1
|
Ma J, Lu Z. Developing a Versatile Arsenal: Novel Antimicrobials as Offensive Tools Against Pathogenic Bacteria. Microorganisms 2025; 13:172. [PMID: 39858940 PMCID: PMC11767912 DOI: 10.3390/microorganisms13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The pervasive and often indiscriminate use of antibiotics has accelerated the emergence of drug-resistant bacterial strains, thus presenting an acute threat to global public health. Despite a growing acknowledgment of the severity of this crisis, the current suite of strategies to mitigate antimicrobial resistance remains markedly inadequate. This paper asserts the paramount need for the swift development of groundbreaking antimicrobial strategies and provides a comprehensive review of an array of innovative techniques currently under scrutiny. Among these, nano-antimicrobials, antimicrobials derived from ribosomal proteins, CRISPR/Cas-based systems, agents that undermine bacterial bioenergetics, and antimicrobial polysaccharides hold particular promise. This analysis gives special attention to CRISPR/Cas-based antimicrobials, scrutinizing their underlying mechanisms, exploring their potential applications, delineating their distinct advantages, and noting their likely limitations. Furthermore, we extend our exploration by proposing theoretical advancements in antimicrobial technology and evaluating feasible methods for the effective delivery of these agents. This includes leveraging these advances for broader biomedical applications, potentially revolutionizing how we confront bacterial pathogens in the future, and laying a foundation for extended research in multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Junze Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou 515063, China;
| | - Zheng Lu
- Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
3
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Bai H, Borjihan Q, Li Z, Qin P, Cheng J, Xiao D, Dong A. Phage-Based antibacterial hydrogels for bacterial targeting and Ablation: Progress and perspective. Eur J Pharm Biopharm 2024; 198:114258. [PMID: 38479561 DOI: 10.1016/j.ejpb.2024.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/04/2024] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
The emergence of drug-resistant bacteria makes antibiotics inadequate to treat bacterial infections, which is now a global problem. Phage as a virus with specific recognition ability can effectively kill the bacteria, which is an efficacious antibacterial material to replace antibiotics. Phage-based hydrogels have good biocompatibility and antibacterial effect at the site of infection. Phage hydrogels have remarkable antibacterial effects on targeted bacteria because of their specific targeted bactericidal ability, but there are few reports and reviews on phage hydrogels. This paper discusses the construction method of phage-based antibacterial hydrogels (PAGs), summarizes the advantages related to PAGs and their applications in the direction of wound healing, treating bone bacterial infections, gastrointestinal infection treatment and other application, and finally gives an outlook on the development and research of PAGs.
Collapse
Affiliation(s)
- Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, PR China
| | - Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Peiran Qin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
6
|
Kim SM, Heo HR, Kim CS, Shin HH. Genetically engineered bacteriophages as novel nanomaterials: applications beyond antimicrobial agents. Front Bioeng Biotechnol 2024; 12:1319830. [PMID: 38725991 PMCID: PMC11079243 DOI: 10.3389/fbioe.2024.1319830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Bacteriophages, also known as phages, are viruses that replicate in bacteria and archaea. Phages were initially discovered as antimicrobial agents, and they have been used as therapeutic agents for bacterial infection in a process known as "phage therapy." Recently, phages have been investigated as functional nanomaterials in a variety of areas, as they can function not only as therapeutic agents but also as biosensors and tissue regenerative materials. Phages are nontoxic to humans, and they possess self-assembled nanostructures and functional properties. Additionally, phages can be easily genetically modified to display specific peptides or to screen for functional peptides via phage display. Here, we demonstrated the application of phage nanomaterials in the context of tissue engineering, sensing, and probing.
