1
|
Kaur N, Kovner R, Gulden FO, Pletikos M, Andrijevic D, Zhu T, Silbereis J, Shibata M, Shibata A, Liu Y, Ma S, Salla N, de Martin X, Klarić TS, Burke M, Franjic D, Cho H, Yuen M, Chatterjee I, Soric P, Esakkimuthu D, Moser M, Santpere G, Mineur YS, Pattabiraman K, Picciotto MR, Huang H, Sestan N. Specification of claustro-amygdalar and palaeocortical neurons and circuits. Nature 2025; 638:469-478. [PMID: 39814878 PMCID: PMC11821539 DOI: 10.1038/s41586-024-08361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/06/2024] [Indexed: 01/18/2025]
Abstract
The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours1-5. Early-life disruptions in these circuits are linked to neuropsychiatric disorders4-8, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons. The absence of SOX4 and SOX11 in post-mitotic excitatory neurons results in a marked reduction in the size of the basolateral amygdala complex (BLC), claustrum (CLA) and PIR. These transcription factors control BLC formation through direct regulation of Tfap2d expression. Cross-species analyses, including in humans, identified conserved Tfap2d expression in developing excitatory neurons of BLC, CLA, PIR and the associated transitional areas of the frontal, insular and temporal cortex. Although the loss and haploinsufficiency of Tfap2d yield similar alterations in learned threat-response behaviours, differences emerge in the phenotypes at different Tfap2d dosages, particularly in terms of changes observed in BLC size and BLC-PFC connectivity. This underscores the importance of Tfap2d dosage in orchestrating developmental shifts in BLC-PFC connectivity and behavioural modifications that resemble symptoms of neuropsychiatric disorders. Together, these findings reveal key elements of a conserved gene regulatory network that shapes the development and function of crucial VLp excitatory neurons and their PFC connectivity and offer insights into their evolution and alterations in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Rothem Kovner
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mihovil Pletikos
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - John Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mikihito Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Akemi Shibata
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yuting Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nikkita Salla
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Xabier de Martin
- Neurogenomics Group, Hospital del Mar Research Institute, PRBB, Barcelona, Spain
| | - Thomas S Klarić
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Megan Burke
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Franjic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Hyesun Cho
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Matthew Yuen
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Ipsita Chatterjee
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Paula Soric
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Devippriya Esakkimuthu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
| | - Markus Moser
- Institute of Experimental Hematology, School of Medicine, Techical University of Munich, Munich, Germany
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Neurogenomics Group, Hospital del Mar Research Institute, PRBB, Barcelona, Spain
| | | | - Kartik Pattabiraman
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Yale Child Study Center, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Marina R Picciotto
- Yale Child Study Center, New Haven, CT, USA
- Department of Psychiatry, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Yale Child Study Center, New Haven, CT, USA.
- Department of Psychiatry, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Comparative Medicine, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Chiu YT, Deutch AY, Wang W, Schmitz GP, Huang KL, Kocak DD, Llorach P, Bowyer K, Liu B, Sciaky N, Hua K, Chen C, Mott SE, Niehaus J, DiBerto JF, English J, Walsh JJ, Scherrer G, Herman MA, Wu Z, Wetsel WC, Roth BL. A suite of engineered mice for interrogating psychedelic drug actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559347. [PMID: 37808655 PMCID: PMC10557740 DOI: 10.1101/2023.09.25.559347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Psychedelic drugs like lysergic acid diethylamide (LSD) and psilocybin have emerged as potentially transformative therapeutics for many neuropsychiatric diseases, including depression, anxiety, post-traumatic stress disorder, migraine, and cluster headaches. LSD and psilocybin exert their psychedelic effects via activation of the 5-hydroxytryptamine 2A receptor (HTR2A). Here we provide a suite of engineered mice useful for clarifying the role of HTR2A and HTR2A-expressing neurons in psychedelic drug actions. We first generated Htr2a-EGFP-CT-IRES-CreERT2 mice (CT:C-terminus) to independently identify both HTR2A-EGFP-CT receptors and HTR2A-containing cells thereby providing a detailed anatomical map of HTR2A and identifying cell types that express HTR2A. We also generated a humanized Htr2a mouse line and an additional constitutive Htr2A-Cre mouse line. Psychedelics induced a variety of known behavioral changes in our mice validating their utility for behavioral studies. Finally, electrophysiology studies revealed that extracellular 5-HT elicited a HTR2A-mediated robust increase in firing of genetically-identified pyramidal neurons--consistent with a plasma membrane localization and mode of action. These mouse lines represent invaluable tools for elucidating the molecular, cellular, pharmacological, physiological, behavioral, and other actions of psychedelic drugs in vivo.
