1
|
Majola N, Jeena V. Benzylic C-H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules 2024; 29:6047. [PMID: 39770135 PMCID: PMC11678705 DOI: 10.3390/molecules29246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Benzylic C-H oxidation to form carbonyl compounds, such as ketones, is a fundamental transformation in organic synthesis as it allows for the preparation of versatile intermediates. In this review, we highlight the synthesis of aromatic ketones via catalytic, electrochemical, and photochemical oxidation of alkylarenes using different catalysts and oxidants in the past 5 years. Additionally, we also discuss the synthesis of heterocyclic molecules using benzylic C-H oxidation as a key step. These methods can potentially be used in medicinal, synthetic, and inorganic chemistry.
Collapse
Affiliation(s)
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| |
Collapse
|
2
|
Wang X, Deng Y, Wang J, Qin L, Du Y, Zhang Q, Wu D, Wu X, Xie J, He Y, Tan D. New natural protein tyrosine phosphatase 1B inhibitors from Gynostemma pentaphyllum. J Enzyme Inhib Med Chem 2024; 39:2360063. [PMID: 38873930 PMCID: PMC11182071 DOI: 10.1080/14756366.2024.2360063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease mainly caused by insulin resistance, which can lead to a series of complications such as cardiovascular disease, retinopathy, and its typical clinical symptom is hyperglycaemia. Glucosidase inhibitors, including Acarbose, Miglitol, are commonly used in the clinical treatment of hypoglycaemia. In addition, Protein tyrosine phosphatase 1B (PTP1B) is also an important promising target for the treatment of T2DM. Gynostemma pentaphyllum is a well-known oriental traditional medicinal herbal plant, and has many beneficial effects on glucose and lipid metabolism. In the present study, three new and nine known dammarane triterpenoids isolated from G. pentaphyllum, and their structures were elucidated by spectroscopic methods including HR-ESI-MS,1H and 13C NMR and X-ray crystallography. All these compounds were evaluated for inhibitory activity against α-glucosidase, α-amylase and PTP1B. The results suggested that compounds 7∼10 were potential antidiabetic agents with significantly inhibition activity against PTP1B in a dose-dependent manner.
Collapse
Affiliation(s)
- Xianting Wang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yidan Deng
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianmei Wang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yimei Du
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xingdong Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Wang J, Wang L, Han L, Han Y, Gu J, Chen Z. Formononetin attenuates hepatic injury in diabetic mice by regulating macrophage polarization through the PTP1B/STAT6 axis. Int Immunopharmacol 2024; 140:112802. [PMID: 39088924 DOI: 10.1016/j.intimp.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.
Collapse
Affiliation(s)
- Jinchun Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Yiwen Han
- Department of Clinical Medicine, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Jun Gu
- Department of Public Health, Nanjing Medical University, 140 Hanzhong Rd, Gulou, Nanjing, Jiangsu 211166, China
| | - Zhujing Chen
- Department of Outpatient, Jurong People's Hospital, Jurong, No 66. Two holy road, Jurong, Zhenjiang, Jiangsu 212400, China.
| |
Collapse
|
4
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
5
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
6
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
7
|
Mendoza-Jasso ME, Pérez-Villanueva J, Alvarado-Rodríguez JG, González-Andrade M, Cortés-Benítez F. 3-Benzylaminomethyl Lithocholic Acid Derivatives Exhibited Potent and Selective Uncompetitive Inhibitory Activity Against Protein Tyrosine Phosphatase 1B (PTP1B). ACS OMEGA 2024; 9:33224-33238. [PMID: 39100322 PMCID: PMC11292843 DOI: 10.1021/acsomega.4c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a promising drug target for treating type 2 diabetes (T2DM) and obesity. As a result, developing new therapies that target PTP1B is an attractive strategy for treating these diseases. Herein, we detail the synthesis of 15 lithocholic acid (LA) derivatives, each containing different benzylaminomethyl groups attached to the C3 position of the steroid skeleton. The derivatives were assessed against two forms of PTP1B enzyme (hPTP1B1-400 and hPTP1B1-285), and the most potent compounds were then tested against T-cell protein tyrosine phosphatase (TCPTP) to determine their selectivity. The results showed that compounds 6m and 6n were more potent than the reference compounds (ursolic acid, chlorogenic acid, suramin, and TCS401). Additionally, both compounds exhibited greater potency over hPTP1B1-400. Furthermore, enzyme kinetic studies on hPTP1B1-400 revealed that these two lithocholic acid derivatives have an uncompetitive inhibition against hPTP1B1-400 with K i values of 2.5 and 3.4 μM, respectively. Interestingly, these compounds were around 75-fold more selective for PTP1B over TCPTP. Finally, docking studies and molecular dynamics simulations (MDS) were conducted to determine how these compounds interact with PTP1B. The docking studies revealed hydrophobic and H-bond interactions with amino acid residues in the unstructured region. MDS showed that these interactions persisted throughout the 200 ns simulation, indicating the crucial role of the unstructured zone in the biological activity and inhibition of PTP1B.
Collapse
Affiliation(s)
- María-Eugenia Mendoza-Jasso
- Doctorado
en Ciencias Farmacéuticas, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Jaime Pérez-Villanueva
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| | | | - Martin González-Andrade
- Laboratorio
de Biosensores y Modelaje Molecular, Departamento de Bioquímica,
Facultad de Medicina, Universidad Nacional
Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Cortés-Benítez
- Laboratorio
de Síntesis y Aislamiento de Sustancias Bioactivas, Departamento
de Sistemas Biológicos, División de Ciencias Biológicas
y de la Salud, Universidad Autónoma
Metropolitana − Unidad Xochimilco, Ciudad de México 04960, Mexico
| |
Collapse
|
8
|
Li M, Li H, Min X, Sun J, Liang B, Xu L, Li J, Wang SH, Xu X. Identification of 1,3,4-Thiadiazolyl-Containing Thiazolidine-2,4-dione Derivatives as Novel PTP1B Inhibitors with Antidiabetic Activity. J Med Chem 2024; 67:8406-8419. [PMID: 38723203 DOI: 10.1021/acs.jmedchem.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Forty-one 1,3,4-thiadiazolyl-containing thiazolidine-2,4-dione derivatives (MY1-41) were designed and synthesized as protein tyrosine phosphatase 1B (PTP1B) inhibitors with activity against diabetes mellitus (DM). All synthesized compounds (MY1-41) presented potential PTP1B inhibitory activities, with half-maximal inhibitory concentration (IC50) values ranging from 0.41 ± 0.05 to 4.68 ± 0.61 μM, compared with that of the positive control lithocholic acid (IC50 = 9.62 ± 0.14 μM). The most potent compound, MY17 (IC50 = 0.41 ± 0.05 μM), was a reversible, noncompetitive inhibitor of PTP1B. Circular dichroism spectroscopy and molecular docking were employed to analyze the binding interaction between MY17 and PTP1B. In HepG2 cells, MY17 treatment could alleviate palmitic acid (PA)-induced insulin resistance by upregulating the expression of phosphorylated insulin receptor substrate and protein kinase B. In vivo, oral administration of MY17 could reduce the fasting blood glucose level and improve glucose tolerance and dyslipidemia in mice suffering from DM.