Collapse
Affiliation(s)
- Seong-Min Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Chang Sup Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, Republic of Korea
| | - Hwa Hui Shin
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| |
Collapse
|
7
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
8
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
9
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
10
|
Costa AR, Azeredo J, Pires DP. Synthetic Biology to Engineer Bacteriophage Genomes. Methods Mol Biol 2024; 2734:261-277. [PMID: 38066375 DOI: 10.1007/978-1-0716-3523-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered toward a wide range of applications, including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes will be addressed: the bacteriophage recombineering of electroporated DNA (BRED) and the yeast-based phage-engineering platform.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Priscila Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
11
|
Moradi M, Ghaleh HEG, Bolandian M, Dorostkar R. New role of bacteriophages in medical oncology. Biotechnol Appl Biochem 2023; 70:2017-2024. [PMID: 37635625 DOI: 10.1002/bab.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Targeted treatment of cancer is one of the most paramount approaches in cancer treatment. Despite significant advances in cancer diagnosis and treatment methods, there are still significant limitations and disadvantages in the field, including high costs, toxicity, and unwanted damage to healthy cells. The phage display technique is an innovative method for designing carriers containing exogenic peptides with cancer diagnostic and therapeutic properties. Bacteriophages possess unique properties making them effective in cancer treatment. These characteristics include the small size enabling them to penetrate vessels; having no pathogenicity to mammals; easy manipulation of their genetic information and surface proteins to introduce vaccines and drugs to cancer tissues; lower cost of large-scale production; and greater stimulation of the immune system. Bacteriophages will certainly play a more effective role in the future of medical oncology; however, studies are in the early stages of conception and require more extensive research. We aimed in this review to provide some related examples and bring insights into the potential of phages as targeted vectors for use in cancer diagnosis and treatment, especially regarding their capability in gene and drug delivery to cancer target cells, determination of tumor markers, and vaccine design to stimulate anticancer immunity.
Collapse
Affiliation(s)
- Mohammad Moradi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
13
|
Islam MS, Fan J, Pan F. The power of phages: revolutionizing cancer treatment. Front Oncol 2023; 13:1290296. [PMID: 38033486 PMCID: PMC10684691 DOI: 10.3389/fonc.2023.1290296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer is a devastating disease with a high global mortality rate and is projected to increase further in the coming years. Current treatment options, such as chemotherapy and radiation therapy, have limitations including side effects, variable effectiveness, high costs, and limited availability. There is a growing need for alternative treatments that can target cancer cells specifically with fewer side effects. Phages, that infect bacteria but not eukaryotic cells, have emerged as promising cancer therapeutics due to their unique properties, including specificity and ease of genetic modification. Engineered phages can transform cancer treatment by targeting cancer cells while sparing healthy ones. Phages exhibit versatility as nanocarriers, capable of delivering therapeutic agents like gene therapy, immunotherapy, and vaccines. Phages are extensively used in vaccine development, with filamentous, tailed, and icosahedral phages explored for different antigen expression possibilities. Engineered filamentous phages bring benefits such as built in adjuvant properties, cost-effectiveness, versatility in multivalent formulations, feasibility of oral administration, and stability. Phage-based vaccines stimulate the innate immune system by engaging pattern recognition receptors on antigen-presenting cells, enhancing phage peptide antigen presentation to B-cells and T-cells. This review presents recent phage therapy advances and challenges in cancer therapy, exploring its versatile tools and vaccine potential.
Collapse
Affiliation(s)
- Md. Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Fan
- Department of Cardiology, Handan Central Hospital, Handan, Hebei, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
14
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Makky S, Abdelrahman F, Easwaran M, Safwat A, El-Shibiny A. Phages as delivery vehicles and phage display. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:119-132. [PMID: 37770167 DOI: 10.1016/bs.pmbts.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bacteriophages (Phages in short) were introduced as the natural enemy of bacteria that may act as alternatives to antibiotics to overcome the challenge of antibiotic resistance. However, in the recent history of science, phages have been employed in different molecular tools and used in numerous therapeutic and diagnostic approaches. Furthermore, thanks to the phage`s highly specific host range limited to prokaryotes, phage particles can be used as safe delivery vehicles and display systems. In this chapter, different phage display systems are introduced, in addition to various applications of phage display as a molecular and therapeutic tool in developing vaccines, antibacterial, and anti-cancer treatments.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
16
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
17
|
Afzal O, Altamimi ASA, Nadeem MS, Alzarea SI, Almalki WH, Tariq A, Mubeen B, Murtaza BN, Iftikhar S, Riaz N, Kazmi I. Nanoparticles in Drug Delivery: From History to Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4494. [PMID: 36558344 PMCID: PMC9781272 DOI: 10.3390/nano12244494] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 05/25/2023]
Abstract
Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest. Nanocarriers like polymeric nanoparticles, mesoporous nanoparticles, nanomaterials, carbon nanotubes, dendrimers, liposomes, metallic nanoparticles, nanomedicine, and engineered nanomaterials are used as carriage systems for targeted delivery at specific sites of affected areas in the body. Nanomedicine has rapidly grown to treat certain diseases like brain cancer, lung cancer, breast cancer, cardiovascular diseases, and many others. These nanomedicines can improve drug bioavailability and drug absorption time, reduce release time, eliminate drug aggregation, and enhance drug solubility in the blood. Nanomedicine has introduced a new era for drug carriage by refining the therapeutic directories of the energetic pharmaceutical elements engineered within nanoparticles. In this context, the vital information on engineered nanoparticles was reviewed and conferred towards the role in drug carriage systems to treat many ailments. All these nanocarriers were tested in vitro and in vivo. In the coming years, nanomedicines can improve human health more effectively by adding more advanced techniques into the drug delivery system.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Aqsa Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan
| | - Saima Iftikhar
- School of Biological Sciences, University of Punjab, Lahore 54000, Pakistan
| | - Naeem Riaz
- Department of Pharmacy, COMSATS University, Abbottabad 22020, Pakistan
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
19
|
Wang M, Zheng Z, Zhang Y, Wang G, Liu J, Yu H, Liu A. An ultrasensitive label-free electrochemical impedimetric immunosensor for vascular endothelial growth factor based on specific phage via negative pre-screening. Anal Chim Acta 2022; 1225:340250. [PMID: 36038244 DOI: 10.1016/j.aca.2022.340250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
As a vascular growth regulator, vascular endothelial growth factor (VEGF) exerts significant biological roles through specific binding to its receptors on the vascular endothelial cells. VEGF165 is generally referenced as a potential therapeutic target of many malignant tumors. In this study, a negative pre-screening strategy with structurally analogous members of VEGF121, VEGFC and VEGFD was first proposed for VEGF165 biopanning, aiming at significantly improving the specificity of the selected phage monoclones. Indirect ELISA experiment showed that the phage monoclone expressing peptide SPFLLRM demonstrates excellent affinity and specificity. Then a VEGF165 electrochemical impedimetric spectroscopy (EIS) immunosensor was constructed by above specific phage modified electrode. After optimizing the experimental conditions, the as-explored EIS immunosensor had a linear range of 0.5-1000 pg/mL with the limit of detection of 0.15 pg/mL VEGF165. In addition, the developed phage-based EIS immunosensor was applied to satisfactorily detect VEGF165 in human serum samples. Considering its ultra-sensitivity, good selectivity, batch reproducibility and stability, the screened selective phage-based EIS sensor is envisioned potential application in diagnosis and therapy.
Collapse
Affiliation(s)
- Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yaru Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ge Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Haipeng Yu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
20
|
Tian L, Jackson K, Zhang A, Wan Z, Saif A, Hosseinidoust Z. Bacteriophage‐Built Gels as Platforms for Biomedical Applications. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Tian
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Kyle Jackson
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Amy Zhang
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeqi Wan
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Ahmed Saif
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
- School of Biomedical Engineering McMaster University Hamilton Ontario Canada
- Michael DeGroote Institute for Infectious Disease Research McMaster University Hamilton Ontario Canada
| |
Collapse
|
21
|
Ababi M, Tridgett M, Osgerby A, Jaramillo A. Scarless Recombineering of Phage in Lysogenic State. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2479:1-9. [PMID: 35583728 DOI: 10.1007/978-1-0716-2233-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present a scarless recombineering-based method for introducing multiple point mutations into the genome of a temperate phage. The method uses the λ Red recombineering system to promote exogenous ssDNA oligos to anneal on the prophage lagging strand during host genome replication. DNA repair is suppressed by inducing the expression of a dominant-negative mutant protein of the methyl-directed mismatch repair system. Screening for recombinant cells without a selection marker is feasible due to its high recombination frequency, estimated as more than 40% after six cycles. The method enables scarless editing of the genome of a bacteriophage in 4-5 days.
Collapse
Affiliation(s)
- Maria Ababi
- Warwick Medical School, University of Warwick, Coventry, UK.,School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Alexander Osgerby
- School of Life Sciences, University of Warwick, Coventry, UK.,Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alfonso Jaramillo
- School of Life Sciences, University of Warwick, Coventry, UK. .,De novo Synthetic Biology Lab, I2SysBio, CSIC-University of Valencia, Paterna, Spain.
| |
Collapse
|
22
|
Tkachev PV, Goncharov A, Dmitriev A. Temperate enterococcal bacteriophages: genetic features and practical application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.213-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temperate bacteriophages are of interest as carriers and vectors of pathogenicity factors that determine an epidemic potential of opportunistic bacteria as well as biotechnology objects. This review describes studies of temperate bacteriophages infecting bacteria of the genus Enterococcus, including strains associated with the development of nosocomial infections. Genetic features of moderate enterococcal phages as well as their potential for practical application in medicine are considered.