Collapse
Affiliation(s)
- Yi-Ting Chiu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ariel Y. Deutch
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Wei Wang
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Karen Lu Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - D. Dewran Kocak
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Pierre Llorach
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kasey Bowyer
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - Bei Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Noah Sciaky
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Kunjie Hua
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah E. Mott
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jesse Niehaus
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Justin English
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jessica J. Walsh
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Grégory Scherrer
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation ‒ Robertson Investigator, Chapel Hill, NC 27599, USA
| | - Melissa A Herman
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhuhao Wu
- Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, 10021, USA
| | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Inoue K, Ford CL, Horie K, Young LJ. Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. J Comp Neurol 2022; 530:2881-2900. [PMID: 35763609 PMCID: PMC9474670 DOI: 10.1002/cne.25382] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
Abstract
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Collapse
Affiliation(s)
- Kiyoshi Inoue
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
4
|
Rogers Flattery CN, Coppeto DJ, Inoue K, Rilling JK, Preuss TM, Young LJ. Distribution of brain oxytocin and vasopressin V1a receptors in chimpanzees (Pan troglodytes): comparison with humans and other primate species. Brain Struct Funct 2021; 227:1907-1919. [PMID: 34482474 DOI: 10.1007/s00429-021-02369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
Despite our close genetic relationship with chimpanzees, there are notable differences between chimpanzee and human social behavior. Oxytocin and vasopressin are neuropeptides involved in regulating social behavior across vertebrate taxa, including pair bonding, social communication, and aggression, yet little is known about the neuroanatomy of these systems in primates, particularly in great apes. Here, we used receptor autoradiography to localize oxytocin and vasopressin V1a receptors, OXTR and AVPR1a respectively, in seven chimpanzee brains. OXTR binding was detected in the lateral septum, hypothalamus, medial amygdala, and substantia nigra. AVPR1a binding was observed in the cortex, lateral septum, hypothalamus, mammillary body, entire amygdala, hilus of the dentate gyrus, and substantia nigra. Chimpanzee OXTR/AVPR1a receptor distribution is compared to previous studies in several other primate species. One notable difference is the lack of OXTR in reward regions such as the ventral pallidum and nucleus accumbens in chimpanzees, whereas OXTR is found in these regions in humans. Our results suggest that in chimpanzees, like in most other anthropoid primates studied to date, OXTR has a more restricted distribution than AVPR1a, while in humans the reverse pattern has been reported. Altogether, our study provides a neuroanatomical basis for understanding the function of the oxytocin and vasopressin systems in chimpanzees.