Collapse
Affiliation(s)
- Mengyue Li
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Huiyun Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Xiaofeng Min
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Jinping Sun
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Bingwen Liang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, Guangdong, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
9
|
Schwartz L, Salamon K, Simoni A, Eichler T, Jackson AR, Murtha M, Becknell B, Kauffman A, Linn-Peirano S, Holdsworth N, Tyagi V, Tang H, Rust S, Cortado H, Zabbarova I, Kanai A, Spencer JD. Insulin receptor signaling engages bladder urothelial defenses that limit urinary tract infection. Cell Rep 2024; 43:114007. [PMID: 38517889 PMCID: PMC11094371 DOI: 10.1016/j.celrep.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
Urinary tract infections (UTIs) commonly afflict people with diabetes. To better understand the mechanisms that predispose diabetics to UTIs, we employ diabetic mouse models and altered insulin signaling to show that insulin receptor (IR) shapes UTI defenses. Our findings are validated in human biosamples. We report that diabetic mice have suppressed IR expression and are more susceptible to UTIs caused by uropathogenic Escherichia coli (UPEC). Systemic IR inhibition increases UPEC susceptibility, while IR activation reduces UTIs. Localized IR deletion in bladder urothelium promotes UTI by increasing barrier permeability and suppressing antimicrobial peptides. Mechanistically, IR deletion reduces nuclear factor κB (NF-κB)-dependent programming that co-regulates urothelial tight junction integrity and antimicrobial peptides. Exfoliated urothelial cells or urine samples from diabetic youths show suppressed expression of IR, barrier genes, and antimicrobial peptides. These observations demonstrate that urothelial insulin signaling has a role in UTI prevention and link IR to urothelial barrier maintenance and antimicrobial peptide expression.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Kristin Salamon
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Tad Eichler
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Ashley R Jackson
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Matthew Murtha
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA
| | - Andrew Kauffman
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Tulane University, New Orleans, LA 70118, USA
| | - Sarah Linn-Peirano
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Natalie Holdsworth
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA
| | - Vidhi Tyagi
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hancong Tang
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Steve Rust
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Hanna Cortado
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA
| | - Irina Zabbarova
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony Kanai
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH 43205, USA.
| |
Collapse
|
10
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
11
|
Zheng Y, Lu L, Li M, Xu D, Zhang L, Xiong Z, Zhou Y, Li J, Xu X, Zhang K, Xu L. New chromone derivatives bearing thiazolidine-2,4-dione moiety as potent PTP1B inhibitors: Synthesis and biological activity evaluation. Bioorg Chem 2024; 143:106985. [PMID: 38007892 DOI: 10.1016/j.bioorg.2023.106985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
A series of chromone derivatives bearing thiazolidine-2,4-dione moiety (5 ∼ 37) were synthesized and evaluated for their PTP1B inhibitory activity, interaction analysis and effects on insulin pathway in palmitic acid (PA)-induced HepG2 cells. The results showed that all derivatives presented potential PTP1B inhibitory activity with IC50 values of 1.40 ± 0.04 ∼ 16.83 ± 0.54 μM comparing to that of positive control lithocholic acid (IC50: 9.62 ± 0.14 μM). Among them, compound 9 had the strongest PTP1B inhibitory activity with the IC50 value of 1.40 ± 0.04 μM. Inhibition kinetic study revealed that compound 9 was a reversible mixed-type inhibitor against PTP1B. CD spectra results confirmed that compound 9 changed the secondary structure of PTP1B by their interaction. Molecular docking explained the detailed binding between compound 9 and PTP1B. Compound 9 also showed 19-fold of selectivity for PTP1B over TCPTP. Moreover compound 9 could recovery PA-induced insulin resistance by increasing the phosphorylation of IRSI and AKT. CETSA results showed that compound 9 significantly increased the thermal stability of PTP1B.
Collapse
Affiliation(s)
- Yingying Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Li Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Mengyue Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - DeHua Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 529199, PR China; School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, PR China
| | - LaiShun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 529199, PR China; School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Zhuang Xiong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 529199, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 529199, PR China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Xuetao Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Lei Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 529199, PR China.
| |
Collapse
|
12
|
Tan D, Wang J, Wang X, Qin L, Du Y, Zhao C, Liu P, Zhang Q, Ma F, Xie J, Wu D, He Y. New dammarane-type triterpenoids from hydrolyzate of total Gynostemma pentaphyllum saponins with protein tyrosine phosphatase 1B inhibitory activity. J Enzyme Inhib Med Chem 2023; 38:2281263. [PMID: 37965892 PMCID: PMC10653776 DOI: 10.1080/14756366.2023.2281263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/16/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key factor and regulator of glucose, lipid metabolism throughout the body, and a promising target for treatment of type 2 diabetes mellitus (T2DM). Gynostemma pentaphyllum is a famous oriental traditional medicinal herbal plant and functional food, which has shown many beneficial effects on glucose and lipid metabolism. The aim of the present study is to assess the inhibitory activity of five new and four known dammarane triterpenoids isolated from the hydrolysate product of total G. pentaphyllum saponins. The bioassay data showed that all the compounds exhibited significant inhibitory activity against PTP1B. The structure-activity relationship showed that the strength of PTP1B inhibitory activity was mainly related to the electron-donating group on its side chain. Molecular docking analysis suggested that its mechanism may be due to the formation of competitive hydrogen bonding between the electron-donating moiety and the Asp48 amino acid residues on the PTP1B protein.