Collapse
Affiliation(s)
| | - A.E. Goncharov
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| | - A.V. Dmitriev
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| |
Collapse
|
23
|
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021; 23:402. [PMID: 35008840 PMCID: PMC8745063 DOI: 10.3390/ijms23010402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer, especially the solid tumor sub-set, poses considerable challenges to modern medicine owing to the unique physiological characteristics and substantial variations in each tumor's microenvironmental niche fingerprints. Though there are many treatment methods available to treat solid tumors, still a considerable loss of life happens, due to the limitation of treatment options and the outcomes of ineffective treatments. Cancer cells evolve with chemo- or radiation-treatment strategies and later show adaptive behavior, leading to failed treatment. These challenges demand tailored and individually apt personalized treatment methods. Bacteriophages (or phages) and phage-based theragnostic vectors are gaining attention in the field of modern cancer medicine, beyond their bactericidal ability. With the invention of the latest techniques to fine-tune phages, such as in the field of genetic engineering, synthetic assembly methods, phage display, and chemical modifications, noteworthy progress in phage vector research for safe cancer application has been realized, including use in pre-clinical studies. Herein, we discuss the distinct fingerprints of solid tumor physiology and the potential for bacteriophage vectors to exploit specific tumor features for improvised tumor theragnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi 3290498, Japan; (S.V.); (A.H.A.); (K.K.); (S.W.)
| |
Collapse
|
24
|
Sun W, Zhang Y, Ju Z. Mimotopes for Mycotoxins Diagnosis Based on Random Peptides or Recombinant Antibodies from Phage Library. Molecules 2021; 26:7652. [PMID: 34946736 PMCID: PMC8707711 DOI: 10.3390/molecules26247652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022] Open
Abstract
Mycotoxins, the small size secondary metabolites of fungi, have posed a threat to the safety of medicine, food and public health. Therefore, it is essential to create sensitive and effective determination of mycotoxins. Based on the special affinity between antibody and antigen, immunoassay has been proved to be a powerful technology for the detection of small analytes. However, the tedious preparation and instability of conventional antibodies restrict its application on easy and fast mycotoxins detection. By virtue of simplicity, ease of use, and lower cost, phage display library provides novel choices for antibodies or hapten conjugates, and lead random peptide or recombinant antibody to becoming the promising and environmental friendly immune-reagents in the next generation of immunoassays. This review briefly describes the latest developments on mycotoxins detection using M13 phage display, mainly focusing on the recent applications of phage display technology employed in mycotoxins detection, including the introduction of phage and phage display, the types of phage displayed peptide/recombinant antibody library, random peptides/recombinant antibodies-based immunoassays, as well as simultaneous determination of multiple mycotoxins.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang 550001, China; (W.S.); (Y.Z.)
| | - Yan Zhang
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang 550001, China; (W.S.); (Y.Z.)
| | - Zhigang Ju
- Pharmacy School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
25
|
Alshememry AK, Yang JLJ, Armstrong EA, Yager JY, Unsworth LD. Bacteriophage carriers localize in the brain of a rat model of neonatal hypoxic-ischemic encephalopathy. Biotechnol J 2021; 17:e2100226. [PMID: 34882965 DOI: 10.1002/biot.202100226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy arises from a reduction of oxygen and blood supply to the infant brain and can lead to severe brain damage and life-long disability. The damage is greatest at the irreversibly injured necrotic core, whereas the penumbra is the surrounding, potentially salvageable tissue populated with a mix of alive and dying cells. To date, there exists no method for targeting drugs to the brain damage. METHODS AND MAJOR RESULTS Bacteriophages are viruses that propagate in bacteria but are biocompatible in humans and also amenable to genetic and chemical modification in a manner distinctive from conventional therapeutic nanoparticles. Here, a library of M13 bacteriophage was administered into a rat model of hypoxic-ischemic encephalopathy, and unique bacteriophage clones were confirmed to localize in healthy brain tissue versus the core and penumbra zones of injury. CONCLUSIONS For the first time, there is a potential to directly deliver therapeutics to different regions of the neonatal brain injury.