Collapse
Affiliation(s)
- Christina N Rogers Flattery
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA. .,Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA. .,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA. .,Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Daniel J Coppeto
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
| | - Kiyoshi Inoue
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA.,Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, 30322, USA
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA.,Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, 30322, USA
| | - Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Larry J Young
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.,Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.,Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA.,Silvio O. Conte Center for Oxytocin and Social Cognition, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Freeman SM, Palumbo MC, Lawrence RH, Smith AL, Goodman MM, Bales KL. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Transl Psychiatry 2018; 8:257. [PMID: 30514927 PMCID: PMC6279786 DOI: 10.1038/s41398-018-0315-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
The prosocial hormone oxytocin (OXT) has become a new target for research on the etiology and treatment of autism spectrum disorder (ASD), a condition characterized by deficits in social function. However, it remains unknown whether there are alterations in OXT receptor (OXTR) levels in the ASD brain. This study quantified the density of OXTR and of the structurally related vasopressin 1a receptor (AVPR1a) in postmortem brain tissue from individuals with ASD and typically developing individuals. We analyzed two regions known to contain OXTR across all primates studied to date: the nucleus basalis of Meynert (NBM), which mediates visual attention, and the superior colliculus, which controls gaze direction. In the NBM specimens, we also analyzed the neighboring ventral pallidum (VP) and the external segment of the globus pallidus. In the superior colliculus specimens, we also analyzed the adjacent periaqueductal gray. We detected dense OXTR binding in the human NBM and VP and moderate to low OXTR binding in the human globus pallidus, superior colliculus, and periaqueductal gray. AVPR1a binding was negligible across all five regions in all specimens. Compared to controls, ASD specimens exhibited significantly higher OXTR binding in the NBM and significantly lower OXTR binding in the VP, an area in the mesolimbic reward pathway. There was no effect of ASD on OXTR binding in the globus pallidus, superior colliculus, or periaqueductal gray. We also found a significant negative correlation between age and OXTR binding in the VP across all specimens. Further analysis revealed a peak in OXTR binding in the VP in early childhood of typically developing individuals, which was absent in ASD. This pattern suggests a possible early life critical period, which is lacking in ASD, where this important reward area becomes maximally sensitive to OXT binding. These results provide unique neurobiological insight into human social development and the social symptoms of ASD.
Collapse
Affiliation(s)
- Sara M. Freeman
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Michelle C. Palumbo
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Rebecca H. Lawrence
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Aaron L. Smith
- 0000 0001 0941 6502grid.189967.8Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Mark M. Goodman
- 0000 0001 0941 6502grid.189967.8Department of Radiology and Imaging Sciences, Emory University, 1841 Clifton Road, Atlanta, GA 30322 USA
| | - Karen L. Bales
- 0000 0004 1936 9684grid.27860.3bDepartment of Psychology, California National Primate Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
6
|
Freeman SM, Smith AL, Goodman MM, Bales KL. Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem. Soc Neurosci 2016; 12:113-123. [PMID: 26911439 DOI: 10.1080/17470919.2016.1156570] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Intranasal oxytocin (OT) affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of OT and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval (PMI) was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue.
Collapse
Affiliation(s)
- Sara M Freeman
- a California National Primate Research Center , University of California-Davis , Davis , CA , USA
| | - Aaron L Smith
- b Center for Translational Social Neuroscience, Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Mark M Goodman
- c Department of Radiology and Imaging Sciences, Center for Systems Imaging , Emory University , Atlanta , GA , USA
| | - Karen L Bales
- d Department of Psychology , University of California-Davis , Davis , CA , USA
| |
Collapse
|
7
|
Mooney S, Coen C, Holmes M, Beery A. Region-specific associations between sex, social status, and oxytocin receptor density in the brains of eusocial rodents. Neuroscience 2015; 303:261-9. [DOI: 10.1016/j.neuroscience.2015.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/03/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
|
8
|
Ragen BJ, Freeman SM, Laredo SA, Mendoza SP, Bales KL. μ and κ opioid receptor distribution in the monogamous titi monkey (Callicebus cupreus): implications for social behavior and endocrine functioning. Neuroscience 2015; 290:421-34. [PMID: 25637809 DOI: 10.1016/j.neuroscience.2015.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/09/2015] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
Abstract
The opioid system is involved in infant-mother bonds and adult-adult bonds in many species. We have previously shown that μ opioid receptors (MORs) and κ opioid receptors (KORs) are involved in regulating the adult attachment of the monogamous titi monkey. The present study sought to determine the distribution of MOR and KOR in the titi monkey brain using receptor autoradiography. We used [(3)H][D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) to label MORs and [(3)H]U69,593 to label KORs. MOR binding was heterogeneous throughout the titi monkey brain. Specifically, MOR binding was observed in the cingulate gyrus (CG), striatum, septal regions, diagonal band, amygdala, hypothalamus, hippocampus, and thalamus. Binding was particularly dense in the septum, medial amygdala, paraventricular nucleus of the hypothalamus, mediodorsal thalamus with moderate binding in the nucleus accumbens. Consistent with other primate species, MOR were also observed in "neurochemically unique domains of the accumbens and putamen" (NUDAPs). In general KOR binding was more homogenous. KORs were primarily found in the CG, striatum, amygdala and hippocampus. Dense KOR binding was observed in the claustrum. Relative MOR and KOR binding in the titi monkey striatum was similar to other humans and primates, but was much lower compared to rodents. Relative MOR binding in the titi monkey hypothalamus was much greater than that found in rodents. This study was the first to examine MOR and KOR binding in a monogamous primate. The location of these receptors gives insight into where ligands may be acting to regulate social behavior and endocrine function.
