Ascione M, Truong VK, Chapman J, Cozzolino D. Microplastic adulteration in homogenized fish and seafood - a mid-infrared and machine learning proof of concept. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119985. [PMID: 34058667 DOI: 10.1016/j.saa.2021.119985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The objective of this study was to assess the ability of utilizing attenuated total reflection mid-infrared (ATR-MIR) spectroscopy in combination with machine learning techniques to classify the presence of different types of microplastics in artificially adulterated fish and seafood samples. Different polymers namely poly-vinyl chloride (PVC), polycarbonate (PC), polystyrene (PS), polypropylene (PP) and low (LDPE) and high-density polyethylene (HDPE) were mixed with homogenized fish and seafood samples. Homogenized samples were analyzed using MIR spectroscopy and classification models developed using machine learning algorithms such as partial least squares discriminant analysis (PLS-DA). The results of this study revealed that it was possible to identify between adulterated and non-adulterated samples as well as the different microplastic types added to the homogenized samples using ATR-MIR spectroscopy. This study confirmed the ability of combining machine learning methods with ATR-MIR spectroscopy to directly analyze microplastic adulteration in fleshy foods such as fish and seafood. This proof-of-concept study can be utilized and extended to monitor the presence of plastics either in a wide range of fleshy foods or along the entire food value chain.
Collapse
Affiliation(s)
- Stephanie Owen
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Samuel Cureton
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Mathew Szuhan
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Joel McCarten
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Panagiota Arvanitis
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Max Ascione
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - James Chapman
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| | - Daniel Cozzolino
- 2 Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Xie S, Zhou A, Wei T, Li S, Yang B, Xu G, Zou J. Nanoplastics Induce More Serious Microbiota Dysbiosis and Inflammation in the Gut of Adult Zebrafish than Microplastics. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:640-650. [PMID: 34379141 DOI: 10.1007/s00128-021-03348-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Microplastics (MPs) (< 5 mm) and nanoplastics (NPs) (< 100 nm) are emerging environmental pollutants and have been proved could cause a series of toxicity in aquatic organisms. In this study, the effects on gut microbiota of adult zebrafish exposed for 21 days to 10 μg/L and 1 mg/L of MPs (8 μm) and NPs (80 nm) were evaluated. We analyzed the intestinal microbial community of zebrafish using high throughput sequencing of the 16S rRNA gene V3-V4 region and also performed transcriptional profiling of the inflammation pathway related genes in the intestinal tissues. Our results showed that both spherical polystyrene MPs and NPs could induce microbiota dysbiosis in the gut of zebrafish. The flora diversity of gut microbiota significantly increased under a high concentration of NPs. At the phylum level, the abundance of Proteobacteria increased significantly and the abundance of Fusobacteria, Firmicutes and Verrucomicrobiota decreased significantly in the gut after 21-day exposure to 1 mg/L of both MPs and NPs. Furthermore, interestingly, the abundance of Actinobacteria decreased in the MPs treatment groups but increased in the NPs treatment groups. At the genus level, revealed that the relative abundance of Aeromonas significantly increased both in the MPs and NPs treatment groups. Moreover, it was observed that NPs increased mRNA levels of il8, il10, il1β and tnfα in the gut, but not in MPs exposure group, indicating that the NPs may have a more serious effect on the gut of zebrafish than MPs to induce microbiota dysbiosis and inflammation in the gut.
Collapse
Affiliation(s)
- Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, PR China
| | - Tianli Wei
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Siying Li
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Bing Yang
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
42
|
Poto MP, Elvevoll EO, Sundset MA, Eilertsen KE, Morel M, Jensen IJ. Suggestions for a Systematic Regulatory Approach to Ocean Plastics. Foods 2021; 10:foods10092197. [PMID: 34574305 PMCID: PMC8472657 DOI: 10.3390/foods10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The research investigates the problems and maps the solutions to the serious threat that plastics pose to the oceans, food safety, and human health, with more than eight million tons of plastic debris dumped in the sea every year. The aim of this study is to explore how to better improve the regulatory process of ocean plastics by integrating scientific results, regulatory strategies and action plans so as to limit the impact of plastics at sea. Adopting a problem-solving approach and identifying four areas of intervention enable the establishment of a regulatory framework from a multi-actor, multi-issue, and multi-level perspective. The research methodology consists of a two-pronged approach: 1. An analysis of the state-of-the-art definition of plastics, micro-, and nanoplastics (respectively, MPs and NPs), and 2. The identification and discussion of loopholes in the current regulation, suggesting key actions to be taken at a global, regional and national level. In particular, the study proposes a systemic integration of scientific and regulatory advancements towards the construction of an interconnected multi-tiered (MT) plastic governance framework. The milestones reached by the project SECURE at UiT - The Arctic University of Norway provide evidence of the strength of the theory of integration and rights-based approaches. The suggested model holds substantial significance for the fields of environmental protection, food security, food safety, and human health. This proposed MT plastic governance framework allows for the holistic and effective organization of complex information and scenarios concerning plastics regulation. Containing a clear definition of plastics, grounded on the precautionary principle, the MT plastic framework should provide detailed mitigation measures, with a clear indication of rights and duties, and in coordination with an effective reparatory justice system.