Collapse
Affiliation(s)
- Abdullah K Alshememry
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A Armstrong
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y Yager
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
26
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
27
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Fraser BA, Miller K, Trigg NA, Smith ND, Western PS, Nixon B, Aitken RJ. A novel approach to nonsurgical sterilization; application of menadione-modified gonocyte-targeting M13 bacteriophage for germ cell ablation in utero. Pharmacol Res Perspect 2021; 8:e00654. [PMID: 32930516 PMCID: PMC7507010 DOI: 10.1002/prp2.654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
There remains a compelling need for the development of nonsurgical sterilizing agents to expand the fertility management options for both domestic and feral animal species. We hypothesize that an efficacious sterilization approach would be to selectively ablate nonrenewable cell types that are essential for reproduction, such as the undifferentiated gonocytes within the embryonic gonad. Here, we report a novel strategy to achieve this goal centered on the use of a chemically modified M13 bacteriophage to effect the targeted delivery of menadione, a redox‐cycling naphthoquinone, to mouse gonocytes. Panning of the M13 random peptide ‘phage display library proved effective in the isolation of gonocyte‐specific targeting clones. One such clone was modified via N‐succinimidyl‐S‐acetylthioacetate (SATA) linkage to the N‐terminus of the major PVIII capsid protein. Subsequent deacetylation of the SATA was undertaken to expose a thiol group capable of reacting with menadione through Michael addition. This chemical modification was confirmed using UV spectrophotometry. In proof‐of‐concept experiments we applied the modified ‘phage to primary cultures of fetal germ cells and induced, an approximately, 60% reduction in the viability of the target cell population. These studies pave the way for in vivo application of chemically modified M13 bacteriophage in order to achieve the selective ablation of nonrenewable cell types in the reproductive system, thereby providing a novel nonsurgical approach the regulation of fertility in target species.
Collapse
Affiliation(s)
- Barbara A Fraser
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Kasey Miller
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Natalie A Trigg
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, The University of Newcastle, Callaghan, NSW, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
29
|
Łobocka M, Dąbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs 2021; 35:255-280. [PMID: 33881767 PMCID: PMC8084836 DOI: 10.1007/s40259-021-00480-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
The current problems with increasing bacterial resistance to antibacterial therapies, resulting in a growing frequency of incurable bacterial infections, necessitates the acceleration of studies on antibacterials of a new generation that could offer an alternative to antibiotics or support their action. Bacteriophages (phages) can kill antibiotic-sensitive as well as antibiotic-resistant bacteria, and thus are a major subject of such studies. Their efficacy in curing bacterial infections has been demonstrated in in vivo experiments and in the clinic. Unlike antibiotics, phages have a narrow range of specificity, which makes them safe for commensal microbiota. However, targeting even only the most clinically relevant strains of pathogenic bacteria requires large collections of well characterized phages, whose specificity would cover all such strains. The environment is a rich source of diverse phages, but due to their complex relationships with bacteria and safety concerns, only some naturally occurring phages can be considered for therapeutic applications. Still, their number and diversity make a detailed characterization of all potentially promising phages virtually impossible. Moreover, no single phage combines all the features required of an ideal therapeutic agent. Additionally, the rapid acquisition of phage resistance by bacteria may make phages already approved for therapy ineffective and turn the search for environmental phages of better efficacy and new specificity into an endless race. An alternative strategy for acquiring phages with desired properties in a short time with minimal cost regarding their acquisition, characterization, and approval for therapy could be based on targeted genome modifications of phage isolates with known properties. The first example demonstrating the potential of this strategy in curing bacterial diseases resistant to traditional therapy is the recent successful treatment of a progressing disseminated Mycobacterium abscessus infection in a teenage patient with the use of an engineered phage. In this review, we briefly present current methods of phage genetic engineering, highlighting their advantages and disadvantages, and provide examples of genetically engineered phages with a modified host range, improved safety or antibacterial activity, and proven therapeutic efficacy. We also summarize novel uses of engineered phages not only for killing pathogenic bacteria, but also for in situ modification of human microbiota to attenuate symptoms of certain bacterial diseases and metabolic, immune, or mental disorders.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
30
|
Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J Control Release 2021; 331:154-163. [DOI: 10.1016/j.jconrel.2021.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
31
|
Bacteriophages as Therapeutic and Diagnostic Vehicles in Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020161. [PMID: 33671476 PMCID: PMC7923149 DOI: 10.3390/ph14020161] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Evolution of nanomedicine is the re-design of synthetic and biological carriers to implement novel theranostic platforms. In recent years, bacteriophage research favors this process, which has opened up new roads in drug and gene delivery studies. By displaying antibodies, peptides, or proteins on the surface of different bacteriophages through the phage display technique, it is now possible to unravel specific molecular determinants of both cancer cells and tumor-associated microenvironmental molecules. Downstream applications are manifold, with peptides being employed most of the times to functionalize drug carriers and improve their therapeutic index. Bacteriophages themselves were proven, in this scenario, to be good carriers for imaging molecules and therapeutics as well. Moreover, manipulation of their genetic material to stably vehiculate suicide genes within cancer cells substantially changed perspectives in gene therapy. In this review, we provide examples of how amenable phages can be used as anticancer agents, especially because their systemic administration is possible. We also provide some insights into how their immunogenic profile can be modulated and exploited in immuno-oncology for vaccine production.