Collapse
Affiliation(s)
- Daopeng Tan
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianmei Wang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianting Wang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Qin
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yimei Du
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Changkuo Zhao
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Peijun Liu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qianru Zhang
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feifei Ma
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Xie
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Di Wu
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuqi He
- Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, Guizhou, China
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Coronell-Tovar A, Cortés-Benítez F, González-Andrade M. The importance of including the C-terminal domain of PTP1B 1-400 to identify potential antidiabetic inhibitors. J Enzyme Inhib Med Chem 2023; 38:2170369. [PMID: 36997321 PMCID: PMC10064822 DOI: 10.1080/14756366.2023.2170369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
In the present work, we studied the inhibitory and kinetic implications of classical PTP1B inhibitors (chlorogenic acid, ursolic acid, suramin) using three enzyme constructs (hPTP1B1-285, hPTP1B1-321, and hPTP1B1-400). The results indicate that the unstructured region of PTP1B (300-400 amino acids) is very important both to obtain optimal inhibitory results and propose classical inhibition mechanisms (competitive or non-competitive) through kinetic studies. The IC50 calculated for ursolic acid and suramin using hPTP1B1-400 are around four and three times lower to the short form of the enzyme, the complete form of PTP1B, the one found in the cytosol (in vivo). On the other hand, we highlight the studies of enzymatic kinetics using the hPTP1B1-400 to know the type of enzymatic inhibition and to be able to direct docking studies, where the unstructured region of the enzyme can be one more option for binding compounds with inhibitory activity.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Francisco Cortés-Benítez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco (UAM-X), Ciudad de México, México
| | - Martin González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Laboratorio de Biosensores y Modelaje molecular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Nowell J, Blunt E, Gupta D, Edison P. Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease. Ageing Res Rev 2023; 89:101979. [PMID: 37328112 DOI: 10.1016/j.arr.2023.101979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Imperial College London, London, UK
| | - Eleanor Blunt
- Department of Brain Sciences, Imperial College London, London, UK
| | - Dhruv Gupta
- Department of Brain Sciences, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, London, UK; School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Luo ML, Zhao Q, He XH, Xie X, Zhu HP, You FM, Peng C, Zhan G, Huang W. Research progress of indole-fused derivatives as allosteric modulators: Opportunities for drug development. Biomed Pharmacother 2023; 162:114574. [PMID: 36996677 DOI: 10.1016/j.biopha.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Allosteric modulation is a direct and effective method for regulating the function of biological macromolecules, which play vital roles in various cellular activities. Unlike orthosteric modulators, allosteric modulators bind to sites distant from the protein's orthosteric/active site and can have specific effects on the protein's function or activity without competing with endogenous ligands. Compared to traditional orthosteric modulators, allosteric modulators offer several advantages, including reduced side effects, greater specificity, and lower toxicity, making them a promising strategy for developing novel drugs. Indole-fused architectures are widely distributed in natural products and bioactive drug leads, displaying diverse biological activities that attract the interest of both chemists and biologists in drug discovery. Currently, an increasing number of indole-fused compounds have exhibited potent activities in allosteric modulation. In this review, we provide a brief summary of examples of allosteric modulators based on the indole-fused complex architecture, highlighting the strategies for drug design/discovery and the structure-activity relationships of allosteric modulators from the perspective of medicinal chemistry.
Collapse
|
16
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
17
|
Yang T, Wang H, Li C, Duan H. Mechanisms of drugs in the treatment of type 2 diabetes mellitus. Chin Med J (Engl) 2023; 136:394-396. [PMID: 36921103 PMCID: PMC10106166 DOI: 10.1097/cm9.0000000000002356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 03/17/2023] Open
Affiliation(s)
- Tao Yang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Hongmei Wang
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Caili Li
- Zhuanglang People's Hospital, Pingliang, Gansu 744600, China
| | - Haogang Duan
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
18
|
Mazibuko M, Jeena V. Synthesis of 2,4,5-Trisubstituted Oxazoles from Copper-Mediated Benzylic sp 3 C-H Aerobic Oxidative Annulation of Ketones and Amines via a Cascade Reaction. J Org Chem 2023; 88:1227-1234. [PMID: 36575054 DOI: 10.1021/acs.joc.2c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functionalization of sp3 carbons is deemed challenging in synthetic organic chemistry yet has tremendous potential in producing potent organic compounds. A facile synthesis of 2,4,5-trisubstituted oxazoles through an oxidative, copper-catalyzed, and solvent-free annulation is described. Various arylated oxazoles were efficaciously synthesized at a mild temperature from readily available substrates under a molecular oxygen atmosphere. Preliminary mechanistic studies suggested that the reaction proceeds via an anionic-type mechanism and indicated the formation of a keto-imine intermediate. The reaction is notable for the abstraction of six hydrogen atoms, the functionalization of one sp2 carbon and two sp3 carbons, and the formation of C-O and C-N bonds.