Collapse
Affiliation(s)
- Margherita Paola Poto
- Faculty of Law, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence:
| | - Edel Oddny Elvevoll
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
| | - Monica Alterskjær Sundset
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Karl-Erik Eilertsen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
| | - Mathilde Morel
- Faculty of Law, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Ida-Johanne Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (E.O.E.); (K.-E.E.); (I.-J.J.)
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, N-7491 Trondheim, Norway
| |
Collapse
|
43
|
Do Freshwater Fish Eat Microplastics? A Review with A Focus on Effects on Fish Health and Predictive Traits of MPs Ingestion. WATER 2021. [DOI: 10.3390/w13162214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microplastics (MPs) have received increasing attention in the last decade and are now considered among the most concerning emerging pollutants in natural environments. Here, the current knowledge on microplastic ingestion by wild freshwater fish is reviewed with a focus on the identification of possible factors leading to the ingestion of MPs and the consequences on fish health. Within the literature, 257 species of freshwater fishes from 32 countries have been documented to ingest MPs. MPs ingestion was found to increase with rising level of urbanization, although a direct correlation with MPs concentration in the surrounding water has not been identified. MPs ingestion was detected in all the published articles, with MPs presence in more than 50% of the specimens analyzed in one study out of two. Together with the digestive tract, MPs were also found in the gills, and there is evidence that MPs can translocate to different tissues of the organism. Strong evidence, therefore, exists that MPs may represent a serious risk for ecosystems, and are a direct danger for human health. Moreover, toxicological effects have also been highlighted in wild catches, demonstrating the importance of this problem and suggesting the need for laboratory experiments more representative of the environmental situation.
Collapse
|
44
|
Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, Faggio C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125476. [PMID: 33647615 DOI: 10.1016/j.jhazmat.2021.125476] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Although we are witnesses of an increase in the number of studies examining the exposure/effects of microplastics (MPs) on different organisms, there are many unknowns. This review aims to: (i) analyze current studies devoted to investigating the exposure/effects of MPs on animals; (ii) provide some basic knowledge about different model organisms and experimental approaches used in studying MPs; and to (iii) convey directions for future studies. We have summarized data from 500 studies published from January 2011 to May 2020, about different aspects of model organisms (taxonomic group of organisms, type of ecosystem they inhabit, life-stage, sex, tissue and/or organ) and experimental design (laboratory/field, ingestion/bioaccumulation/effect). We also discuss and try to encourage investigation of some less studied organisms (terrestrial and freshwater species, among groups including Annelida, Nematoda, Echinodermata, Cnidaria, Rotifera, birds, amphibians, reptiles), and aspects of MP pollution (long-term field studies, comparative studies examining life stages, sexes, laboratory and field work). We hope that the information presented in this review will serve as a good starting point and will provide useful guidelines for researchers during the process of deciding on the model organism and study designs for investigating MPs.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Santa Agata-Messina, Italy.
| |
Collapse
|
45
|
Rebelein A, Int-Veen I, Kammann U, Scharsack JP. Microplastic fibers - Underestimated threat to aquatic organisms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146045. [PMID: 33684771 DOI: 10.1016/j.scitotenv.2021.146045] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 05/06/2023]
Abstract
Awareness of microplastic pollution in aquatic environments increased strongly during the last decade. Environmental monitoring studies detected microplastic items in every tested water body and found them in various aquatic organisms. Yet, many studies conducted so far, refer to microplastic particles and spheres but not fibers. Microplastic fibers are often not considered due to methodological issues and high contamination risk during sampling and analysis. Only a few of the microplastic exposure studies with aquatic organisms were conducted with microplastic fibers. Recent effect studies demonstrated several negative impacts of microplastic fibers on aquatic organisms, which include tissue damage, reduced growth, and body condition and even mortality. Such negative effects were predominantly observed in taxa at the basis of the food chain. Higher taxa were less heavily affected in direct exposure experiments, but they presumably suffer from negative effects on organisms at lower food chain levels in the wild. Consequently, ongoing and future pollution with microplastic fibers may disturb the functioning of aquatic ecosystems. The present review outlines the current state of knowledge on microplastic fiber abundance in nature, bioavailability, and impacts on aquatic animals. Based on these findings, we recommend inclusion of microplastic fibers in prospective monitoring studies, discuss appropriate methods, and propose to conduct exposure studies with - as well as risk assessments of - these underestimated pollutants.