Collapse
|
32
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
33
|
de Vries CR, Chen Q, Demirdjian S, Kaber G, Khosravi A, Liu D, Van Belleghem JD, Bollyky PL. Phages in vaccine design and immunity; mechanisms and mysteries. Curr Opin Biotechnol 2020; 68:160-165. [PMID: 33316575 DOI: 10.1016/j.copbio.2020.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/24/2020] [Accepted: 11/09/2020] [Indexed: 02/01/2023]
Abstract
Bacteriophages have attracted extensive interest in vaccine design. This includes the use of phage display technology to select antigens, the use of engineered phages displaying target antigens in vaccine formulations, and phage DNA vaccines. However, the development of these approaches is limited in part by uncertainty regarding the underlying mechanisms by which phages elicit immunity. This has stymied the clinical development of this technology. Here we review the immunology of phage vaccines and highlight the gaps in our knowledge regarding the underlying mechanisms. First, we review the basic biology of phages and their use in vaccines. Next we discuss what is known about the mechanisms of immunity against engineered phages and phage DNA. Finally, we highlight the gaps in our understanding regarding the immunogenicity of these preparations. We argue that mechanistic insight into the immunology of phage vaccines is essential for the further development and clinical utility of these technologies.
Collapse
Affiliation(s)
- Christiaan R de Vries
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally Demirdjian
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gernot Kaber
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Dan Liu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
34
|
Phage engineering and the evolutionary arms race. Curr Opin Biotechnol 2020; 68:23-29. [PMID: 33113495 DOI: 10.1016/j.copbio.2020.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Phages are versatile agents for delivering a variety of cargo, including nanomaterials, nucleic acids, and small molecules. A potentially important application is treatment of antibiotic-resistant infections. All of these applications require molecular engineering of the phages, including chemical modification and genetic engineering. Phages are remarkably amenable to such engineering. We review some examples, including for controlled phage therapy. We suggest that the ability of phages to support extensive engineering may have evolutionary origins in the billions-year-old 'arms race' between bacteria and phages, which selects for sequences and structures that are robust in the face of rapid evolutionary change. This leads to high tolerance of both naturally evolved mutations and synthetic molecular engineering.
Collapse
|
35
|
Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1944. [PMID: 33003494 PMCID: PMC7601235 DOI: 10.3390/nano10101944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display-a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target. Here, we review the application of bacteriophages in nanoscience, emphasizing bio-related applications, material science, soft matter research, and physical chemistry.
Collapse
Affiliation(s)
- Jan Paczesny
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | | |
Collapse
|
36
|
Masterson CH, McCarthy SD, O'Toole D, Laffey JG. The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opin Drug Deliv 2020; 17:1689-1702. [PMID: 32842784 DOI: 10.1080/17425247.2020.1814732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. AREAS COVERED The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. EXPERT OPINION The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic, developed using insights from cell-based therapeutics to overcome limitations of current generation synthetic carriers.