Collapse
Affiliation(s)
- B J Ragen
- California National Primate Research Center, Davis, CA 95616, United States; Department of Psychology, University of California-Davis, Davis, CA 95616, United States.
| | - S M Freeman
- California National Primate Research Center, Davis, CA 95616, United States
| | - S A Laredo
- Animal Behavior Graduate Group, University of California-Davis, Davis, CA 95616, United States
| | - S P Mendoza
- California National Primate Research Center, Davis, CA 95616, United States
| | - K L Bales
- California National Primate Research Center, Davis, CA 95616, United States; Department of Psychology, University of California-Davis, Davis, CA 95616, United States
| |
Collapse
|
9
|
Beery AK, Vahaba DM, Grunberg DM. Corticotropin-releasing factor receptor densities vary with photoperiod and sociality. Horm Behav 2014; 66:779-86. [PMID: 25284436 DOI: 10.1016/j.yhbeh.2014.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 01/03/2023]
Abstract
Life in social groups relies on prosocial behaviors as well as on reduction of antisocial behaviors such as aggression and territoriality. The mechanisms supporting variation in behaviors that give rise to group living (sociality) are largely unknown. Female meadow voles exhibit natural seasonal variation in sociality: females are aggressive and territorial in summer, while in winter they share burrows and nest in mixed-sex groups. This behavioral shift is paralleled in the lab by day length-dependent variation in partner preference formation and social huddling. We exploit natural variation in meadow vole sociality in order to examine changes in neural pathways that coincide with environmental and behavioral variations. Mounting evidence suggests that the corticotropin-releasing factor system, encompassing multiple peptides and two receptor subtypes (CRF1 and CRF2), may play an important role in regulating social behaviors. We report day-length dependent variation in CRF1 and CRF2 receptor binding in female meadow voles, and relate these findings to previously collected oxytocin receptor (OTR) binding data and behavioral data for the same individuals. CRF1 receptor binding was greater in summer-like long day lengths (LD), particularly in the hippocampus, while CRF2 receptor binding was greater in winter-like short day lengths (SD) in the cingulate cortex and hippocampus. OTR varied with day length in the bed nucleus of the stria terminalis, nucleus accumbens, and hippocampus. SD voles huddled more extensively than LD voles, and greater huddling time was associated with more CRF1 receptor binding and less CRF2 receptor binding in subregions of the lateral septum. CRF2 receptor associations with behavior mirrored those of OTR in the lateral septum. Finally, estradiol treatment affected density of CRF receptors in multiple brain regions. CRF receptors and their ligands are promising candidates for enhancing understanding of the regulation of non-sexual social behavior between group living peers.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Psychology, Department of Biology, Program in Neuroscience, Smith College, Northampton, MA 01063, USA; Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Daniel M Vahaba
- Neuroscience and Behavior Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Diana M Grunberg
- Department of Psychology, Department of Biology, Program in Neuroscience, Smith College, Northampton, MA 01063, USA
| |
Collapse
|
10
|
Hammock EAD, Levitt P. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse. Front Behav Neurosci 2013; 7:195. [PMID: 24376405 PMCID: PMC3858721 DOI: 10.3389/fnbeh.2013.00195] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/22/2013] [Indexed: 12/16/2022] Open
Abstract
Oxytocin (OXT) has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR) have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P) 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism), attachment biology, and infant physiological regulation. Summary: Quantitative mapping of selective OXTR ligand binding during postnatal development in the mouse reveals an unexpected, transient expression in layers II/III throughout the mouse neocortex. OXTR are also identified in several tissues in the whole late embryo, including the adrenal glands, brown adipose tissue, and the oronasal cavity.