Collapse
Affiliation(s)
- Mncedisi Mazibuko
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
19
|
Xu L, Mu X, Liu M, Wang Z, Shen C, Mu Q, Feng B, Xu Y, Hou T, Gao L, Jiang H, Li J, Zhou Y, Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Zhou J, Guo H, Zhang Y, Liu H, Dou Q. The role of PTP1B (PTPN1) in the prognosis of solid tumors: A meta-analysis. Medicine (Baltimore) 2022; 101:e30826. [PMID: 36221386 PMCID: PMC9543024 DOI: 10.1097/md.0000000000030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) played different role in different solid tumors, and was associated with the prognosis of solid tumors. However, the roles existed controversy. This meta-analysis was performed to determine whether PTP1B was relevant to the prognosis of solid tumors. MATERIALS AND METHODS A literature search in Web of Science, Embase and PubMed databases were performed up to November 1, 2021. A meta-analysis dealed with PTP1B assessment in solid tumors, providing clinical stages and survival comparisons according to the PTP1B status. RESULTS High PTP1B expression was significantly associated with later clinical stage of solid tumors (Odds ratio [OR] 2.25, 95% confidence interval [CI]: 1.71-2.98, P < .001). For solid tumors, the hazard ratio (HR) for disease free survival (DFS) detrimental with high PTP1B expression compared with low PTP1B expression was 1.07 (95%CI: 0.67-1.73, P = .77) with the obvious heterogeneity (P = .03, I2 = 66%). The HR of overall survival (OS) for solid tumors with high PTP1B expression versus low PTP1B expression was 1.26 (95%CI: 1.03-1.55, P = .03) with significant publication bias (t = 3.28, P = .005). Subgroup analysis indicated that the high expression of PTP1B was remarkably correlated with poor OS in colorectal carcinoma, only (HR = 1.43; 95%CI: 1.18-1.74; P = .003). CONCLUSIONS High PTP1B expression is significantly associated with later clinical stage of solid tumors. The high expression of PTP1B is remarkably correlated with poor OS in colorectal carcinoma, only. There is no definite conclusion that PTP1B was, or not associated with DFS and OS of solid tumors because of heterogeneity and publication bias. Whether PTP1B can be used as a biomarker for predicting the prognosis of solid tumors needs further study.
Collapse
Affiliation(s)
- Jiupeng Zhou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
- *Correspondence: Jiupeng Zhou, Xian Chest Hospital, Xi’an 710000, Shaanxi Province, China (e-mail: )
| | - Hui Guo
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | | | - Heng Liu
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| | - Quanli Dou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
21
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
22
|
Hu C, Zeng Z, Ma D, Yin Z, Zhao S, Chen T, Tang L, Zuo S. Discovery of novel IDH1-R132C inhibitors through structure-based virtual screening. Front Pharmacol 2022; 13:982375. [PMID: 36160383 PMCID: PMC9491111 DOI: 10.3389/fphar.2022.982375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) belongs to a family of enzymes involved in glycometabolism. It is found in many living organisms and is one of the most mutated metabolic enzymes. In the current study, we identified novel IDH1-R132C inhibitors using docking-based virtual screening and cellular inhibition assays. A total of 100 molecules with high docking scores were obtained from docking-based virtual screening. The cellular inhibition assay demonstrated five compounds at a concentration of 10 μM could inhibit cancer cells harboring the IDH1-R132C mutation proliferation by > 50%. The compound (T001-0657) showed the most potent effect against cancer cells harboring the IDH1-R132C mutation with a half-maximal inhibitory concentration (IC50) value of 1.311 μM. It also showed a cytotoxic effect against cancer cells with wild-type IDH1 and normal cells with IC50 values of 49.041 μM and >50 μM, respectively. Molecular dynamics simulations were performed to investigate the stability of the kinase structure binding of allosteric inhibitor compound A and the identified compound T001-0657 binds to IDH1-R132C. Root-mean-square deviation, root-mean-square fluctuation, and binding free energy calculations showed that both compounds bind tightly to IDH1-R132C. In conclusion, the compound identified in this study had high selectivity for cancer cells harboring IDH1-R132C mutation and could be considered a promising hit compound for further development of IDH1-R132C inhibitors.
Collapse
Affiliation(s)
- Chujiao Hu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dan Ma
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- Department of Hematology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhixin Yin
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shanshan Zhao
- College of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Tengxiang Chen
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R and D, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Tengxiang Chen, ; Lei Tang, ; Shi Zuo,
| |
Collapse
|
23
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed Pharmacother 2022; 153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
25
|
A Critical Review on Role of Available Synthetic Drugs and Phytochemicals in Insulin Resistance Treatment by Targeting PTP1B. Appl Biochem Biotechnol 2022; 194:4683-4701. [PMID: 35819691 DOI: 10.1007/s12010-022-04028-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Insulin resistance (IR) is a condition of impaired response of cells towards insulin. It is marked by excessive blood glucose, dysregulated insulin signalling, altered pathways, damaged pancreatic β-cells, metabolic disorders, etc. Chronic hyperglycemic conditions leads to type 2 diabetes mellitus (T2DM) which causes excess generation of highly reactive free radicals, causing oxidative stress, further leading to development and progression of complications like vascular dysfunction, damaged cellular proteins, and DNA. One of the causes for IR is dysregulation of protein tyrosine phosphatase 1B (PTP1B). Advancements in drug therapeutics have helped people manage IR by regulating PTP1B, however have been reported to cause side effects. Therefore, there is a growing interest on usage of phytochemical constituents having IR therapeutic properties and aiding to minimize these complications. Medicinal plants have not been utilized to their full potential as a therapeutic drug due to lack of knowledge of their active and effective chemical constituents, mode of action, regulation of IR parameters, and dosage of administration. This review highlights phytochemical constituents present in medicinal plants or spices, their potential effectiveness on proteins (PTP1B) regulating IR, and reported possible mechanism of action studied on in vitro models. The study gives current knowledge and future recommendations on the above aspects and is expected to be beneficial in developing herbal drug using these phytochemical constituents, either alone or in combination, for medication of IR and diabetes.
Collapse
|
26
|
Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, Kumar S, Bhatti GK, Reddy PH. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic Biol Med 2022; 184:114-134. [PMID: 35398495 DOI: 10.1016/j.freeradbiomed.2022.03.019] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is a persistent metabolic disorder rising rapidly worldwide. It is characterized by pancreatic insulin resistance and β-cell dysfunction. Hyperglycemia induced reactive oxygen species (ROS) production and oxidative stress are correlated with the pathogenesis and progression of this metabolic disease. To counteract the harmful effects of ROS, endogenous antioxidants of the body or exogenous antioxidants neutralise it and maintain bodily homeostasis. Under hyperglycemic conditions, the imbalance between the cellular antioxidant system and ROS production results in oxidative stress, which subsequently results in the development of diabetes. These ROS are produced in the endoplasmic reticulum, phagocytic cells and peroxisomes, with the mitochondrial electron transport chain (ETC) playing a pivotal role. The exacerbated ROS production can directly cause structural and functional modifications in proteins, lipids and nucleic acids. It also modulates several intracellular signaling pathways that lead to insulin resistance and impairment of β-cell function. In addition, the hyperglycemia-induced ROS production contributes to micro- and macro-vascular diabetic complications. Various in-vivo and in-vitro studies have demonstrated the anti-oxidative effects of natural products and their derived bioactive compounds. However, there is conflicting clinical evidence on the beneficial effects of these antioxidant therapies in diabetes prevention. This review article focused on the multifaceted role of oxidative stress caused by ROS overproduction in diabetes and related complications and possible antioxidative therapeutic strategies targeting ROS in this disease.