Collapse
Affiliation(s)
- Claire H Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Sean D McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland.,Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group , Galway, Ireland
| |
Collapse
|
37
|
Zhang L, Xie L, Xu S, Kuchel RP, Dai Y, Jung K, Boyer C. Dual Role of Doxorubicin for Photopolymerization and Therapy. Biomacromolecules 2020; 21:3887-3897. [PMID: 32786533 DOI: 10.1021/acs.biomac.0c01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we report dual roles for doxorubicin (DOX), which can serve as an antitumor drug as well as a cocatalyst for a photoliving radical polymerization. DOX enhances the polymerization rates of a broad range of monomers, including acrylamide, acrylate, and methacrylates, allowing for high monomer conversion and well-defined molecular weights under irradiation with a blue light-emitting diode light (λmax = 485 nm, 2.2 mW/cm2). Utilizing this property, the photopolymerization of N,N-diethylacrylamide was performed in the presence of a poly(oligo(ethylene glycol) methyl ether acrylate) macroreversible addition-fragmentation chain transfer (macroRAFT) agent to prepare polymeric nanoparticles via aqueous polymerization-induced self-assembly (PISA). By varying the monomer:macroRAFT ratio, spherical polymeric nanoparticles of various diameters could be produced. Most notably, DOX was successfully encapsulated into the hydrophobic core of nanoparticles during the PISA process. The DOX-loaded nanoparticles were effectively uptaken into tumor cells and significantly inhibited the proliferation of tumor cells, demonstrating that the DOX bioactivity was not affected by the polymerization reaction.
Collapse
Affiliation(s)
- Liwen Zhang
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lisi Xie
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Sihao Xu
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Kenward Jung
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design, Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
38
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
39
|
Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Viruses 2020; 12:E235. [PMID: 32093349 PMCID: PMC7077204 DOI: 10.3390/v12020235] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment and management of chronic wounds presents a massive financial burden for global health care systems, with significant and disturbing consequences for the patients affected. These wounds remain challenging to treat, reduce the patients' life quality, and are responsible for a high percentage of limb amputations and many premature deaths. The presence of bacterial biofilms hampers chronic wound therapy due to the high tolerance of biofilm cells to many first- and second-line antibiotics. Due to the appearance of antibiotic-resistant and multidrug-resistant pathogens in these types of wounds, the research for alternative and complementary therapeutic approaches has increased. Bacteriophage (phage) therapy, discovered in the early 1900s, has been revived in the last few decades due to its antibacterial efficacy against antibiotic-resistant clinical isolates. Its use in the treatment of non-healing wounds has shown promising outcomes. In this review, we focus on the societal problems of chronic wounds, describe both the history and ongoing clinical trials of chronic wound-related treatments, and also outline experiments carried out for efficacy evaluation with different phage-host systems using in vitro, ex vivo, and in vivo animal models. We also describe the modern and most recent delivery systems developed for the incorporation of phages for species-targeted antibacterial control while protecting them upon exposure to harsh conditions, increasing the shelf life and facilitating storage of phage-based products. In this review, we also highlight the advances in phage therapy regulation.
Collapse
Affiliation(s)
- Ana M. Pinto
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Manuel Bañobre-Lópes
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Lorenzo M. Pastrana
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Sanna Sillankorva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| |
Collapse
|
40
|
Żaczek M, Górski A, Skaradzińska A, Łusiak-Szelachowska M, Weber-Dąbrowska B. Phage penetration of eukaryotic cells: practical implications. Future Virol 2019. [DOI: 10.2217/fvl-2019-0110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The inability to infect eukaryotic cells has been considered as the most undeniable feature of all bacterial viruses. Such specificity, limited only for bacterial hosts, raises questions about the paths and challenges phages should overcome when circulating through the human body. Recently, it has been shown that phages are able to continually penetrate human organs and tissues. Latest reports revealed that phages can cross eukaryotic cell barriers both para- and transcellularly and even reach the nucleus. Further, phages are capable of internalizing within cells through different endocytic mechanisms. Such phenomenon indicates that phages could shape human microbiome composition and affect all aspects of human health. Thus, herein, we summarize the current state of knowledge and describe this phenomenon with a particular emphasis on endocytic pathways.