Collapse
Affiliation(s)
- Elizabeth A D Hammock
- Vanderbilt Kennedy Center and Department of Pediatrics, Vanderbilt University School of Medicine, Vanderbilt University Nashville TN, USA
| | - Pat Levitt
- Department of Pediatrics, Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California Los Angeles, CA, USA
| |
Collapse
|
11
|
Hammock EA, Law CS, Levitt P. Vasopressin eliminates the expression of familiar odor bias in neonatal female mice through V1aR. Horm Behav 2013; 63:352-60. [PMID: 23261858 PMCID: PMC4285782 DOI: 10.1016/j.yhbeh.2012.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022]
Abstract
V1aR has a well established role in the neural regulation of adult mammalian social behavior. The role of V1aR in developmentally emerging social behavior is less well understood. We mapped V1aR at post-natal day 8 (P8) and demonstrate developmentally-specific expression in the neocortex and hippocampus. We tested the ability of male and female C57BL/6J mice to show orienting bias to a familiar odor at this age. We demonstrate that females, but not males, show an orienting bias for odors previously paired with the mother, which is eliminated by V1aR signaling.
Collapse
Affiliation(s)
- Elizabeth A.D. Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville TN, 37232
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville TN, 37232
| | - Caitlin S. Law
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville TN, 37232
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
12
|
Hammock EA, Levitt P. Modulation of parvalbumin interneuron number by developmentally transient neocortical vasopressin receptor 1a (V1aR). Neuroscience 2012; 222:20-8. [PMID: 22820266 PMCID: PMC3444161 DOI: 10.1016/j.neuroscience.2012.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022]
Abstract
Arginine-vasopressin (AVP) and the vasopressin 1a receptor (V1aR) modulate social behavior and learning and memory in adult animals. Both functions depend upon the normal emergence of the balance of excitation and inhibition (E/I balance) in the neocortex. Here, we tested the hypothesis that V1aR signaling and E/I balance converge through the influence of the neuropeptide on interneuron number achieved in the neocortex. Postnatal mapping of forebrain V1aR binding in male and female mice revealed a transient expression of high levels of receptor in the neocortex and hippocampus in the second and third post-natal weeks. Receptor binding levels in these cortical structures fell dramatically in the adult, maintaining high levels of expression subcortically. Surprisingly, we observed sex differences in the number of calbindin interneurons, and a contribution of V1aR to the number of parvalbumin-immunoreactive neurons in the adult mouse neocortex. These data suggest that individual differences in developmentally transient V1aR signaling and even sex may alter the development of E/I balance in the neocortex, with long-lasting influence on information processing.
Collapse
Affiliation(s)
- Elizabeth A.D. Hammock
- Department of Pediatrics, Vanderbilt University School of Medicine & Vanderbilt Kennedy Center, Vanderbilt University, Nashville TN, 37232
| | - Pat Levitt
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
13
|
Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 2009; 29:2259-71. [PMID: 19228979 DOI: 10.1523/jneurosci.5593-08.2009] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oxytocin receptor has been implicated in the regulation of reproductive physiology as well as social and emotional behaviors. The neurochemical mechanisms by which oxytocin receptor modulates social and emotional behavior remains elusive, in part because of a lack of sensitive and selective antibodies for cellular localization. To more precisely characterize oxytocin receptor-expressing neurons within the brain, we generated an oxytocin receptor-reporter mouse in which part of the oxytocin receptor gene was replaced with Venus cDNA (a variant of yellow fluorescent protein). Examination of the Venus expression revealed that, in the raphe nuclei, about one-half of tryptophan hydroxylase-immunoreactive neurons were positive for Venus, suggesting a potential role for oxytocin in the modulation of serotonin release. Oxytocin infusion facilitated serotonin release within the median raphe nucleus and reduced anxiety-related behavior. Infusion of a 5-HT(2A/2C) receptor antagonist blocked the anxiolytic effect of oxytocin, suggesting that oxytocin receptor activation in serotonergic neurons mediates the anxiolytic effects of oxytocin. This is the first demonstration that oxytocin may regulate serotonin release and exert anxiolytic effects via direct activation of oxytocin receptor expressed in serotonergic neurons of the raphe nuclei. These results also have important implications for psychiatric disorders such as autism and depression in which both the oxytocin and serotonin systems have been implicated.