Collapse
Affiliation(s)
- Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Abhishek Sehrawat
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Jayapriya Mishra
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Inderpal Singh Sidhu
- Department of Zoology, Sri Guru Gobind Singh College, Sector 26, Chandigarh, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India.
| | - Shashank Kumar
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
27
|
The Multifunctional Role of Herbal Products in the Management of Diabetes and Obesity: A Comprehensive Review. Molecules 2022; 27:molecules27051713. [PMID: 35268815 PMCID: PMC8911649 DOI: 10.3390/molecules27051713] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity and diabetes are the most demanding health problems today, and their prevalence, as well as comorbidities, is on the rise all over the world. As time goes on, both are becoming big issues that have a big impact on people’s lives. Diabetes is a metabolic and endocrine illness set apart by hyperglycemia and glucose narrow-mindedness because of insulin opposition. Heftiness is a typical, complex, and developing overall wellbeing worry that has for quite some time been connected to significant medical issues in individuals, all things considered. Because of the wide variety and low adverse effects, herbal products are an important hotspot for drug development. Synthetic compounds are not structurally diverse and lack drug-likeness properties. Thus, it is basic to keep on exploring herbal products as possible wellsprings of novel drugs. We conducted this review of the literature by searching Scopus, Science Direct, Elsevier, PubMed, and Web of Science databases. From 1990 until October 2021, research reports, review articles, and original research articles in English are presented. It provides top to bottom data and an examination of plant-inferred compounds that might be utilized against heftiness or potentially hostile to diabetes treatments. Our expanded comprehension of the systems of activity of phytogenic compounds, as an extra examination, could prompt the advancement of remedial methodologies for metabolic diseases. In clinical trials, a huge number of these food kinds or restorative plants, as well as their bioactive compounds, have been shown to be beneficial in the treatment of obesity.
Collapse
|
28
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
29
|
Nasrollahi Z, ShahaniPour K, Monajemi R, Ahadi AM. Abelmoschus esculentus (L.) Moench improved blood glucose, lipid, and down-regulated PPAR-α, PTP1B genes expression in diabetic rats. J Food Biochem 2022; 46:e14097. [PMID: 35102562 DOI: 10.1111/jfbc.14097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
Okra (Abelmoschus esculentus (L.) Moench) is one of the most important medicinal plants for the treatment of diabetes. Flavonoids are one of the most significant components of okra and are responsible for their antioxidant, anti-inflammatory, and anti-diabetic effects. The aim of this research was to investigate the effect of okra extract on biochemical parameters and expression of protein tyrosine phosphatase 1B (PTP1B) and Peroxisome proliferator-activated receptors (PPARs) genes in a model of streptozotocin-induced diabetic male Wistar rat. Rats were given oral dosages of okra extract, (75% ethanolic extract) (200-400 mg/kg) for eight weeks. Our findings indicate that okra extract and quercetin therapy may lower blood glucose (BS), insulin, Triglyceride (TG), Cholesterol (Cho), and glucose transporter protein type-4 (GLUT4) levels. PTP1B and Peroxisome proliferator-activated receptor alpha (PPAR-α), which are important regulators of glucose and lipid homeostasis, are similarly inhibited by okra extract. According to the findings, okra extract also has antioxidant properties. Our results support the anti-hyperglycemic and hypolipidemic properties of okra extract. As a result, it appears to play a crucial role in controlling diabetes. PRACTICAL APPLICATIONS: In this paper, we show that flavonoids in okra may help diabetes by inhibiting the PTP1B and PPAR-pathways. This is significant because little research has been done on the impact of flavonoid chemicals in A. esculentus on the expression of PTP1B and PPAR using traditional methods of diabetes treatment. Many of today's essential drugs (e.g., atropine, ephedrine, tubocurarine, digoxin, and reserpine) have been developed by studding traditional treatments. Plant-derived medications are still used as a prototype by chemists in an effort to develop more effective and less risky treatments (e.g., morphine, taxol, physostigmine, quinidine, and emetine.
Collapse
Affiliation(s)
- Zohreh Nasrollahi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Kahin ShahaniPour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ramesh Monajemi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
30
|
Structure Revision and Protein Tyrosine Phosphatase Inhibitory Activity of Drazepinone. Mar Drugs 2021; 19:md19120714. [PMID: 34940713 PMCID: PMC8708580 DOI: 10.3390/md19120714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
From the marine-derived fungus Penicillium sumatrense (Trichocomaceae), a pair of enantiomers [(+)-1 and (−)-1] were isolated with identical 1D NMR data to drazepinone, which was originally reported to have a trisubstituted naphthofuroazepinone skeleton. In this study, we confirmed the structures of the two enantiomers as drazepinone and revised their structures by detailed analysis of extensive 2D NMR data and a comparison of the calculated 13C chemical shifts, ECD, VCD, and ORD spectra with those of the experiment ones. (+)-1 and (−)-1 were evaluated for their PTP inhibitory activity in vitro. (−)-1 showed selective PTP inhibitory activity against PTP1B and TCPTP with IC50 values of 1.56 and 12.5 μg/mL, respectively.