Collapse
Affiliation(s)
- Maciej Żaczek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology & Food Microbiology, Faculty of Biotechnology & Food Science, Wrocław University of Environmental & Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
- Phage Therapy Unit, Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences (HIIET PAS), R. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
41
|
Sartorius R, D'Apice L, Prisco A, De Berardinis P. Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies. Pharmaceutics 2019; 11:437. [PMID: 31480551 PMCID: PMC6781307 DOI: 10.3390/pharmaceutics11090437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), 80131 CNR Naples, Italy
| | | |
Collapse
|
42
|
Roux S, Krupovic M, Daly RA, Borges AL, Nayfach S, Schulz F, Sharrar A, Matheus Carnevali PB, Cheng JF, Ivanova NN, Bondy-Denomy J, Wrighton KC, Woyke T, Visel A, Kyrpides NC, Eloe-Fadrosh EA. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nat Microbiol 2019; 4:1895-1906. [PMID: 31332386 PMCID: PMC6813254 DOI: 10.1038/s41564-019-0510-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023]
Abstract
Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach leveraging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. Putative inoviruses were also detected in several archaeal genomes, suggesting that, collectively, members of this supergroup infect hosts across the domains Bacteria and Archaea. Finally, we identified an expansive diversity of inovirus-encoded toxin–antitoxin and gene expression modulation systems, alongside evidence of both synergistic (CRISPR evasion) and antagonistic (superinfection exclusion) interactions with co-infecting viruses, which we experimentally validated in a Pseudomonas model. Capturing this previously obscured component of the global virosphere may spark new avenues for microbial manipulation approaches and innovative biotechnological applications. A machine learning approach was used to recover over 10,000 inovirus-like sequences from existing microbial genomes and metagenomes, consequently proposing the reclassification of the Inoviridae family to a viral order, and uncover the previously unrecognized diversity of these viruses across hosts and environments.
Collapse
Affiliation(s)
- Simon Roux
- DOE Joint Genome Institute, Walnut Creek, CA, USA.
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Allison Sharrar
- Department of Earth & Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | - Axel Visel
- DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | | |
Collapse
|
43
|
Munisso MC, Yamaoka T. Evolution of Phage Display Approaches to Select Highly Specific Hemocompatible Peptides. Tissue Eng Part C Methods 2019; 25:288-295. [DOI: 10.1089/ten.tec.2018.0367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Maria Chiara Munisso
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
44
|
The Robust Self-Assembling Tubular Nanostructures Formed by gp053 from Phage vB_EcoM_FV3. Viruses 2019; 11:v11010050. [PMID: 30641882 PMCID: PMC6357053 DOI: 10.3390/v11010050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023] Open
Abstract
The recombinant phage tail sheath protein, gp053, from Escherichia coli infecting myovirus vB_EcoM_FV3 (FV3) was able to self-assemble into long, ordered and extremely stable tubular structures (polysheaths) in the absence of other viral proteins. TEM observations revealed that those protein nanotubes varied in length (~10–1000 nm). Meanwhile, the width of the polysheaths (~28 nm) corresponded to the width of the contracted tail sheath of phage FV3. The formed protein nanotubes could withstand various extreme treatments including heating up to 100 °C and high concentrations of urea. To determine the shortest variant of gp053 capable of forming protein nanotubes, a set of N- or/and C-truncated as well as poly-His-tagged variants of gp053 were constructed. The TEM analysis of these mutants showed that up to 25 and 100 amino acid residues could be removed from the N and C termini, respectively, without disturbing the process of self-assembly. In addition, two to six copies of the gp053 encoding gene were fused into one open reading frame. All the constructed oligomers of gp053 self-assembled in vitro forming structures of different regularity. By using the modification of cysteines with biotin, the polysheaths were tested for exposed thiol groups. Polysheaths formed by the wild-type gp053 or its mutants possess physicochemical properties, which are very attractive for the construction of self-assembling nanostructures with potential applications in different fields of nanosciences.
Collapse
|
45
|
Abstract
RNA interference (RNAi) is a fundamental cellular process for the posttranscriptional regulation of gene expression. RNAi can exogenously be modulated by small RNA oligonucleotides, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), or by antisense oligonucleotides. These small oligonucleotides provided the scientific community with powerful and versatile tools to turn off the expression of genes of interest, and hold out the promise of new therapeutic solutions against a wide range of gene-associated pathologies. However, unmodified nucleic acids are highly instable in biological systems, and their weak interaction with plasma proteins confers an unfavorable pharmacokinetics. In this review, we first provide an overview of the most efficient chemical strategies that, over the past 30 years, have been used to significantly improve the therapeutic potential of oligonucleotides. Oligonucleotides targeting and delivery technologies are then presented, including covalent conjugates between oligonucleotides and targeting ligand, and noncovalent association with lipid or polymer nanoparticles. Finally, we specifically focus on the endosomal escape step, which represents a major stumbling block for the effective use of oligonucleotides as therapeutic agents. The need for approaches to quantitatively measure endosomal escape and cytosolic arrival of biomolecules is discussed in the context of the development of efficient oligonucleotide targeting and delivery vectors.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Marco Lucchino
- Institut Curie, PSL Research University , Cellular and Chemical Biology, U1143 INSERM, UMR3666 CNRS, Paris, France
| |
Collapse
|