Collapse
|
14
|
Beery AK, Lacey EA, Francis DD. Oxytocin and vasopressin receptor distributions in a solitary and a social species of tuco-tuco (Ctenomys haigi andCtenomys sociabilis). J Comp Neurol 2008; 507:1847-59. [DOI: 10.1002/cne.21638] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 2007; 311:223-37. [DOI: 10.1016/j.ydbio.2007.08.038] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/05/2007] [Accepted: 08/21/2007] [Indexed: 11/19/2022]
|
16
|
Bales KL, Plotsky PM, Young LJ, Lim MM, Grotte N, Ferrer E, Carter CS. Neonatal oxytocin manipulations have long-lasting, sexually dimorphic effects on vasopressin receptors. Neuroscience 2006; 144:38-45. [PMID: 17055176 PMCID: PMC1774559 DOI: 10.1016/j.neuroscience.2006.09.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 09/08/2006] [Accepted: 09/10/2006] [Indexed: 11/23/2022]
Abstract
Developmental exposure to oxytocin (OT) or oxytocin antagonists (OTAs) has been shown to cause long-lasting and often sexually dimorphic effects on social behaviors in prairie voles (Microtus ochrogaster). Because regulation of social behavior in monogamous mammals involves central receptors for OT, arginine vasopressin (AVP), and dopamine, we examined the hypothesis that the long-lasting, developmental effects of exposure to neonatal OT or OTA might reflect changes in the expression of receptors for these peptides. On postnatal day 1, prairie voles were injected intraperitoneally with either OT (1 mg/kg), an OTA (0.1 mg/kg), saline vehicle, or were handled only. At approximately 60 days of age, vasopressin V1a receptors, OT receptors (OTR) and dopamine D2 receptor binding were quantified using receptor autoradiography in brain tissue taken from males and females. Significant treatment effects on V1a binding were found in the bed nucleus of the stria terminalis (BNST), cingulate cortex (CgCtx), mediodorsal thalamus (MdThal), medial preoptic area of the hypothalamus (MPOA), and lateral septum (LS). The CgCtx, MPOA, ventral pallidum, and LS also showed significant sex by treatment interactions on V1a binding. No significant treatment or sex differences were observed for D2 receptor binding. No significant treatment difference was observed for OTR receptor binding, and only a marginal sex difference. Changes in the neuropeptide receptor expression, especially the V1a receptor, may help to explain sexually dimorphic changes in behavior that follow comparable neonatal manipulations.
Collapse
Affiliation(s)
- K L Bales
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hammock EAD, Lim MM, Nair HP, Young LJ. Association of vasopressin 1a receptor levels with a regulatory microsatellite and behavior. GENES BRAIN AND BEHAVIOR 2005; 4:289-301. [PMID: 16011575 DOI: 10.1111/j.1601-183x.2005.00119.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vasopressin regulates complex behaviors such as anxiety, parenting, social engagement and attachment and aggression in a species-specific manner. The capacity of vasopressin to modulate these behaviors is thought to depend on the species-specific distribution patterns of vasopressin 1a receptors (V1aRs) in the brain. There is considerable individual variation in the pattern of V1aR binding in the brains of the prairie vole species, Microtus ochrogaster. We hypothesize that this individual variability in V1aR expression levels is associated with individual variation in a polymorphic microsatellite in the 5' regulatory region of the prairie vole v1ar gene. Additionally, we hypothesize that individual variation in V1aR expression contributes to individual variation in vasopressin-dependent behaviors. To test these hypotheses, we first screened 20 adult male prairie voles for behavioral variation using tests that measure anxiety-related and social behaviors. We then assessed the brains of those animals for V1aR variability with receptor autoradiography and used polymerase chain reaction to genotype the same animals for the length of their 5' microsatellite polymorphism in the v1ar gene. In this report, we describe the results of this discovery-based experimental approach to identify potential gene, brain and behavior interrelationships. The analysis reveals that V1aR levels, in some but not all brain regions, are associated with microsatellite length and that V1aR levels in those and other brain regions correlate with anxiety-related and social behaviors. These results generate novel hypotheses regarding neural control of anxiety-related and social behaviors and yield insight into potential mechanisms by which non-coding gene polymorphisms may influence behavioral traits.