Collapse
|
31
|
Roy P, Saha S, Chakraborty J. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
33
|
Discovery of inhibitors targeting protein tyrosine phosphatase 1B using a combined virtual screening approach. Mol Divers 2021; 26:2159-2174. [PMID: 34655403 DOI: 10.1007/s11030-021-10323-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) acts as a therapeutic target for type 2 diabetes. However, the major challenges of PTP1B drug discovery are the poor selectivity and the weak oral bioavailability. In this study, we performed a combined virtual screening approach including multicomplex pharmacophore, molecular docking-based screening, van der Waals energy normalization, pose scaling factor, ADMET evaluation, and molecular dynamics simulation to select PTP1B inhibitors from three databases (PubChem, ChEMBL, and ZINC). We identified three potential PTP1B inhibitors, compounds 1, 4, and 5, with favorable binding energy and good oral bioavailability. The energetic and geometrical analyses show that the three compounds are stably bound to PTP1B, via occupying both the catalytic site (site A) and the proximal noncatalytic site (site B or C). Such occupancy may improve the selectivity. This work not only provided a feasible virtual screening protocol, but also suggested three potential PTP1B inhibitors for the treatment of type 2 diabetes.
Collapse
|
34
|
Wang Q, Pan Y, Zhao L, Qi F, Liu J. Protein tyrosine phosphatase 1B(PTP1B) promotes melanoma cells progression through Src activation. Bioengineered 2021; 12:8396-8406. [PMID: 34606417 PMCID: PMC8806946 DOI: 10.1080/21655979.2021.1988376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have demonstrated that protein tyrosine phosphatase 1B (PTP1B) can promote tumor progression in breast cancer, colon cancer and prostate cancer. Additionally, PTP1B also acts as a tumor suppressor in esophageal cancer and lymphoma. These findings suggest that PTP1B functions as a double-faceted molecule in tumors. However, the role of PTP1B in malignant melanoma (MM) is still unknown. PTP1B expression in normal and melanoma tissues was evaluated by GEO analysis and immunohistochemistry. The effects of PTP1B on cell migration and invasion were evaluated in melanoma cells with up – and downregulated PTP1B expression. In this study, we initially demonstrated that the expression of PTP1B in malignant melanoma tissue is significantly higher than its expression in benign nevus tissue and indicated poor survival of malignant melanoma patients. In vitro studies have demonstrated that inhibition of PTP1B suppresses and overexpression of PTP1B promotes migration and invasion of melanoma cells. Moreover, we found that PTP1B could interact with Src via coimmunoprecipitation and dephosphorylation of the Src at Tyr530 site. Collectively, our study revealed that PTP1B can promote melanoma cell metastasis by interacting with Src and provides a theoretical basis for future applications of PTP1B inhibitors in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Yuyan Pan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Liping Zhao
- Department of Plastic Surgery, the First Affiliated Hospital of Ustc, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University Shanghai, China
| |
Collapse
|
35
|
García‐Marín J, Griera M, Alajarín R, Rodríguez‐Puyol M, Rodríguez‐Puyol D, Vaquero JJ. A Computer-Driven Scaffold-Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2-a]quinoxaline Core. ChemMedChem 2021; 16:2895-2906. [PMID: 34137509 PMCID: PMC8518816 DOI: 10.1002/cmdc.202100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a very promising target for the treatment of metabolic disorders such as type II diabetes mellitus. Although it was validated as a promising target for this disease more than 30 years ago, as yet there is no drug in advanced clinical trials, and its biochemical mechanism and functions are still being studied. In the present study, based on our experience generating PTP1B inhibitors, we have developed and implemented a scaffold-hopping approach to vary the pyrrole ring of the pyrrolo[1,2-a]quinoxaline core, supported by extensive computational techniques aimed to explain the molecular interaction with PTP1B. Using a combination of docking, molecular dynamics and end-point free-energy calculations, we have rationally designed a hypothesis for new PTP1B inhibitors, supporting their recognition mechanism at a molecular level. After the design phase, we were able to easily synthesize proposed candidates and their evaluation against PTP1B was found to be in good concordance with our predictions. Moreover, the best candidates exhibited glucose uptake increments in cellulo model, thus confirming their utility for PTP1B inhibition and validating this approach for inhibitors design and molecules thus obtained.
Collapse
Affiliation(s)
- Javier García‐Marín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
- Departamento de Química Biológica y EstructuralCentro de Investigaciones Biológicas Margarita Salas (CIB-CSIC)Calle Ramiro de Maeztu 928040MadridSpain
| | - Mercedes Griera
- Graphenano Medical Care, S.L.C/Pablo Casals, no. 13YeclaMurciaSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| | - Manuel Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Diego Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Fundación de Investigación BiomédicaUnidad de Nefrología del Hospital Príncipe de Asturias yDepartamento de Medicina y Especialidades MédicasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| |
Collapse
|
36
|
Indole- and Pyrazole-Glycyrrhetinic Acid Derivatives as PTP1B Inhibitors: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26144375. [PMID: 34299651 PMCID: PMC8308021 DOI: 10.3390/molecules26144375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/17/2022] Open
Abstract
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a-f and 5a-f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.
Collapse
|
37
|
Zhao D, Zhong S. Binding mechanisms of varic acid inhibitors on protein tyrosine phosphatase 1B and in silico design of the novel derivatives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1929970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dan Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
38
|
Begum N, Nasir A, Parveen Z, Muhammad T, Ahmed A, Farman S, Jamila N, Shah M, Bibi NS, Khurshid A, Huma Z, Khalil AAK, Albrakati A, Batiha GES. Evaluation of the Hypoglycemic Activity of Morchella conica by Targeting Protein Tyrosine Phosphatase 1B. Front Pharmacol 2021; 12:661803. [PMID: 34093192 PMCID: PMC8173442 DOI: 10.3389/fphar.2021.661803] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Morchella conica (M. conica) Pers. is one of six wild edible mushrooms that are widely used by Asian and European countries for their nutritional value. The present study assessed the anti-diabetic potential of M. conica methanolic extract (100 mg/kg body weight) on streptozotocin (STZ)-induced diabetic mice. STZ was used in a single dose of 65 mg/kg to establish diabetic models. Body weights, water/food intake and fasting blood glucose levels were measured. Histopathological analysis of the pancreas and liver were performed to evaluate STZ-induced tissue injuries. In addition, in vitro assays such as α-amylase and protein tyrosine phosphatase 1B (PTP1B) inhibitory, antiglycation, antioxidant and cytotoxicity were performed. The in vitro study indicated potent PTP1B inhibitory potential of M. conica with an IC50 value of 26.5 μg/ml as compared to the positive control, oleanolic acid (IC50 36.2 μg/ml). In vivo investigation showed a gradual decrease in blood sugar level in M. conica-treated mice (132 mg/dl) at a concentration of 100 mg/kg as compared to diabetic mice (346 mg/dl). The extract positively improved liver and kidney damages as were shown by their serum glutamic pyruvic transaminase, serum glutamic oxaloacetate, alkaline phosphatase, serum creatinine and urea levels. Histopathological analysis revealed slight liver and pancreas improvement of mice treated with extract. Cytotoxicity assays displayed lower IC50 values. Based on the present results of the study, it may be inferred that M. conica are rich in bioactive compounds responsible for antidiabetic activity and this mushroom may be a potential source of antidiabetic drug. However, further studies are required in terms of isolation of bioactive compounds to validate the observed results.