Collapse
Affiliation(s)
- Anja Rebelein
- Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany.
| | - Ivo Int-Veen
- Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany
| | - Jörn Peter Scharsack
- Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572 Bremerhaven, Germany
| |
Collapse
|
46
|
Chen G, Li Y, Wang J. Occurrence and ecological impact of microplastics in aquaculture ecosystems. CHEMOSPHERE 2021; 274:129989. [PMID: 33979917 DOI: 10.1016/j.chemosphere.2021.129989] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Extensive applications of plastic in human life has caused substantial microplastic pollution in the global environment, which, due to plastic's ubiquitous nature and everlasting ecological impact, has caused worldwide concern. In aquatic ecosystems, microplastics are ingested by aquatic animals, affecting their growth and development and resulting in trophic transfer to higher organisms in the food chain. Therefore, consumption of aquatic products is a main primary source of human exposure to microplastics. Recently, aquaculture production has experienced tremendous growth and will exceed production from fish catch soon. Because they constitute an important source of protein in the human food supply, aquaculture products contaminated with microplastics directly affect food quality and safety. The present review summarizes documented studies regarding the occurrence and distribution of microplastics in various aquaculture systems and species and compares microplastic pollution in aquaculture species and captured species. Microplastics in aquaculture environments mainly come from exogenous imports, such as plastic waste and debris from the land, tourism, shipping transportation and atmospheric deposition. In addition, the use of plastic gear and equipment, aquaculture feed and health products, and special aquaculture environments contribute to a higher accumulation of microplastics. We also discuss the adverse effects of microplastics in aquaculture species and the potential health risks of microplastics to humans through the food chain. In summary, this review highlights the effects of microplastic pollution in aquaculture, particularly the ecological impacts on aquaculture species and associated human health implications, and calls for restricted control of microplastics in aquaculture ecosystems.
Collapse
Affiliation(s)
- Guanglong Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yizheng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
47
|
Cañadas R, Garrido Gamarro E, Garcinuño Martínez RM, Paniagua González G, Fernández Hernando P. Occurrence of common plastic additives and contaminants in mussel samples: Validation of analytical method based on matrix solid-phase dispersion. Food Chem 2021; 349:129169. [PMID: 33548886 DOI: 10.1016/j.foodchem.2021.129169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
A new matrix solid-phase dispersion (MSPD) extraction methodology, combined with high-performance liquid chromatography equipped with a diode-array detector, was developed and validated for the simultaneous determination of 10 compounds in mussels from Galician Rias (Spain). These pollutants are compounds commonly used for plastic production as additives, as well as common plastic contaminants. The compounds selected were bisphenol-A, bisphenol-F, bisphenol-S, nonylphenol-9, nonylphenol, diethyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene. The parameters affecting the MSPD extraction efficiency such as the type of sorbent, mass sample-sorbent ratio, and extraction solvent were optimised. The proposed method provided satisfactory quantitative recoveries (80-100%), with relative standard deviations lower than 7%. In all cases, the matrix-matched calibration curves were linear in the concentration range of 0.32-120.00 µg/kg, with quantification limits of 0.25-16.20 µg/kg. The novel developed MSPD-high-performance liquid chromatography methodology provided good sensitivity, accuracy, and repeatability for quality control analysis in mussels.
Collapse
Affiliation(s)
- R Cañadas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain
| | - E Garrido Gamarro
- Fishery Officer, Fisheries Division, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy.
| | - R M Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain.
| | - G Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain.