Collapse
Affiliation(s)
- E A D Hammock
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
18
|
Lim MM, Nair HP, Young LJ. Species and sex differences in brain distribution of corticotropin-releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. J Comp Neurol 2005; 487:75-92. [PMID: 15861459 PMCID: PMC1566192 DOI: 10.1002/cne.20532] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin-releasing factor (CRF) receptor subtypes 1 and 2 have been implicated in rodent models of anxiety, but much less is known about the CRF system and social behavior. Both corticosterone and central CRF receptors modulate pair bonding in the monogamous prairie vole. Using receptor autoradiography, we mapped CRFR(1) and CRFR(2) in the brains of two monogamous vole species, the prairie vole and pine vole, and two promiscuous vole species, the meadow vole and montane vole. We found markedly different patterns of brain CRFR(1) and CRFR(2) binding among the four species, including species differences in the olfactory bulb, nucleus accumbens, lateral septum, hippocampus, laterodorsal thalamus, cingulate cortex, superior colliculus, and dorsal raphe. Interestingly, we also observed striking sex differences in voles: CRFR(2) binding was higher in the encapsulated bed nucleus of the stria terminalis in males than females for all four vole species. These results suggest possible sites of action for CRF-induced facilitation of pair bond formation in prairie voles, as well as potential sex differences in the CRF modulation of pair bonding. Further examination of CRF receptors in vole species may reveal a novel role for CRF in social behavior. Ultimately, our results identify several brain regions with conserved CRF receptor patterns across rodent and primate species, in contrast to several brain regions with phylogenetically plastic CRF receptor patterns, and have interesting implications for the evolution of CRF receptor patterns and behavior.
Collapse
Affiliation(s)
- Miranda M Lim
- Center for Behavioral Neuroscience and Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
19
|
Lim MM, Young LJ. Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 2004; 125:35-45. [PMID: 15051143 DOI: 10.1016/j.neuroscience.2003.12.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2003] [Indexed: 11/26/2022]
Abstract
Arginine vasopressin and its V1a receptor subtype (V1aR) are critical for pair bond formation between adult prairie voles. However, it is unclear which brain circuits are involved in this vasopressin-mediated facilitation of pair bond formation. Here, we examined mating-induced Fos expression in several brain regions involved in sociosexual and reward circuitry in male prairie voles. Consistent with studies in other species, Fos expression was induced in several regions known to be involved in sociosexual behavior, namely, the medial amygdala, bed nucleus of the stria terminalis, and medial preoptic area. Fos induction also occurred in limbic and reward regions, including the ventral pallidum, nucleus accumbens, and mediodorsal thalamus (MDthal). Next, we infused a selective V1aR antagonist into three candidate brain regions that seemed most likely involved in vasopressin-mediated pair bond formation: the ventral pallidum, medial amygdala, and MDthal. Blockade of V1aR in the ventral pallidum, but not in the medial amygdala or MDthal, prevented partner preference formation. Lastly, we demonstrated that the mating-induced Fos activation in the ventral pallidum was vasopressin-dependent, since over-expression of V1aR using viral vector gene transfer resulted in a proportionate increase in mating-induced Fos in the same region. This is the first study to show that vasopressin neurotransmission occurs in the ventral pallidum during mating, and that V1aR activation in this region is necessary for pair bond formation in male prairie voles. The results from this study have profound implications for the neural circuitry underlying social attachment and generate novel hypotheses regarding the neural control of social behavior.
Collapse
Affiliation(s)
- M M Lim
- Center for Behavioral Neuroscience and Department of Psychiatry and Behavioral Sciences, 954 Gatewood Road, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|