Collapse
Affiliation(s)
- Naeema Begum
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Nasir
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan.,Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Taj Muhammad
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Asma Ahmed
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahor, Lahor, Pakistan
| | - Saira Farman
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Women University of Science and Technology Peshawar, Peshawar, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Noor Shad Bibi
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Akif Khurshid
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Zille Huma
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
39
|
Datta R, Lizama CO, Soltani AK, Mckleroy W, Podolsky MJ, Yang CD, Huynh TL, Cautivo KM, Wang B, Koliwad SK, Abumrad NA, Atabai K. Autoregulation of insulin receptor signaling through MFGE8 and the αvβ5 integrin. Proc Natl Acad Sci U S A 2021; 118:e2102171118. [PMID: 33903257 PMCID: PMC8106306 DOI: 10.1073/pnas.2102171118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvβ5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/β5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvβ5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/β5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvβ5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.
Collapse
Affiliation(s)
- Ritwik Datta
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Carlos O Lizama
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Amin K Soltani
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
| | - William Mckleroy
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Michael J Podolsky
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
| | - Christopher D Yang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
| | - Tony L Huynh
- Department of Radiology and Biomedical imaging, University of California, San Francisco, CA 94107
| | - Kelly M Cautivo
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Biao Wang
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Physiology, University of California, San Francisco, CA 94158
| | - Suneil K Koliwad
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Diabetes Center, University of California, San Francisco, CA 94143
| | - Nada A Abumrad
- Diabetes Research Center, Department of Medicine and Cell Biology, Washington University in St. Louis, St. Louis, MO 63110
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158;
- Lung Biology Center, University of California, San Francisco, CA 94158
- Divisions of Pulmonary and Critical Care and Endocrinology, Department of Medicine, University of California, San Francisco, CA 94143
- Department of Physiology, University of California, San Francisco, CA 94158
| |
Collapse
|
40
|
Rocha S, Lucas M, Silva VLM, Gomes PMO, Silva AMS, Araújo AN, Aniceto N, Guedes RC, Corvo ML, Fernandes E, Freitas M. Pyrazoles as novel protein tyrosine phosphatase 1B (PTP1B) inhibitors: An in vitro and in silico study. Int J Biol Macromol 2021; 181:1171-1182. [PMID: 33857515 DOI: 10.1016/j.ijbiomac.2021.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (DM) is a complex chronic disorder and a major global health problem. Insulin resistance is the primary detectable abnormality and the main characteristic feature in individuals with type 2 DM. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathway, which dephosphorylates insulin receptor and insulin receptor substrates, suppressing the insulin signaling cascade. Therefore, the inhibition of PTP1B has become a potential strategy in the management of type 2 DM. In this study, a library of 22 pyrazoles was evaluated here for the first time against human PTP1B activity, using a microanalysis screening system. The results showed that 5-(2-hydroxyphenyl)-3-{2-[3-(4-nitrophenyl)-1,2,3,4-tetrahydronaphthyl]}-1-phenylpyrazole 20 and 3-(2-hydroxyphenyl)-5-{2-[3-(4-methoxyphenyl)]naphthyl}pyrazole 22 excelled as the most potent inhibitors of PTP1B, through noncompetitive inhibition mechanism. These findings suggest that the presence of additional benzene rings as functional groups in the pyrazole moiety increases the ability of pyrazoles to inhibit PTP1B. The most active compounds showed selectivity over the homologous T-cell protein tyrosine phosphatase (TCPTP). Molecular docking analyses were performed and revealed a particular contact signature involving residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219. This study represents a significant beginning for the design of novel PTP1B inhibitors.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Lucas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro M O Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália Aniceto
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
41
|
Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities. Arch Pharm Res 2021; 44:310-321. [PMID: 33590390 DOI: 10.1007/s12272-021-01315-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) have an emerging paradigm for the development of antidiabetic drugs. Herein, we provide a comprehensive overview of the relevance of PTPs to type 2 diabetes (T2D) and the therapeutic opportunities thereof, while critically evaluating the potential challenges for PTP inhibitors to be next generation antidiabetics. This review briefly discusses the structure and function of PTPs. An account of importance and relevance of PTPs in various human diseases is presented with special attention to diabetes. The PTPs relevant to T2D have been targeted by small molecule inhibitors such as natural products and synthetic compounds as well as antisense nucleic acids. This review will give better understanding of the important concepts helpful in outlining the strategies for the development of new therapeutic agents with promising antidiabetic activities.
Collapse
|
42
|
Li C, Qian T, He R, Wan C, Liu Y, Yu H. Endoplasmic Reticulum-Plasma Membrane Contact Sites: Regulators, Mechanisms, and Physiological Functions. Front Cell Dev Biol 2021; 9:627700. [PMID: 33614657 PMCID: PMC7889955 DOI: 10.3389/fcell.2021.627700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) forms direct membrane contact sites with the plasma membrane (PM) in eukaryotic cells. These ER-PM contact sites play essential roles in lipid homeostasis, ion dynamics, and cell signaling, which are carried out by protein-protein or protein-lipid interactions. Distinct tethering factors dynamically control the architecture of ER-PM junctions in response to intracellular signals or external stimuli. The physiological roles of ER-PM contact sites are dependent on a variety of regulators that individually or cooperatively perform functions in diverse cellular processes. This review focuses on proteins functioning at ER-PM contact sites and highlights the recent progress in their mechanisms and physiological roles.