| | - P Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Paseo Senda del Rey n° 9, 28040 Madrid, Spain
| |
Collapse
|
48
|
Martinelli M, Gomiero A, Guicciardi S, Frapiccini E, Strafella P, Angelini S, Domenichetti F, Belardinelli A, Colella S. Preliminary results on the occurrence and anatomical distribution of microplastics in wild populations of Nephrops norvegicus from the Adriatic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116872. [PMID: 33740599 DOI: 10.1016/j.envpol.2021.116872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
This study reports the shapes, dimensional classes, types and counts of microplastics (MPs) found in 23 individuals of N. norvegicus collected from two wild populations of the Adriatic Sea (Mediterranean basin). The focus was on three different anatomical compartments (gut, hepatopancreas and tail), which were analysed separately. MPs were found in all the investigated individuals with an average of about 17 MPs/individual. Fragments were predominant over fibers with a ratio of about 3:1. The majority of MPs were in the dimensional range 50-100 μm. The predominant polymers were polyester, polyamide 6, polyvinyl chloride and polyethylene, which together constitute about 61% of all the MPs found. Fragments were more concentrated in the hepatopancreas, with no significant difference between gut and tail, while fibers were more concentrated in the gut than in the tail with hepatopancreas somehow in between. The dimensional class of the MPs influences their anatomical distribution. There were no statistical differences among individuals from the two sampling sites. Sex of the individual did not influence the level of retained MPs, while length had a very marginal effect. The information reported here contributes to understanding of the possible risks linked to human consumption of different tissues from contaminated Norway lobsters.
Collapse
Affiliation(s)
- Michela Martinelli
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Alessio Gomiero
- Norwegian Research Centre, Environment Dep, Mekjarvik 12, 4070, Randaberg, Norway.
| | - Stefano Guicciardi
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Emanuela Frapiccini
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Pierluigi Strafella
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Silvia Angelini
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032, Fano, Pesaro Urbino, Italy
| | - Filippo Domenichetti
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Andrea Belardinelli
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| | - Sabrina Colella
- National Research Council - Institute of Marine Biological Resources and Biotechnologies (CNR IRBIM), Largo Fiera Della Pesca, Ancona, 60125, Italy
| |
Collapse
|
49
|
Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M, Deng J, Luo Y, Wen X, Zhang Y. Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124187. [PMID: 33153780 DOI: 10.1016/j.jhazmat.2020.124187] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The microplastic pollution and related ecological impacts in the aquatic environment have attracted global attention over the past decade. Microplastics can be ingested by aquatic organisms from different trophic levels either directly or indirectly, and transferred along aquatic food chains, causing different impacts on life activities of aquatic organisms. In addition, microplastics can adsorb various environmental chemical contaminants and release toxic plastic additives, thereby serving as a sink and source of these associated chemical contaminants and potentially changing their toxicity, bioavailability, and fate. However, knowledge regarding the potential risks of microplastics and associated chemical contaminants (e.g., hydrophobic organic contaminants, heavy metals, plastic additives) on diverse organisms, especially top predators, remains to be explored. Herein, this review describes the effects of microplastics on typical aquatic organisms from different trophic levels, and systematically summarizes the combined effects of microplastics and associated contaminants on aquatic biota. Furthermore, we highlight the research progress on trophic transfer of microplastics and associated contaminants along aquatic food chain. Finally, potential human health concerns about microplastics via the food chain and dietary exposure are discussed. This work is expected to provide a meaningful perspective for better understanding the potential impacts of microplastics and associated contaminants on aquatic ecology and human health.
Collapse
Affiliation(s)
- Wei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofeng Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
50
|
Vinay Kumar BN, Löschel LA, Imhof HK, Löder MGJ, Laforsch C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116147. [PMID: 33280916 DOI: 10.1016/j.envpol.2020.116147] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Microplastic (MP) contamination is present in the entire marine environment from the sediment to the water surface and down to the deep sea. This ubiquitous presence of MP particles opens the possibility for their ingestion by nearly all species in the marine ecosystem. Reports have shown that MP particles are present in local commercial seafood species leading to the possible human ingestion of these particles. However, due to a lack of harmonized methods to identify microplastics (MPs), results from different studies and locations can hardly be compared. Hence, this study was aimed to detect, quantify, and estimate MP contamination in commercially important mussels originating from 12 different countries distributed worldwide. All mussels were obtained from supermarkets and were intended for human consumption. Using a combinatorial approach of focal plane array (FPA)-based micro- Fourier-transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy allowed the detection and characterization of MP down to a size of 3 μm in the investigated mussels. Further, a gentle sample purification method based on enzymes has been modified in order to optimize the digestion of organic material in mussels. A random forest classification (RFC) approach, which allows a rapid discrimination between different polymer types and thus fast generation of data on MP abundance and size distributions with high accuracy, was implemented in the analytical pipeline for IR spectra. Additionally, for the first time we also applied a RFC approach for the automated characterization of Raman spectra of MPs.
Collapse
Affiliation(s)
- B N Vinay Kumar
- Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Lena A Löschel
- Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Hannes K Imhof
- Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|