Collapse
Affiliation(s)
- Chenlu Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tiantian Qian
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
43
|
Mu XY, Wang ZJ, Feng B, Xu L, Gao LX, Satheeshkumar R, Li J, Zhou YB, Wang WL. Synthesis of 2-ethoxycarbonylthieno[2,3- b]quinolines in biomass-derived solvent γ-valerolactone and their biological evaluation against protein tyrosine phosphatase 1B. RSC Adv 2021; 11:3216-3220. [PMID: 35424294 PMCID: PMC8694002 DOI: 10.1039/d0ra09247a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/24/2020] [Indexed: 02/02/2023] Open
Abstract
A series of 2-ethoxycarbonylthieno[2,3-b]quinolines were synthesized in the bio-derived "green" solvent γ-valerolactone (GVL) and evaluated for their inhibitory activities against PTP1B, the representative compound 6a displayed an IC50 value of 8.04 ± 0.71 μM with 4.34-fold preference over TCPTP. These results provided novel lead compounds for the design of inhibitors of PTP1B as well as other PTPs.
Collapse
Affiliation(s)
- Xu-Yang Mu
- School of Pharmaceutical Sciences, Jiangnan University Wuxi 214122 China
| | - Zhi-Jia Wang
- School of Pharmaceutical Sciences, Jiangnan University Wuxi 214122 China
| | - Bo Feng
- School of Pharmaceutical Sciences, Jiangnan University Wuxi 214122 China
| | - Lei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Li-Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Rajendran Satheeshkumar
- School of Pharmaceutical Sciences, Jiangnan University Wuxi 214122 China
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Santiago de Chile 702843 Chile
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Wen-Long Wang
- School of Pharmaceutical Sciences, Jiangnan University Wuxi 214122 China
| |
Collapse
|
44
|
Li Y, Lin L, Jin K, Gao L, Sheng L, Liu J, Li J. Synthesis and Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Activity Evaluation of Novel Arylaminoacetylhydrazone Derivatives Containing Carbazole Moiety. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Ramírez-Alarcón K, Victoriano M, Mardones L, Villagran M, Al-Harrasi A, Al-Rawahi A, Cruz-Martins N, Sharifi-Rad J, Martorell M. Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:656978. [PMID: 34140928 PMCID: PMC8204854 DOI: 10.3389/fendo.2021.656978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes Mellitus (T2DM) prevalence has significantly increased worldwide in recent years due to population age, obesity, and modern sedentary lifestyles. The projections estimate that 439 million people will be diabetic in 2030. T2DM is characterized by an impaired β-pancreatic cell function and insulin secretion, hyperglycemia and insulin resistance, and recently the epigenetic regulation of β-pancreatic cells differentiation has been underlined as being involved. It is currently known that several bioactive molecules, widely abundant in plants used as food or infusions, have a key role in histone modification and DNA methylation, and constituted potential epidrugs candidates against T2DM. In this sense, in this review the epigenetic mechanisms involved in T2DM and protein targets are reviewed, with special focus in studies addressing the potential use of phytochemicals as epidrugs that prevent and/or control T2DM in vivo and in vitro. As main findings, and although some controversial results have been found, bioactive molecules with epigenetic regulatory function, appear to be a potential replacement/complementary therapy of pharmacological hypoglycemic drugs, with minimal side effects. Indeed, natural epidrugs have shown to prevent or delay the T2DM development and the morbidity associated to dysfunction of blood vessels, eyes and kidneys due to sustained hyperglycemia in T2DM patients.
Collapse
Affiliation(s)
- Karina Ramírez-Alarcón
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
- Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de la Santisima Concepcion, Concepción, Chile
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Oman
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mouz, Oman
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
- *Correspondence: Ahmed Al-Harrasi, ; Natália Cruz-Martins, ; Javad Sharifi-Rad, ; Miquel Martorell,
| |
Collapse
|
46
|
Thiazole-based and thiazolidine-based protein tyrosine phosphatase 1B inhibitors as potential anti-diabetes agents. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02668-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Gene set enrichment analysis, network pharmacology and in silico docking approach to understand the molecular mechanism of traditional medicines for the treatment of diabetes mellitus. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42485-020-00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
49
|
Satheeshkumar R, Zhu R, Feng B, Huang C, Gao Y, Gao LX, Shen C, Hou TJ, Xu L, Li J, Zhu YL, Zhou YB, Wang WL. Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorg Med Chem Lett 2020; 30:127170. [DOI: 10.1016/j.bmcl.2020.127170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/03/2023]
|
50
|
Rocha RF, Rodrigues T, Menegatti ACO, Bernardes GJL, Terenzi H. The antidiabetic drug lobeglitazone has the potential to inhibit PTP1B activity. Bioorg Chem 2020; 100:103927. [PMID: 32422389 DOI: 10.1016/j.bioorg.2020.103927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is considered a potential therapeutic target for the treatment of type 2 diabetes mellitus (T2DM), since this enzyme plays a significant role to down-regulate insulin and leptin signalling and its over expression has been implicated in the development of insulin resistance, T2DM and obesity. Some thiazolidinediones (TZD) derivatives have been reported as promising PTP1B inhibitors with anti hyperglycemic effects. Recently, lobeglitazone, a new TZD, was described as an antidiabetic drug that targets the PPAR-γ (peroxisome γ proliferator-activated receptor) pathway, but no information on its effects on PTP1B have been reported to date. We investigated the effects of lobeglitazone on PTP1B activity in vitro. Surprisingly, lobeglitazone led to moderate inhibition on PTP1B (IC50 42.8 ± 3.8 µM) activity and to a non-competitive reversible mechanism of action. As lobeglitazone inhibits PTP1B activity in vitro, we speculate that it could also target PTP1B signalling pathway in vivo and thus contribute to potentiate its antidiabetic effects.
Collapse
Affiliation(s)
- Ruth F Rocha
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Tiago Rodrigues
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Angela C O Menegatti
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil; Universidade Federal do Piauí, CPCE, 64900-000 Bom Jesus, PI, Brazil.
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal; Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|